101
|
SAMHD1 transcript upregulation during SIV infection of the central nervous system does not associate with reduced viral load. Sci Rep 2016; 6:22629. [PMID: 26936683 PMCID: PMC4776177 DOI: 10.1038/srep22629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/18/2016] [Indexed: 02/01/2023] Open
Abstract
Restriction of HIV-1 in myeloid-lineage cells is attributed in part to the nucleotidase activity of the SAM-domain and HD-domain containing protein (SAMHD1), which depletes free nucleotides, blocking reverse transcription. In the same cells, the Vpx protein of HIV-2 and most SIVs counteracts SAMHD1. Both Type I and II interferons may stimulate SAMHD1 transcription. The contributions of SAMHD1 to retroviral restriction in the central nervous system (CNS) have been the subject of limited study. We hypothesized that SAMHD1 would respond to interferon in the SIV-infected CNS but would not control virus due to SIV Vpx. Accordingly, we investigated SAMHD1 transcript abundance and association with the Type I interferon response in an SIV model. SAMHD1 transcript levels were IFN responsive, increasing during acute phase infection and decreasing during a more quiescent phase, but generally remaining elevated at all post-infection time points. In vitro, SAMHD1 transcript was abundant in macaque astrocytes and further induced by Type I interferon, while IFN produced a weaker response in the more permissive environment of the macrophage. We cannot rule out a contribution of SAMHD1 to retroviral restriction in relatively non-permissive CNS cell types. We encourage additional research in this area, particularly in the context of HIV-1 infection.
Collapse
|
102
|
Hollenbaugh JA, Montero C, Schinazi RF, Munger J, Kim B. Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages. Virology 2016; 491:106-14. [PMID: 26895248 DOI: 10.1016/j.virol.2016.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
We evaluated cellular metabolism profiles of HIV-1 and HIV-2 infected primary human monocyte-derived macrophages (MDMs). First, HIV-2 GL-AN displays faster production kinetics and greater amounts of virus as compared to HIV-1s: YU-2, 89.6 and JR-CSF. Second, quantitative LC-MS/MS metabolomics analysis demonstrates very similar metabolic profiles in glycolysis and TCA cycle metabolic intermediates between HIV-1 and HIV-2 infected macrophages, with a few notable exceptions. The most striking metabolic change in MDMs infected with HIV-2 relative to HIV-1-infected MDMs was the increased levels of quinolinate, a metabolite in the tryptophan catabolism pathway that has been linked to HIV/AIDS pathogenesis. Third, both HIV-1 and HIV-2 infected MDMs showed elevated levels of ribose-5-phosphate, a key metabolic component in nucleotide biosynthesis. Finally, HIV-2 infected MDMs display increased dNTP concentrations as predicted by Vpx-mediated SAMHD1 degradation. Collectively, these data show differential metabolic changes during HIV-1 and HIV-2 infection of macrophages.
Collapse
Affiliation(s)
- Joseph A Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Catherine Montero
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Raymond F Schinazi
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA; Department of Pharmacy, Kyung-Hee University, Seoul, South Korea; Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
103
|
HD domain of SAMHD1 influences Vpx-induced degradation at a post-interaction step. Biochem Biophys Res Commun 2016; 470:690-696. [PMID: 26779819 DOI: 10.1016/j.bbrc.2016.01.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
Primate SAMHD1 proteins are potent inhibitors of viruses, including retroviruses such as HIV-1, HIV-2, and SIV. Vpx, a distinctive viral protein expressed by HIV-2 and some SIVs, induces SAMHD1 degradation by forming a Vpx-DCAF1-based ubiquitin ligase complex. Either the N- or the C-terminus of SAMHD1 is critical for Vpx-induced degradation, depending on the types of SAMHD1 and Vpx proteins. However, it was not fully understood whether other regions of SAMHD1 also contribute to its depletion by Vpx. In the present study, we report that SAMHD1 from chicken (SAMHD1GG) was not degraded by SIVmac Vpx, in contrast with results for human SAMHD1 (SAMHD1HS). Results regarding to SAMHD1HS and SAMHD1GG fusion proteins supported previous findings that the C-terminus of SAMHD1HS is essential for Vpx-induced degradation. Internal domain substitution, however, revealed that the HD domain also contributes to Vpx-mediated SAMHD1 degradation. Interestingly, the HD domain influenced Vpx-mediated SAMHD1 degradation without affecting Vpx-SAMHD1 interaction. Therefore, our findings revealed that factors in addition to Vpx-SAMHD1 binding influence the efficiency of Vpx-mediated SAMHD1 degradation.
Collapse
|
104
|
Wittmann S, Behrendt R, Eissmann K, Volkmann B, Thomas D, Ebert T, Cribier A, Benkirane M, Hornung V, Bouzas NF, Gramberg T. Phosphorylation of murine SAMHD1 regulates its antiretroviral activity. Retrovirology 2015; 12:103. [PMID: 26667483 PMCID: PMC4678485 DOI: 10.1186/s12977-015-0229-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human SAMHD1 is a triphosphohydrolase that restricts the replication of retroviruses, retroelements and DNA viruses in noncycling cells. While modes of action have been extensively described for human SAMHD1, only little is known about the regulation of SAMHD1 in the mouse. Here, we characterize the antiviral activity of murine SAMHD1 with the help of knockout mice to shed light on the regulation and the mechanism of the SAMHD1 restriction and to validate the SAMHD1 knockout mouse model for the use in future infectivity studies. RESULTS We found that endogenous mouse SAMHD1 restricts not only HIV-1 but also MLV reporter virus infection at the level of reverse transcription in primary myeloid cells. Similar to the human protein, the antiviral activity of murine SAMHD1 is regulated through phosphorylation at threonine 603 and is limited to nondividing cells. Comparing the susceptibility to infection with intracellular dNTP levels and SAMHD1 phosphorylation in different cell types shows that both functions are important determinants of the antiviral activity of murine SAMHD1. In contrast, we found the proposed RNase activity of SAMHD1 to be less important and could not detect any effect of mouse or human SAMHD1 on the level of incoming viral RNA. CONCLUSION Our findings show that SAMHD1 in the mouse blocks retroviral infection at the level of reverse transcription and is regulated through cell cycle-dependent phosphorylation. We show that the antiviral restriction mediated by murine SAMHD1 is mechanistically similar to what is known for the human protein, making the SAMHD1 knockout mouse model a valuable tool to characterize the influence of SAMHD1 on the replication of different viruses in vivo.
Collapse
Affiliation(s)
- Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Kristin Eissmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| | - Bianca Volkmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Thomas Ebert
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany.
| | - Alexandra Cribier
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, 34000, France.
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, 34000, France.
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany.
| | - Nerea Ferreirós Bouzas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| |
Collapse
|
105
|
Welbourn S, Strebel K. Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1. Virology 2015; 488:271-7. [PMID: 26655245 DOI: 10.1016/j.virol.2015.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/14/2022]
Abstract
SAMHD1 is a cellular dNTPase that restricts lentiviral infection presumably by lowering cellular dNTP levels to below a critical threshold required for reverse transcription; however, lowering cellular dNTP levels may not be the sole mechanism of restriction. In particular, an exonuclease activity of SAMHD1 was reported to contribute to virus restriction. We further investigated the requirements for SAMHD1 restriction activity in both differentiated U937 and cycling HeLa cells. Using hydroxyurea treatment to lower baseline dNTP levels in HeLa cells, we were able to document efficient SAMHD1 restriction without significant further reduction in dNTP levels by SAMHD1. These results argue against a requirement for additional myeloid-specific host factors for SAMHD1 function but further support the notion that SAMHD1 possesses an additional dNTP-independent function contributing to lentiviral restriction. However, our own experiments failed to associate this presumed additional SAMHD1 antiviral activity with a reported nuclease activity.
Collapse
Affiliation(s)
- Sarah Welbourn
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
106
|
Cuadrado E, Booiman T, van Hamme JL, Jansen MH, van Dort KA, Vanderver A, Rice GI, Crow YJ, Kootstra NA, Kuijpers TW. ADAR1 Facilitates HIV-1 Replication in Primary CD4+ T Cells. PLoS One 2015; 10:e0143613. [PMID: 26629815 PMCID: PMC4667845 DOI: 10.1371/journal.pone.0143613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023] Open
Abstract
Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells.
Collapse
Affiliation(s)
- Eloy Cuadrado
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
- * E-mail:
| | - Thijs Booiman
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
- Sanquin Research, Landsteiner Laboratory and Center for Infection and Immunity (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - John L. van Hamme
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
- Sanquin Research, Landsteiner Laboratory and Center for Infection and Immunity (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Machiel H. Jansen
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - Karel A. van Dort
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
- Sanquin Research, Landsteiner Laboratory and Center for Infection and Immunity (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Adeline Vanderver
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington DC, United States of America
| | - Gillian I. Rice
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester Academic Health Sciences Centre (MAHSC), Manchester, United Kingdom
| | - Yanick J. Crow
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester Academic Health Sciences Centre (MAHSC), Manchester, United Kingdom
- INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Hôpital Necker, Paris, France
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
- Sanquin Research, Landsteiner Laboratory and Center for Infection and Immunity (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam (UvA), Amsterdam, The Netherlands
- Emma Children’s Hospital, Dept of Pediatric Hematology, Immunology and Infectious disease, AMC, UvA, Amsterdam, The Netherlands
| |
Collapse
|
107
|
Human T Cell Leukemia Virus Type 1 Infection of the Three Monocyte Subsets Contributes to Viral Burden in Humans. J Virol 2015; 90:2195-207. [PMID: 26608313 DOI: 10.1128/jvi.02735-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Because the viral DNA burden correlates with disease development, we investigated the contribution of monocyte subsets (classical, intermediate, and nonclassical monocytes) to the total viral burden in 22 human T cell leukemia virus type 1 (HTLV-1)-infected individuals by assessing their infectivity status, frequency, as well as chemotactic and phagocytic functions. All three monocyte subsets sorted from HTLV-1-infected individuals were positive for viral DNA, and the frequency of classical monocytes was lower in the blood of HTLV-1-infected individuals than in that of uninfected individuals, while the expression levels of the chemokine receptors CCR5, CXCR3, and CX3CR1 in classical monocytes were higher in HTLV-1-infected individuals than uninfected individuals; the percentage of intermediate monocytes and their levels of chemokine receptor expression did not differ between HTLV-1-infected and uninfected individuals. However, the capacity of intermediate monocytes to migrate to CCL5, the ligand for CCR5, was higher, and a higher proportion of nonclassical monocytes expressed CCR1, CXCR3, and CX3CR1. The level of viral DNA in the monocyte subsets correlated with the capacity to migrate to CCL2, CCL5, and CX3CL1 for classical monocytes, with lower levels of phagocytosis for intermediate monocytes, and with the level of viral DNA in CD8(+) and CD4(+) T cells for nonclassical monocytes. These data suggest a model whereby HTLV-1 infection augments the number of classical monocytes that migrate to tissues and become infected and the number of infected nonclassical monocytes that transmit virus to CD4(+) and CD8(+) T cells. These results, together with prior findings in a macaque model of HTLV-1 infection, support the notion that infection of monocytes by HTLV-1 is likely a requisite for viral persistence in humans. IMPORTANCE Monocytes have been implicated in immune regulation and disease progression in patients with HTLV-1-associated inflammatory diseases. We detected HTLV-1 DNA in all three monocyte subsets and found that infection impacts surface receptor expression, migratory function, and subset frequency. The frequency of nonclassical patrolling monocytes is increased in HTLV-1-infected individuals, and they have increased expression of CCR1, CXCR3, and CX3CR1. The viral DNA level in nonclassical monocytes correlated with the viral DNA level in CD4(+) and CD8(+) T cells. Altogether, these data suggest an increased recruitment of classical monocytes to inflammation sites that may result in virus acquisition and, in turn, facilitate virus dissemination and viral persistence. Our findings thus provide new insight into the importance of monocyte infection in viral spread and suggest targeting of monocytes for therapeutic intervention.
Collapse
|
108
|
Shen X, Nair B, Mahajan SD, Jiang X, Li J, Shen S, Tu C, Hsiao CB, Schwartz SA, Qu J. New Insights into the Disease Progression Control Mechanisms by Comparing Long-Term-Nonprogressors versus Normal-Progressors among HIV-1-Positive Patients Using an Ion Current-Based MS1 Proteomic Profiling. J Proteome Res 2015; 14:5225-39. [PMID: 26484939 DOI: 10.1021/acs.jproteome.5b00621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For decades, epidemiological studies have found significant differences in the susceptibility to disease progression among HIV-carrying patients. One unique group of HIV-1-positive patients, the long-term-nonprogressors (LTNP), exhibits far superior ability in virus control compared with normal-progressors (NP), which proceed to Acquired Immune Deficiency Syndrome (AIDS) much more rapidly. Nonetheless, elucidation of the underlying mechanisms of virus control in LTNP is highly valuable in disease management and treatment but remains poorly understood. Peripheral blood mononuclear cells (PBMC) have been known to play important roles in innate immune responses and thereby would be of great interest for the investigation of the mechanisms of virus defense in LTNP. Here, we described the first comparative proteome analysis of PBMC from LTNP (n = 10) and NP (n = 10) patients using a reproducible ion-current-based MS1 approach, which includes efficient and reproducible sample preparation and chromatographic separation followed by an optimized pipeline for protein identification and quantification. This strategy enables analysis of many biological samples in one set with high quantitative precision and extremely low missing data. In total, 925 unique proteins were quantified under stringent criteria without missing value in any of the 20 subjects, and 87 proteins showed altered expressions between the two patient groups. These proteins are implicated in key processes such as cytoskeleton organization, defense response, apoptosis regulation, intracellular transport, etc., which provided novel insights into the control of disease progressions in LTNP versus NP, and the expression and phosphorylation states of key regulators were further validated by immunoassay. For instance, (1) SAMH1, a potent and "hot" molecule facilitating HIV-1 defense, was for the first time found elevated in LTNP compared with NP or healthy controls; elevated proteins from IFN-α response pathway may also contribute to viral control in LTNP; (2) decreased proapoptotic protein ASC along with the elevation of antiapoptotic proteins may contribute to the less apoptotic profile in PBMC of LTNP; and (3) elevated actin polymerization and less microtubule assembly that impede viral protein transport were first observed in LTNP. These results not only enhanced the understanding of the mechanisms for nonprogression of LTNP, but also may afford highly valuable clues to direct therapeutic efforts. Moreover, this work also demonstrated the ion-current-based MS1 approach as a reliable tool for large-scale clinical research.
Collapse
Affiliation(s)
- Xiaomeng Shen
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | | | | | - Xiaosheng Jiang
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Jun Li
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Shichen Shen
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Chengjian Tu
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Chiu-Bin Hsiao
- Infectious Disease Division, Department of Medicine, Allegheny General Hospital , Pittsburgh, Pennsylvania 15212, United States
| | | | - Jun Qu
- The State of New York Center for Excellence in Bioinformatics and Life Science, 701 Ellicott Street, Buffalo, New York 14203, United States
| |
Collapse
|
109
|
Hollenbaugh JA, Schader SM, Schinazi RF, Kim B. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4(+) T cells. Virology 2015; 485:313-21. [PMID: 26319213 PMCID: PMC4619155 DOI: 10.1016/j.virol.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/27/2015] [Accepted: 08/08/2015] [Indexed: 01/05/2023]
Abstract
Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4(+) T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4(+) T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner.
Collapse
Affiliation(s)
- Joseph A Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Susan M Schader
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
110
|
Nguyen XN, Barateau V, Wu N, Berger G, Cimarelli A. The Frequency of Cytidine Editing of Viral DNA Is Differentially Influenced by Vpx and Nucleosides during HIV-1 or SIVMAC Infection of Dendritic Cells. PLoS One 2015; 10:e0140561. [PMID: 26496699 PMCID: PMC4619667 DOI: 10.1371/journal.pone.0140561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/28/2015] [Indexed: 01/02/2023] Open
Abstract
Two cellular factors are currently known to modulate lentiviral infection specifically in myeloid cells: SAMHD1 and APOBEC3A (A3A). SAMHD1 is a deoxynucleoside triphosphohydrolase that interferes with viral infection mostly by limiting the intracellular concentrations of dNTPs, while A3A is a cytidine deaminase that has been described to edit incoming vDNA. The restrictive phenotype of myeloid cells can be alleviated through the direct degradation of SAMHD1 by the HIV-2/SIVSM Vpx protein or else, at least in the case of HIV-1, by the exogenous supplementation of nucleosides that artificially overcome the catabolic activity of SAMHD1 on dNTPs. Here, we have used Vpx and dNs to explore the relationship existing between vDNA cytidine deamination and SAMHD1 during HIV-1 or SIVMAC infection of primary dendritic cells. Our results reveal an interesting inverse correlation between conditions that promote efficient infection of DCs and the extent of vDNA editing that may reflect the different susceptibility of vDNA to cytoplasmic effectors during the infection of myeloid cells.
Collapse
Affiliation(s)
- Xuan-Nhi Nguyen
- CIRI, Centre International de Recherche en Infectiologie, Lyon, F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- University of Lyon, Lyon I, UMS3444/US8 BioSciences Gerland, Lyon, F69364, France
| | - Véronique Barateau
- CIRI, Centre International de Recherche en Infectiologie, Lyon, F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- University of Lyon, Lyon I, UMS3444/US8 BioSciences Gerland, Lyon, F69364, France
| | - Nannan Wu
- CIRI, Centre International de Recherche en Infectiologie, Lyon, F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- University of Lyon, Lyon I, UMS3444/US8 BioSciences Gerland, Lyon, F69364, France
- Institute of BioMedical Science (IBMS), East China Normal University (ECNU), Shanghai, China
| | - Gregory Berger
- CIRI, Centre International de Recherche en Infectiologie, Lyon, F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- University of Lyon, Lyon I, UMS3444/US8 BioSciences Gerland, Lyon, F69364, France
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Lyon, F69364, France
- INSERM, U1111, 46 Allée d’Italie, Lyon, F69364, France
- Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, F69364, France
- CNRS, UMR5308, 46 Allée d’Italie, Lyon, F69364, France
- University of Lyon, Lyon I, UMS3444/US8 BioSciences Gerland, Lyon, F69364, France
- * E-mail:
| |
Collapse
|
111
|
Li Y, Kong J, Peng X, Hou W, Qin X, Yu XF. Structural Insights into the High-efficiency Catalytic Mechanism of the Sterile α-Motif/Histidine-Aspartate Domain-containing Protein. J Biol Chem 2015; 290:29428-37. [PMID: 26438820 DOI: 10.1074/jbc.m115.663658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Sterile α-motif/histidine-aspartate domain-containing protein (SAMHD1), a homo-tetrameric GTP/dGTP-dependent dNTP triphosphohydrolase, catalyzes the conversion of dNTP into deoxynucleoside and triphosphate. As the only characterized dNTP triphosphohydrolase in human cells, SAMHD1 plays an important role in human innate immunity, autoimmunity, and cell cycle control. Previous biochemical studies and crystal structures have revealed that SAMHD1 interconverts between an inactive monomeric or dimeric form and a dGTP/GTP-induced active tetrameric form. Here, we describe a novel state of SAMHD1 (109-626 amino acids, SAMHD1C) that is characterized by a rapid initial hydrolysis rate. Interestingly, the crystal structure showed that this novel SAMHD1 tetramer contains only GTP and has structural features distinct from the GTP/dNTP-bound SAMHD1 tetramer. Our work thus reveals structural features of SAMHD1 that may represent one of its biological assembly states in cells. The biochemical and structural information generated by the present study not only provides an ordered pathway for the assembly and activation of SAMHD1 but also provides insights into the potential mechanisms of the high-efficiency catalytic activity of this enzyme family in vivo.
Collapse
Affiliation(s)
- Yanhong Li
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Jia Kong
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xin Peng
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Wen Hou
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xiaohong Qin
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xiao-Fang Yu
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and the Institute of Virology and AIDS Research, First Hospital of Jilin University, 519 East Minzhu Avenue, Changchun 130061, Jilin Province, China
| |
Collapse
|
112
|
Li W, Xin B, Yan J, Wu Y, Hu B, Liu L, Wang Y, Ahn J, Skowronski J, Zhang Z, Wang Y, Wang H. SAMHD1 Gene Mutations Are Associated with Cerebral Large-Artery Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:739586. [PMID: 26504826 PMCID: PMC4609382 DOI: 10.1155/2015/739586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND To investigate whether one or more SAMHD1 gene mutations are associated with cerebrovascular disease in the general population using a Chinese stroke cohort. METHODS Patients with a Chinese Han background (N = 300) diagnosed with either cerebral large-artery atherosclerosis (LAA, n = 100), cerebral small vessel disease (SVD, n = 100), or other stroke-free neurological disorders (control, n = 100) were recruited. Genomic DNA from the whole blood of each patient was isolated, and direct sequencing of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. RESULTS Three heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the controls (p = 0.05). The mutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and ability to assemble stable tetramers. CONCLUSIONS Heterozygous SAMHD1 gene mutations might cause genetic predispositions that interact with other risk factors, resulting in increased vulnerability to stroke.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Baozhong Xin
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Junpeng Yan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Ying Wu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44193, USA
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Jacek Skowronski
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Heng Wang
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
- Department of Pediatrics, Case Western Reserve University Medical School, Cleveland, OH 44193, USA
- Rainbow Babies & Children's Hospital, Cleveland, OH 44193, USA
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
113
|
Zhu M, Lu J, Dong X, Zheng N, Li T, Chen Z, Pan X, Zhu Y, Yan H, Shen Y, Ying S, Hu C. Interferon-stimulated gene factor 3 complex is required for the induction of sterile α motif and HD domain-containing protein 1 expression by interferon-α in SMMC-7721 cells. Mol Med Rep 2015; 12:7176-80. [PMID: 26397446 DOI: 10.3892/mmr.2015.4332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
Abstract
Sterile α motif and HD domain-containing protein 1 (SAMHD1) is a novel intrinsic restriction factor that inhibits the replication of certain retroviruses and DNA viruses through its deoxynucleoside triphosphate triphosphohydrolase activity. A previous study by our group showed that SAMHD1 restrained hepatitis B virus replication and interferon (IFN)‑α induced SAMHD1 expression in liver cells. However the mechanisms of SAMHD1 upregulation by IFN‑α in liver cells have remained elusive. The present study demonstrated that IFN‑α treatment increased SAMHD1 mRNA levels in SMMC‑7721 cells in a time‑dependent manner. Knockdown of STAT1 inhibited the induction of SAMHD1 expression by IFN‑α in SMMC‑7721 cells. STAT2 silencing also suppressed the induction of SAMHD1 expression by IFN‑α in SMMC‑7721 cells. Furthermore, the induction of SAMHD1 expression in SMMC‑7721 cells by IFN‑α was found to be dependent on IFN‑regulatory factor 9 (IRF9). In conclusion, these results suggested that the interferon‑stimulated gene factor 3 complex, which consists of STAT1, STAT2 and IRF9, is required for the induction of SAMHD1 expression by IFN-α in SMMC-7721 cells.
Collapse
Affiliation(s)
- Mengying Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinsen Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaowan Dong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Nan Zheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tingting Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangming Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiang Pan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongji Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hai Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuxian Shen
- Department of Pharmacology, School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chunsong Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
114
|
Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: A comprehensive review. J Autoimmun 2015; 64:125-36. [PMID: 26324017 DOI: 10.1016/j.jaut.2015.08.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/24/2022]
Abstract
Our understanding of the genetic basis of systemic lupus erythematosus has progressed rapidly in recent years. While many genetic polymorphisms have been associated with disease susceptibility, the next major step involves integrating these genetic polymorphisms into the molecular mechanisms and cellular immunology of the human disease. In this review, we summarize some recent work in this area, including the genetics of the type I IFN response in SLE, including polygenic and monogenic factors, as well as epigenetic influences. Contributions of both HLA and non-HLA polymorphisms to the complex genetics of SLE are reviewed. We also review recent reports of specific gene deficits leading to monogenic SLE-like syndromes. The molecular functions of common SLE-risk variants are reviewed in depth, including regulatory variations in promoter and enhancer elements and coding-change polymorphisms, and studies which are beginning to define the molecular and cellular functions of these polymorphisms in the immune system. We discuss epigenetic influences on lupus, with an emphasis on micro-RNA expression and binding, as well as epigenetic modifications that regulate the expression levels of various genes involved in SLE pathogenesis and the ways epigenetic marks modify SLE susceptibility genes. The work summarized in this review provides a fascinating window into the biology and molecular mechanisms of human SLE. Understanding the functional mechanisms of causal genetic variants underlying the human disease greatly facilitates our ability to translate genetic associations toward personalized care, and may identify new therapeutic targets relevant to human SLE disease mechanisms.
Collapse
Affiliation(s)
| | - Timothy B Niewold
- Division of Rheumatology, Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
115
|
Tang C, Ji X, Wu L, Xiong Y. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J Biol Chem 2015; 290:26352-9. [PMID: 26294762 DOI: 10.1074/jbc.m115.677435] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/02/2023] Open
Abstract
SAMHD1 is a cellular protein that plays key roles in HIV-1 restriction and regulation of cellular dNTP levels. Mutations in SAMHD1 are also implicated in the pathogenesis of chronic lymphocytic leukemia and Aicardi-Goutières syndrome. The anti-HIV-1 activity of SAMHD1 is negatively modulated by phosphorylation at residue Thr-592. The mechanism underlying the effect of phosphorylation on anti-HIV-1 activity remains unclear. SAMHD1 forms tetramers that possess deoxyribonucleotide triphosphate triphosphohydrolase (dNTPase) activity, which is allosterically controlled by the combined action of GTP and all four dNTPs. Here we demonstrate that the phosphomimetic mutation T592E reduces the stability of the SAMHD1 tetramer and the dNTPase activity of the enzyme. To better understand the underlying mechanisms, we determined the crystal structures of SAMHD1 variants T592E and T592V. Although the neutral substitution T592V does not perturb the structure, the charged T592E induces large conformational changes, likely triggered by electrostatic repulsion from a distinct negatively charged environment surrounding Thr-592. The phosphomimetic mutation results in a significant decrease in the population of active SAMHD1 tetramers, and hence the dNTPase activity is substantially decreased. These results provide a mechanistic understanding of how SAMHD1 phosphorylation at residue Thr-592 may modulate its cellular and antiviral functions.
Collapse
Affiliation(s)
- Chenxiang Tang
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Xiaoyun Ji
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Li Wu
- the Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210
| | - Yong Xiong
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
116
|
Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, De Jesus PD, Ruan C, de Castro E, Ruiz PA, Germanaud D, des Portes V, García-Sastre A, König R, Chanda SK. PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1. Cell 2015; 161:1293-1305. [PMID: 26046437 DOI: 10.1016/j.cell.2015.04.050] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/06/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection.
Collapse
Affiliation(s)
- Sunnie M Yoh
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Monika Schneider
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Janna Seifried
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Stephen Soonthornvacharin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Rana E Akleh
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Kevin C Olivieri
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Paul D De Jesus
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - Chunhai Ruan
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109
| | - Elisa de Castro
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029
| | - Pedro A Ruiz
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| | - David Germanaud
- APHP, Hôpital Robert Debré, DHU PROTECT, Service de Neurologie Pédiatrique et Pathologie Métabolique, F-75019 Paris 2. Sorbonne Paris Cité, Université Paris Diderot, F-75010
| | - Vincent des Portes
- National Reference Center for Fragile X and Other XLID, Biobank NeuroBioTec, Hospices Civils de Lyon, Université de Lyon and CNRS UMR 5304 (L2C2), Bron, France
| | - Adolfo García-Sastre
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029
| | - Renate König
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany.,Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116.,German Center for Infection Research (DZIF), Langen, Germany
| | - Sumit K Chanda
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92116
| |
Collapse
|
117
|
Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells. PLoS Pathog 2015; 11:e1005005. [PMID: 26121641 PMCID: PMC4485899 DOI: 10.1371/journal.ppat.1005005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. We here give insight into a substantial novel way of dendritic cell modulation at least during acute HIV-1 infection by triggering integrin receptor signaling. We found that complement-opsonization of the virus is able to relieve SAMHD1 restriction in DCs, thereby initiating strong maturation and co-stimulatory capacity of the cells and stimulating efficient cellular and humoral antiviral immune responses. This newly described way of DC modulation by complement might be exploited to find novel therapeutic targets promoting DC immune functions against HIV.
Collapse
|
118
|
Wu Y, Koharudin LMI, Mehrens J, DeLucia M, Byeon CH, Byeon IJL, Calero G, Ahn J, Gronenborn AM. Structural Basis of Clade-specific Engagement of SAMHD1 (Sterile α Motif and Histidine/Aspartate-containing Protein 1) Restriction Factors by Lentiviral Viral Protein X (Vpx) Virulence Factors. J Biol Chem 2015; 290:17935-17945. [PMID: 26045556 DOI: 10.1074/jbc.m115.665513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
Sterile α motif (SAM) and histidine/aspartate (HD)-containing protein 1 (SAMHD1) restricts human/simian immunodeficiency virus infection in certain cell types and is counteracted by the virulence factor Vpx. Current evidence indicates that Vpx recruits SAMHD1 to the Cullin4-Ring Finger E3 ubiquitin ligase (CRL4) by facilitating an interaction between SAMHD1 and the substrate receptor DDB1- and Cullin4-associated factor 1 (DCAF1), thereby targeting SAMHD1 for proteasome-dependent down-regulation. Host-pathogen co-evolution and positive selection at the interfaces of host-pathogen complexes are associated with sequence divergence and varying functional consequences. Two alternative interaction interfaces are used by SAMHD1 and Vpx: the SAMHD1 N-terminal tail and the adjacent SAM domain or the C-terminal tail proceeding the HD domain are targeted by different Vpx variants in a unique fashion. In contrast, the C-terminal WD40 domain of DCAF1 interfaces similarly with the two above complexes. Comprehensive biochemical and structural biology approaches permitted us to delineate details of clade-specific recognition of SAMHD1 by lentiviral Vpx proteins. We show that not only the SAM domain but also the N-terminal tail engages in the DCAF1-Vpx interaction. Furthermore, we show that changing the single Ser-52 in human SAMHD1 to Phe, the residue found in SAMHD1 of Red-capped monkey and Mandrill, allows it to be recognized by Vpx proteins of simian viruses infecting those primate species, which normally does not target wild type human SAMHD1 for degradation.
Collapse
Affiliation(s)
- Ying Wu
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Leonardus M I Koharudin
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jennifer Mehrens
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Maria DeLucia
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Chang-Hyeok Byeon
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - In-Ja L Byeon
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Guillermo Calero
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jinwoo Ahn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
| | - Angela M Gronenborn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
119
|
Choi J, Ryoo J, Oh C, Hwang S, Ahn K. SAMHD1 specifically restricts retroviruses through its RNase activity. Retrovirology 2015; 12:46. [PMID: 26032178 PMCID: PMC4450836 DOI: 10.1186/s12977-015-0174-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human SAMHD1 possesses dual enzymatic functions. It acts as both a dGTP-dependent triphosphohydrolase and as an exoribonuclease. The dNTPase function depletes the cellular dNTP pool, which is required for retroviral reverse transcription in differentiated myeloid cells and resting CD4(+) T cells; thus this activity mainly plays a role in SAMHD1-mediated retroviral restriction. However, a recent study demonstrated that SAMHD1 directly targets HIV-1 genomic RNA via its RNase activity, and that this function (rather than dNTPase activity) is sufficient for HIV-1 restriction. While HIV-1 genomic RNA is a potent target for SAMHD1 during viral infection, the specificity of SAMHD1-mediated RNase activity during infection by other viruses is unclear. RESULTS The results of the present study showed that SAMHD1 specifically degrades retroviral genomic RNA in monocyte-derived macrophage-like cells and in primary monocyte-derived macrophages. Consistent with this, SAMHD1 selectively restricted retroviral replication, but did not affect the replication of other common non-retro RNA genome viruses, suggesting that the RNase-mediated antiviral function of SAMHD1 is limited to retroviruses. In addition, neither inhibiting reverse transcription by treatment with several reverse transcriptase inhibitors nor infection with reverse transcriptase-defective HIV-1 altered RNA levels after viral challenge, indicating that the retrovirus-specific RNase function is not dependent on processes associated with retroviral reverse transcription. CONCLUSIONS The results presented herein suggest that the RNase activity of SAMHD1 is sufficient to control the replication of retroviruses, but not that of non-retro RNA viruses.
Collapse
Affiliation(s)
- Jongsu Choi
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Jeongmin Ryoo
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of the Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Changhoon Oh
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of the Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Sungyeon Hwang
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Kwangseog Ahn
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
120
|
Jia X, Zhao Q, Xiong Y. HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 2015; 31:106-14. [PMID: 25939065 DOI: 10.1016/j.sbi.2015.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 01/30/2023]
Abstract
Antiviral restriction factors are an integral part of the host innate immune system that protects cells from viral pathogens, such as human immunodeficiency virus (HIV). Studies of the interactions between restriction factors and HIV have greatly advanced our understanding of both the viral life cycle and basic cell biology, as well as provided new opportunities for therapeutic intervention of viral infection. Here we review the recent developments towards establishing the structural and biochemical bases of HIV inhibition by, and viral countermeasures of, the restriction factors TRIM5, MxB, APOBEC3, SAMHD1, and BST2/tetherin.
Collapse
Affiliation(s)
- Xiaofei Jia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
121
|
Schwefel D, Boucherit VC, Christodoulou E, Walker PA, Stoye JP, Bishop KN, Taylor IA. Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx. Cell Host Microbe 2015; 17:489-99. [PMID: 25856754 PMCID: PMC4400269 DOI: 10.1016/j.chom.2015.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/31/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
The SAMHD1 triphosphohydrolase inhibits HIV-1 infection of myeloid and resting T cells by depleting dNTPs. To overcome SAMHD1, HIV-2 and some SIVs encode either of two lineages of the accessory protein Vpx that bind the SAMHD1 N or C terminus and redirect the host cullin-4 ubiquitin ligase to target SAMHD1 for proteasomal degradation. We present the ternary complex of Vpx from SIV that infects mandrills (SIVmnd-2) with the cullin-4 substrate receptor, DCAF1, and N-terminal and SAM domains from mandrill SAMHD1. The structure reveals details of Vpx lineage-specific targeting of SAMHD1 N-terminal "degron" sequences. Comparison with Vpx from SIV that infects sooty mangabeys (SIVsmm) complexed with SAMHD1-DCAF1 identifies molecular determinants directing Vpx lineages to N- or C-terminal SAMHD1 sequences. Inspection of the Vpx-DCAF1 interface also reveals conservation of Vpx with the evolutionally related HIV-1/SIV accessory protein Vpr. These data suggest a unified model for how Vpx and Vpr exploit DCAF1 to promote viral replication.
Collapse
Affiliation(s)
- David Schwefel
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Virginie C Boucherit
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Evangelos Christodoulou
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Philip A Walker
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Jonathan P Stoye
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK; Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Kate N Bishop
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
122
|
Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J. CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain. J Biol Chem 2015; 290:13279-92. [PMID: 25847232 DOI: 10.1074/jbc.m115.646588] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication.
Collapse
Affiliation(s)
- Junpeng Yan
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Caili Hao
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | | | - Selene Swanson
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and
| | - Laurence Florens
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and
| | - Michael P Washburn
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jinwoo Ahn
- the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jacek Skowronski
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
123
|
Du C, Liu HF, Lin YZ, Wang XF, Ma J, Li YJ, Wang X, Zhou JH. Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus. Proteomics 2015; 15:1843-58. [PMID: 25684102 DOI: 10.1002/pmic.201400279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 01/18/2023]
Abstract
Similar to the well-studied viruses human immunodeficiency virus (HIV)-1 and simian immunodeficiency virus (SIV), equine infectious anemia virus (EIAV) is another member of the Lentivirus genus in the family Retroviridae. Previous studies revealed that interactions between EIAV and the host resulted in viral evolution in pathogenicity and immunogenicity, as well as adaptation to the host. Proteomic analysis has been performed to examine changes in protein expression and/or modification in host cells infected with viruses and has revealed useful information for virus-host interactions. In this study, altered protein expression in equine monocyte-derived macrophages (eMDMs, the principle target cell of EIAV in vivo) infected with the EIAV pathogenic strain EIAV(DLV34) (DLV34) was examined using 2D-LC-MS/MS coupled with the iTRAQ labeling technique. The expression levels of 210 cellular proteins were identified to be significantly upregulated or downregulated by infection with DLV34. Alterations in protein expression were confirmed by examining the mRNA levels of eight selected proteins using quantitative real-time reverse-transcription PCR, and by verifying the levels of ten selected proteins using parallel reaction monitoring (PRM). Further analysis of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)-Pathway enrichment demonstrated that these differentially expressed proteins are primarily related to the biological processes of oxidative phosphorylation, protein folding, RNA splicing, and ubiquitylation. Our results can facilitate a better understanding of the host response to EIAV infection and the cellular processes required for EIAV replication and pathogenesis.
Collapse
Affiliation(s)
- Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hai-Fang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yi-Jing Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China.,Hayao Pharmaceutical Group Biovaccine Co, Harbin, P. R. China
| |
Collapse
|
124
|
Kijewski SDG, Gummuluru S. A mechanistic overview of dendritic cell-mediated HIV-1 trans infection: the story so far. Future Virol 2015; 10:257-269. [PMID: 26213560 PMCID: PMC4508676 DOI: 10.2217/fvl.15.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite progress in antiretroviral therapy, HIV-1 rebound after cessation of antiretroviral therapy suggests that establishment of long-term cellular reservoirs of virus is a significant barrier to functional cure. There is considerable evidence that dendritic cells (DCs) play an important role in systemic virus dissemination. Although productive infection of DCs is inefficient, DCs capture HIV-1 and transfer-captured particles to CD4+ T cells, a mechanism of DC-mediated HIV-1 trans infection. Recent findings suggest that DC-mediated trans infection of HIV-1 is dependent on recognition of GM3, a virus-particle-associated host-derived ligand, by CD169 expressed on DCs. In this review, we describe mechanisms of DC-mediated HIV-1 trans infection and discuss specifically the role of CD169 in establishing infection in CD4+ T cells.
Collapse
Affiliation(s)
- Suzanne DG Kijewski
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
125
|
Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF. The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. ACTA ACUST UNITED AC 2015; 71:516-24. [PMID: 25760601 DOI: 10.1107/s1399004714027527] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022]
Abstract
SAMHD1 is the only known eukaryotic deoxynucleoside triphosphate triphosphohydrolase (dNTPase) and is a major regulator of intracellular dNTP pools. It has been reported to be a potent inhibitor of retroviruses such as HIV-1 and endogenous retrotransposons. Previous crystal structures have revealed that SAMHD1 is activated by dGTP-dependent tetramer formation. However, recent data have indicated that the primary activator of SAMHD1 is GTP, not dGTP. Therefore, how its dNTPase activity is regulated needs to be further clarified. Here, five crystal structures of the catalytic core of SAMHD1 in complex with different combinations of GTP and dNTPs are reported, including a GTP-bound dimer and four GTP/dNTP-bound tetramers. The data show that human SAMHD1 contains two unique activator-binding sites in the allosteric pocket. The primary activator GTP binds to one site and the substrate dNTP (dATP, dCTP, dUTP or dTTP) occupies the other. Consequently, both GTP and dNTP are required for tetramer activation of the enzyme. In the absence of substrate binding, SAMHD1 adopts an inactive dimer conformation even when complexed with GTP. Furthermore, SAMHD1 activation is regulated by the concentration of dNTP. Thus, the level of dNTP pools is elegantly regulated by the self-sensing ability of SAMHD1 through a novel activation mechanism.
Collapse
Affiliation(s)
- Chun Feng Zhu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Wei Wei
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Yu Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Xiao Fang Yu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
126
|
Schmidt S, Schenkova K, Adam T, Erikson E, Lehmann-Koch J, Sertel S, Verhasselt B, Fackler OT, Lasitschka F, Keppler OT. SAMHD1's protein expression profile in humans. J Leukoc Biol 2015; 98:5-14. [PMID: 25646359 PMCID: PMC7166976 DOI: 10.1189/jlb.4hi0714-338rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022] Open
Abstract
First cross‐sectional expression profile of SAMHD1 in human tissue provides insight into its regulation on HIV target cells and effects its expression or phosphorylation state by proinflammatory cytokines. The deoxynucleoside triphosphate triphosphohydrolase and 3′ → 5′ exonuclease SAMHD1 restricts HIV‐1 infection in noncycling hematopoietic cells in vitro, and SAMHD1 mutations are associated with AGS. Little is known about the in vivo expression and functional regulation of this cellular factor. Here, we first assessed the SAMHD1 protein expression profile on a microarray of 25 human tissues from >210 donors and in purified primary cell populations. In vivo, SAMHD1 was expressed in the majority of nucleated cells of hematopoietic origin, including tissue‐resident macrophages, DCs, pDCs, all developmental stages of thymic T cells, monocytes, NK cells, as well as at lower levels in B cells. Of note, SAMHD1 was abundantly expressed in HIV target cells residing in the anogenital mucosa, providing a basis for its evaluation as a cellular factor that may impact the efficiency of HIV transmission. Next, we examined the effect of the activation status and proinflammatory cytokine treatment of cells on expression and phosphorylation of SAMHD1. Activated, HIV‐susceptible CD4+ T cells carried pSAMHD1(T592), whereas resting CD4+ T cells and macrophages expressed the unphosphorylated protein with HIV‐restrictive activity. Surprisingly, stimulation of these primary cells with IFN‐α, IFN‐γ, IL‐4, IL‐6, IL‐12, IL‐18, IL‐27, or TNF‐α affected neither SAMHD1 expression levels nor threonine 592 phosphorylation. Only IL‐1β moderately down‐regulated SAMHD1 in activated CD4+ T cells. Taken together, this study establishes the first cross‐sectional protein expression profile of SAMHD1 in human tissues and provides insight into its cell cycle‐dependent phosphorylation and unresponsiveness to multiple proinflammatory cytokines.
Collapse
Affiliation(s)
- Sarah Schmidt
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kristina Schenkova
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Tarek Adam
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Elina Erikson
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Judith Lehmann-Koch
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Serkan Sertel
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Oliver T Fackler
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Felix Lasitschka
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Oliver T Keppler
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| |
Collapse
|
127
|
The susceptibility of primate lentiviruses to nucleosides and Vpx during infection of dendritic cells is regulated by CA. J Virol 2015; 89:4030-4. [PMID: 25609804 DOI: 10.1128/jvi.03315-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The block toward human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) can be relieved by Vpx (viral protein X), which degrades sterile alpha motif-hydroxylase domain 1 (SAMHD1) or by exogenously added deoxynucleosides (dNs), lending support to the hypothesis that SAMHD1 acts by limiting deoxynucleoside triphosphates (dNTPs). This notion has, however, been questioned. We show that while dNs and Vpx increase the infectivity of HIV-1, only the latter restores the infectivity of a simian immunodeficiency virus of macaques variant, SIVMACΔVpx virus. This distinct behavior seems to map to CA, suggesting that species-specific CA interactors modulate infection of DCs.
Collapse
|
128
|
Mehraj V, Jenabian MA, Vyboh K, Routy JP. Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy. Open AIDS J 2014; 8:66-78. [PMID: 25624956 PMCID: PMC4302459 DOI: 10.2174/1874613601408010066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Over thirty years of extensive research has not yet solved the complexity of HIV pathogenesis leading to a continued need for a successful cure. Recent immunotherapy-based approaches are aimed at controlling the infection by reverting immune dysfunction. Comparatively less appreciated than the role of T cells in the context of HIV infection, the myeloid cells including macrophages monocytes, dendritic cells (DCs) and neutrophils contribute significantly to immune dysfunction. Host restriction factors are cellular proteins expressed in these cells which are circumvented by HIV. Guided by the recent literature, the role of myeloid cells in HIV infection will be discussed highlighting potential targets for immunotherapy. HIV infection, which is mainly characterized by CD4 T cell dysfunction, also manifests in a vicious cycle of events comprising of inflammation and immune activation. Targeting the interaction of programmed death-1 (PD-1), an important regulator of T cell function; with PD-L1 expressed mainly on myeloid cells could bring promising results. Macrophage functional polarization from pro-inflammatory M1 to anti-inflammatory M2 and vice versa has significant implications in viral pathogenesis. Neutrophils, recently discovered low density granular cells, myeloid derived suppressor cells (MDSCs) and yolk sac macrophages provide new avenues of research on HIV pathogenesis and persistence. Recent evidence has also shown significant implications of neutrophil extracellular traps (NETs), antimicrobial peptides and opsonizing antibodies. Further studies aimed to understand and modify myeloid cell restriction mechanisms have the potential to contribute in the future development of more effective anti-HIV interventions that may pave the way to viral eradication.
Collapse
Affiliation(s)
- Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques et Centre de recherche BioMed, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Kishanda Vyboh
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada ; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
129
|
Lenzi GM, Domaoal RA, Kim DH, Schinazi RF, Kim B. Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses. Retrovirology 2014; 11:111. [PMID: 25524560 PMCID: PMC4282736 DOI: 10.1186/s12977-014-0111-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023] Open
Abstract
Background Host SAM domain and HD domain-containing protein 1 (SAMHD1) suppresses reverse transcription kinetics of HIV-1 in nondividing cells such as macrophages by hydrolyzing and nearly depleting cellular dNTPs, which are the substrates of viral reverse transcriptase (RT). However, unlike HIV-1, HIV-2 and SIVsm encode viral protein X (Vpx), which counteracts the dNTPase activity of SAMHD1 and elevates dNTP concentration, allowing the viruses to replicate under abundant dNTP conditions even in nondividing cells. Findings Here we tested whether RTs of these Vpx coding and noncoding lentiviruses display different enzyme kinetic profiles in response to dNTP concentrations. For this test, we characterized an extensive collection of RTs from 7 HIV-1 strains, 4 HIV-2 strains and 7 SIV strains, and determined their steady-state kinetic parameters. The Km values of all HIV-1 RTs were consistently low and close to the low dNTP concentrations found in macrophages. However, the Km values of SIV and HIV-2 RTs were not only higher than those of HIV-1 RTs but also varied significantly, indicating that HIV-2/SIV RTs require higher dNTP concentrations for efficient DNA synthesis, compared to HIV-1 RT. However, the kcat values of all eighteen lentiviral RTs were very similar. Conclusions Our biochemical analysis supports the hypothesis that the enzymological properties, particularly, Km values, of lentivirus RTs, are mechanistically tied with the cellular dNTP availability in nondividing target cells, which is controlled by SAMHD1 and Vpx.
Collapse
Affiliation(s)
- Gina M Lenzi
- Center for Drug Discovery, Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, USA.
| | - Robert A Domaoal
- Center for Drug Discovery, Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, USA.
| | - Dong-Hyun Kim
- College of Pharmacy, Kyung-Hee University, Seoul, South Korea.
| | - Raymond F Schinazi
- Center for Drug Discovery, Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, USA. .,Veterans Affairs Medical Center, Decatur, GA, USA.
| | - Baek Kim
- Center for Drug Discovery, Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, USA. .,College of Pharmacy, Kyung-Hee University, Seoul, South Korea.
| |
Collapse
|
130
|
Blondot ML, Dragin L, Lahouassa H, Margottin-Goguet F. How SLX4 cuts through the mystery of HIV-1 Vpr-mediated cell cycle arrest. Retrovirology 2014; 11:117. [PMID: 25496524 PMCID: PMC4271344 DOI: 10.1186/s12977-014-0117-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/27/2014] [Indexed: 01/16/2023] Open
Abstract
Vpr is one of the most enigmatic viral auxiliary proteins of HIV. During the past twenty years, several activities have been ascribed to this viral protein, but one, its ability to mediate cell cycle arrest at the G2 to M transition has been the most extensively studied. Nonetheless, the genuine role of Vpr and its pathophysiological relevance in the viral life cycle have remained mysterious. Recent work by Laguette et al. (Cell 156:134-145, 2014) provides important insight into the molecular mechanism of Vpr-mediated G2 arrest. This study highlights for the first time how Vpr recruits the SLX4 endonuclease complex and how Vpr-induced inappropriate activation of this complex leads to G2 arrest. Here, we will discuss these findings in the light of previous work to show how they change the view of Vpr’s mechanism of action. We will also discuss how these findings open new questions towards the understanding of the biological function of Vpr regarding innate immune sensing.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Loic Dragin
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Hichem Lahouassa
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| |
Collapse
|
131
|
Calantone N, Wu F, Klase Z, Deleage C, Perkins M, Matsuda K, Thompson EA, Ortiz AM, Vinton CL, Ourmanov I, Loré K, Douek DC, Estes JD, Hirsch VM, Brenchley JM. Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity 2014; 41:493-502. [PMID: 25238099 DOI: 10.1016/j.immuni.2014.08.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The viral accessory protein Vpx, expressed by certain simian and human immunodeficiency viruses (SIVs and HIVs), is thought to improve viral infectivity of myeloid cells. We infected 35 Asian macaques and African green monkeys with viruses that do or do not express Vpx and examined viral targeting of cells in vivo. While lack of Vpx expression affected viral dynamics in vivo, with decreased viral loads and infection of CD4⁺ T cells, Vpx expression had no detectable effect on infectivity of myeloid cells. Moreover, viral DNA was observed only within myeloid cells in tissues not massively depleted of CD4⁺ T cells. Myeloid cells containing viral DNA also showed evidence of T cell phagocytosis in vivo, suggesting that their viral DNA may be attributed to phagocytosis of SIV-infected T cells. These data suggest that myeloid cells are not a major source of SIV in vivo, irrespective of Vpx expression.
Collapse
Affiliation(s)
- Nina Calantone
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Fan Wu
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Zachary Klase
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Molly Perkins
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kenta Matsuda
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Elizabeth A Thompson
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA; Department of Medicine, Karolinska Institutet, Stockholm 171, Sweden
| | | | - Carol L Vinton
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Ilnour Ourmanov
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Karin Loré
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA; Department of Medicine, Karolinska Institutet, Stockholm 171, Sweden
| | - Daniel C Douek
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Vanessa M Hirsch
- Lab of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
132
|
Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 2014; 455:229-33. [PMID: 25449277 DOI: 10.1016/j.bbrc.2014.10.153] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.
Collapse
Affiliation(s)
- Jia-lei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Fan-zhen Lu
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiao-Yong Shen
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Yun Wu
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Li-ting Zhao
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
133
|
Koharudin LMI, Wu Y, DeLucia M, Mehrens J, Gronenborn AM, Ahn J. Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates. J Biol Chem 2014; 289:32617-27. [PMID: 25288794 DOI: 10.1074/jbc.m114.591958] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) plays a critical role in inhibiting HIV infection, curtailing the pool of dNTPs available for reverse transcription of the viral genome. Recent structural data suggested a compelling mechanism for the regulation of SAMHD1 enzymatic activity and revealed dGTP-induced association of two inactive dimers into an active tetrameric enzyme. Here, we present the crystal structures of SAMHD1 catalytic core (residues 113-626) tetramers, complexed with mixtures of nucleotides, including dGTP/dATP, dGTP/dCTP, dGTP/dTTP, and dGTP/dUTP. The combined structural and biochemical data provide insight into dNTP promiscuity at the secondary allosteric site and how enzymatic activity is modulated. In addition, we present biochemical analyses of GTP-induced SAMHD1 full-length tetramerization and the structure of SAMHD1 catalytic core tetramer in complex with GTP/dATP, revealing the structural basis of GTP-mediated SAMHD1 activation. Altogether, the data presented here advance our understanding of SAMHD1 function during cellular homeostasis.
Collapse
Affiliation(s)
- Leonardus M I Koharudin
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Ying Wu
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Maria DeLucia
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jennifer Mehrens
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Angela M Gronenborn
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jinwoo Ahn
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
134
|
Abstract
The sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a dNTPase, prevents the infection of nondividing cells by retroviruses, including HIV, by depleting the cellular dNTP pool available for viral reverse transcription. SAMHD1 is a major regulator of cellular dNTP levels in mammalian cells. Mutations in SAMHD1 are associated with chronic lymphocytic leukemia (CLL) and the autoimmune condition Aicardi Goutières syndrome (AGS). The dNTPase activity of SAMHD1 can be regulated by dGTP, with which SAMHD1 assembles into catalytically active tetramers. Here we present extensive biochemical and structural data that reveal an exquisite activation mechanism of SAMHD1 via combined action of both GTP and dNTPs. We obtained 26 crystal structures of SAMHD1 in complex with different combinations of GTP and dNTP mixtures, which depict the full spectrum of GTP/dNTP binding at the eight allosteric and four catalytic sites of the SAMHD1 tetramer. Our data demonstrate how SAMHD1 is activated by binding of GTP or dGTP at allosteric site 1 and a dNTP of any type at allosteric site 2. Our enzymatic assays further reveal a robust regulatory mechanism of SAMHD1 activity, which bares resemblance to that of the ribonuclease reductase responsible for cellular dNTP production. These results establish a complete framework for a mechanistic understanding of the important functions of SAMHD1 in the regulation of cellular dNTP levels, as well as in HIV restriction and the pathogenesis of CLL and AGS.
Collapse
|
135
|
Abstract
Monocytes and macrophages play critical roles in HIV transmission, viral spread early in infection, and as a reservoir of virus throughout infection. There has been a recent resurgence of interest in the biology of monocyte subsets and macrophages and their role in HIV pathogenesis, partly fuelled by efforts to understand difficulties in achieving HIV eradication. This article examines the importance of monocyte subsets and tissue macrophages in HIV pathogenesis. Additionally, we will review the role of monocytes and macrophages in the development of serious non-AIDS events including cardiovascular disease and neurocognitive impairment, their significance in viral persistence, and how these cells represent an important obstacle to achieving HIV eradication.
Collapse
|
136
|
Widera M, Hillebrand F, Erkelenz S, Vasudevan AAJ, Münk C, Schaal H. A functional conserved intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated host restriction. Retrovirology 2014; 11:72. [PMID: 25169827 PMCID: PMC4163160 DOI: 10.1186/s12977-014-0072-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022] Open
Abstract
Background The HIV-1 accessory proteins, Viral Infectivity Factor (Vif) and the pleiotropic Viral Protein R (Vpr) are important for efficient virus replication. While in non-permissive cells an appropriate amount of Vif is critical to counteract APOBEC3G-mediated host restriction, the Vpr-induced G2 arrest sets the stage for highest transcriptional activity of the HIV-1 long terminal repeat. Both vif and vpr mRNAs harbor their translational start codons within the intron bordering the non-coding leader exons 2 and 3, respectively. Intron retention relies on functional cross-exon interactions between splice sites A1 and D2 (for vif mRNA) and A2 and D3 (for vpr mRNA). More precisely, prior to the catalytic step of splicing, which would lead to inclusion of the non-coding leader exons, binding of U1 snRNP to the 5' splice site (5'ss) facilitates recognition of the 3'ss by U2 snRNP and also supports formation of vif and vpr mRNA. Results We identified a G run localized deep in the vpr AUG containing intron 3 (GI3-2), which was critical for balanced splicing of both vif and vpr non-coding leader exons. Inactivation of GI3-2 resulted in excessive exon 3 splicing as well as exon-definition mediated vpr mRNA formation. However, in an apparently mutually exclusive manner this was incompatible with recognition of upstream exon 2 and vif mRNA processing. As a consequence, inactivation of GI3-2 led to accumulation of Vpr protein with a concomitant reduction in Vif protein. We further demonstrate that preventing hnRNP binding to intron 3 by GI3-2 mutation diminished levels of vif mRNA. In APOBEC3G-expressing but not in APOBEC3G-deficient T cell lines, mutation of GI3-2 led to a considerable replication defect. Moreover, in HIV-1 isolates carrying an inactivating mutation in GI3-2, we identified an adjacent G-rich sequence (GI3-1), which was able to substitute for the inactivated GI3-2. Conclusions The functionally conserved intronic G run in HIV-1 intron 3 plays a major role in the apparently mutually exclusive exon selection of vif and vpr leader exons and hence in vif and vpr mRNA formation. The competition between these exons determines the ability to evade APOBEC3G-mediated antiviral effects due to optimal vif expression. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0072-1) contains supplementary material, which is available to authorized users.
Collapse
|
137
|
Huber AD, Michailidis E, Schultz ML, Ong YT, Bloch N, Puray-Chavez MN, Leslie MD, Ji J, Lucas AD, Kirby KA, Landau NR, Sarafianos SG. SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 58:4915-9. [PMID: 24867973 PMCID: PMC4136039 DOI: 10.1128/aac.02745-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/13/2014] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways.
Collapse
Affiliation(s)
- Andrew D Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Eleftherios Michailidis
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Megan L Schultz
- Microbiology Department, New York University School of Medicine, New York, New York, USA
| | - Yee T Ong
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nicolin Bloch
- Microbiology Department, New York University School of Medicine, New York, New York, USA
| | - Maritza N Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Maxwell D Leslie
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Juan Ji
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Anthony D Lucas
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Karen A Kirby
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nathaniel R Landau
- Microbiology Department, New York University School of Medicine, New York, New York, USA
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
138
|
Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF. Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun 2014; 4:2722. [PMID: 24217394 DOI: 10.1038/ncomms3722] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/07/2013] [Indexed: 01/20/2023] Open
Abstract
SAMHD1 is a dGTP-activated deoxynucleoside triphosphate triphosphohydrolase (dNTPase) whose dNTPase activity has been linked to HIV/SIV restriction. The mechanism of its dGTP-activated dNTPase function remains unclear. Recent data also indicate that SAMHD1 regulates retrotransposition of LINE-1 elements. Here we report the 1.8-Å crystal structure of homotetrameric SAMHD1 in complex with the allosteric activator and substrate dGTP/dATP. The structure indicates the mechanism of dGTP-dependent tetramer formation, which requires the cooperation of three subunits and two dGTP/dATP molecules at each allosteric site. Allosteric dGTP binding induces conformational changes at the active site, allowing a more stable interaction with the substrate and explaining the dGTP-induced SAMHD1 dNTPase activity. Mutations of dGTP binding residues in the allosteric site affect tetramer formation, dNTPase activity and HIV-1 restriction. dGTP-triggered tetramer formation is also important for SAMHD1-mediated LINE-1 regulation. The structural and functional information provided here should facilitate future investigation of SAMHD1 function, including dNTPase activity, LINE-1 modulation and HIV-1 restriction.
Collapse
Affiliation(s)
- Chunfeng Zhu
- 1] School of Life Sciences, Tianjin University, Tianjin 300072, China [2]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Chen Z, Zhu M, Pan X, Zhu Y, Yan H, Jiang T, Shen Y, Dong X, Zheng N, Lu J, Ying S, Shen Y. Inhibition of Hepatitis B virus replication by SAMHD1. Biochem Biophys Res Commun 2014; 450:1462-8. [PMID: 25019997 DOI: 10.1016/j.bbrc.2014.07.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/03/2014] [Indexed: 12/30/2022]
Abstract
Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is a newly identified intracellular antiviral factor. By depleting the dNTPs pool of host cells to a low level that cannot support the efficient synthesis of viral cDNA, it restricts replication of some retroviruses. As a DNA virus, Hepatitis B virus (HBV) experiences a process of reverse transcription in its life cycle akin to that of retroviruses. However, whether SAMHD1 can restrict HBV replication in liver cells is unknown. Here, we reported that SAMHD1 expression was detectable in four liver cell lines. Exogenous expression of SAMHD1 in SMMC-7721 cells restrained HBV replication. Similarly, SAMHD1 impeded HBV replication in another liver cell line, BEL-7402. Remarkably, the catalytically inactive mutant, SAMHD1 HD/AA also hampered HBV replication. Additionally, HBV replication reduced SAMHD1 expression in HepG2 cells. Moreover, it was found that IFN-α induced expression of SAMHD1 in liver cells. Together, these findings suggested that IFN-α-inducible SAMHD1 inhibited HBV replication in liver cells.
Collapse
Affiliation(s)
- Zhangming Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Mengying Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Xiang Pan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yongji Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Hai Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Tongcui Jiang
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Xiaowan Dong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Nan Zheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jinsen Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
140
|
Ma L, Shen CJ, Cohen ÉA, Xiong SD, Wang JH. miRNA-1236 inhibits HIV-1 infection of monocytes by repressing translation of cellular factor VprBP. PLoS One 2014; 9:e99535. [PMID: 24932481 PMCID: PMC4059663 DOI: 10.1371/journal.pone.0099535] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
Primary monocytes are refractory to HIV-1 infection and become permissive upon differentiation into monocyte-derived dendritic cells (MDDCs) or macrophages. Multiple mechanisms have been proposed to interpret HIV-1 restriction in monocytes. Human cellular miRNAs can modulate HIV-1 infection by targeting either conserved regions of the HIV-1 genome or host gene transcripts. We have recently reported that the translation of host protein pur-alpha is repressed by abundant cellular miRNAs to inhibit HIV-1 infection in monocytes. Here, we report that the transcript of another cellular factor, VprBP [Vpr (HIV-1)-binding protein], was repressed by cellular miRNA-1236, which contributes to HIV-1 restriction in monocytes. Transfection of miR-1236 inhibitors enhanced translation of VprBP in monocytes and significantly promoted viral infection; exogenous input of synthesized miR-1236 mimics into MDDCs suppressed translation of VprBP, and, accordingly, significantly impaired viral infection. Our data emphasize the role of miRNA in modulating differentiation-dependent susceptibility of the host cell to HIV-1 infection. Understanding the modulation of HIV-1 infection by cellular miRNAs may provide key small RNAs or the identification of new important protein targets regulated by miRNAs for the development of antiviral strategies.
Collapse
Affiliation(s)
- Li Ma
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou, China
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chan-Juan Shen
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Si-Dong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou, China
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
141
|
White TE, Brandariz-Nuñez A, Valle-Casuso JC, Knowlton C, Kim B, Sawyer SL, Diaz-Griffero F. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility. Virology 2014; 460-461:34-44. [PMID: 25010268 DOI: 10.1016/j.virol.2014.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/11/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition.
Collapse
Affiliation(s)
- Tommy E White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Jose Carlos Valle-Casuso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Caitlin Knowlton
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Baek Kim
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sara L Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA.
| |
Collapse
|
142
|
Sze A, Belgnaoui SM, Olagnier D, Lin R, Hiscott J, van Grevenynghe J. Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 2014; 14:422-34. [PMID: 24139400 DOI: 10.1016/j.chom.2013.09.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/28/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia and HTLV-1-associated myelopathies. In addition to T cells, HTLV-1 infects cells of the myeloid lineage, which play critical roles in the host innate response to viral infection. Investigating the monocyte depletion observed during HTLV-1 infection, we discovered that primary human monocytes infected with HTLV-1 undergo abortive infection accompanied by apoptosis dependent on SAMHD1, a host restriction factor that hydrolyzes endogenous dNTPs to below the levels required for productive reverse transcription. Reverse transcription intermediates (RTI) produced in the presence of SAMHD1 induced IRF3-mediated antiviral and apoptotic responses. Viral RTIs complexed with the DNA sensor STING to trigger formation of an IRF3-Bax complex leading to apoptosis. This study provides a mechanistic explanation for abortive HTLV-1 infection of monocytes and reports a link between SAMHD1 restriction, HTLV-1 RTI sensing by STING, and initiation of IRF3-Bax driven apoptosis.
Collapse
Affiliation(s)
- Alexandre Sze
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
143
|
Mouse knockout models for HIV-1 restriction factors. Cell Mol Life Sci 2014; 71:3749-66. [PMID: 24854580 PMCID: PMC4160573 DOI: 10.1007/s00018-014-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
Infection of cells with human immunodeficiency virus 1 (HIV-1) is controlled by restriction factors, host proteins that counteract a variety of steps in the life cycle of this lentivirus. These include SAMHD1, APOBEC3G and tetherin, which block reverse transcription, hypermutate viral DNA and prevent progeny virus release, respectively. These and other HIV-1 restriction factors are conserved and have clear orthologues in the mouse. This review summarises studies in knockout mice lacking HIV-1 restriction factors. In vivo experiments in such animals have not only validated in vitro data obtained from cultured cells, but have also revealed new findings about the biology of these proteins. Indeed, genetic ablation of HIV-1 restriction factors in the mouse has provided evidence that restriction factors control retroviruses and other viruses in vivo and has led to new insights into the mechanisms by which these proteins counteract infection. For example, in vivo experiments in knockout mice demonstrate that virus control exerted by restriction factors can shape adaptive immune responses. Moreover, the availability of animals lacking restriction factors opens the possibility to study the function of these proteins in other contexts such as autoimmunity and cancer. Further in vivo studies of more recently identified HIV-1 restriction factors in gene targeted mice are, therefore, justified.
Collapse
|
144
|
Saez-Cirion A, Jacquelin B, Barré-Sinoussi F, Müller-Trutwin M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130436. [PMID: 24821922 PMCID: PMC4024229 DOI: 10.1098/rstb.2013.0436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV research has made rapid progress and led to remarkable achievements in recent decades, the most important of which are combination antiretroviral therapies (cART). However, in the absence of a vaccine, the pandemic continues, and additional strategies are needed. The 'towards an HIV cure' initiative aims to eradicate HIV or at least bring about a lasting remission of infection during which the host can control viral replication in the absence of cART. Cases of spontaneous and treatment-induced control of infection offer substantial hope. Here, we describe the scientific knowledge that is lacking, and the priorities that have been established for research into a cure. We discuss in detail the immunological lessons that can be learned by studying natural human and animal models of protection and spontaneous control of viraemia or of disease progression. In particular, we describe the insights we have gained into the immune mechanisms of virus control, the impact of early virus-host interactions and why chronic inflammation, a hallmark of HIV infection, is an obstacle to a cure. Finally, we enumerate current interventions aimed towards improving the host immune response.
Collapse
Affiliation(s)
| | | | | | - M. Müller-Trutwin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| |
Collapse
|
145
|
Schaller T, Bauby H, Hué S, Malim MH, Goujon C. New insights into an X-traordinary viral protein. Front Microbiol 2014; 5:126. [PMID: 24782834 PMCID: PMC3986551 DOI: 10.3389/fmicb.2014.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein.
Collapse
Affiliation(s)
- Torsten Schaller
- Department of Infectious Diseases, King's College London London, UK
| | - Hélène Bauby
- Department of Infectious Diseases, King's College London London, UK
| | - Stéphane Hué
- Department of Infection, Division of Infection and Immunity, Centre for Medical Molecular Virology, University College London London, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London London, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London London, UK
| |
Collapse
|
146
|
Identification of cellular proteins interacting with the retroviral restriction factor SAMHD1. J Virol 2014; 88:5834-44. [PMID: 24623419 DOI: 10.1128/jvi.00155-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human and mouse SAMHD1 proteins block human immunodeficiency virus type 1 (HIV-1) infection in noncycling human monocytic cells by reducing the intracellular deoxynucleoside triphosphate (dNTP) concentrations. Phosphorylation of human SAMHD1 at threonine 592 (T592) by cyclin-dependent kinase 1 (CDK1) and cyclin A2 impairs its HIV-1 restriction activity, but not the dNTP hydrolase activity, suggesting that dNTP depletion is not the sole mechanism of SAMHD1-mediated HIV-1 restriction. Using coimmunoprecipitation and mass spectrometry, we identified and validated two additional host proteins interacting with human SAMHD1, namely, cyclin-dependent kinase 2 (CDK2) and S-phase kinase-associated protein 2 (SKP2). We observed that mouse SAMHD1 specifically interacted with cyclin A2, cyclin B1, CDK1, and CDK2. Given the role of these SAMHD1-interacting proteins in cell cycle progression, we investigated the regulation of these host proteins by monocyte differentiation and activation of CD4+ T cells and examined their effect on the phosphorylation of human SAMHD1 at T592. Our results indicate that primary monocyte differentiation and CD4+ T-cell activation regulate the expression of these SAMHD1-interacting proteins. Furthermore, our results suggest that, in addition to CDK1 and cyclin A2, CDK2 phosphorylates T592 of human SAMHD1 and thereby regulates its HIV-1 restriction function. IMPORTANCE SAMHD1 is the first dNTP triphosphohydrolase found in mammalian cells. Human and mouse SAMHD1 proteins block HIV-1 infection in noncycling cells. Previous studies suggested that phosphorylation of human SAMHD1 at threonine 592 by CDK1 and cyclin A2 negatively regulates its HIV-1 restriction activity. However, it is unclear whether human SAMHD1 interacts with other host proteins in the cyclin A2 and CDK1 complex and whether mouse SAMHD1 shares similar cellular interacting partners. Here, we identify five cell cycle-related host proteins that interact with human and mouse SAMHD1, including three previously unknown cellular proteins (CDK2, cyclin B1, and SKP2). Our results demonstrate that several SAMHD1-interacting cellular proteins regulate phosphorylation of SAMHD1 and play an important role in HIV-1 restriction function. Our findings help define the role of these cellular interacting partners of SAMHD1 that regulate its HIV-1 restriction function.
Collapse
|
147
|
Taya K, Nakayama EE, Shioda T. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages. PLoS One 2014; 9:e90969. [PMID: 24599229 PMCID: PMC3944824 DOI: 10.1371/journal.pone.0090969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/05/2014] [Indexed: 11/19/2022] Open
Abstract
Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.
Collapse
Affiliation(s)
- Kahoru Taya
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
148
|
The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 2014; 13:441-51. [PMID: 23601106 DOI: 10.1016/j.chom.2013.03.005] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 01/08/2023]
Abstract
SAMHD1 is a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and inhibits the ability of retroviruses, notably HIV-1, to infect myeloid cells. Although SAMHD1 is expressed in both cycling and noncycling cells, the antiviral activity of SAMHD1 is limited to noncycling cells. We determined that SAMHD1 is phosphorylated on residue T592 in cycling cells but that this phosphorylation is lost when cells are in a noncycling state. Reverse genetic experiments revealed that SAMHD1 phosphorylated on residue T592 is unable to block retroviral infection, but this modification does not affect the ability of SAMHD1 to decrease cellular dNTP levels. SAMHD1 contains a target motif for cyclin-dependent kinase 1 (cdk1) ((592)TPQK(595)), and cdk1 activity is required for SAMHD1 phosphorylation. Collectively, these findings indicate that phosphorylation modulates the ability of SAMHD1 to block retroviral infection without affecting its ability to decrease cellular dNTP levels.
Collapse
|
149
|
Dendritic cell-lymphocyte cross talk downregulates host restriction factor SAMHD1 and stimulates HIV-1 replication in dendritic cells. J Virol 2014; 88:5109-21. [PMID: 24574390 DOI: 10.1128/jvi.03057-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing.
Collapse
|
150
|
SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells. PLoS One 2014; 9:e89558. [PMID: 24586870 PMCID: PMC3929709 DOI: 10.1371/journal.pone.0089558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP), blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.
Collapse
|