101
|
Voth DE, Broederdorf LJ, Graham JG. Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiol 2012; 7:241-57. [PMID: 22324993 DOI: 10.2217/fmb.11.150] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many bacterial pathogens employ multicomponent protein complexes to deliver macromolecules directly into their eukaryotic host cell to promote infection. Some Gram-negative pathogens use a versatile Type IV secretion system (T4SS) that can translocate DNA or proteins into host cells. T4SSs represent major bacterial virulence determinants and have recently been the focus of intense research efforts designed to better understand and combat infectious diseases. Interestingly, although the two major classes of T4SSs function in a similar manner to secrete proteins, the translocated 'effectors' vary substantially from one organism to another. In fact, differing effector repertoires likely contribute to organism-specific host cell interactions and disease outcomes. In this review, we discuss the current state of T4SS research, with an emphasis on intracellular bacterial pathogens of humans and the diverse array of translocated effectors used to manipulate host cells.
Collapse
Affiliation(s)
- Daniel E Voth
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
102
|
Geissler B. Bacterial toxin effector-membrane targeting: outside in, then back again. Front Cell Infect Microbiol 2012; 2:75. [PMID: 22919666 PMCID: PMC3417404 DOI: 10.3389/fcimb.2012.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/14/2012] [Indexed: 01/20/2023] Open
Abstract
Pathogenic bacteria utilize multiple approaches to establish infection and mediate their toxicity to eukaryotic cells. Dedicated protein machines deposit toxic effectors directly inside the host, whereas secreted toxins must enter cells independently of other bacterial components. Regardless of how they reach the cytosol, these bacterial proteins must accurately identify their intracellular target before they can manipulate the host cell to benefit their associated bacteria. Within eukaryotic cells, post-translational modifications and individual targeting motifs spatially regulate endogenous host proteins. This review focuses on the strategies employed by bacterial effectors to associate with a frequently targeted location within eukaryotic cells, the plasma membrane.
Collapse
Affiliation(s)
- Brett Geissler
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA.
| |
Collapse
|
103
|
Huang B, Ojogun N, Ragland SA, Carlyon JA. Monoubiquitinated proteins decorate the Anaplasma phagocytophilum-occupied vacuolar membrane. ACTA ACUST UNITED AC 2012; 64:32-41. [PMID: 22066989 DOI: 10.1111/j.1574-695x.2011.00873.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An emerging theme among vacuole-adapted bacterial pathogens is the ability to hijack ubiquitin machinery to modulate host cellular processes and secure pathogen survival. Mono- and polyubiquitination differentially dictate the subcellular localization, activity, and fate of protein substrates. Monoubiquitination directs membrane traffic from the plasma membrane to the endosome and has been shown to promote autophagy. Anaplasma phagocytophilum is an obligate intracellular bacterium that replicates within a host cell-derived vacuole that co-opts membrane traffic and numerous other host cell processes. Here, we show that monoubiquitinated proteins decorate the A. phagocytophilum-occupied vacuolar membrane (AVM) during infection of promyelocytic HL-60 cell, endothelial RF/6A cells, and to a lesser extent, embryonic tick ISE6 cells. Monoubiquitinated proteins are present on the AVM upon its formation and continue to accumulate throughout infection. Tetracycline-mediated inhibition of de novo bacterial protein synthesis promotes the loss of ubiquitinated proteins from the AVM. This effect is reversible, as removal of tetracycline restores AVM ubiquitination to pretreatment levels. These results demonstrate a novel mechanism by which A. phagocytophilum remodels the composition of its host cell-derived vacuolar membrane and present the first example of a Rickettsiales pathogen co-opting ubiquitin during intracellular residence.
Collapse
Affiliation(s)
- Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA.
| | | | | | | |
Collapse
|
104
|
Al-Quadan T, Price CT, Abu Kwaik Y. Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol 2012; 20:299-306. [PMID: 22494803 DOI: 10.1016/j.tim.2012.03.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/29/2012] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
Abstract
Legionella pneumophila proliferates within various protists and metazoan cells, where a cadre of ∼300 effectors is injected into the host cell by the defect in organelle trafficking/intracellular multiplication (Dot/Icm) type IVB translocation system. Interkingdom horizontal gene transfer of genes of protists and their subsequent convergent evolution to become translocated effectors has probably enabled L. pneumophila to adapt to the intracellular life within various protists and metazoan cells through exploitation of evolutionarily eukaryotic processes, such as endoplasmic reticulum-to-Golgi vesicle traffic, phosphoinositol metabolism, AMPylation, deAMPylation, prenylation, polyubiquitination, proteasomal degradation and cytosolic amino- and oligo-peptidases. This is highlighted by the ankyrin B (AnkB) F-box effector that exploits multiple conserved eukaryotic machineries to generate high levels of free amino acids as sources of carbon and energy essential for intracellular proliferation in protists and metazoan cells and for manifestation of pulmonary disease in mammals.
Collapse
Affiliation(s)
- Tasneem Al-Quadan
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
105
|
Rolando M, Buchrieser C. Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol 2012; 7:369-81. [DOI: 10.2217/fmb.12.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic proteins are tightly regulated by post-translational modifications, leading to a very subtle degree of regulation in time and space. Pathogen-mediated post-translational modifications are key strategies to modulate host factors by targeting central signaling pathways in the host cell. Legionella pneumophila, an intracellular pathogen that coevolved with protozoan hosts, encodes a large arsenal of secreted effectors conferring the ability to evade host cellular defenses and to manipulate them to promote invasion and intracellular replication. Conservation of many signaling pathways of protozoa in human macrophages confers the ability of L. pneumophila to infect humans, causing a severe pneumonia called legionnaires’ disease. Most of the secreted proteins are delivered by the Dot/Icm type IV secretion system and several of these have been shown to act on different cellular pathways critical for infection. Moreover, multiple effectors target a single host function to orchestrate bacterial survival. In this review, we focus on those effectors in the repertoire of L. pneumophila proteins that target key cellular pathways by specific post-translational modifications.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
| | - Carmen Buchrieser
- CNRS UMR 3525, 75724 Paris, France
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724 Paris, France
| |
Collapse
|
106
|
Magori S, Citovsky V. Hijacking of the Host SCF Ubiquitin Ligase Machinery by Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2011; 2:87. [PMID: 22645554 PMCID: PMC3355745 DOI: 10.3389/fpls.2011.00087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/06/2011] [Indexed: 05/29/2023]
Abstract
The SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex mediates polyubiquitination of proteins targeted for degradation, thereby controlling a plethora of biological processes in eukaryotic cells. Although this ubiquitination machinery is found and functional only in eukaryotes, many non-eukaryotic pathogens also encode F-box proteins, the critical subunits of the SCF complex. Increasing evidence indicates that such non-eukaryotic F-box proteins play an essential role in subverting or exploiting the host ubiquitin/proteasome system for efficient pathogen infection. A recent bioinformatic analysis has identified more than 70 F-box proteins in 22 different bacterial species, suggesting that use of pathogen-encoded F-box effectors in the host cell may be a widespread infection strategy. In this review, we focus on plant pathogen-encoded F-box effectors, such as VirF of Agrobacterium tumefaciens, GALAs of Ralstonia solanacearum, and P0 of Poleroviruses, and discuss the molecular mechanism by which plant pathogens use these factors to manipulate the host cell for their own benefit.
Collapse
Affiliation(s)
- Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New YorkStony Brook, NY, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New YorkStony Brook, NY, USA
| |
Collapse
|
107
|
Price CTD, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 2011; 334:1553-7. [PMID: 22096100 DOI: 10.1126/science.1212868] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Legionella pneumophila proliferates in environmental amoeba and human cells within the Legionella-containing vacuole (LCV). The exported AnkB F-box effector of L. pneumophila is anchored into the LCV membrane by host-mediated farnesylation. Here, we report that host proteasomal degradation of Lys(48)-linked polyubiquitinated proteins, assembled on the LCV by AnkB, generates amino acids required for intracellular bacterial proliferation. The severe defect of the ankB null mutant in proliferation within amoeba and human cells is rescued by supplementation of a mixture of amino acids or cysteine, serine, pyruvate, or citrate, similar to rescue by genetic complementation. Defect of the ankB mutant in intrapulmonary proliferation in mice is rescued upon injection of a mixture of amino acids or cysteine. Therefore, Legionella promotes eukaryotic proteasomal degradation to generate amino acids needed as carbon and energy sources for bacterial proliferation within evolutionarily distant hosts.
Collapse
Affiliation(s)
- Christopher T D Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
108
|
Ge J, Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol 2011; 13:1870-80. [PMID: 21981078 DOI: 10.1111/j.1462-5822.2011.01710.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.
Collapse
Affiliation(s)
- Jianning Ge
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | | |
Collapse
|
109
|
Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C. Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol 2011; 2:208. [PMID: 22059087 PMCID: PMC3203374 DOI: 10.3389/fmicb.2011.00208] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022] Open
Abstract
Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic like proteins, many of which have been shown to modulate host cell functions to the pathogen’s advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires Paris, France
| | | | | | | |
Collapse
|
110
|
Abstract
The SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complex plays a pivotal role in various biological processes, including host-pathogen interactions. Many pathogens exploit the host SCF machinery to promote efficient infection by translocating pathogen-encoded F-box proteins into the host cell. How pathogens ensure sufficient amounts of the F-box effectors in the host cell despite the intrinsically unstable nature of F-box proteins, however, remains unclear. We found that the Agrobacterium F-box protein VirF, an important virulence factor, undergoes rapid degradation through the host proteasome pathway. This destabilization of VirF was counteracted by VirD5, another bacterial effector that physically associated with VirF. These observations reveal a previously unknown counterdefense strategy used by pathogens against potential host antimicrobial responses.
Collapse
Affiliation(s)
- Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | |
Collapse
|
111
|
Anchoring of bacterial effectors to host membranes through host-mediated lipidation by prenylation: a common paradigm. Trends Microbiol 2011; 19:573-9. [PMID: 21983544 DOI: 10.1016/j.tim.2011.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 12/30/2022]
Abstract
Post-translational lipidation by prenylation of the CaaX-box C-terminal motif in eukaryotic proteins facilitates anchoring of hydrophilic proteins, such as Ras and Rab, to membranes. A large cadre of bacterial effectors injected into host cells is anchored to host membranes by unknown mechanisms. As already documented for Legionella and Salmonella, we propose a common paradigm of microbial exploitation of the host prenylation machinery for anchoring of injected effectors to host membranes. This is supported by numerous potential microbial CaaX-box-containing proteins identified using refined bioinformatic tools. We also propose utilization of the CaaX motif as a membrane-targeting tag for proteins expressed in eukaryotic cells to facilitate deciphering of biological function.
Collapse
|
112
|
Bozzaro S, Eichinger L. The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 2011; 12:942-54. [PMID: 21366522 PMCID: PMC3267156 DOI: 10.2174/138945011795677782] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 10/26/2010] [Indexed: 01/24/2023]
Abstract
The use of simple hosts such as Dictyostelium discoideum in the study of host pathogen interactions offers a number of advantages and has steadily increased in recent years. Infection-specific genes can often only be studied in a very limited way in man and even in the mouse model their analysis is usually expensive, time consuming and technically challenging or sometimes even impossible. In contrast, their functional analysis in D. discoideum and other simple model organisms is often easier, faster and cheaper. Because host-pathogen interactions necessarily involve two organisms, it is desirable to be able to genetically manipulate both the pathogen and its host. Particularly suited are those hosts, like D. discoideum, whose genome sequence is known and annotated and for which excellent genetic and cell biological tools are available in order to dissect the complex crosstalk between host and pathogen. The review focusses on host-pathogen interactions of D. discoideum with Legionella pneumophila, mycobacteria, and Salmonella typhimurium which replicate intracellularly.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S. Luigi, 10043 Orbassano, Italy.
| | | |
Collapse
|
113
|
Voth DE. ThANKs for the repeat: Intracellular pathogens exploit a common eukaryotic domain. CELLULAR LOGISTICS 2011; 1:128-132. [PMID: 22279611 DOI: 10.4161/cl.1.4.18738] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 12/31/2022]
Abstract
Bacterial pathogens are renowned cell biologists that subvert detrimental host responses by manipulating eukaryotic protein function. A select group of pathogens use a specialized type IV secretion system (T4SS) as a conduit to deliver an arsenal of proteins into the host cytosol where they interact with host proteins. The translocated "effectors" have garnered increased attention because they uncover novel aspects of host-pathogen interactions at the subcellular level. This review presents a group of effectors termed Anks that possess eukaryotic-like ankyrin repeat domains that mediate proteinprotein interactions and are critical for effector function. Interestingly, most known prokaryotic Anks are produced by bacteria that devote much of their time to replicating inside eukaryotic cells. Ank proteins represent a fascinating and versatile family of effectors exploited by bacterial pathogens and are proving useful as tools to study eukaryotic cell biology.
Collapse
Affiliation(s)
- Daniel E Voth
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock, AR USA
| |
Collapse
|
114
|
Joshi AD, Swanson MS. Secrets of a successful pathogen: legionella resistance to progression along the autophagic pathway. Front Microbiol 2011; 2:138. [PMID: 21743811 PMCID: PMC3127087 DOI: 10.3389/fmicb.2011.00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022] Open
Abstract
To proliferate within phagocytes, Legionella pneumophila relies on Type IV secretion to modulate host cellular pathways. Autophagy is an evolutionarily conserved degradative pathway that captures and transfers a variety of microbes to lysosomes. Biogenesis of L. pneumophila-containing vacuoles and autophagosomes share several features, including endoplasmic reticulum (ER)-derived membranes, contributions by the host GTPases Rab1, Arf1 and Sar1, and a final destiny in lysosomes. We discuss morphological, molecular genetic, and immunological data that support the model that, although A/J mouse macrophages efficiently engulf L. pneumophila within autophagosomal membranes, the Type IV effector proteins DrrA/SidM, LidA, and RalF prolong association with the ER. By inhibiting immediately delivery to lysosomes, the bacteria persist in immature autophagosomal vacuoles for a period sufficient to differentiate into an acid-resistant, replicative form. Subsequent secretion of the Type IV effector LepB releases the block to autophagosome maturation, and the adapted progeny continue to replicate within autophagolysosomes. Accordingly, L. pneumophila can be exploited as a genetic tool to analyze the recruitment and function of the macrophage autophagy pathway.
Collapse
Affiliation(s)
- Amrita D Joshi
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|
115
|
Champion MD. Host-pathogen o-methyltransferase similarity and its specific presence in highly virulent strains of Francisella tularensis suggests molecular mimicry. PLoS One 2011; 6:e20295. [PMID: 21637805 PMCID: PMC3102702 DOI: 10.1371/journal.pone.0020295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/28/2011] [Indexed: 12/28/2022] Open
Abstract
Whole genome comparative studies of many bacterial pathogens have shown an overall high similarity of gene content (>95%) between phylogenetically distinct subspecies. In highly clonal species that share the bulk of their genomes subtle changes in gene content and small-scale polymorphisms, especially those that may alter gene expression and protein-protein interactions, are more likely to have a significant effect on the pathogen's biology. In order to better understand molecular attributes that may mediate the adaptation of virulence in infectious bacteria, a comparative study was done to further analyze the evolution of a gene encoding an o-methyltransferase that was previously identified as a candidate virulence factor due to its conservation specifically in highly pathogenic Francisella tularensis subsp. tularensis strains. The o-methyltransferase gene is located in the genomic neighborhood of a known pathogenicity island and predicted site of rearrangement. Distinct o-methyltransferase subtypes are present in different Francisella tularensis subspecies. Related protein families were identified in several host species as well as species of pathogenic bacteria that are otherwise very distant phylogenetically from Francisella, including species of Mycobacterium. A conserved sequence motif profile is present in the mammalian host and pathogen protein sequences, and sites of non-synonymous variation conserved in Francisella subspecies specific o-methyltransferases map proximally to the predicted active site of the orthologous human protein structure. Altogether, evidence suggests a role of the F. t. subsp. tularensis protein in a mechanism of molecular mimicry, similar perhaps to Legionella and Coxiella. These findings therefore provide insights into the evolution of niche-restriction and virulence in Francisella, and have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships.
Collapse
Affiliation(s)
- Mia D Champion
- Division of Pathogen Genomics, Translational Genomics Research Institute, Arizona, United States of America.
| |
Collapse
|
116
|
Al-Khodor S, Abu Kwaik Y. Triggering Ras signalling by intracellular Francisella tularensis through recruitment of PKCα and βI to the SOS2/GrB2 complex is essential for bacterial proliferation in the cytosol. Cell Microbiol 2011; 12:1604-21. [PMID: 20618341 DOI: 10.1111/j.1462-5822.2010.01494.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracellular proliferation of Francisella tularensis is essential for manifestation of the fatal disease tularaemia, and is classified as a category A bioterrorism agent. The F. tularensis-containing phagosome (FCP) matures into a late endosome-like phagosome with limited fusion to lysosomes, followed by rapid bacterial escape into the cytosol. The Francisella pathogenicity island (FPI) encodes a type VI-like secretion system, and the FPI-encoded IglC is essential for evasion of lysosomal fusion and phagosomal escape. Many host signalling events are likely to be modulated by F. tularensis to render the cell permissive for intracellular proliferation but they are not fully understood. Here we show that within 15 min of infection, intracellular F. tularensis ssp. novicida triggers IglC-dependent temporal activation of Ras, but attached extracellular bacteria fail to trigger Ras activation, which has never been shown for other intracellular pathogens. Intracellular F. tularensis ssp. novicida triggers activation of Ras through recruitment of PKCα and PKCβI to the SOS2/GrB2 complex. Silencing of SOS2, GrB2 and PKCα and PKCβI by RNAi has no effect on evasion of lysosomal fusion and bacterial escape into the cytosol but renders the cytosol non-permissive for replication of F. tularensis ssp. novicida. Since Ras activation promotes cell survival, we show that silencing of SOS2, GrB2 and PKCα and βI is associated with rapid early activation of caspase-3 within 8 h post infection. However, silencing of SOS2, GrB2 and PKCα and βI does not affect phosphorylation of Akt or Erk, indicating that activation of the PI3K/Akt and the Erk signalling cascade are independent of the F. tularensis-triggered Ras activation. We conclude that intracellular F. tularensis ssp. novicida triggers temporal and early activation of Ras through the SOS2/GrB2/PKCα/PKCβI quaternary complex. Temporal and rapid trigger of Ras signalling by intracellular F. tularensis is essential for intracellular bacterial proliferation within the cytosol, and this is associated with downregulation of early caspase-3 activation.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, Department of Biology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
117
|
Abstract
Host-adapted bacteria include mutualists and pathogens of animals, plants and insects. Their study is therefore important for biotechnology, biodiversity and human health. The recent rapid expansion in bacterial genome data has provided insights into the adaptive, diversifying and reductive evolutionary processes that occur during host adaptation. The results have challenged many pre-existing concepts built from studies of laboratory bacterial strains. Furthermore, recent studies have revealed genetic changes associated with transitions from parasitism to mutualism and opened new research avenues to understand the functional reshaping of bacteria as they adapt to growth in the cytoplasm of a eukaryotic host.
Collapse
|
118
|
Belyi Y, Jank T, Aktories K. Effector glycosyltransferases in legionella. Front Microbiol 2011; 2:76. [PMID: 21833323 PMCID: PMC3153043 DOI: 10.3389/fmicb.2011.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/31/2011] [Indexed: 11/13/2022] Open
Abstract
Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating toxins. The enzymes use UDP–glucose as a donor substrate and modify eukaryotic elongation factor eEF1A at serine-53. This modification results in inhibition of protein synthesis and death of target cells.In addition to Lgts, Legionella genomes disclose several genes, coding for effector proteins likely to possess glycosyltransferase activities, including SetA (subversion of eukaryotic vesicle trafficking A), which influences vesicular trafficking in the yeast model system and displays tropism for late endosomal/lysosomal compartments of mammalian cells. This review mainly discusses recent results on the structure–function relationship of Lgt glucosyltransferases.
Collapse
Affiliation(s)
- Yury Belyi
- Gamaleya Research Institute Moscow, Russia
| | | | | |
Collapse
|
119
|
Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 2011; 6:e17638. [PMID: 21408005 PMCID: PMC3052360 DOI: 10.1371/journal.pone.0017638] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/04/2011] [Indexed: 01/16/2023] Open
Abstract
A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Simran Banga
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yunhao Tan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Cheng Zheng
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jonathan Gately
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
120
|
Bryan A, Swanson MS. Oligonucleotides stimulate genomic alterations of Legionella pneumophila. Mol Microbiol 2011; 80:231-47. [PMID: 21306445 DOI: 10.1111/j.1365-2958.2011.07573.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genetic variation generates diversity in all kingdoms of life. The corresponding mechanisms can also be harnessed for laboratory studies of fundamental cellular processes. Here we report that oligonucleotides (oligos) generate mutations on the Legionella pneumophila chromosome by a mechanism that requires homologous DNA, but not RecA, RadA or any known phage recombinase. Instead we propose that DNA replication contributes, as oligo-induced mutagenesis required ≥ 21 nucleotides of homology, was strand-dependent, and was most efficient in exponential phase. Mutagenesis did not require canonical 5' phosphate or 3' hydroxyl groups, but the primosomal protein PriA and DNA Pol I contributed. After electroporation, oligos stimulated excision of 2.1 kb of chromosomal DNA or insertion of 18 bp, and non-homologous flanking sequences were also processed. We exploited this endogenous activity to generate chromosomal deletions and to insert an epitope into a chromosomal coding sequence. Compared with Escherichia coli, L. pneumophila encodes fewer canonical single-stranded exonucleases, and the frequency of mutagenesis increased substantially when either its RecJ and ExoVII nucleases were inactivated or the oligos modified by nuclease-resistant bases. In addition to genetic engineering, oligo-induced mutagenesis may have evolutionary implications as a mechanism to incorporate divergent DNA sequences with only short regions of homology.
Collapse
Affiliation(s)
- Andrew Bryan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-5620, USA
| | | |
Collapse
|
121
|
Al-Quadan T, Kwaik YA. Molecular Characterization of Exploitation of the Polyubiquitination and Farnesylation Machineries of Dictyostelium Discoideum by the AnkB F-Box Effector of Legionella Pneumophila. Front Microbiol 2011; 2:23. [PMID: 21687415 PMCID: PMC3109286 DOI: 10.3389/fmicb.2011.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/31/2011] [Indexed: 01/15/2023] Open
Abstract
The Dot/Icm-translocated Ankyrin B (AnkB) F-box effector of Legionella pneumophila is essential for intra-vacuolar proliferation and functions as a platform for the docking of polyubiquitinated proteins to the Legionella-containing vacuole (LCV) within macrophages and ameba. Here we show that ectopically expressed AnkB in Dictyostelium discoideum is targeted to the plasma membrane where it recruits polyubiquitinated proteins and it trans-rescues the intracellular growth defect of the ankB null mutant, which has never been demonstrated for any effector in ameba. Using co-immunoprecipitation and bimolecular fluorescence complementation we show specific interaction of Skp1 of D. discoideum with the F-box domain of AnkB, which has never been demonstrated in ameba. We show that anchoring of AnkB to the cytosolic face of the LCV membrane in D. discoideum is mediated by the host farnesylation of the C-terminal eukaryotic CaaX motif of AnkB and is independent of the F-box and the two ANK domains, which has never been demonstrated in ameba. Importantly, the three host farnesylation enzymes farnesyl transferase, RCE-1, and isoprenyl cysteine carboxyl methyl transferase of D. discoideum are recruited to the LCV in a Dot/Icm-dependent manner, which has never been demonstrated in ameba. We conclude that the polyubiquitination and farnesylation enzymatic machineries of D. discoideum are recruited to the LCV in a Dot/Icm-dependent manner and the AnkB effector exploits the two evolutionarily conserved eukaryotic machineries to proliferate within ameba, similar to mammalian cells. We propose that L. pneumophila has acquired ankB through inter-kingdom horizontal gene transfer from primitive eukaryotes, which facilitated proliferation of L. pneumophila within human cells and the emergence of Legionnaires’ disease.
Collapse
Affiliation(s)
- Tasneem Al-Quadan
- Department of Microbiology and Immunology, College of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
122
|
Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun 2011; 79:1936-50. [PMID: 21321072 DOI: 10.1128/iai.00805-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila is the etiological agent of Legionnaires' disease. Crucial to the pathogenesis of this intracellular pathogen is its ability to subvert host cell defenses, permitting intracellular replication in specialized vacuoles within host cells. The Dot/Icm type IV secretion system (T4SS), which translocates a large number of bacterial effectors into host cell, is absolutely required for rerouting the Legionella phagosome. Many Legionella effectors display distinctive eukaryotic domains, among which are protein kinase domains. In silico analysis and in vitro phosphorylation assays identified five functional protein kinases, LegK1 to LegK5, encoded by the epidemic L. pneumophila Lens strain. Except for LegK5, the Legionella protein kinases are all T4SS effectors. LegK2 plays a key role in bacterial virulence, as demonstrated by gene inactivation. The legK2 mutant containing vacuoles displays less-efficient recruitment of endoplasmic reticulum markers, which results in delayed intracellular replication. Considering that a kinase-dead substitution mutant of legK2 exhibits the same virulence defects, we highlight here a new molecular mechanism, namely, protein phosphorylation, developed by L. pneumophila to establish a replicative niche and evade host cell defenses.
Collapse
|
123
|
The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 2011; 193:1493-503. [PMID: 21216993 DOI: 10.1128/jb.01359-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a phagolysosome-like parasitophorous vacuole (PV), in which it replicates. The organism encodes a Dot/Icm type IV secretion system (T4SS) predicted to deliver to the host cytosol effector proteins that mediate PV formation and other cellular events. All C. burnetii isolates carry a large, autonomously replicating plasmid or have chromosomally integrated plasmid-like sequences (IPS), suggesting that plasmid and IPS genes are critical for infection. Bioinformatic analyses revealed two candidate Dot/Icm substrates with eukaryotic-like motifs uniquely encoded by the QpH1 plasmid from the Nine Mile reference isolate. CpeC, containing an F-box domain, and CpeD, possessing kinesin-related and coiled-coil regions, were secreted by the closely related Legionella pneumophila Dot/Icm T4SS. An additional QpH1-specific gene, cpeE, situated in a predicted operon with cpeD, also encoded a secreted effector. Further screening revealed that three hypothetical proteins (CpeA, CpeB, and CpeF) encoded by all C. burnetii plasmids and IPS are Dot/Icm substrates. By use of new genetic tools, secretion of plasmid effectors by C. burnetii during host cell infection was confirmed using β-lactamase and adenylate cyclase translocation assays, and a C-terminal secretion signal was identified. When ectopically expressed in HeLa cells, plasmid effectors trafficked to different subcellular sites, including autophagosomes (CpeB), ubiquitin-rich compartments (CpeC), and the endoplasmic reticulum (CpeD). Collectively, these results suggest that C. burnetii plasmid-encoded T4SS substrates play important roles in subversion of host cell functions, providing a plausible explanation for the absolute maintenance of plasmid genes by this pathogen.
Collapse
|
124
|
Global Identification of Protein Prenyltransferase Substrates. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-381339-8.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
|
125
|
Khweek AA, Amer A. Replication of Legionella Pneumophila in Human Cells: Why are We Susceptible? Front Microbiol 2010; 1:133. [PMID: 21687775 PMCID: PMC3109522 DOI: 10.3389/fmicb.2010.00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/16/2010] [Indexed: 11/13/2022] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires’ disease, a serious and often fatal form of pneumonia. The susceptibility to L. pneumophila arises from the ability of this intracellular pathogen to multiply in human alveolar macrophages and monocytes. L. pneumophila also replicates in several professional and non-professional phagocytic human-derived cell lines. With the exception of the A/J mouse strain, most mice strains are restrictive, thus they do not support L. pneumophila replication. Mice lacking the NOD-like receptor Nlrc4 or caspase-1 are also susceptible to L. pneumophila. On the other hand, in the susceptible human hosts, L. pneumophila utilizes several strategies to ensure intracellular replication and protect itself against the host immune system. Most of these strategies converge to prevent the fusion of the L. pneumophila phagosome with the lysosome, inhibiting host cell apoptosis, activating survival pathways, and sequestering essential nutrients for replication and pathogenesis. In this review, we summarize survival mechanisms employed by L. pneumophila to maintain its replication in human cells. In addition, we highlight different human-derived cell lines that support the multiplication of this intracellular bacterium. Therefore, these in vitro models can be applicable and are reproducible when investigating L. pneumophila/phagocyte interactions at the molecular and cellular levels in the human host.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University Columbus, OH, USA
| | | |
Collapse
|
126
|
Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A 2010; 107:21755-60. [PMID: 21098666 DOI: 10.1073/pnas.1010485107] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen responsible for acute and chronic Q fever. This bacterium harbors a type IV secretion system (T4SS) highly similar to the Dot/Icm of Legionella pneumophila that is believed to be essential for its infectivity. Protein substrates of the Coxiella T4SS are predicted to facilitate the biogenesis of a phagosome permissive for its intracellular growth. However, due to the lack of genetic systems, protein transfer by the C. burnetii Dot/Icm has not been demonstrated. In this study, we report the identification of 32 substrates of the C. burnetii Dot/Icm system using a fluorescence-based β-lactamase (TEM1) translocation assay as well as the calmodulin-dependent adenylate cyclase (CyaA) assay in the surrogate host L. pneumophila. Notably, 26 identified T4SS substrates are hypothetical proteins without predicted function. Candidate secretion substrates were obtained by using (i) a genetic screen to identify C. burnetii proteins interacting with DotF, a component of the T4SS, and (ii) bioinformatic approaches to retrieve candidate genes that harbor characteristics associated with previously reported substrates of the Dot/Icm system from both C. burnetii and L. pneumophila. Moreover, we have developed a shuttle plasmid that allows the expression of recombinant proteins in C. burnetii as TEM fusion products. Using this system, we demonstrated that a Dot/Icm substrate identified with L. pneumophila was also translocated by C. burnetii in a process that requires its C terminus, providing direct genetic evidence of a functional T4SS in C. burnetii.
Collapse
|
127
|
Steinert M. Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 2010; 22:70-6. [PMID: 21109012 DOI: 10.1016/j.semcdb.2010.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
Abstract
Dictyostelium discoideum is a haploid social soil amoeba that is an established host model for several human pathogens. The research areas presently pursued include the use of D. discoideum to identify genetic host factors determining the outcome of infections and the use as screening system for identifying bacterial virulence factors. Here we report about the Legionella pneumophila directed phagosome biogenesis and the cell-to-cell spread of Mycobacterium species. Moreover, we highlight recent insights from the host-pathogen cross-talk between D. discoideum and the pathogens Salmonella typhimurium, Klebsiella pneumoniae, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cenocepacia, Vibrio cholerae and Neisseria meningitidis.
Collapse
Affiliation(s)
- Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
128
|
Price CTD, Jones SC, Amundson KE, Kwaik YA. Host-mediated post-translational prenylation of novel dot/icm-translocated effectors of legionella pneumophila. Front Microbiol 2010; 1:131. [PMID: 21687755 PMCID: PMC3109360 DOI: 10.3389/fmicb.2010.00131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022] Open
Abstract
The Dot/Icm type IV translocated Ankyrin B (AnkB) effector of Legionella pneumophila is modified by the host prenylation machinery that anchors it into the outer leaflet of the Legionella-containing vacuole (LCV), which is essential for biological function of the effector in vitro and in vivo. Prenylation involves the covalent linkage of an isoprenoid lipid moiety to a C-terminal CaaX motif in eukaryotic proteins enabling their anchoring into membranes. We show here that the LCV harboring an ankB null mutant is decorated with prenylated proteins in a Dot/Icm-dependent manner, indicating that other LCV membrane-anchored proteins are prenylated. In silico analyses of four sequenced L. pneumophila genomes revealed the presence of eleven other genes that encode proteins with a C-terminal eukaryotic CaaX prenylation motif. Of these eleven designated Prenylated effectors of Legionella (Pel), seven are also found in L. pneumophila AA100. We show that six L. pneumophila AA100 Pel proteins exhibit distinct cellular localization when ectopically expressed in mammalian cells and this is dependent on action of the host prenylation machinery and the conserved cysteine residue of the CaaX motif. Although inhibition of the host prenylation machinery completely blocks intra-vacuolar proliferation of L. pneumophila, it only had a modest effect on intracellular trafficking of the LCV. Five of the Pel proteins are injected into human macrophages by the Dot/Icm type IV translocation system of L. pneumophila. Taken together, the Pel proteins are novel Dot/Icm-translocated effectors of L. pneumophila that are post-translationally modified by the host prenylation machinery, which enables their anchoring into cellular membranes, and the prenylated effectors contribute to evasion of lysosomal fusion by the LCV.
Collapse
Affiliation(s)
- Christopher T D Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville Louisville, KY, USA
| | | | | | | |
Collapse
|
129
|
Price CTD, Kwaik YA. Exploitation of Host Polyubiquitination Machinery through Molecular Mimicry by Eukaryotic-Like Bacterial F-Box Effectors. Front Microbiol 2010; 1:122. [PMID: 21687758 PMCID: PMC3109402 DOI: 10.3389/fmicb.2010.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/12/2010] [Indexed: 11/13/2022] Open
Abstract
Microbial pathogens have evolved exquisite mechanisms to interfere and intercept host biological processes, often through molecular mimicry of specific host proteins. Ubiquitination is a highly conserved eukaryotic post-translational modification essential in determining protein fate, and is often hijacked by pathogenic bacteria. The conserved SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase complex plays a key role in ubiquitination of proteins in eukaryotic cells. The F-box protein component of the SCF complex provides specificity to ubiquitination by binding to specific cellular proteins, targeting them to be ubiquitinated by the SCF complex. The bacterial pathogens. Legionella pneumophila, Agrobacterium tumefaciens, and Ralstonia solanacearum utilize type III or IV translocation systems to inject into the host cell eukaryotic-like F-box effectors that interact with the host SKP1 component of the SCF complex to trigger ubiquitination of specific host cells targets, which is essential to promote proliferation of these pathogens. Our bioinformatic analyses have identified at least 74 genes encoding putative F-box proteins belonging to 22 other bacterial species, including human pathogens, plant pathogens, and amebal endosymbionts. Therefore, subversion of the host ubiquitination machinery by bacterial F-box proteins may be a widespread strategy amongst pathogenic bacteria. The findings that bacterial F-box proteins harbor Ankyrin repeats as protein–protein interaction domains, which are present in F-box proteins of primitive but not higher eukaryotes, suggest acquisition of many bacterial F-box proteins from primitive eukaryotic hosts rather than the mammalian host.
Collapse
Affiliation(s)
- Christopher T D Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
130
|
Huang L, Boyd D, Amyot WM, Hempstead AD, Luo ZQ, O'Connor TJ, Chen C, Machner M, Montminy T, Isberg RR. The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 2010; 13:227-45. [PMID: 20880356 PMCID: PMC3096851 DOI: 10.1111/j.1462-5822.2010.01531.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Legionella pneumophila promotes intracellular growth by moving bacterial proteins across membranes via the Icm/Dot system. A strategy was devised to identify large numbers of Icm/Dot translocated proteins, and the resulting pool was used to identify common motifs that operate as recognition signals. The 3' end of the sidC gene, which encodes a known translocated substrate, was replaced with DNA encoding 200 codons from the 3' end of 442 potential substrate-encoding genes. The resulting hybrid proteins were then tested in a high throughput assay, in which translocated SidC antigen was detected by indirect immunofluorescence. Among translocated substrates, regions of 6-8 residues called E Blocks were identified that were rich in glutamates. Analysis of SidM/DrrA revealed that loss of three Glu residues, arrayed in a triangle on an α-helical surface, totally eliminated translocation of a reporter protein. Based on this result, a second strategy was employed to identify Icm/Dot substrates having carboxyl terminal glutamates. From the fusion assay and the bioinformatic queries, carboxyl terminal sequences from 49 previously unidentified proteins were shown to promote translocation into target cells. These studies indicate that by analysing subsets of translocated substrates, patterns can be found that allow predictions of important motifs recognized by Icm/Dot.
Collapse
Affiliation(s)
- Li Huang
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Hubber A, Roy CR. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 2010; 26:261-83. [PMID: 20929312 DOI: 10.1146/annurev-cellbio-100109-104034] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and protozoa ingest bacteria by phagocytosis and destroy these microbes using a conserved pathway that mediates fusion of the phagosome with lysosomes. To survive within phagocytic host cells, bacterial pathogens have evolved a variety of strategies to avoid fusion with lysosomes. A virulence strategy used by the intracellular pathogen Legionella pneumophila is to manipulate host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors that play evolutionarily conserved roles in controlling membrane transport in eukaryotic cells, which enables L. pneumophila to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells. This review focuses on intracellular trafficking of L. pneumophila and describes how bacterial proteins contribute to modulation of host processes required for survival within host cells.
Collapse
Affiliation(s)
- Andree Hubber
- Section of Microbial Pathogenesis, School of Medicine, Yale University, New Haven, Connecticut 06536, USA.
| | | |
Collapse
|
132
|
Al-Khodor S, Al-Quadan T, Abu Kwaik Y. Temporal and differential regulation of expression of the eukaryotic-like ankyrin effectors of Legionella pneumophila. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:677-684. [PMID: 23766255 DOI: 10.1111/j.1758-2229.2010.00159.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Upon transition from the exponential (E) to the post-exponential phase (PE) of growth, Legionella pneumophila undergoes a phenotypic modulation from a replicative to a highly infectious form. This transition requires a delicate regulatory cascade that is triggered to induce expression of various virulence-related genes. We have recently characterized eleven L. pneumophila eukaryotic-like ankyrin effectors (Ank) shared between the four sequenced genomes of L. pneumophila. The AnkB effector recruits polyubiquitinated proteins to the Legionella-containing vacuole (LCV). It is not known whether expression of the ank genes is regulated by various regulators triggered at the PE phase and whether this regulation is essential for function. Here we show that temporal and differential regulation of the ank genes is mediated by RelA, the enhancer protein LetE, and the two component systems LetA/S and PmrA/B. Consistent with the expression of ankB at the PE phase, we show that bacteria grown to the PE but not the E phase recruit polyubiquitinated proteins to the LCV within Acanthamoeba in an AnkB-dependant mechanism. We conclude that the genes encoding the eukaryotic-like Ank effectors of L. pneumophila are temporally and spatially regulated at the PE phase.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, Room 413, College of Medicine and Department of Biology, University of Louisville, KY 40202, USA
| | | | | |
Collapse
|
133
|
Kwaik YA. The grand challenges to cellular and infection microbiology. Front Microbiol 2010; 1:3. [PMID: 21607078 PMCID: PMC3095395 DOI: 10.3389/fmicb.2010.00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of LouisvilleLouisville, KY, USA
- Department of Biology, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
134
|
Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 2010; 192:6001-16. [PMID: 20833813 DOI: 10.1128/jb.00778-10] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains.
Collapse
|
135
|
Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 2010; 12:1272-91. [DOI: 10.1111/j.1462-5822.2010.01467.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
136
|
Price CTD, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y. Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. ACTA ACUST UNITED AC 2010; 207:1713-26. [PMID: 20660614 PMCID: PMC2916131 DOI: 10.1084/jem.20100771] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Farnesylation involves covalent linkage of eukaryotic proteins to a lipid moiety to anchor them into membranes, which is essential for the biological function of Ras and other proteins. A large cadre of bacterial effectors is injected into host cells by intravacuolar pathogens through elaborate type III–VII translocation machineries, and many of these effectors are incorporated into the pathogen-containing vacuolar membrane by unknown mechanisms. The Dot/Icm type IV secretion system of Legionella pneumophila injects into host cells the F-box effector Ankyrin B (AnkB), which functions as platforms for the docking of polyubiquitinated proteins to the Legionella-containing vacuole (LCV) to enable intravacuolar proliferation in macrophages and amoeba. We show that farnesylation of AnkB is indispensable for its anchoring to the cytosolic face of the LCV membrane, for its biological function within macrophages and Dictyostelium discoideum, and for intrapulmonary proliferation in mice. Remarkably, the protein farnesyltransferase, RCE-1 (Ras-converting enzyme-1), and isoprenyl cysteine carboxyl methyltransferase host farnesylation enzymes are recruited to the LCV in a Dot/Icm-dependent manner and are essential for the biological function of AnkB. In conclusion, this study shows novel localized recruitment of the host farnesylation machinery and its anchoring of an F-box effector to the LCV membrane, and this is essential for biological function in vitro and in vivo.
Collapse
Affiliation(s)
- Christopher T D Price
- Department of Microbiology and Immunology, School of Medicine and 2 Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
137
|
Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits. PLoS One 2010; 5:e11718. [PMID: 20661449 PMCID: PMC2908689 DOI: 10.1371/journal.pone.0011718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/17/2010] [Indexed: 01/05/2023] Open
Abstract
Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.
Collapse
|
138
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
139
|
E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 2010; 78:3905-19. [PMID: 20547746 DOI: 10.1128/iai.00344-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila modulates a number of host processes during intracellular growth, including the eukaryotic ubiquitination machinery, which dictates the stability, activity, and/or localization of a large number of proteins. A number of L. pneumophila proteins contain eukaryotic-like motifs typically associated with ubiquitination. Central among these is a family of five F-box-domain-containing proteins of Legionella pneumophila. Each of these five proteins is translocated to the host cytosol by the Dot/Icm type IV protein translocation system during infection. We show that three of these proteins, LegU1, LegAU13, and LicA, interact with components of the host ubiquitination machinery in vivo. In addition, LegU1 and LegAU13 are integrated into functional Skp-Cullin-F-box (SCF) complexes that confer E3 ubiquitin ligase activity. LegU1 specifically interacts with and can direct the ubiquitination of the host chaperone protein BAT3. In a screen for additional L. pneumophila proteins that associate with LegU1 in mammalian cells, we identified the bacterial protein Lpg2160. We demonstrate that Lpg2160 also associates with BAT3 independently of LegU1. We show that Lpg2160 is a translocated substrate of the Dot/Icm system and contains a C-terminal translocation signal. We propose a model in which LegU1 and Lpg2160 may function redundantly or in concert to modulate BAT3 activity during the course of infection.
Collapse
|
140
|
Cossart P, Roy CR. Manipulation of host membrane machinery by bacterial pathogens. Curr Opin Cell Biol 2010; 22:547-54. [PMID: 20542678 DOI: 10.1016/j.ceb.2010.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022]
Abstract
Subversion of host membrane machinery is important for the uptake, survival, and replication of bacterial pathogens. Understanding how pathogens manipulate host membrane transport pathways provides mechanistic insight into how infection occurs and is also revealing new information on biochemical processes involved in the functioning of eukaryotic cells. In this review we discuss several of the canonical host pathways targeted by bacterial pathogens and emerging areas of investigation in this exciting field.
Collapse
Affiliation(s)
- Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.
| | | |
Collapse
|
141
|
Post-translational modifications in host cells during bacterial infection. FEBS Lett 2010; 584:2748-58. [PMID: 20493189 DOI: 10.1016/j.febslet.2010.05.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 12/24/2022]
Abstract
Post-translational modification of proteins is a widespread mechanism used by both prokaryotic and eukaryotic cells to modify the activity of key factors that plays fundamental roles in cellular physiology. This review focuses on how bacterial pathogens can interfere with host post-translational modifications to promote their own survival and replication.
Collapse
|
142
|
Hilbi H, Jarraud S, Hartland E, Buchrieser C. Update on Legionnaires' disease: pathogenesis, epidemiology, detection and control. Mol Microbiol 2010; 76:1-11. [PMID: 20149105 PMCID: PMC2914503 DOI: 10.1111/j.1365-2958.2010.07086.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Legionellosis or Legionnaires' disease is an emerging and often-fatal form of pneumonia that is most severe in elderly and immunocompromised people, an ever-increasing risk group for infection. In recent years, the genomics of Legionella spp. has significantly increased our knowledge of the pathogenesis of this disease by providing new insights into the evolution and genetic and physiological basis of Legionella-host interactions. The seventh international conference on Legionella, Legionella 2009, illustrated many recent conceptual advances in epidemiology, pathogenesis and ecology. Experts in different fields presented new findings on basic mechanisms of pathogen-host interactions and bacterial evolution, as well as the clinical management and environmental prevalence and persistence of Legionella. The presentations revealed remarkable facts about the genetic and metabolic basis of the intracellular lifestyle of Legionella and reported on its striking ability to manipulate host cell processes by molecular mimicry. Together, these investigations will lead to new approaches for the treatment and prevention of Legionnaires' disease.
Collapse
Affiliation(s)
- Hubert Hilbi
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sophie Jarraud
- Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France
| | - Elizabeth Hartland
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS URA 2171, Paris, France
| |
Collapse
|
143
|
Habyarimana F, Price CT, Santic M, Al-Khodor S, Kwaik YA. Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun 2010; 78:1123-34. [PMID: 20028808 PMCID: PMC2825944 DOI: 10.1128/iai.00913-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/30/2009] [Accepted: 11/24/2009] [Indexed: 12/28/2022] Open
Abstract
Although most Dot/Icm-translocated effectors of Legionella pneumophila are not required for intracellular proliferation, the eukaryotic-like ankyrin effectors, AnkH and AnkJ are required for intracellular proliferation. In this report, we show that the IcmSW chaperones are essential for translocation of AnkJ but not AnkH. The 10 C-terminal residues and the ANK domains of AnkH and AnkJ are required for translocation. Our data indicate that the two ANK domains of AnkH are critical domains required for the function of the effector in intracellular replication of L. pneumophila. The ankH and ankJ mutants are severely defective in intrapulmonary proliferation in mice. Expression of AnkH and AnkJ fusions within HEK293 cells show a punctuate distribution in the cytosol but no association with endocytic vesicles, the Golgi apparatus or the endoplasmic reticulum. Interestingly, the defect in intracellular proliferation of the ankH or ankJ mutants is rescued in HEK293 cells expressing the respective protein. We conclude that AnkH and AnkJ are effectors translocated by the Dot/Icm system by distinct mechanisms and modulate distinct cytosolic processes in the host cell.
Collapse
Affiliation(s)
- Fabien Habyarimana
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Chris T. Price
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Marina Santic
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Souhaila Al-Khodor
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, Room MS-410, College of Medicine, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
144
|
Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 2010; 78:2079-88. [PMID: 20194593 DOI: 10.1128/iai.01450-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Dot/Icm-translocated ankyrin B (AnkB) effector of Legionella pneumophila exhibits molecular mimicry of eukaryotic F-box proteins and is essential for intracellular replication in macrophages and protozoa. In addition to two eukaryotic-like ankyrin (ANK) domains, AnkB harbors a conserved eukaryotic F-box domain, which is involved in polyubiquitination of proteins throughout the eukaryotic kingdom. We have recently shown that the F-box domain of the AnkB effector is essential for decoration of the Legionella-containing vacuole (LCV) with polyubiquitinated proteins within macrophages and protozoan hosts. To decipher the role of the two ANK domains in the function of AnkB, we have constructed in-frame deletion of either or both of the ANK domain-encoding regions (ankB Delta A1, ankB Delta A2, and ankB Delta A1A2) to trans-complement the ankB null mutant. Deletion of the ANK domains results in defects in intracellular proliferation and decoration of the LCV with polyubiquitinated proteins. Export of the truncated variants of AnkB was reduced, and this may account for the observed defects. However, while full-length AnkB ectopically expressed in mammalian cells trans-rescues the ankB null mutant for intracellular proliferation, ectopic expression of AnkB Delta A1, AnkB Delta A2, and AnkB Delta A1A2 fails to trans-rescue the ankB null mutant. Importantly, ectopically expressed full-length AnkB is targeted to the host cell plasma membrane, where it recruits polyubiquitinated proteins. In contrast, AnkB Delta A1, AnkB Delta A2, and AnkB Delta A1A2 are diffusely distributed throughout the cytosol and fail to recruit polyubiquitinated proteins. We conclude that the two eukaryotic-like ANK domains of AnkB are essential for intracellular proliferation, for targeting AnkB to the host membranes, and for decoration of the LCV with polyubiquitinated proteins.
Collapse
|
145
|
Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 2009; 18:132-9. [PMID: 19962898 DOI: 10.1016/j.tim.2009.11.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/09/2009] [Accepted: 11/11/2009] [Indexed: 12/18/2022]
Abstract
The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature, and is predominantly found in eukaryotic proteins. Genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses has identified numerous genes encoding ANK-containing proteins that are proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells, where they mimic or manipulate various host functions. Studying the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions.
Collapse
|