101
|
Lee C. Interaction of hepatitis C virus core protein with janus kinase is required for efficient production of infectious viruses. Biomol Ther (Seoul) 2014; 21:97-106. [PMID: 24009866 PMCID: PMC3762308 DOI: 10.4062/biomolther.2013.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 01/22/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif (79PGYPWP84). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif (79AGYAWP84) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Republic of Korea
| |
Collapse
|
102
|
Lai CK, Saxena V, Tseng CH, Jeng KS, Kohara M, Lai MMC. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle through interaction with core protein and microtubules during intracellular transport. PLoS One 2014; 9:e99022. [PMID: 24905011 PMCID: PMC4048239 DOI: 10.1371/journal.pone.0099022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023] Open
Abstract
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) serves dual functions in viral RNA replication and virus assembly. Here, we demonstrate that HCV replication complex along with NS5A and Core protein was transported to the lipid droplet (LD) through microtubules, and NS5A-Core complexes were then transported from LD through early-to-late endosomes to the plasma membrane via microtubules. Further studies by cofractionation analysis and immunoelectron microscopy of the released particles showed that NS5A-Core complexes, but not NS4B, were present in the low-density fractions, but not in the high-density fractions, of the HCV RNA-containing virions and associated with the internal virion core. Furthermore, exosomal markers CD63 and CD81 were also detected in the low-density fractions, but not in the high-density fractions. Overall, our results suggest that HCV NS5A is associated with the core of the low-density virus particles which exit the cell through a preexisting endosome/exosome pathway and may contribute to HCV natural infection.
Collapse
Affiliation(s)
- Chao-Kuen Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University, Taipei, Taiwan
| | - Vikas Saxena
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Hsin Tseng
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - King-Song Jeng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michael M. C. Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology and Immunology, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
103
|
Li Q, Zhang YY, Chiu S, Hu Z, Lan KH, Cha H, Sodroski C, Zhang F, Hsu CS, Thomas E, Liang TJ. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle. PLoS Pathog 2014; 10:e1004163. [PMID: 24852294 PMCID: PMC4095987 DOI: 10.1371/journal.ppat.1004163] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022] Open
Abstract
Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc) siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp), single-cycle infectious particles (HCVsc), subgenomic replicons, and HCV cell culture systems (HCVcc), we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE), a proviral factor, and N-Myc down regulated Gene 1 (NDRG1), an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study of HCV host dependencies yields novel insights into viral infection, pathogenesis and potential therapeutic targets. Hepatitis C virus (HCV) is a positive strand RNA virus that belongs to the Flaviridae family. Chronic HCV infection is a leading cause of end-stage liver disease, which is associated with significant morbidity and mortality in the world. Our recent genome-wide siRNA screen has revealed that HCV depends extensively on host factors for efficient infection and propagation. Here we systematically and functionally catalogued these host dependencies to various stages of the HCV replication cycle. Applying systems virology and functional genomics approaches with various in vitro HCV model systems, we further defined multiple previously unrecognized host factors or pathways that are involved in either HCV entry, IRES-mediated translation, RNA replication, or assembly/secretion. By bioinformatics meta-analyses and literature mining of existing publications and databases, we constructed an extensive roadmap of the cellular networks and pathways requisite for the complete HCV replication cycle. Our study yields novel insights into viral infection, pathogenesis and potential therapeutic targets. Furthermore, this study serves as a valuable reference source for subsequent work on host pathways and virus-host interactions in general.
Collapse
Affiliation(s)
- Qisheng Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yong-Yuan Zhang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephan Chiu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Keng-Hsin Lan
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helen Cha
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine Sodroski
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fang Zhang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ching-Sheng Hsu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emmanuel Thomas
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
104
|
Zhu W, Pei R, Jin R, Hu X, Zhou Y, Wang Y, Wu C, Lu M, Chen X. Nuclear receptor 4 group A member 1 determines hepatitis C virus entry efficiency through the regulation of cellular receptor and apolipoprotein E expression. J Gen Virol 2014; 95:1510-1521. [PMID: 24744301 DOI: 10.1099/vir.0.065003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) is a transcription factor stimulated by many factors and plays pivotal roles in metabolism, proliferation and apoptosis. In this study, the expression of NR4A1 in Huh7.5.1 cells was significantly upregulated by hepatitis C virus (HCV) infection. The silencing of NR4A1 inhibited the entry of HCV and reduced the specific infectivity of secreted HCV particles but had only minor or no effect on the genome replication and translation, virion assembly and virus release steps of the virus life cycle. Further experiments demonstrated that the silencing of NR4A1 affected virus entry through pan-downregulation of the expression of HCV receptors scavenger receptor BI, occludin, claudin-1 and epidermal growth factor receptor but not CD81. The reduced specific infectivity of HCV in the knockdown cells was due to decreased apolipoprotein E (ApoE) expression. These results explain the delayed spread of HCV in NR4A1 knockdown Huh7.5.1 cells. Thus, NR4A1 plays a role in HCV replication through regulating the expression of HCV receptors and ApoE, and facilitates HCV entry and spread.
Collapse
Affiliation(s)
- Wandi Zhu
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Rui Jin
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Mengji Lu
- Institute of Virology, University hospital Essen, University of Duisburg-Essen, Essen, Germany
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
105
|
The acyclic retinoid Peretinoin inhibits hepatitis C virus replication and infectious virus release in vitro. Sci Rep 2014; 4:4688. [PMID: 24732793 PMCID: PMC3986704 DOI: 10.1038/srep04688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.
Collapse
|
106
|
Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 2014; 6:1149-87. [PMID: 24618856 PMCID: PMC3970144 DOI: 10.3390/v6031149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
Collapse
|
107
|
GP73 is upregulated by hepatitis C virus (HCV) infection and enhances HCV secretion. PLoS One 2014; 9:e90553. [PMID: 24608522 PMCID: PMC3946557 DOI: 10.1371/journal.pone.0090553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/31/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease. However, little is known about the details of its assembly and secretion. Golgi-related proteins have been recently proven to have a key function in HCV secretion. Golgi protein 73 (GP73), a resident Golgi membrane protein, is a potential serum biomarker for the diagnosis of liver diseases and hepatocellular carcinoma. Previous studies have demonstrated the upregulation of GP73 in the liver samples and sera of HCV-infected patients. However, the function and regulatory mechanism of GP73 in HCV infection at the cellular level remain unknown. In this study, we examined the expression level of GP73 in HCV infected cells and its effect on HCV life cycle in cell culture systems. Both the protein expression and mRNA levels of GP73 significantly increased in HCV subgenomic replicon-harboring cells and HCV-infected cells, which imply that GP73 was upregulated by HCV infection. HCV production was significantly enhanced when GP73 was overexpressed, but dramatically inhibited when GP73 was silenced. However, the overexpression and knockdown of GP73 showed no evident effect on the entry, protein translation, RNA replication, and assembly of HCV, which indicates that GP73 enhanced the secretion process. Moreover, the coiled-coil domain of GP73 was required to increase HCV secretion. GP73 increased and interacted with apolipoprotein E, an identified host factor that assists in HCV secretion. These results demonstrate the critical function of GP73 in HCV secretion and provide new insights into the therapeutic design of antiviral strategies.
Collapse
|
108
|
Wang J, Kang R, Huang H, Xi X, Wang B, Wang J, Zhao Z. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy 2014; 10:766-84. [PMID: 24589849 DOI: 10.4161/auto.27954] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the -253 to -99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression.
Collapse
Affiliation(s)
- Ji Wang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Rongyan Kang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - He Huang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Xueyan Xi
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Bei Wang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens; Institute of Pathogen Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| |
Collapse
|
109
|
Ferecskó AS, Jiruska P, Foss L, Powell AD, Chang WC, Sik A, Jefferys JGR. Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy. Brain Struct Funct 2014; 220:1013-29. [PMID: 24442865 PMCID: PMC4341026 DOI: 10.1007/s00429-013-0697-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 12/26/2013] [Indexed: 11/30/2022]
Abstract
The effects of tetanus toxin (TeNT) both in the spinal cord, in clinical tetanus, and in the brain, in experimental focal epilepsy, suggest disruption of inhibitory synapses. TeNT is a zinc protease with selectivity for Vesicle Associated Membrane Protein (VAMP; previously synaptobrevin), with a reported selectivity for VAMP2 in rats. We found spatially heterogeneous expression of VAMP1 and VAMP2 in the hippocampus. Inhibitory terminals in stratum pyramidale expressed significantly more VAMP1 than VAMP2, while glutamatergic terminals in stratum radiatum expressed significantly more VAMP2 than VAMP1. Intrahippocampal injection of TeNT at doses that induce epileptic foci cleaved both isoforms in tissue around the injection site. The cleavage was modest at 2 days after injection and more substantial and extensive at 8 and 16 days. Whole-cell recordings from CA1 pyramidal cells close to the injection site, made 8-16 days after injection, showed that TeNT decreases spontaneous EPSC frequency to 38 % of control and VAMP2 immunoreactive axon terminals to 37 %. In contrast, TeNT almost completely abolished both spontaneous and evoked IPSCs while decreasing VAMP1 axon terminals to 45 %. We conclude that due to the functional selectivity of the toxin to the relative sparing of excitatory synaptic transmission shifts the network to pathogenically excitable state causing epilepsy.
Collapse
Affiliation(s)
- Alex S Ferecskó
- Neuronal Networks Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
110
|
Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection. J Virol 2014; 88:3636-52. [PMID: 24429364 DOI: 10.1128/jvi.02490-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) NS5A is essential for viral genome replication within cytoplasmic replication complexes and virus assembly at the lipid droplet (LD) surface, although its definitive functions are poorly understood. We developed approaches to investigate NS5A dynamics during a productive infection. We report here that NS5A motility and efficient HCV RNA replication require the microtubule network and the cytoplasmic motor dynein and demonstrate that both motile and relatively static NS5A-positive foci are enriched with host factors VAP-A and Rab5A. Pulse-chase imaging revealed that newly synthesized NS5A foci are small and distinct from aged foci, while further studies using a unique dual fluorescently tagged infectious HCV chimera showed a relatively stable association of NS5A foci with core-capped LDs. These results reveal new details about the dynamics and maturation of NS5A and the nature of potential sites of convergence of HCV replication and assembly pathways. IMPORTANCE Hepatitis C virus (HCV) is a major cause of serious liver disease worldwide. An improved understanding of the HCV replication cycle will enable development of novel and improved antiviral strategies. Here we have developed complementary fluorescent labeling and imaging approaches to investigate the localization, traffic and interactions of the HCV NS5A protein in living, virus-producing cells. These studies reveal new details as to the traffic, composition and biogenesis of NS5A foci and the nature of their association with putative sites of virus assembly.
Collapse
|
111
|
Real CI, Megger DA, Sitek B, Jahn-Hofmann K, Ickenstein LM, John MJ, Walker A, Timm J, Kuhlmann K, Eisenacher M, Meyer HE, Gerken G, Broering R, Schlaak JF. Identification of proteins that mediate the pro-viral functions of the interferon stimulated gene 15 in hepatitis C virus replication. Antiviral Res 2013; 100:654-61. [DOI: 10.1016/j.antiviral.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
112
|
Tan J, Brill JA. Cinderella story: PI4P goes from precursor to key signaling molecule. Crit Rev Biochem Mol Biol 2013; 49:33-58. [PMID: 24219382 DOI: 10.3109/10409238.2013.853024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin organization, cell migration, and signal transduction. In addition, progress over the last decade has brought to light independent roles for PI4P in membrane trafficking and lipid homeostasis. Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the spectrum of PI4P effectors, and the mechanisms of spatiotemporal control that coordinate crosstalk between PI4P and cellular signaling pathways.
Collapse
Affiliation(s)
- Julie Tan
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario , Canada and
| | | |
Collapse
|
113
|
Apolipoprotein E codetermines tissue tropism of hepatitis C virus and is crucial for viral cell-to-cell transmission by contributing to a postenvelopment step of assembly. J Virol 2013; 88:1433-46. [PMID: 24173232 DOI: 10.1128/jvi.01815-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) predominantly infects human hepatocytes, although extrahepatic virus reservoirs are being discussed. Infection of cells is initiated via cell-free and direct cell-to-cell transmission routes. Cell type-specific determinants of HCV entry and RNA replication have been reported. Moreover, several host factors required for synthesis and secretion of lipoproteins from liver cells, in part expressed in tissue-specific fashion, have been implicated in HCV assembly. However, the minimal cell type-specific requirements for HCV assembly have remained elusive. Here we report that production of HCV trans-complemented particles (HCVTCP) from nonliver cells depends on ectopic expression of apolipoprotein E (ApoE). For efficient virus production by full-length HCV genomes, microRNA 122 (miR-122)-mediated enhancement of RNA replication is additionally required. Typical properties of cell culture-grown HCV (HCVcc) particles from ApoE-expressing nonliver cells are comparable to those of virions derived from human hepatoma cells, although specific infectivity of virions is modestly reduced. Thus, apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTTP), and apolipoprotein C1 (ApoC1), previously implicated in HCV assembly, are dispensable for production of infectious HCV. In the absence of ApoE, release of core protein from infected cells is reduced, and production of extracellular as well as intracellular infectivity is ablated. Since envelopment of capsids was not impaired, we conclude that ApoE acts after capsid envelopment but prior to secretion of infectious HCV. Remarkably, the lack of ApoE also abrogated direct HCV cell-to-cell transmission. These findings highlight ApoE as a host factor codetermining HCV tissue tropism due to its involvement in a late assembly step and viral cell-to-cell transmission.
Collapse
|
114
|
Conrad KD, Niepmann M. The role of microRNAs in hepatitis C virus RNA replication. Arch Virol 2013; 159:849-62. [PMID: 24158346 DOI: 10.1007/s00705-013-1883-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/28/2013] [Indexed: 12/16/2022]
Abstract
Replication of hepatitis C virus (HCV) RNA is influenced by a variety of microRNAs, with the main player being the liver-specific microRNA-122 (miR-122). Binding of miR-122 to two binding sites near the 5' end of the 5' untranslated region (UTR) of the HCV genomic RNA results in at least two different effects. On the one hand, binding of miR-122 and the resulting recruitment of protein complexes containing Argonaute (Ago) proteins appears to mask the viral RNA's 5' end and stabilizes the viral RNA against nucleolytic degradation. On the other hand, this interaction of miR-122 with the 5'-UTR also stimulates HCV RNA translation directed by the internal ribosome entry site (IRES) located downstream of the miR-122 binding sites. However, it is suspected that additional, yet undefined roles of miR-122 in HCV replication may also contribute to HCV propagation. Accordingly, miR-122 is considered to contribute to the liver tropism of the virus. Besides miR-122, let-7b, miR-196, miR-199a* and miR-448 have also been reported to interact directly with the HCV RNA. However, the latter microRNAs inhibit HCV replication, and it has been speculated that miR-199a* contributes indirectly to HCV tissue tropism, since it is mostly expressed in cells other than hepatocytes. Other microRNAs influence HCV replication indirectly. Some of those are advantageous for HCV propagation, while others suppress HCV replication. Consequently, HCV up-regulates or down-regulates, respectively, the expression of most of these miRNAs.
Collapse
Affiliation(s)
- K Dominik Conrad
- Institute of Biochemistry, School of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392, Giessen, Germany
| | | |
Collapse
|
115
|
Vesicular transport of progeny parvovirus particles through ER and Golgi regulates maturation and cytolysis. PLoS Pathog 2013; 9:e1003605. [PMID: 24068925 PMCID: PMC3777860 DOI: 10.1371/journal.ppat.1003605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/24/2013] [Indexed: 01/30/2023] Open
Abstract
Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway. Previously, it was thought that non-enveloped lytic parvoviruses were released through a lytic burst of cells at the end of infection. However, recent work demonstrated that these small non-enveloped single-stranded DNA viruses are actively transported through vesicles from the nucleus, the site of replication and assembly, to the cell periphery. The current investigation demonstrates that progeny particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane (PM). ERM family proteins radixin and moesin appear to play an essential role in this cellular secretion pathway. While passing through ER and Golgi cisternae, PVs maturate through post-assembly modifications, which significantly increase the infectivity of progeny virions. Finally, the vesicular transport of parvoviral particles was shown to regulate virus-induced cytolysis, thereby accelerating the further release and spread of progeny virions. As rodent PVs are currently viewed as oncolytic agents for cancer virotherapy, it is important to further investigate the mechanism of PV egress — not only to improve the spreading of these agents through the tumor mass, but also to optimize the induction of an anti-tumor immune response upon virus — induced cytolysis.
Collapse
|
116
|
Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 2013; 11:688-700. [PMID: 24018384 DOI: 10.1038/nrmicro3098] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus, a major human pathogen, produces infectious virus particles with several unique features, such as an ability to interact with serum lipoproteins, a dizzyingly complicated process of virus entry, and a pathway of virus assembly and release that is closely linked to lipoprotein secretion. Here, we review these unique features, with an emphasis on recent discoveries concerning virus particle structure, virus entry and virus particle assembly and release.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
117
|
Zheng Y, Kielian M. Imaging of the alphavirus capsid protein during virus replication. J Virol 2013; 87:9579-89. [PMID: 23785213 PMCID: PMC3754095 DOI: 10.1128/jvi.01299-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/14/2013] [Indexed: 01/02/2023] Open
Abstract
Alphaviruses are enveloped viruses with highly organized structures. The nucleocapsid (NC) core contains a capsid protein lattice enclosing the plus-sense RNA genome, and it is surrounded by a lipid bilayer containing a lattice of the E1 and E2 envelope glycoproteins. Capsid protein is synthesized in the cytoplasm and particle budding occurs at the plasma membrane (PM), but the traffic and assembly of viral components and the exit of virions from host cells are not well understood. To visualize the dynamics of capsid protein during infection, we developed a Sindbis virus infectious clone tagged with a tetracysteine motif. Tagged capsid protein could be fluorescently labeled with biarsenical dyes in living cells without effects on virus growth, morphology, or protein distribution. Live cell imaging and colocalization experiments defined distinct groups of capsid foci in infected cells. We observed highly motile internal puncta that colocalized with E2 protein, which may represent the transport machinery that capsid protein uses to reach the PM. Capsid was also found in larger nonmotile internal structures that colocalized with cellular G3BP and viral nsP3. Thus, capsid may play an unforeseen role in these previously observed G3BP-positive foci, such as regulation of cellular stress granules. Capsid puncta were also observed at the PM. These puncta colocalized with E2 and recruited newly synthesized capsid protein; thus, they may be sites of virus assembly and egress. Together, our studies provide the first dynamic views of the alphavirus capsid protein in living cells and a system to define detailed mechanisms during alphavirus infection.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
118
|
A host YB-1 ribonucleoprotein complex is hijacked by hepatitis C virus for the control of NS3-dependent particle production. J Virol 2013; 87:11704-20. [PMID: 23986595 DOI: 10.1128/jvi.01474-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production.
Collapse
|
119
|
Abstract
Hepatitis C Virus (HCV) particles exhibit several unusual properties that are not found in other enveloped RNA viruses, most notably their low buoyant density and interaction with serum lipoproteins. With the advent of systems to grow HCV in cell culture, the molecular basis of HCV particle assembly and release can now be addressed. The process of virus assembly involves protein-protein interactions between viral structural and nonstructural proteins and the coordinated action of host factors. This chapter reviews our current understanding of these interactions and factors.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
120
|
Moradpour D, Penin F. Hepatitis C virus proteins: from structure to function. Curr Top Microbiol Immunol 2013; 369:113-42. [PMID: 23463199 DOI: 10.1007/978-3-642-27340-7_5] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Great progress has been made over the past years in elucidating the structure and function of the hepatitis C virus (HCV) proteins, most of which are now actively being pursued as antiviral targets. The structural proteins, which form the viral particle, include the core protein and the envelope glycoproteins E1 and E2. The nonstructural proteins include the p7 viroporin, the NS2 protease, the NS3-4A complex harboring protease and NTPase/RNA helicase activities, the NS4B and NS5A proteins, and the NS5B RNA-dependent RNA polymerase. NS4B is a master organizer of replication complex formation while NS5A is a zinc-containing phosphoprotein involved in the regulation of HCV RNA replication versus particle production. Core to NS2 make up the assembly module while NS3 to NS5B represent the replication module (replicase). However, HCV proteins exert multiple functions during the viral life cycle, and these may be governed by different structural conformations and/or interactions with viral and/or cellular partners. Remarkably, each viral protein is anchored to intracellular membranes via specific determinants that are essential to protein function in the cell. This review summarizes current knowledge of the structure and function of the HCV proteins and highlights recent advances in the field.
Collapse
Affiliation(s)
- Darius Moradpour
- Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
121
|
Matsumoto Y, Matsuura T, Aoyagi H, Matsuda M, Hmwe SS, Date T, Watanabe N, Watashi K, Suzuki R, Ichinose S, Wake K, Suzuki T, Miyamura T, Wakita T, Aizaki H. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro. PLoS One 2013; 8:e68992. [PMID: 23874843 PMCID: PMC3715454 DOI: 10.1371/journal.pone.0068992] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/03/2013] [Indexed: 01/11/2023] Open
Abstract
Glycyrrhizin (GL) has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV) effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc). To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp), replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD), respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2). We found that group 1B PLA2 (PLA2G1B) inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.
Collapse
Affiliation(s)
- Yoshihiro Matsumoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Haruyo Aoyagi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Su Su Hmwe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoko Date
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyuki Watanabe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenjiro Wake
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Liver Research Unit, Minophagen Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
122
|
Scheel TKH, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 2013; 19:837-49. [PMID: 23836234 PMCID: PMC3984536 DOI: 10.1038/nm.3248] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease. An exciting new era in HCV therapy dawned with the recent approval of two viral protease inhibitors, used in combination with pegylated interferon-α and ribavirin; however, this is just the beginning. Multiple classes of antivirals with distinct targets promise highly efficient combinations, and interferon-free regimens with short treatment duration and fewer side effects are the future of HCV therapy. Ongoing and future trials will determine the best antiviral combinations and whether the current seemingly rich pipeline is sufficient for successful treatment of all patients in the face of major challenges, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities.
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for Study of Hepatitis C, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
123
|
The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol 2013; 11:482-96. [PMID: 23748342 DOI: 10.1038/nrmicro3046] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of the first molecular clone of the hepatitis C virus (HCV) genome allowed the identification and biochemical characterization of two viral enzymes that are targets for antiviral therapy: the protease NS3-4A and the RNA-dependent RNA polymerase NS5B. With the advent of cell culture systems that can recapitulate either the intracellular steps of the viral replication cycle or the complete cycle, additional drug targets have been identified, most notably the phosphoprotein NS5A, but also host cell factors that promote viral replication, such as cyclophilin A. Here, we review insights into the structures of these proteins and the mechanisms by which they contribute to the HCV replication cycle, and discuss how these insights have facilitated the development of new, directly acting antiviral compounds that have started to enter the clinic.
Collapse
|
124
|
Cell-cell contact-mediated hepatitis C virus (HCV) transfer, productive infection, and replication and their requirement for HCV receptors. J Virol 2013; 87:8545-58. [PMID: 23720720 DOI: 10.1128/jvi.01062-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) infection is believed to begin with interactions between cell-free HCV and cell receptors that include CD81, scavenger receptor B1 (SR-B1), claudin-1 (CLDN1), and occludin (OCLN). In this study, we have demonstrated that HCV spreading from infected hepatocytes to uninfected hepatocytes leads to the transfer of HCV and the formation of infection foci and is cell density dependent. This cell-cell contact-mediated (CCCM) HCV transfer occurs readily and requires all these known HCV receptors and an intact actin cytoskeleton. With a fluorescently labeled replication-competent HCV system, the CCCM transfer process was further dissected by live-cell imaging into four steps: donor cell-target cell contact, formation of viral puncta-target cell conjugation, transfer of viral puncta, and posttransfer. Importantly, the CCCM HCV transfer leads to productive infection of target cells. Taken together, these results show that CCCM HCV transfer constitutes an important and effective route for HCV infection and dissemination. These findings will aid in the development of new and novel strategies for preventing and treating HCV infection.
Collapse
|
125
|
Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses 2013; 5:1292-324. [PMID: 23698400 PMCID: PMC3712309 DOI: 10.3390/v5051292] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects.
Collapse
|
126
|
Tripathi LP, Kambara H, Chen YA, Nishimura Y, Moriishi K, Okamoto T, Morita E, Abe T, Mori Y, Matsuura Y, Mizuguchi K. Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach. J Proteome Res 2013; 12:2537-51. [DOI: 10.1021/pr3011217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lokesh P. Tripathi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Hiroto Kambara
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yi-An Chen
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Yorihiro Nishimura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohji Moriishi
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Morita
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Abe
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshio Mori
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-Oka, Suita, Osaka, 565-0871,
Japan
| |
Collapse
|
127
|
Nucleozin targets cytoplasmic trafficking of viral ribonucleoprotein-Rab11 complexes in influenza A virus infection. J Virol 2013; 87:4694-703. [PMID: 23408618 DOI: 10.1128/jvi.03123-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Novel antivirals are needed to supplement existing control strategies for influenza A virus (IAV). A promising new class of drug, exemplified by the compound nucleozin, has recently been identified that targets the viral nucleoprotein (NP). These inhibitors are thought to act as "molecular staples" that stabilize interactions between NP monomers, promoting the formation of nonfunctional aggregates. Here we detail the inhibitory mechanism of nucleozin, finding that the drug has both early- and late-acting effects on the IAV life cycle. When present at the start of infection, it inhibited viral RNA and protein synthesis. However, when added at later time points, it still potently blocked the production of infectious progeny but without affecting viral macromolecular synthesis. Instead, nucleozin blocked the cytoplasmic trafficking of ribonucleoproteins (RNPs) that had undergone nuclear export, promoting the formation of large perinuclear aggregates of RNPs along with cellular Rab11. This effect led to the production of much reduced amounts of often markedly smaller virus particles. We conclude that the primary target of nucleozin is the viral RNP, not NP, and this work also provides proof of the principle that IAV replication can be effectively inhibited by blocking cytoplasmic trafficking of the viral genome.
Collapse
|
128
|
Genetic and functional characterization of the N-terminal region of the hepatitis C virus NS2 protein. J Virol 2013; 87:4130-45. [PMID: 23408609 DOI: 10.1128/jvi.03174-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) NS2 protein has dual roles within the HCV life cycle. While well characterized as an autoprotease that cleaves the NS2/NS3 junction, NS2, primarily via its N-terminal region, is also involved in virion morphogenesis. In order to map the determinants necessary for infectious virus production and gain further insight into the multiple points at which NS2 may impact this process, a detailed mutational analysis of residues spanning amino acids (aa) 1 to 92 was performed. Initial block mutagenesis (5 or 7 amino acid residues) in both bicistronic and monocistronic HCV cell culture-based (HCVcc) genomes revealed that all but two blocks had various levels of impaired infectious virus production. None of these mutations affected RNA replication, indicating that the N-terminal region of NS2 is not required for NS2-3 processing and replicase assembly. Fine mapping identified 29 critical residues that, when mutated, yielded at least a 1 log decrease in infectious virus titers. These mutants were characterized further with respect to release of extracellular HCV RNA and core, intracellular infectivity, thermal stability of virus particles, and NS2 interactions. While the most severely debilitated mutants were impaired early in the assembly process, which is in agreement with previous reports, others targeted later steps of virus production, most notably egress. Thus, in addition to participating in early steps in virion assembly, this comprehensive mutagenesis study suggests yet another role for NS2 in later steps in virus production.
Collapse
|
129
|
|
130
|
Abstract
Eukaryotes possess seven different phosphoinositides (PIPs) that help form the unique signatures of various intracellular membranes. PIPs serve as docking sites for the recruitment of specific proteins to mediate membrane alterations and integrate various signaling cascades. The spatio-temporal regulation of PI kinases and phosphatases generates distinct intracellular hubs of PIP signaling. Hepatitis C virus (HCV), like other plus-strand RNA viruses, promotes the rearrangement of intracellular membranes to assemble viral replication complexes. HCV stimulates enrichment of phosphatidylinositol 4-phosphate (PI4P) pools near endoplasmic reticulum (ER) sites by activating PI4KIIIα, the kinase responsible for generation of ER-specific PI4P pools. Inhibition of PI4KIIIα abrogates HCV replication. PI4P, the most abundant phosphoinositide, predominantly localizes to the Golgi and plays central roles in Golgi secretory functions by recruiting effector proteins involved in transport vesicle generation. The PI4P effector proteins also include the lipid-transfer and structural proteins such as ceramide transfer protein (CERT), oxysterol binding protein (OSBP) and Golgi phosphoprotein 3 (GOLPH3) that help maintain Golgi-membrane composition and structure. Depletion of Golgi-specific PI4P pools by silencing PI4KIIIβ, expression of dominant negative CERT and OSBP mutants, or silencing GOLPH3 perturb HCV secretion. In this review we highlight the role of PIPs and specifically PI4P in the HCV life cycle.
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Biological Sciences, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Gulam Syed
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
| | - Aleem Siddiqui
- Division of Infectious Diseases, University of California, San Diego. 9500 Gilman Dr., San Diego, CA, 92093, USA;
- Author to whom correspondence should be addressed; ; Tel.: +858-822-1750; Fax: +858-822-1749
| |
Collapse
|
131
|
Shulla A, Randall G. Hepatitis C virus-host interactions, replication, and viral assembly. Curr Opin Virol 2012; 2:725-32. [PMID: 23083892 DOI: 10.1016/j.coviro.2012.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
Abstract
As a relatively simple virus, hepatitis C virus (HCV) depends extensively on its host to infect, replicate and disseminate. HCV has evolved host interactions that result in a restricted tropism, both in terms of cell type and species. Efforts into identifying and validating HCV-host interactions have been hampered by a limited number of infectious virus clones and cell lines that support HCV infection. Despite these limitations, consensus HCV-host interactions have emerged that help define the entry, replication, assembly, and tropism of HCV. This has had important implications in expanding our in vitro and in vivo systems to study HCV replication and pathogenesis. Additionally, a number of these host factors are being targeted for therapeutic development. In this review, we focus on medically relevant pro-viral host factors, their role in HCV biology, and their importance in expanding our model systems.
Collapse
Affiliation(s)
- Ana Shulla
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
132
|
Neveu G, Barouch-Bentov R, Ziv-Av A, Gerber D, Jacob Y, Einav S. Identification and targeting of an interaction between a tyrosine motif within hepatitis C virus core protein and AP2M1 essential for viral assembly. PLoS Pathog 2012; 8:e1002845. [PMID: 22916011 PMCID: PMC3420927 DOI: 10.1371/journal.ppat.1002845] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/24/2012] [Indexed: 12/24/2022] Open
Abstract
Novel therapies are urgently needed against hepatitis C virus infection (HCV), a major global health problem. The current model of infectious virus production suggests that HCV virions are assembled on or near the surface of lipid droplets, acquire their envelope at the ER, and egress through the secretory pathway. The mechanisms of HCV assembly and particularly the role of viral-host protein-protein interactions in mediating this process are, however, poorly understood. We identified a conserved heretofore unrecognized YXXΦ motif (Φ is a bulky hydrophobic residue) within the core protein. This motif is homologous to sorting signals within host cargo proteins known to mediate binding of AP2M1, the μ subunit of clathrin adaptor protein complex 2 (AP-2), and intracellular trafficking. Using microfluidics affinity analysis, protein-fragment complementation assays, and co-immunoprecipitations in infected cells, we show that this motif mediates core binding to AP2M1. YXXΦ mutations, silencing AP2M1 expression or overexpressing a dominant negative AP2M1 mutant had no effect on HCV RNA replication, however, they dramatically inhibited intra- and extracellular infectivity, consistent with a defect in viral assembly. Quantitative confocal immunofluorescence analysis revealed that core's YXXΦ motif mediates recruitment of AP2M1 to lipid droplets and that the observed defect in HCV assembly following disruption of core-AP2M1 binding correlates with accumulation of core on lipid droplets, reduced core colocalization with E2 and reduced core localization to trans-Golgi network (TGN), the presumed site of viral particles maturation. Furthermore, AAK1 and GAK, serine/threonine kinases known to stimulate binding of AP2M1 to host cargo proteins, regulate core-AP2M1 binding and are essential for HCV assembly. Last, approved anti-cancer drugs that inhibit AAK1 or GAK not only disrupt core-AP2M1 binding, but also significantly inhibit HCV assembly and infectious virus production. These results validate viral-host interactions essential for HCV assembly and yield compounds for pharmaceutical development. Novel antiviral strategies are needed to combat the HCV pandemic. Understanding viral-host determinants involved in mediating assembly is critical for the development of drugs targeting this stage of the HCV life cycle. We identified a conserved heretofore unrecognized tyrosine motif within core, which is homologous to sorting signals within host cargo proteins that are recognized by AP2M1, a membrane trafficking protein. By combining novel proteomic techniques with molecular virology, RNAi, dominant-interfering, and pharmacological approaches, we show that this motif mediates core binding to AP2M1 and HCV assembly and that AP2M1 is essential for HCV assembly. Core's tryosine motif recruits AP2M1 to lipid droplets, the site of viral assembly, and disruption of core-AP2M1 binding alters core's sub-cellular localization and colocalization with the envelope protein E2. AAK1 and GAK, host kinases that stimulate AP2M1's interactions with cargo proteins, regulate core-AP2M1 binding and are essential for HCV assembly. Last, we discovered kinase inhibitors, which bind AAK1 or GAK and disrupt core-AP2M1 binding and HCV assembly. Our study provides insight into mechanisms of HCV assembly and yields candidate targets and compounds for pharmaceutical development. Since some of the discovered compounds are approved anti-cancer drugs, there may be an opportunity for repurposing them as antivirals.
Collapse
Affiliation(s)
- Gregory Neveu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rina Barouch-Bentov
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Amotz Ziv-Av
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and The Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Yves Jacob
- Department of Virology, Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Pasteur Institute, Paris, France
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
133
|
Evaluation of phosphatidylinositol-4-kinase IIIα as a hepatitis C virus drug target. J Virol 2012; 86:11595-607. [PMID: 22896614 DOI: 10.1128/jvi.01320-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.
Collapse
|
134
|
Delang L, Paeshuyse J, Neyts J. The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochem Pharmacol 2012; 84:1400-8. [PMID: 22885339 PMCID: PMC7111036 DOI: 10.1016/j.bcp.2012.07.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 12/20/2022]
Abstract
Phosphoinositides (PI) are phospholipids that mediate signaling cascades in the cell by binding to effector proteins. Reversible phosphorylation of the inositol ring at positions 3, 4 and 5 results in the synthesis of seven different phosphoinositides. Each phosphoinositide has a unique subcellular distribution with a predominant localization in subsets of membranes. These lipids play a major role in recruiting and regulating the function of proteins at membrane interfaces [1]. Several bacteria and viruses modulate and exploit the host PI metabolism to ensure efficient replication and survival. Here, we focus on the roles of cellular phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4-kinases (PI4Ks) during the replication cycle of various viruses. It has been well documented that phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ, EC 2.7.1.67) is indispensable for viral RNA replication of several picornaviruses. Two recruitment strategies were reported: (i) binding and modulation of GBF1/Arf1 to enhance recruitment of PI4KIIIβ and (ii) interaction with ACBD3 for recruitment of PI4KIIIβ. PI4KIII has also been demonstrated to be crucial for hepatitis C virus (HCV) replication. PI4KIII appears to be directly recruited and activated by HCV NS5A protein to the replication complexes. In contrast to picornaviruses, it is still debated whether the α or the β isoform is the most important. PI4KIII can be explored as a target for inhibition of viral replication. The challenge will be to develop highly selective inhibitors for PI4KIIIα and/or β and to avoid off-target toxicity.
Collapse
Affiliation(s)
- Leen Delang
- Rega Institute for Medical Research, KU Leuven, Belgium
| | | | | |
Collapse
|
135
|
Feld JJ. Interferon responses and spontaneous HCV clearance: is it all a matter of fat? J Hepatol 2012; 57:3-5. [PMID: 22521343 DOI: 10.1016/j.jhep.2012.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/15/2023]
|
136
|
Bishé B, Syed GH, Field SJ, Siddiqui A. Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion. J Biol Chem 2012; 287:27637-47. [PMID: 22745132 DOI: 10.1074/jbc.m112.346569] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replicates within the ribonucleoprotein complex, assembled on the endoplasmic reticulum (ER)-derived membranous structures closely juxtaposed to the lipid droplets that facilitate the post-replicative events of virion assembly and maturation. It is widely believed that the assembled virions piggy-back onto the very low density lipoprotein particles for secretion. Lipid phosphoinositides are important modulators of intracellular trafficking. Golgi-localized phosphatidylinositol 4-phosphate (PI4P) recruits proteins involved in Golgi trafficking to the Golgi membrane and promotes anterograde transport of secretory proteins. Here, we sought to investigate the role of Golgi-localized PI4P in the HCV secretion process. Depletion of the Golgi-specific PI4P pool by Golgi-targeted PI4P phosphatase hSac1 K2A led to significant reduction in HCV secretion without any effect on replication. We then examined the functional role of a newly identified PI4P binding protein GOLPH3 in the viral secretion process. GOLPH3 is shown to maintain a tensile force on the Golgi, required for vesicle budding via its interaction with an unconventional myosin, MYO18A. Silencing GOLPH3 led to a dramatic reduction in HCV virion secretion, as did the silencing of MYO18A. The reduction in virion secretion was accompanied by a concomitant accumulation of intracellular virions, suggesting a stall in virion egress. HCV-infected cells displayed a fragmented and dispersed Golgi pattern, implicating involvement in virion morphogenesis. These studies establish the role of PI4P and its interacting protein GOLPH3 in HCV secretion and strengthen the significance of the Golgi secretory pathway in this process.
Collapse
Affiliation(s)
- Bryan Bishé
- Division of Infectious Diseases, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
137
|
Dafa-Berger A, Kuzmina A, Fassler M, Yitzhak-Asraf H, Shemer-Avni Y, Taube R. Modulation of hepatitis C virus release by the interferon-induced protein BST-2/tetherin. Virology 2012; 428:98-111. [PMID: 22520941 DOI: 10.1016/j.virol.2012.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/24/2012] [Accepted: 03/21/2012] [Indexed: 12/26/2022]
Abstract
Hepatitis C virus is a leading cause of chronic hepatitis and liver cancer. Little information exists on the interplay between innate defense mechanisms and viral antagonists that promote viral egress. Herein, the effects of Tetherin/BST-2 on HCV release were investigated. In Huh-7.5 hepatocytes, low expression levels of BST-2 were detected. Treatment of Huh-7.5 cells with IFNα, elevated BST-2 expression levels. However, HCV could not alter the expression of IFNα-induced BST-2, nor of stably over-expressed BST-2. Significantly, over expressed BST-2 moderately blocked HCV production and release from Huh-7.5 cells. Functional analysis of BST-2, confirmed its ability to inhibit the release of HIV delta-Vpu from Huh-7.5-BST-2 cells. HIV-Vpu antagonized BST-2 activity and rescued HIV delta-Vpu release from Huh-7.5-BST-2 cells. However, vpu slightly rescued HCV release and production from Huh-7.5-BST-2. We conclude that BST-2 moderately restricts HCV production and release from Huh-7.5 hepatocytes, while the virus lacks mechanisms to counteract this restriction.
Collapse
Affiliation(s)
- Avis Dafa-Berger
- Department of Virology and Developmental Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, Israel
| | | | | | | | | | | |
Collapse
|