101
|
Kim DH, Kothandan VK, Kim HW, Kim KS, Kim JY, Cho HJ, Lee YK, Lee DE, Hwang SR. Noninvasive Assessment of Exosome Pharmacokinetics In Vivo: A Review. Pharmaceutics 2019; 11:E649. [PMID: 31817039 PMCID: PMC6956244 DOI: 10.3390/pharmaceutics11120649] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes, intraluminal vesicles that contain informative DNA, RNA, proteins, and lipid membranes derived from the original donor cells, have recently been introduced to therapy and diagnosis. With their emergence as an alternative to cell therapy and having undergone clinical trials, proper analytical standards for evaluating their pharmacokinetics must now be established. Molecular imaging techniques such as fluorescence imaging, magnetic resonance imaging, and positron emission tomography (PET) are helpful to visualizing the absorption, distribution, metabolism, and excretion of exosomes. After exosomes labelled with a fluorescer or radioisotope are administered in vivo, they are differentially distributed according to the characteristics of each tissue or lesion, and real-time biodistribution of exosomes can be noninvasively monitored. Quantitative analysis of exosome concentration in biological fluid or tissue samples is also needed for the clinical application and industrialization of exosomes. In this review, we will discuss recent pharmacokinetic applications to exosomes, including labelling methods for in vivo imaging and analytical methods for quantifying exosomes, which will be helpful for evaluating pharmacokinetics of exosomes and improving exosome development and therapy.
Collapse
Affiliation(s)
- Do Hee Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Hye Won Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ki Seung Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ji Young Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Hyeon Jin Cho
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Chungbuk 27469, Korea;
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 56212, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| |
Collapse
|
102
|
Jiménez J, Autin L, Ibáñez de Cáceres I, Goodsell DS. Integrative Modeling and Visualization of Exosomes. THE JOURNAL OF BIOCOMMUNICATION 2019; 43:e10. [PMID: 36406636 PMCID: PMC9139774 DOI: 10.5210/jbc.v43i2.10331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Information from proteomics, microscopy, and structural biology are integrated to create structural models of exosomes, small vesicles released from cells. Three visualization methods are employed and compared: 2D painting of a cross section using traditional media, manual creation of a cross section using the mesoscale 2.5D digital painting software cellPAINT, and generation of a 3D atomic model using the mesoscale modeling program cellPACK.
Collapse
Affiliation(s)
- Julia Jiménez
- The Sanitary Research Institution IdiPAZ
- University Hospital La Paz, Madrid
| | | | | | | |
Collapse
|
103
|
Regulatory, ethical, and technical considerations on regenerative technologies and adipose-derived mesenchymal stem cells. EUROPEAN JOURNAL OF PLASTIC SURGERY 2019. [DOI: 10.1007/s00238-019-01571-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
104
|
Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Physiol Cell Physiol 2019; 318:C29-C39. [PMID: 31693397 DOI: 10.1152/ajpcell.00280.2019] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) are small lipid membrane vesicles that are secreted from almost all kinds of cells into the extracellular space. EVs are widely accepted to be involved in various cellular processes; in particular, EVs derived from cancer cells have been reported to play important roles in modifying the tumor microenvironment and promoting tumor progression. In addition, EVs derived from cancer cells encapsulate various kinds of tumor-specific molecules, such as proteins and RNAs, which contribute to cancer malignancy. Therefore, the unveiling of the precise mechanism of intercellular communication via EVs in cancer patients will provide a novel strategy for cancer treatment. Furthermore, a focus on the contents of EVs could promote the use of EVs in body fluids as clinically useful diagnostic and prognostic biomarkers. In this review, we summarize the current research knowledge on EVs as biomarkers and therapeutic targets and discuss their potential clinical applications.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan.,Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Kagenori Ito
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
105
|
Li C, He H, Wang J, Xia X, Zhang M, Wu Q. Possible roles of exosomal miRNAs in the pathogenesis of oral lichen planus. Am J Transl Res 2019; 11:5313-5323. [PMID: 31632512 PMCID: PMC6789246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The etiology and pathogenesis of oral lichen planus have not achieved a consensus yet. This study aimed to explore the possible roles of exosomal miRNAs in the pathogenesis of oral lichen planus. Bioactive components from exosomes regulate intercellular communications that may be closely related to the occurrence and development of diseases, including oral lichen planus. Further, exosomes are expected to be a biomarker for the diagnosis and treatment of oral lichen planus. In this study, new advanced views about the biological characteristics, clinical significance, and involvement of exosomes in oral lichen planus were reviewed.
Collapse
Affiliation(s)
- Congcong Li
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University395 Yanan Road, Hangzhou 310006, Zhejiang Province, China
| | - Hong He
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University395 Yanan Road, Hangzhou 310006, Zhejiang Province, China
| | - Jiaqin Wang
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University395 Yanan Road, Hangzhou 310006, Zhejiang Province, China
| | - Xinyu Xia
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University395 Yanan Road, Hangzhou 310006, Zhejiang Province, China
| | - Mengyun Zhang
- Zhenjiang Stomatology HospitalZhenjiang 212000, Jiangsu Province, China
| | - Qingzhu Wu
- Haishu Stomatology HospitalNingbo 315000, Zhejiang Province, China
| |
Collapse
|
106
|
Zhang J, Luo H, Xiong Z, Wan K, Liao Q, He H. High-throughput sequencing reveals biofluid exosomal miRNAs associated with immunity in pigs. Biosci Biotechnol Biochem 2019; 84:53-62. [PMID: 31483222 DOI: 10.1080/09168451.2019.1661767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Large numbers of miRNAs are found in biofluid exosomes. We isolated ~50-200 nm diameter exosomes from four types of porcine biofluid (urine, plasma, semen, and bile) using serial centrifugation and ultracentrifugation procedures. A total of 42.15 M raw data were generated from four small RNA libraries. This produced 40.17 M map-able sequences, of which we identified 204 conserved miRNAs, and 190 novel candidate miRNAs. Furthermore, we identified 34 miRNAs specifically expressed in only one library, all with well-characterized immune-related functions. A set of five universally abundant miRNAs (miR-148a-3p, miR-21-5p, let-7f-5p, let-7i-5p, and miR-99a-5p) across all four biofluids was also found. Function enrichment analysis revealed that the target genes of the five ubiquitous miRNAs are primarily involved in immune and RNA metabolic processes. In summary, our findings suggest that porcine biofluid exosomes contain a large number of miRNAs, many of which may be crucial regulators of the immune system.
Collapse
Affiliation(s)
- Jie Zhang
- College of Animal Science, Southwest University, Chongqing, China
| | - Hui Luo
- College of Animal Science, Southwest University, Chongqing, China
| | - Zibiao Xiong
- College of Animal Science, Southwest University, Chongqing, China
| | - Kun Wan
- College of Animal Science, Southwest University, Chongqing, China
| | - Qinfeng Liao
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Hang He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| |
Collapse
|
107
|
Human Immunodeficiency Virus (HIV) Infection and Use of Illicit Substances Promote Secretion of Semen Exosomes that Enhance Monocyte Adhesion and Induce Actin Reorganization and Chemotactic Migration. Cells 2019; 8:cells8091027. [PMID: 31484431 PMCID: PMC6770851 DOI: 10.3390/cells8091027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Semen exosomes (SE) from HIV-uninfected (HIV−) individuals potently inhibit HIV infection in vitro. However, morphological changes in target cells in response to SE have not been characterized or have the effect of HIV infection or the use of illicit substances, specifically psychostimulants, on the function of SE been elucidated. The objective of this study was to evaluate the effect of HIV infection, psychostimulant use, and both together on SE-mediated regulation of monocyte function. SE were isolated from semen of HIV− and HIV-infected (HIV+) antiretroviral therapy (ART)-naive participants who reported either using or not using psychostimulants. The SE samples were thus designated as HIV−Drug−, HIV−Drug+, HIV+Drug−, and HIV+Drug+. U937 monocytes were treated with different SEs and analyzed for changes in transcriptome, morphometrics, actin reorganization, adhesion, and chemotaxis. HIV infection and/or use of psychostimulants had minimal effects on the physical characteristics of SE. However, different SEs had diverse effects on the messenger RNA signature of monocytes and rapidly induced monocyte adhesion and spreading. SE from HIV infected or psychostimulants users but not HIV−Drug− SE, stimulated actin reorganization, leading to the formation of filopodia-like structures and membrane ruffles containing F-actin and vinculin that in some cases were colocalized. All SE stimulated monocyte chemotaxis to HIV secretome and activated the secretion of matrix metalloproteinases, a phenotype exacerbated by HIV infection and psychostimulant use. SE-directed regulation of cellular morphometrics and chemotaxis depended on the donor clinical status because HIV infection and psychostimulant use altered SE function. Although our inclusion criteria specified the use of cocaine, humans are poly-drug and alcohol users and our study participants used psychostimulants, marijuana, opiates, and alcohol. Thus, it is possible that the effects observed in this study may be due to one of these other substances or due to an interaction between different substances.
Collapse
|
108
|
Kaczor-Urbanowicz KE, Wei F, Rao SL, Kim J, Shin H, Cheng J, Tu M, Wong DTW, Kim Y. Clinical validity of saliva and novel technology for cancer detection. Biochim Biophys Acta Rev Cancer 2019; 1872:49-59. [PMID: 31152821 PMCID: PMC6692231 DOI: 10.1016/j.bbcan.2019.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022]
Abstract
Cancer, a local disease at an early stage, systemically evolves as it progresses by triggering alterations in surrounding microenvironment, disturbing immune surveillance and further disseminating its molecular contents into circulation. This pathogenic characteristic of cancer makes the use of biofluids such as blood/serum/plasma, urine, tear and cerebrospinal fluids credible surrogates harboring tumor tissue-derived molecular alterations for the detection of cancer. Most importantly, a number of recent reports have credentialed the clinical validity of saliva for the detection of systemic diseases including cancers. In this review, we discussed the validity of saliva as credible biofluid and clinical sample type for the detection of cancers. We have presented the molecular constituents of saliva that could mirror the systemic status of our body and recent findings of salivaomics associated with cancers. Recently, liquid biopsy to detect cancer-derived circulating tumor DNA has emerged as a credible cancer-detection tool with potential benefits in screening, diagnosis and also risk management of cancers. We have further presented the clinical validity of saliva for liquid biopsy of cancers and a new technology platform based on electrochemical detection of cancer-derived ctDNA in saliva with superior sensitivity and point-of-care potential. The clinical utilities of saliva for the detection of cancers have been evidenced, but biological underpinning on the existence of molecular signatures of cancer-origin in saliva, such as via exosomal distribution, should be addressed in detail.
Collapse
Affiliation(s)
- Karolina Elżbieta Kaczor-Urbanowicz
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Section of Orthodontics, UCLA School of Dentistry, University of California at Los Angeles, United States of America
| | - Fang Wei
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Shannon Liu Rao
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jinseok Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Heebum Shin
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jordan Cheng
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Michael Tu
- EZLife Bio Inc., 21250 Califa St #101, Woodland Hills, CA 9367, United States of America
| | - David T W Wong
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| | - Yong Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| |
Collapse
|
109
|
Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res 2019; 210:80-98. [PMID: 30998903 DOI: 10.1016/j.trsl.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
Over the last decades exosomes have become increasingly popular in the field of medicine. While until recently they were believed to be involved in the removal of obsolete particles from the cell, it is now known that exosomes are key players in cellular communication, carrying source-specific molecules such as proteins, growth factors, miRNA/mRNA, among others. The discovery that exosomes are not bound to intraspecies interactions, but are also capable of interkingdom communication, has once again revolutionized the field of exosomes research. A rapidly growing body of literature is shedding light at novel sources and participation of exosomes in physiological or regenerative processes, infection and disease. For the purpose of this review we have categorized 6 sources of interest (animal products, body fluids, plants, bacteria, fungus and parasites) and linked their innate roles to the clinics and potential medical applications, such as cell-based therapy, diagnostics or drug delivery.
Collapse
Affiliation(s)
- Christina M A P Schuh
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | - Jimena Cuenca
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
110
|
Chiabotto G, Gai C, Deregibus MC, Camussi G. Salivary Extracellular Vesicle-Associated exRNA as Cancer Biomarker. Cancers (Basel) 2019; 11:cancers11070891. [PMID: 31247906 PMCID: PMC6679099 DOI: 10.3390/cancers11070891] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) secreted in biological fluids contain several transcripts of the cell of origin, which may modify the functions and phenotype of proximal and distant cells. Cancer-derived EVs may promote a favorable microenvironment for cancer growth and invasion by acting on stroma and endothelial cells and may favor metastasis formation. The transcripts contained in cancer EVs may be exploited as biomarkers. Protein and extracellular RNA (exRNA) profiling in patient bio-fluids, such as blood and urine, was performed to identify molecular features with potential diagnostic and prognostic values. EVs are concentrated in saliva, and salivary EVs are particularly enriched in exRNAs. Several studies were focused on salivary EVs for the detection of biomarkers either of non-oral or oral cancers. The present paper provides an overview of the available studies on the diagnostic potential of exRNA profiling in salivary EVs.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Chiara Gai
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Maria Chiara Deregibus
- i3T Business Incubator and Technology Transfer, University of Torino, Torino 10126, Italy.
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| |
Collapse
|
111
|
Amado F, Calheiros-Lobo MJ, Ferreira R, Vitorino R. Sample Treatment for Saliva Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:23-56. [DOI: 10.1007/978-3-030-12298-0_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
112
|
Xu H, Jia S, Xu H. Potential therapeutic applications of exosomes in different autoimmune diseases. Clin Immunol 2019; 205:116-124. [PMID: 31228581 DOI: 10.1016/j.clim.2019.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases are caused by self-immune responses to autoantigens, which damage body tissues and severely affect the patient's quality of life. Therapeutic drugs are associated with adverse side effects and their beneficial effects are limited to specific populations. Evidence indicates that exosomes which are small vesicles secreted by most cell types and body fluids, and may play roles in both immune stimulation and tolerance since they are involved in many processes such as immune signaling, inflammation and angiogenesis. Exosomes have also emerged as promising tools for therapeutic delivery, given their intrinsic features such as stability, biocompatibility and a capacity for stealth. In this review, we summarize existing literature regarding the production, efficacy, action mechanism, and potential therapeutic uses of exosomes in the contexts of autoimmune diseases such as type 1 diabetes mellitus, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Sjogren's syndrome.
Collapse
Affiliation(s)
- Hui Xu
- The Engineering Research Center of polypeptide Drug Discovery and Evaluation of Jiangsu Province, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shaochang Jia
- Department of Bio-Treatment, Jinling Hospital, Nanjing, PR China.
| | - Hanmei Xu
- The Engineering Research Center of polypeptide Drug Discovery and Evaluation of Jiangsu Province, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
113
|
He D, Wang H, Ho SL, Chan HN, Hai L, He X, Wang K, Li HW. Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Am J Cancer Res 2019; 9:4494-4507. [PMID: 31285775 PMCID: PMC6599656 DOI: 10.7150/thno.33683] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Exosomes (EXs) have been increasingly recognized as natural nanoscale vehicles for microRNA (miRNA)-based cell-cell communication and an ideal source of miRNA biomarkers in bodily fluids. Current methods allow bulk analysis of the miRNA contents of EXs, but these approaches are not suitable for the in situ stoichiometry of exosomal miRNAs and fail to reveal phenotypic heterogeneity at the single-vesicle level. This study aimed to develop a single vesicle-based, mild, precise, but versatile method for the in situ quantitative and stoichiometric analysis of exosomal miRNAs. Methods: A total internal reflection fluorescence (TIRF)-based single-vesicle imaging assay was developed for direct visualization and quantification of the single-vesicles of EXs and their miRNA contents in serum microsamples. The assay uses co-delivery of inactive split DNAzymes and fluorescence-quenched substrates into nanosized EXs treated with streptolysin O to produce a target miRNA-activated catalytic cleavage reaction that amplifies the readout of fluorescence signal. We perform the in situ quantitative and stoichiometric analysis of serum exosomal hsa-miRNA-21 (miR-21), a common cancer biomarker, by using the developed TIRF imaging assay. Results: The TIRF imaging assay for serum exosomal miR-21 can distinguish cancer patients from healthy subjects with better performance than conventional real-time polymerase chain reaction (PCR) assay. The exosomal miR-21 level in serum is also informative for monitoring tumor progression and responses to treatment. Moreover, the TIRF assays can readily determine the precise stoichiometry of target exosomal miRNA contents in situ by delivering molecular beacon (MB) probes into EXs. Conclusions: The created TIRF imaging platform shows high applicability to serve as a universal and useful tool for the single-vesicle in situ quantitative and stoichiometric analysis of other disease-associated exosomal miRNAs markers and provide valuable insight into the physiological relevance of EX-mediated miRNA communication.
Collapse
|
114
|
Ouattara LA, Anderson SM, Doncel GF. Seminal exosomes and HIV-1 transmission. Andrologia 2019; 50:e13220. [PMID: 30569645 PMCID: PMC6378409 DOI: 10.1111/and.13220] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are endosomal‐derived membrane‐confined nanovesicles secreted by many (if not all) cell types and isolated from every human bodily fluid examined up to now including plasma, semen, vaginal secretions and breast milk. Exosomes are thought to represent a new player in cell‐to‐cell communication pathways and immune regulation, and be involved in many physiological and pathological processes. Susceptibility to HIV‐1 infection can be impacted by exosomes, while HIV‐1 pathogenesis can alter exosomal function and composition. Exosomes isolated from semen and vaginal fluid of healthy individuals can inhibit HIV‐1 infection and/or potently block viral transfer in vitro. However, the role of exosomes in HIV‐1 transmission and progression is not fully understood yet and some studies show conflicting results, mainly for exosomes isolated from plasma and breast milk. Determining the composition of exosomes from infected donors and studying their interaction with HIV‐1 in vitro compared to exosomes isolated from uninfected donors will provide insights into the role exosomes play in HIV‐1 transmission during sexual intercourse and breastfeeding.
Collapse
|
115
|
Li J, Tian T, Zhou X. The role of exosomal shuttle RNA (esRNA) in lymphoma. Crit Rev Oncol Hematol 2019; 137:27-34. [DOI: 10.1016/j.critrevonc.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
|
116
|
Xie C, Ji N, Tang Z, Li J, Chen Q. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer 2019; 18:83. [PMID: 30954079 PMCID: PMC6451295 DOI: 10.1186/s12943-019-0985-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The proliferation and metastasis ability of tumors are mediate by the "mutual dialogue" between cells in the tumor microenvironment (TME). Extracellular vesicles (EVs), mainly exosomes and microvesicles, play an important role in achieving intercellular substance transport and information transfer in the TME. Initially considered "garbage dumpsters" and later referred to as "signal boxes", EVs carry "cargo" (proteins, lipids, or nucleic acids) that can redirect the function of a recipient cell. Currently, the molecular mechanisms and clinical applications of EVs in head and neck cancers (HNCs) are still at an early stage and need to be further investigate. In this review, we provide insight into the TME of HNCs, classifying and summarizing EVs derived from different cell types and illuminating their complex signaling networks involved in mediating tumor proliferation, invasion and metastasis, vascular angiogenesis and cancer drug resistance. In addition, we highlight the application of EVs in HNCs, underlining the special pathological and physiological environment of HNCs. The application of tumor heterogeneous EVs in saliva and circulating blood diagnostics will provide a new perspective for the early screening, real-time monitoring and prognostic risk assessment of HNCs. Given the concept of precise and individual therapy, nanostructured EVs are equipped with superior characteristics of biocompatibility, low immunogenicity, loadability and modification ability, making these molecules one of the new strategies for HNCs treatment.
Collapse
Affiliation(s)
- Changqing Xie
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
117
|
Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Hurtado-Monzón AM, Farfan-Morales CN, Cervantes-Salazar M, Bolaños J, Cigarroa-Mayorga OE, Martín-Martínez ES, Medina F, Fragoso-Soriano RJ, Chávez-Munguía B, Salas-Benito JS, Del Angel RM. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res 2019; 266:1-14. [PMID: 30930201 DOI: 10.1016/j.virusres.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Exosomes are endocytic origin small-membrane vesicles secreted to the extracellular space by most cell types. Exosomes released from virus infected-cells can mediate the cell-to-cell communication to promote or modulate viral transmission. Dengue virus (DENV) is an arbovirus transmitted by Aedes mosquitoes bite to humans. Interestingly, the role of exosomes during the DENV infection in mammalian cells has already been described. However, little is known about exosomes derived from infected mosquito cells. Thus, the exosomes released from DENV-infected C6/36 cells were isolated, purified and analyzed using an antibody against the tetraspanin CD9 from human that showed cross-reactivity with the homologs to human CD9 found in Aedes albopictus (AalCD9). The exosomes from DENV infected cells were larger than the exosomes secreted from uninfected cells, contained virus-like particles, and they were able to infect naïve C6/36 cells, suggesting that exosomes are playing a role in virus dissemination.
Collapse
Affiliation(s)
- José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Margot Cervantes-Salazar
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Jeni Bolaños
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Oscar E Cigarroa-Mayorga
- Departamento de Tecnologías Avanzadas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eduardo San Martín-Martínez
- Centro de Investigación en Ciencias Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional (CICATA-IPN), Mexico City, Mexico
| | - Fernando Medina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Santiago Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico; Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa M Del Angel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
118
|
Gézsi A, Kovács Á, Visnovitz T, Buzás EI. Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp Mol Med 2019; 51:1-11. [PMID: 30872567 PMCID: PMC6418293 DOI: 10.1038/s12276-019-0226-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures secreted by cells. In the past decade, EVs have attracted substantial attention as carriers of complex intercellular information. They have been implicated in a wide variety of biological processes in health and disease. They are also considered to hold promise for future diagnostics and therapy. EVs are characterized by a previously underappreciated heterogeneity. The heterogeneity and molecular complexity of EVs necessitates high-throughput analytical platforms for detailed analysis. Recently, mass spectrometry, next-generation sequencing and bioinformatics tools have enabled detailed proteomic, transcriptomic, glycomic, lipidomic, metabolomic, and genomic analyses of EVs. Here, we provide an overview of systems biology experiments performed in the field of EVs. Furthermore, we provide examples of how in silico systems biology approaches can be used to identify correlations between genes involved in EV biogenesis and human diseases. Using a knowledge fusion system, we investigated whether certain groups of proteins implicated in the biogenesis/release of EVs were associated with diseases and phenotypes. Furthermore, we investigated whether these proteins were enriched in publicly available transcriptomic datasets using gene set enrichment analysis methods. We found associations between key EV biogenesis proteins and numerous diseases, which further emphasizes the key role of EVs in human health and disease.
Collapse
Affiliation(s)
- András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
119
|
Zlotogorski-Hurvitz A, Dekel BZ, Malonek D, Yahalom R, Vered M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J Cancer Res Clin Oncol 2019; 145:685-694. [PMID: 30603907 DOI: 10.1007/s00432-018-02827-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/15/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To determine the Fourier-transform infrared (FTIR) spectra of salivary exosomes from oral cancer (OC) patients and healthy individuals (HI) and to assess its diagnostic potential using computational-aided models. METHODS Whole saliva samples were collected from 21 OC patients and 13 HI. Exosomes were pelleted using differential centrifugation (12,000g, 120,000g). The mid-infrared (IR) absorbance spectra (900-5000 cm- 1 range) were measured using MIR8025 Oriel Fourier-transform IR equipped with a PIKE MIRacle ZnSe attenuated total reflectance attachment. Machine learning techniques, utilized to build discrimination models for the absorbance data of OC and HI, included the principal component analysis-linear discriminant analysis (PCA-LDA) and support vector machine (SVM) classification. Sensitivity, specificity and the area under the receiver operating characteristic curve were calculated. RESULTS IR spectra of OC were consistently different from HI at 1072 cm- 1 (nucleic acids), 2924 cm- 1 and 2854 cm- 1 (membranous lipids), and 1543 cm- 1 (transmembrane proteins). The PCA-LDA discrimination model correctly classified the samples with a sensitivity of 100%, specificity of 89% and accuracy of 95%, and the SVM showed a training accuracy of 100% and a cross-validation accuracy of 89%. CONCLUSION We showed the specific IR spectral signature for OC salivary exosomes, which was accurately differentiated from HI exosomes based on detecting subtle changes in the conformations of proteins, lipids and nucleic acids using optimized artificial neural networks with small data sets. This non-invasive method should be further investigated for diagnosis of oral cancer at its very early stages or in oral lesions with potential for malignant transformation.
Collapse
Affiliation(s)
- Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Ben Zion Dekel
- Department of Electrical and Computer Engineering, Ruppin Academic Center, Emek Hefer, Israel
| | - Dov Malonek
- Department of Electrical and Computer Engineering, Ruppin Academic Center, Emek Hefer, Israel
| | - Ran Yahalom
- Department of Oral and Maxillofacial Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, 69978, Tel Aviv, Israel.
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
120
|
Salivary Exosomes as Nanocarriers for Cancer Biomarker Delivery. MATERIALS 2019; 12:ma12040654. [PMID: 30795593 PMCID: PMC6416587 DOI: 10.3390/ma12040654] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/01/2023]
Abstract
Human saliva is an ideal body fluid for developing non-invasive diagnostics. Saliva contains naturally-occurring nanoparticles with unique structural and biochemical characteristics. The salivary exosome, a nanoscale extracellular vesicle, has been identified as a highly informative nanovesicle with clinically-relevant information. Salivary exosomes have brought forth a pathway and mechanism by which cancer-derived biomarkers can be shuttled through the systemic circulation into the oral cavity. Despite such clinical potential, routine and reliable analyses of exosomes remain challenging due to their small sizes. Characterization of individual exosome nanostructures provides critical data for understanding their pathophysiological condition and diagnostic potential. In this review, we summarize a current array of discovered salivary biomarkers and nanostructural properties of salivary exosomes associated with specific cancers. In addition, we describe a novel electrochemical sensing technology, EFIRM (electric field-induced release and measurement), that advances saliva liquid biopsy, covering the current landscape of point-of-care saliva testing.
Collapse
|
121
|
Jan AT, Rahman S, Khan S, Tasduq SA, Choi I. Biology, Pathophysiological Role, and Clinical Implications of Exosomes: A Critical Appraisal. Cells 2019; 8:99. [PMID: 30699987 PMCID: PMC6406279 DOI: 10.3390/cells8020099] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed entities of endocytic origin, which are generated during the fusion of multivesicular bodies (MVBs) and plasma membranes. Exosomes are released into the extracellular milieu or body fluids; this process was reported for mesenchymal, epithelial, endothelial, and different immune cells (B-cells and dendritic cells), and was reported to be correlated with normal physiological processes. The compositions and abundances of exosomes depend on their tissue origins and cell types. Exosomes range in size between 30 and 100 nm, and shuttle nucleic acids (DNA, messenger RNAs (mRNAs), microRNAs), proteins, and lipids between donor and target cells. Pathogenic microorganisms also secrete exosomes that modulate the host immune system and influence the fate of infections. Such immune-modulatory effect of exosomes can serve as a diagnostic biomarker of disease. On the other hand, the antigen-presenting and immune-stimulatory properties of exosomes enable them to trigger anti-tumor responses, and exosome release from cancerous cells suggests they contribute to the recruitment and reconstitution of components of tumor microenvironments. Furthermore, their modulation of physiological and pathological processes suggests they contribute to the developmental program, infections, and human diseases. Despite significant advances, our understanding of exosomes is far from complete, particularly regarding our understanding of the molecular mechanisms that subserve exosome formation, cargo packaging, and exosome release in different cellular backgrounds. The present study presents diverse biological aspects of exosomes, and highlights their diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185236, India.
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Shahanavaj Khan
- Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar 251001, India.
| | | | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
122
|
Wong CH, Chen YC. Clinical significance of exosomes as potential biomarkers in cancer. World J Clin Cases 2019; 7:171-190. [PMID: 30705894 PMCID: PMC6354096 DOI: 10.12998/wjcc.v7.i2.171] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Exosomes are microvesicles, measuring 30-100 nm in diameter. They are widely distributed in body fluids, including blood, bile, urine and saliva. Cancer-derived exosomes carry a wide variety of DNA, RNA, proteins and lipids, and may serve as novel biomarkers in cancer.
AIM To summarize the performance of exosomal biomarkers in cancer diagnosis and prognosis.
METHODS Relevant publications in the literature were identified by search of the “PubMed” database up to September 11, 2018. The quality of the included studies was assessed by QUADAS-2 and REMARK. For assessment of diagnostic biomarkers, 47 biomarkers and 2240 patients from 30 studies were included.
RESULTS Our results suggested that these exosomal biomarkers had excellent diagnostic ability in various types of cancer, with good sensitivity and specificity. For assessment of prognostic markers, 50 biomarkers and 4797 patients from 42 studies were included. We observed that exosomal biomarkers had prognostic values in overall survival, disease-free survival and recurrence-free survival.
CONCLUSION Exosomes can function as potential biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Chi-Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang-Chao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
123
|
Otake K, Kamiguchi H, Hirozane Y. Identification of biomarkers for amyotrophic lateral sclerosis by comprehensive analysis of exosomal mRNAs in human cerebrospinal fluid. BMC Med Genomics 2019; 12:7. [PMID: 30630471 PMCID: PMC6329125 DOI: 10.1186/s12920-019-0473-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background Exosomes are a subset of extracellular vesicles 30–200 nm in diameter secreted from cells, which contain functional mRNAs and microRNAs. Cerebrospinal fluid (CSF) is the primary source for liquid biopsy to examine diseases in central nervous system. To date, there is no available method to analyze exosomal mRNAs comprehensively in human CSF. Methods The main purpose of this study is to established the methodology of comprehensive analysis of exosomal mRNAs in CSF by a highly sensitive next-generation sequencing. The signatures of CSF exosomal mRNAs were then compared between four normal healthy donors and four sporadic amyotrophic lateral sclerosis patients to identify disease-related biomarkers. Differentially expressed genes were identified by DESeq2. Results RNA sequencing from CSF exosomes was successfully performed, that was demonstrated by the high pearson’s product-moment correlation coefficient (r = 0.993) in the technical replicates. Also, position coverage analysis revealed that most detected mRNAs retained their integrity throughout their full-length in CSF exosomes. In CSF exosomes from normal healthy donors, an average of 14,807 genes were detected, of which 4580 genes were commonly detected among four individuals, including neuron-enriched genes such as TUBB3 and CAMK2A. In comparison with exosomal mRNAs in CSF from four patients with amyotrophic lateral sclerosis, 543 genes were significantly changed, as represented by CUEDC2. Gene Ontology analysis and pathway analysis with these genes revealed functional enrichment of ubiquitin-proteasome pathway, oxidative stress response, and unfolded protein response. These pathways are related to pathomechanisms of amyotrophic lateral sclerosis. Conclusion We successfully established the methodology of comprehensive analysis of exosomal mRNAs in human CSF. It was shown to be useful to identify disease biomarkers for central nervous system. Several genes, such as CUEDC2, in CSF exosomes were suggested to be candidate disease biomarkers for amyotrophic lateral sclerosis. Electronic supplementary material The online version of this article (10.1186/s12920-019-0473-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kentaro Otake
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Hidenori Kamiguchi
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yoshihiko Hirozane
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
124
|
Shwetha HR, Smitha T. Dichotomy of exosomes in oral squamous cell carcinoma: Prey or play! J Oral Maxillofac Pathol 2019; 23:172-175. [PMID: 31516218 PMCID: PMC6714256 DOI: 10.4103/jomfp.jomfp_198_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exosomes are nano-sized particles which belong to the family of extracellular vesicles (EVs) that are produced in the endosomal compartment of those cells which mediate intercellular communication. These particles can be found abundantly in the biological body fluids such as urine, blood, saliva, cerebrospinal fluid and breast milk. These vesicles can transfer genetic materials such as the microRNAs, noncoding RNAs, DNA and lipids by means of direct or indirect cell-to-cell interaction. Consequently, there has been lot of growing interest related to cancer exosomes as biomarkers and as potential therapeutics. There are studies done which demonstrate the exosomes in relation to cancer, by targeting specific cells and also promote the tumor progression. The other part of the spectrum has stressed the importance of exosomes stability and its potential role in targeting cancer cells through drug delivery system of anticancer molecules. The dichotomy allied with exosomes and their role in oral squamous cell carcinoma biomarkers or as therapy enhancement will be highlighted.
Collapse
Affiliation(s)
- H R Shwetha
- Department of Oral Pathology, MMNGH Institute of Dental Science, Belgaum, Karnataka, India
| | - T Smitha
- Department of Oral Pathology, VSDC, Bengaluru, Karnataka, India
| |
Collapse
|
125
|
Yamamoto T, Kosaka N, Ochiya T. Latest advances in extracellular vesicles: from bench to bedside. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:746-757. [PMID: 31447954 PMCID: PMC6691912 DOI: 10.1080/14686996.2019.1629835] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are small membraned vesicles and approximately 50-150 nm in diameter. Almost all of the type of cells releases the EVs and circulates in the body fluids. EVs contain multiple functional components, such as mRNAs, microRNAs (miRNAs), DNAs, and proteins, which can be transferred to the recipient cells, resulting in phenotypic changes. Recently, EV research has focused on their potential as a drug delivery vehicle and in targeted therapy against specific molecules. Moreover, some surface proteins are specific to particular diseases, and therefore, EVs also have promise as biomarkers. In this concise review, we summarize the latest research focused on EVs, which have the potential to become a promising drug delivery method, biomarker, and new therapeutic target for improving the outcomes of cancer patients.
Collapse
Affiliation(s)
- Tomofumi Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, Tokyo, Japan
- CONTACT Nobuyoshi Kosaka Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Takahiro Ochiya Chief, Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
126
|
Mogi K, Hayashida K, Yamamoto T. Damage-less Handling of Exosomes Using an Ion-depletion Zone in a Microchannel. ANAL SCI 2018; 34:875-880. [PMID: 30101880 DOI: 10.2116/analsci.17p462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exosomes are of increasing research interest because they are integral to cell-cell communication and are implicated in various disease states. Here, we investigated the utility of using an ion-depletion zone in a microfluidic device to concentrate exosomes from the culture media of four types of cell lines. Furthermore, we evaluated the extent of damage to the exosomes following concentration by an ion-depletion zone microchannel device compared with exosomes concentrated by a conventional ultra-centrifugation technique. Our results conclusively demonstrate that significantly less damage is incurred by exosomes following passage through and concentration by the ion-depleted zone microchannel device compared to concentration by ultra-centrifugation. Our findings will help extend the utility of exosomes to various applications.
Collapse
Affiliation(s)
- Katsuo Mogi
- Functional Proteomics Team, Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology.,Department of Biological Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Kei Hayashida
- Department of Mechanical Engineering, Tokyo Institute of Technology
| | | |
Collapse
|
127
|
The Expanding Role of Vesicles Containing Aquaporins. Cells 2018; 7:cells7100179. [PMID: 30360436 PMCID: PMC6210599 DOI: 10.3390/cells7100179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022] Open
Abstract
In animals and plants, membrane vesicles containing proteins have been defined as key for biological systems involving different processes such as trafficking or intercellular communication. Docking and fusion of vesicles to the plasma membrane occur in living cells in response to different stimuli, such as environmental changes or hormones, and therefore play an important role in cell homeostasis as vehicles for certain proteins or other substances. Because aquaporins enhance the water permeability of membranes, their role as proteins immersed in vesicles formed of natural membranes is a recent topic of study. They regulate numerous physiological processes and could hence serve new biotechnological purposes. Thus, in this review, we have explored the physiological implications of the trafficking of aquaporins, the mechanisms that control their transit, and the proteins that coregulate the migration. In addition, the importance of exosomes containing aquaporins in the cell-to-cell communication processes in animals and plants have been analyzed, together with their potential uses in biomedicine or biotechnology. The properties of aquaporins make them suitable for use as biomarkers of different aquaporin-related diseases when they are included in exosomes. Finally, the fact that these proteins could be immersed in biomimetic membranes opens future perspectives for new biotechnological applications.
Collapse
|
128
|
Kaczor-Urbanowicz KE, Kim Y, Li F, Galeev T, Kitchen RR, Gerstein M, Koyano K, Jeong SH, Wang X, Elashoff D, Kang SY, Kim SM, Kim K, Kim S, Chia D, Xiao X, Rozowsky J, Wong DTW. Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development. Bioinformatics 2018; 34:1-8. [PMID: 28961734 DOI: 10.1093/bioinformatics/btx504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023] Open
Abstract
Motivation Analysis of RNA sequencing (RNA-Seq) data in human saliva is challenging. Lack of standardization and unification of the bioinformatic procedures undermines saliva's diagnostic potential. Thus, it motivated us to perform this study. Results We applied principal pipelines for bioinformatic analysis of small RNA-Seq data of saliva of 98 healthy Korean volunteers including either direct or indirect mapping of the reads to the human genome using Bowtie1. Analysis of alignments to exogenous genomes by another pipeline revealed that almost all of the reads map to bacterial genomes. Thus, salivary exRNA has fundamental properties that warrant the design of unique additional steps while performing the bioinformatic analysis. Our pipelines can serve as potential guidelines for processing of RNA-Seq data of human saliva. Availability and implementation Processing and analysis results of the experimental data generated by the exceRpt (v4.6.3) small RNA-seq pipeline (github.gersteinlab.org/exceRpt) are available from exRNA atlas (exrna-atlas.org). Alignment to exogenous genomes and their quantification results were used in this paper for the analyses of small RNAs of exogenous origin. Contact dtww@ucla.edu.
Collapse
Affiliation(s)
- Karolina Elzbieta Kaczor-Urbanowicz
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, Division of Oral Biology & Medicine University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yong Kim
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, Division of Oral Biology & Medicine University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Feng Li
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, Division of Oral Biology & Medicine University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Timur Galeev
- Department of Molecular Biophysics and Biochemistry, Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Rob R Kitchen
- Department of Molecular Biophysics and Biochemistry, Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.,The Department of Computer Science, Yale University, New Haven, CT 06520
| | - Kikuye Koyano
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Sung-Hee Jeong
- Department of Oral Medicine, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 626-770, Korea
| | - Xiaoyan Wang
- Department of Biostatistics, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - David Elashoff
- Department of Biostatistics, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - So Young Kang
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | - Su Mi Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | - Kyoung Kim
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | - David Chia
- Department of Pathology & Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - David T W Wong
- Center for Oral/Head & Neck Oncology Research, School of Dentistry, Division of Oral Biology & Medicine University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
129
|
Wu DM, Deng SH, Liu T, Han R, Zhang T, Xu Y. TGF-β-mediated exosomal lnc-MMP2-2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression. Cancer Med 2018; 7:5118-5129. [PMID: 30256540 PMCID: PMC6198203 DOI: 10.1002/cam4.1758] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies indicated that transforming growth factor (TGF)-β-mediated exosomal microRNAs (miRNAs) regulate the migration and invasion of lung cancer cells; however, whether and how TGF-β-mediated exosomal long noncoding (lnc) RNAs regulate migration and invasion of lung cancer cells remains unclear. Here, coculture experiments showed that TGF-β pretreatment increased the migration and invasion potential of lung cancer cells and TGF-β pretreated A549 cells increases vascular permeability. Furthermore, we found that TGF-β-mediated exosomes, as carriers of intercellular communication, regulated lung cancer invasion, and vascular permeability. Transcriptional analysis also revealed that lnc-MMP2-2 was highly enriched in TGF-β-mediated exosomes and might function by increasing the expression of matrix metalloproteinase (MMP)2 through its enhancer activity, with ectopic expression and silencing of lnc-MMP2-2 affecting lung cancer invasion and vascular permeability. Additionally, lnc-MMP2-2 and MMP2 expression was assessed semiquantitatively, and tissue-specific correlations between lnc-MMP2-2 and MMP2 expression were evaluated. These results suggested that exosomal lnc-MMP2-2 might regulate the migration and invasion of lung cancer cells into the vasculature by promoting MMP2 expression, suggesting this lncRNA as a novel therapeutic target and predictive marker of tumor metastasis in lung cancer.
Collapse
Affiliation(s)
- Dong-Ming Wu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shi-Hua Deng
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Teng Liu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Rong Han
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ting Zhang
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Xu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
130
|
Atienzar-Aroca S, Serrano-Heras G, Freire Valls A, Ruiz de Almodovar C, Muriach M, Barcia JM, Garcia-Verdugo JM, Romero FJ, Sancho-Pelluz J. Role of retinal pigment epithelium-derived exosomes and autophagy in new blood vessel formation. J Cell Mol Med 2018; 22:5244-5256. [PMID: 30133118 PMCID: PMC6201377 DOI: 10.1111/jcmm.13730] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Autophagy and exosome secretion play important roles in a variety of physiological and disease states, including the development of age‐related macular degeneration. Previous studies have demonstrated that these cellular mechanisms share common pathways of activation. Low oxidative damage in ARPE‐19 cells, alters both autophagy and exosome biogenesis. Moreover, oxidative stress modifies the protein and genetic cargo of exosomes, possibly affecting the fate of surrounding cells. In order to understand the connection between these two mechanisms and their impact on angiogenesis, stressed ARPE‐19 cells were treated with a siRNA‐targeting Atg7, a key protein for the formation of autophagosomes. Subsequently, we observed the formation of multivesicular bodies and the release of exosomes. Released exosomes contained VEGFR2 as part of their cargo. This receptor for VEGF—which is critical for the development of new blood vessels—was higher in exosome populations released from stressed ARPE‐19. While stressed exosomes enhanced tube formation, exosomes became ineffective after silencing VEGFR2 in ARPE‐19 cells and were, consequently, unable to influence angiogenesis. Moreover, vessel sprouting in the presence of stressed exosomes seems to follow a VEGF‐independent pathway. We propose that abnormal vessel growth correlates with VEGFR2‐expressing exosomes release from stressed ARPE‐19 cells, and is directly linked to autophagy.
Collapse
Affiliation(s)
| | - Gemma Serrano-Heras
- Experimental Research Unit, General University Hospital of Albacete, Albacete, Spain
| | - Aida Freire Valls
- Heidelberg Biochemie-Zentrum (BZH), University of Heidelberg, Heidelberg, Germany
| | | | - Maria Muriach
- Unidad predepartamental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Jorge M Barcia
- School of Medicine, Catholic University of Valencia, Valencia, Spain
| | | | - Francisco J Romero
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | | |
Collapse
|
131
|
Luo J, Fan Y, Shen L, Niu L, Zhao Y, Jiang D, Zhu L, Jiang A, Tang Q, Ma J, Jin L, Wang J, Li X, Zhang S, Zhu L. The Pro-angiogenesis Of Exosomes Derived From Umbilical Cord Blood Of Intrauterine Growth Restriction Pigs Was Repressed Associated With MiRNAs. Int J Biol Sci 2018; 14:1426-1436. [PMID: 30262994 PMCID: PMC6158734 DOI: 10.7150/ijbs.27029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023] Open
Abstract
Dysfunctional umbilical cord blood (UCB) is a key factor for the development of intrauterine growth restriction (IUGR) in utero. Poor degrees of angiogenesis were observed during IUGR development. Here, it was demonstrated that NV-EXO (normal piglet's Umbilical Veins derived exosomes) promoted angiogenesis within the subdued pro-angiogenesis context of IV-EXO (IUGR piglet's Umbilical Veins derived exosomes). Investigation of the miRNA transcriptome of umbilical cord vein and artery exosomes between IUGR and normal littermates showed significant differences between umbilical veins from normal (NV) and IUGR (IV) piglets. Similar patterns were observed in normal (NA) and IUGR (IA) umbilical arteries as well. Moreover, the miRNAs expession level was more stable in NV. Further analysis revealed that miRNAs related to angiogenesis exhibited aberrant expression in IUGR pigs. The miRNA expression patterns between IUGR and normal piglets showed great difference. Expression of miR-150 in the tissues and UCB exosomes of IUGR pigs was significantly decreased. Up-regulation of miR-150 was able to increase proliferation, migration and tube formation of Human umbilical vein endothelial cells (HUVECs), suggesting a pro-angiogenic role. Furthermore, the data demonstrated that UCB derived miRNAs participate in fetal epigenetic regulation during pregnancy, suggesting a novel possible explanation for abnormal embryologic vascular development and several congenital cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - LiLi Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Zhu
- Mianyang Ming Xing Agricultural Science and Technology Development Co., LTD, Mianyang, Sichuan, China
| | - An'an Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
132
|
Shimamoto A. Social Defeat Stress, Sex, and Addiction-Like Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:271-313. [PMID: 30193707 DOI: 10.1016/bs.irn.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Social confrontation is a form of social interaction in animals where two conspecific individuals confront each other in dispute over territory, during the formation of hierarchies, and during breeding seasons. Typically, a social confrontation involves a prevailing individual and a yielding individual. The prevailing individual often exhibits aggressive postures and launches attacks, whereas the yielding individual often adopts postures of defeat. The yielding or defeated animals experience a phenomenon known as social defeat stress, in which they show exaggerated stress as well as autonomic and endocrine responses that cause impairment of both the brain and body. In laboratory settings, one can reliably generate social defeat stress by allowing a naïve (or already defeated) animal to intrude into a home cage in which its resident has already established a territory or is nursing. This resident-intruder paradigm has been widely used in both males and females to study mechanisms in the brain that underlie the stress responses. Stress has profound effects on drug reward for cocaine, methamphetamine, alcohol, and opioids. Particularly, previous experiences with social defeat can exaggerate subsequent addiction-like behaviors. The extent of these addiction-like behaviors depends on the intensity, duration, frequency, and intermittency of the confrontation episodes. This chapter describes four types of social defeat stress: acute, repeated, intermittent, and chronic. Specifically, it focuses on social defeat stress models used in laboratories to study individual, sex, and animal strain differences in addiction-like behaviors.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
133
|
Nair S, Tang KD, Kenny L, Punyadeera C. Salivary exosomes as potential biomarkers in cancer. Oral Oncol 2018; 84:31-40. [PMID: 30115473 DOI: 10.1016/j.oraloncology.2018.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been emerging research in the field of extracellular vesicles, especially those originating from endosomes, referred to as 'exosomes. Exosomes are membrane-bound nanovesicles secreted by most cell types upon fusion of multivesicular bodies (MVBs) to the cell plasma membrane. These vesicles are present in almost all body fluids such as blood, urine, saliva, breast milk, cerebrospinal and peritoneal fluids. Exosomes participate in intercellular communication by transferring the biologically active molecules like proteins, nucleic acids, and lipids to neighboring cells. Exosomes are enriched in the tumour microenvironment and growing evidence demonstrates that exosomes mediate cancer progression and metastasis. Given the important biological role played by these nanovesicles in cancer pathogenesis, these can be used as ideal non-invasive biomarkers in detecting and monitoring tumours as well as therapeutic targets. The scope of the current review is to provide an overview of exosomes with a special focus on salivary exosomes as potential biomarkers in head and neck cancers.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia
| | - Kai Dun Tang
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia; The Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Queensland, Australia; Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Central Integrated Regional Cancer Service, Queensland Health, Queensland, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia; The Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
134
|
Oliveira GP, Porto WF, Palu CC, Pereira LM, Petriz B, Almeida JA, Viana J, Filho NNA, Franco OL, Pereira RW. Effects of Acute Aerobic Exercise on Rats Serum Extracellular Vesicles Diameter, Concentration and Small RNAs Content. Front Physiol 2018; 9:532. [PMID: 29881354 PMCID: PMC5976735 DOI: 10.3389/fphys.2018.00532] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.
Collapse
Affiliation(s)
- Getúlio P Oliveira
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - William F Porto
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cintia C Palu
- Bioinformatics, NSilico Life Science Ltd., Cork, Ireland.,University College Cork, Cork, Ireland
| | - Lydyane M Pereira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bernardo Petriz
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Centro Universitário UDF, Brasília, Brazil
| | - Jeeser A Almeida
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Juliane Viana
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nezio N A Filho
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília, Brazil
| | - Rinaldo W Pereira
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
135
|
Urabe F, Kosaka N, Kimura T, Egawa S, Ochiya T. Extracellular vesicles: Toward a clinical application in urological cancer treatment. Int J Urol 2018; 25:533-543. [PMID: 29726046 DOI: 10.1111/iju.13594] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles are nanometer-sized lipid membranous vesicles that are released from almost all types of cells into the extracellular space. Extracellular vesicles have gained considerable attention in the past decade, and emerging evidence suggests that they play novel roles in mediating cancer biology. Extracellular vesicles contain pathogenic components, such as proteins, DNA fragments, messenger ribonucleic acids, non-coding ribonucleic acids and lipids, all of which mediate paracrine signaling in the tumor microenvironment. Extracellular vesicles impact the multistep process of cancer progression through modulation of the immune system, angiogenesis and pre-metastatic niche formation through transfer of their contents. Therefore, a better understanding of their roles in urological cancers will provide opportunities for novel therapeutic strategies. In addition, the contents of extracellular vesicles hold promise for the discovery of liquid-based biomarkers for prostate, kidney and bladder cancers. Here, we summarize the current research regarding extracellular vesicles in urological cancer and discuss potential clinical applications for extracellular vesicles in urological cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
136
|
Han Y, Jia L, Zheng Y, Li W. Salivary Exosomes: Emerging Roles in Systemic Disease. Int J Biol Sci 2018; 14:633-643. [PMID: 29904278 PMCID: PMC6001649 DOI: 10.7150/ijbs.25018] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Saliva, which contains biological information, is considered a valuable diagnostic tool for local and systemic diseases and conditions because, similar to blood, it contains important molecules like DNA, RNA, and proteins. Exosomes are cell-derived vesicles 30-100 nm in diameter with substantial biological functions, including intracellular communication and signalling. These vesicles, which are present in bodily fluids, including saliva, are released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Salivary diagnosis has notable advantages, which include noninvasiveness, ease of collection, absence of coagulation, and a similar content as plasma, as well as increased patient compliance compared to other diagnostic approaches. However, investigation of the roles of salivary exosomes is still in its early years. In this review, we first describe the characteristics of endocytosis and secretion of salivary exosomes, as well as database and bioinformatics analysis of exosomes. Then, we describe strategies for the isolation of exosomes from human saliva and the emerging role of salivary exosomes as potential biomarkers of oral and other systemic diseases. Given the ever-growing role of salivary exosomes, defining their functions and understanding their specific mechanisms will provide novel insights into possible applications of salivary exosomes in the diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| |
Collapse
|
137
|
Ma J, Fan Y, Zhang J, Feng S, Hu Z, Qiu W, Long K, Jin L, Tang Q, Wang X, Zhou Q, Gu Y, Xiao W, Liu L, Li X, Li M. Testosterone-Dependent miR-26a-5p and let-7g-5p Act as Signaling Mediators to Regulate Sperm Apoptosis via Targeting PTEN and PMAIP1. Int J Mol Sci 2018; 19:E1233. [PMID: 29670053 PMCID: PMC5979296 DOI: 10.3390/ijms19041233] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that testosterone deficiency can dramatically decrease the quality of sperm. MicroRNAs (miRNAs) are conserved mediators of post-transcriptional gene regulation in eukaryotes. However, the systemic regulation and function of miRNAs in sperm quality decline induced by testosterone deficiency has not been investigated. Here, we found that the sperm apoptosis was significantly enhanced and the sperm motility was dramatically decreased in hemicastrated pigs. We then used small RNA sequencing to detect miRNA profiles of sperm from pigs with prepubertal hemicastration (HC) and compared them with control libraries. We identified 16 differentially expressed (DE) miRNAs between the sperm of prepubertal HC and control (CT) pigs. Functional enrichment analysis indicated that the target genes of these DE miRNAs were mainly enriched in apoptosis-related pathways including the p53, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. Furthermore, gain- and loss-of-function analyses demonstrated potential anti-apoptotic effects of the DE miRNAs miR-26a-5p and let-7g-5p on sperm cells. The luciferase reporter assay confirmed that PTEN and PMAIP1 are targets of miR-26a-5p and let-7g-5p, respectively. Spearman’s correlation analysis revealed significantly positive correlations between the sperm and its corresponding seminal plasma exosomes regarding the miRNA expression levels. In conclusion, testosterone deficiency-induced changes in the miRNA components of seminal plasma exosomes secreted by the genital tract may partially elucidate sperm miRNAome alterations, which are further responsible for the decline of sperm motility.
Collapse
Affiliation(s)
- Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yu Fan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jinwei Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Siyuan Feng
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zihui Hu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wanling Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xun Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qi Zhou
- Chengdu Polytechnic, Chengdu 610041, China.
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Pig Science Institute, Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Weihang Xiao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lingyan Liu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
138
|
Halvaei S, Daryani S, Eslami-S Z, Samadi T, Jafarbeik-Iravani N, Bakhshayesh TO, Majidzadeh-A K, Esmaeili R. Exosomes in Cancer Liquid Biopsy: A Focus on Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 10:131-141. [PMID: 29499928 PMCID: PMC5862028 DOI: 10.1016/j.omtn.2017.11.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/04/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
The important challenge about cancer is diagnosis in primary stages and proper treatment. Although classical clinico-pathological features of the tumor have major prognostic value, the advances in diagnosis and treatment are indebted to discovery of molecular biomarkers and control of cancer in the pre-invasive state. Moreover, the efficiency of available therapeutic options is highly diminished, and chemotherapy is still the main treatment due to lack of enough specific targets. Accordingly, finding the new noninvasive biomarkers for cancer is still an important clinical challenge that is not achieved yet. There are current technologies to screen, diagnose, prognose, and treat cancer, but the limitations of these implements and procedures are undeniable. Liquid biopsy as a noninvasive method has a promising future in the field of cancer, and exosomes as one of the recent areas have drawn much attention. In this review, the potential capability of exosomes is summarized in cancer with the special focus on breast cancer as the second cause of cancer mortality in women all around the world. It discusses reasons to choose exosomes for liquid biopsy and the studies related to different potential biomarkers found in the exosomes. Moreover, exosome studies on milk as a specific biofluid are also discussed. At last, because choosing the method for exosome studies is very challenging, a summary of different techniques is provided.
Collapse
Affiliation(s)
- Sina Halvaei
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Daryani
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Eslami-S
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tannaz Samadi
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Narges Jafarbeik-Iravani
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
139
|
Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy 2018; 20:291-301. [DOI: 10.1016/j.jcyt.2017.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
|
140
|
Yeo JC, Kenry, Zhao Z, Zhang P, Wang Z, Lim CT. Label-free extraction of extracellular vesicles using centrifugal microfluidics. BIOMICROFLUIDICS 2018; 12:024103. [PMID: 30867854 PMCID: PMC6404916 DOI: 10.1063/1.5019983] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 08/13/2023]
Abstract
Extracellular vesicles (EVs) play an important role as active messengers in intercellular communication and distant microenvironment modeling. Increasingly, these EVs are recognized as important biomarkers for clinical diagnostics. However, current isolation methods of EVs are time-consuming and ineffective due to the high diffusive characteristics of nanoparticles coupled with fluid flow instability. Here, we develop a microfluidic CEntrifugal Nanoparticles Separation and Extraction (µCENSE) platform for the rapid and label-free isolation of microvesicles. By utilizing centrifugal microhydrodynamics, we subject the nanosuspensions between 100 nm and 1000 nm to a unique fluid flow resulting in a zonal separation into different outlets for easy post-processing. Our centrifugal platform utilizes a gentle and efficient size-based separation without the requirements of syringe pump and other accessories. Based on our results, we report a high separation efficiency of 90% and an extraction purity of 85% within a single platform. Importantly, we demonstrate high EV extraction using a table top centrifuge within a short duration of eight minutes. The simple processes and the small volume requirement further enhance the utility of the platform. With this platform, it serves as a potential for liquid biopsy extraction and point-of-care diagnostics.
Collapse
Affiliation(s)
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Zhihai Zhao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Pan Zhang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Zhiping Wang
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634
| | | |
Collapse
|
141
|
Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:113-125. [PMID: 29520164 PMCID: PMC5840070 DOI: 10.4196/kjpp.2018.22.2.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/27/2018] [Indexed: 01/07/2023]
Abstract
Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.
Collapse
Affiliation(s)
- Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul 04763, Korea
| | - Jae-Sung Ahn
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Semi Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hyun-Jin Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Shin-Hee Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju-Seop Kang
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
142
|
Neven KY, Nawrot TS, Bollati V. Extracellular Vesicles: How the External and Internal Environment Can Shape Cell-To-Cell Communication. Curr Environ Health Rep 2018; 4:30-37. [PMID: 28116555 DOI: 10.1007/s40572-017-0130-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF THE REVIEW To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process. RECENT FINDINGS EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress. EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.
Collapse
Affiliation(s)
- Kristof Y Neven
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy.
| |
Collapse
|
143
|
Conigliaro A, Fontana S, Raimondo S, Alessandro R. Exosomes: Nanocarriers of Biological Messages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 998:23-43. [PMID: 28936730 DOI: 10.1007/978-981-10-4397-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell communication is crucial to maintain homeostasis in multicellular organism. Cells communicate each other by direct contact or by releasing factors that, soluble or packaged in membrane vesicles, can reach different regions of the organism. To date numerous studies highlighted the existence of several types of extracellular vesicles that, differing for dimension, origin and contents, play a role in physiological and/or pathological processes. Among extracellular vesicles, exosomes are emerging as efficient players to modulate target cells phenotype and as new non-invasive diagnostic and prognostic tools in multiple diseases. They, in fact, strictly reflect the type and functional status of the producing cells and are able to deliver their contents even over a long distance. The results accumulated in the last two decades and collected in this chapter, indicated that exosomes, can carry RNAs, microRNAs, long non-coding RNAs, DNA, lipids, metabolites and proteins; a deeper understanding of their contents is therefore needed to get the most from this incredible cell product.
Collapse
Affiliation(s)
- Alice Conigliaro
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, Rome, 00185, Italy
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy
| | - Simona Fontana
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy
| | - Stefania Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy.
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy.
| |
Collapse
|
144
|
Bui TM, Mascarenhas LA, Sumagin R. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers 2018; 6:e1431038. [PMID: 29424657 PMCID: PMC6179129 DOI: 10.1080/21688370.2018.1431038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging, and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and recruited immune cells.
Collapse
Affiliation(s)
- Triet M. Bui
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Lorraine A. Mascarenhas
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Ronen Sumagin
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| |
Collapse
|
145
|
Emerging role of non-coding RNA in oral cancer. Cell Signal 2018; 42:134-143. [DOI: 10.1016/j.cellsig.2017.10.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023]
|
146
|
Obacz J, Avril T, Rubio-Patiño C, Bossowski JP, Igbaria A, Ricci JE, Chevet E. Regulation of tumor-stroma interactions by the unfolded protein response. FEBS J 2017; 286:279-296. [PMID: 29239107 DOI: 10.1111/febs.14359] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a conserved adaptive pathway that helps cells cope with the protein misfolding burden within the endoplasmic reticulum (ER). Imbalance between protein folding demand and capacity in the ER leads to a situation called ER stress that is often observed in highly proliferative and secretory tumor cells. As such, activation of the UPR signaling has emerged as a key adaptive mechanism promoting cancer progression. It is becoming widely acknowledged that, in addition to its intrinsic effect on tumor biology, the UPR can also regulate tumor microenvironment. In this review, we discuss how the UPR coordinates the crosstalk between tumor and stromal cells, such as endothelial cells, normal parenchymal cells, and immune cells. In addition, we further describe the involvement of ER stress signaling in the response to current treatments as well as its impact on antitumor immunity mainly driven by immunogenic cell death. Finally, in this context, we discuss the relevance of targeting ER stress/UPR signaling as a potential anticancer approach.
Collapse
Affiliation(s)
- Joanna Obacz
- Inserm U1242 'Chemistry, Oncogenesis, Stress & Signaling', Université de Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugene Marquis, Rennes, France
| | - Tony Avril
- Inserm U1242 'Chemistry, Oncogenesis, Stress & Signaling', Université de Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugene Marquis, Rennes, France
| | | | | | - Aeid Igbaria
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Eric Chevet
- Inserm U1242 'Chemistry, Oncogenesis, Stress & Signaling', Université de Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugene Marquis, Rennes, France
| |
Collapse
|
147
|
Urabe F, Kosaka N, Yoshioka Y, Egawa S, Ochiya T. The small vesicular culprits: the investigation of extracellular vesicles as new targets for cancer treatment. Clin Transl Med 2017; 6:45. [PMID: 29238879 PMCID: PMC5729179 DOI: 10.1186/s40169-017-0176-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 12/03/2017] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicles released from almost all type of cells including cancer cells. EVs transfer their components, such as microRNAs (miRNAs), messenger RNAs, lipids and proteins, from one cell to another, affecting the target cells. Emerging evidence suggests that reciprocal interactions between cancer cells and the cells in their microenvironment via EVs drive disease progression and therapy resistance. Therefore, understanding the roles of EVs in cancer biology will provide us with new opportunities to treat patients. EVs are also useful for monitoring disease processes. EVs have been found in many kinds of biological fluids such as blood, urine, saliva and semen. Because of their accessibility, EVs offer ease of collection with minimal discomfort to patients and are preferred for serial collection. In addition, they reflect and carry dynamic changes in disease, allowing us to access crucial molecular information about the disease status. Therefore, EVs hold great possibility as clinically useful biomarkers to provide multiple non-invasive snapshots of primary and metastatic tumors. In this review, we summarize current knowledge of miRNAs in EVs in cancer biology and as biomarkers. Furthermore, we discuss the potential of miRNAs in EVs for clinical application.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Urology, Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
148
|
Parisse P, Rago I, Ulloa Severino L, Perissinotto F, Ambrosetti E, Paoletti P, Ricci M, Beltrami AP, Cesselli D, Casalis L. Atomic force microscopy analysis of extracellular vesicles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2017; 46:813-820. [PMID: 28866771 DOI: 10.1007/s00249-017-1252-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are small vesicles ensuring transport of molecules between cells and throughout the body. EVs contain cell type-specific signatures and have been proposed as biomarkers in a variety of diseases. Their small size (<1 μm) and biological and physical functions make them obvious candidates for therapeutic agents in immune therapy, vaccination, regenerative medicine and drug delivery. However, due to the complexity and heterogeneity of their origin and composition, the actual mechanism through which these vesicles exert their functions is still unknown and represents a great biomedical challenge. Moreover, because of their small dimensions, the quantification, size distribution and biophysical characterization of these particles are challenging and still subject to controversy. Here, we address the advantage of atomic force microscopy (AFM), for the characterization of isolated EVs. We review AFM imaging of EVs immobilized on different substrates (mica, glass) to identify the influence of isolation and deposition methods on the size distribution, morphology and mechanical properties of EVs.
Collapse
Affiliation(s)
- P Parisse
- INSTM-ST Unit, Trieste, Italy.
- Elettra, Sincrotrone Trieste S.C.p.A., Trieste, Italy.
| | - I Rago
- Elettra, Sincrotrone Trieste S.C.p.A., Trieste, Italy
- University of Trieste, Trieste, Italy
| | - L Ulloa Severino
- Elettra, Sincrotrone Trieste S.C.p.A., Trieste, Italy
- University of Trieste, Trieste, Italy
| | - F Perissinotto
- Elettra, Sincrotrone Trieste S.C.p.A., Trieste, Italy
- University of Trieste, Trieste, Italy
| | - E Ambrosetti
- INSTM-ST Unit, Trieste, Italy
- Elettra, Sincrotrone Trieste S.C.p.A., Trieste, Italy
- University of Trieste, Trieste, Italy
| | - P Paoletti
- Elettra, Sincrotrone Trieste S.C.p.A., Trieste, Italy
- SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - M Ricci
- Biological and Soft Systems, Cavendish Laboratory, Cambridge University, Cambridge, UK
| | - A P Beltrami
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - D Cesselli
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - L Casalis
- INSTM-ST Unit, Trieste, Italy
- Elettra, Sincrotrone Trieste S.C.p.A., Trieste, Italy
| |
Collapse
|
149
|
Harting MT, Srivastava AK, Zhaorigetu S, Bair H, Prabhakara KS, Toledano Furman NE, Vykoukal JV, Ruppert KA, Cox CS, Olson SD. Inflammation-Stimulated Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation. Stem Cells 2017; 36:79-90. [PMID: 29076623 DOI: 10.1002/stem.2730] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) secreted by mesenchymal stromal cells (MSCs) have been proposed to be a key mechanistic link in the therapeutic efficacy of cells in response to cellular injuries through paracrine effects. We hypothesize that inflammatory stimulation of MSCs results in the release of EVs that have greater anti-inflammatory effects. The present study evaluates the immunomodulatory abilities of EVs derived from inflammation-stimulated and naive MSCs (MSCEv+ and MSCEv, respectively) isolated using a current Good Manufacturing Practice-compliant tangential flow filtration system. Detailed characterization of both EVs revealed differences in protein composition, cytokine profiles, and RNA content, despite similarities in size and expression of common surface markers. MSCEv+ further attenuated release of pro-inflammatory cytokines in vitro when compared to MSCEv, with a distinctly different pattern of EV-uptake by activated primary leukocyte subpopulations. The efficacy of EVs was partially attributed to COX2/PGE2 expression. The present study demonstrates that inflammatory stimulation of MSCs renders release of EVs that have enhanced anti-inflammatory properties partially due to COX2/PGE2 pathway alteration. Stem Cells 2018;36:79-90.
Collapse
Affiliation(s)
- Matthew T Harting
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Amit K Srivastava
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Siqin Zhaorigetu
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Henry Bair
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Naama E Toledano Furman
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jody V Vykoukal
- McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katherine A Ruppert
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
150
|
Kulkarni R, Prasad A. Exosomes Derived from HIV-1 Infected DCs Mediate Viral trans-Infection via Fibronectin and Galectin-3. Sci Rep 2017; 7:14787. [PMID: 29093555 PMCID: PMC5665889 DOI: 10.1038/s41598-017-14817-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022] Open
Abstract
Exosomes are membrane enclosed nano-sized vesicles actively released into the extracellular milieu that can harbor genomic, proteomic and lipid cargos. Functionally, they are shown to regulate cell-cell communication and transmission of pathogens. Though studies have implicated a role for exosomes in HIV-1 pathogenesis, their mechanisms are not well defined. Here, we characterized exosomes derived from uninfected or HIV-1 infected T-cells and DCs. We demonstrate substantial differences in morphological, molecular and biogenesis machinery between exosomes derived from these two immune cell types. In addition, exosomes derived from HIV-1 infected DCs were 4 fold more infective than either cell free HIV-1 or exosomes derived from T-cells. Molecular analysis of exosomes detected the presence of fibronectin and galectin-3 in those derived from DCs, whereas T-cell exosomes lacked these molecules. Addition of anti-fibronectin antibody and β-lactose, a galectin-3 antagonist, significantly blocked DC exosome-mediated HIV-1 infection of T-cells. We also observed increased gene expression of the pro-inflammatory cytokines IFN-γ, TNF-α, IL-1β and RANTES and activation of p38/Stat pathways in T-cells exposed to exosomes derived from HIV-1 infected DCs. Our study provides insight into the role of exosomes in HIV pathogenesis and suggests they can be a target in development of novel therapeutic strategies against viral infection.
Collapse
Affiliation(s)
- Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|