101
|
Abstract
The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus.IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology.
Collapse
|
102
|
DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0276. [PMID: 28893943 DOI: 10.1098/rstb.2016.0276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
103
|
Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus. Viruses 2018; 10:v10040165. [PMID: 29614718 PMCID: PMC5923459 DOI: 10.3390/v10040165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 12/26/2022] Open
Abstract
The mechanism used by mouse polyomavirus (MPyV) to overcome the crowded cytosol to reach the nucleus has not been fully elucidated. Here, we investigated the involvement of importin α/β1 mediated transport in the delivery of MPyV genomes into the nucleus. Interactions of the virus with importin β1 were studied by co-immunoprecipitation and proximity ligation assay. For infectivity and nucleus delivery assays, the virus and its capsid proteins mutated in the nuclear localization signals (NLSs) were prepared and produced. We found that at early times post infection, virions bound importin β1 in a time dependent manner with a peak of interactions at 6 h post infection. Mutation analysis revealed that only when the NLSs of both VP1 and VP2/3 were disrupted, virus did not bind efficiently to importin β1 and its infectivity remarkably decreased (by 80%). Nuclear targeting of capsid proteins was improved when VP1 and VP2 were co-expressed. VP1 and VP2 were effectively delivered into the nucleus, even when one of the NLS, either VP1 or VP2, was disrupted. Altogether, our results showed that MPyV virions can use VP1 and/or VP2/VP3 NLSs in concert or individually to bind importins to deliver their genomes into the cell nucleus.
Collapse
|
104
|
Panou MM, Prescott EL, Hurdiss DL, Swinscoe G, Hollinshead M, Caller LG, Morgan EL, Carlisle L, Müller M, Antoni M, Kealy D, Ranson NA, Crump CM, Macdonald A. Agnoprotein Is an Essential Egress Factor during BK Polyomavirus Infection. Int J Mol Sci 2018; 19:ijms19030902. [PMID: 29562663 PMCID: PMC5877763 DOI: 10.3390/ijms19030902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
BK polyomavirus (BKPyV; hereafter referred to as BK) causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF) attachment protein (α-SNAP) is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.
Collapse
Affiliation(s)
- Margarita-Maria Panou
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Emma L Prescott
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Daniel L Hurdiss
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Gemma Swinscoe
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael Hollinshead
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Laura G Caller
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Ethan L Morgan
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Louisa Carlisle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Marietta Müller
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Michelle Antoni
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - David Kealy
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Andrew Macdonald
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
105
|
Novel Human Polyomavirus Noncoding Control Regions Differ in Bidirectional Gene Expression according to Host Cell, Large T-Antigen Expression, and Clinically Occurring Rearrangements. J Virol 2018; 92:JVI.02231-17. [PMID: 29343574 DOI: 10.1128/jvi.02231-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Human polyomavirus (HPyV) DNA genomes contain three regions denoted the early viral gene region (EVGR), encoding the regulatory T-antigens and one microRNA, the late viral gene region (LVGR), encoding the structural Vp capsid proteins, and the noncoding control region (NCCR). The NCCR harbors the origin of viral genome replication and bidirectional promoter/enhancer functions governing EVGR and LVGR expression on opposite DNA strands. Despite principal similarities, HPyV NCCRs differ in length, sequence, and architecture. To functionally compare HPyV NCCRs, sequences from human isolates were inserted into a bidirectional reporter vector using dsRed2 for EVGR expression and green fluorescent protein (GFP) for LVGR expression. Transfecting HPyV NCCR reporter vectors into human embryonic kidney 293 (HEK293) cells and flow cytometry normalized to archetype BKPyV NCCR revealed a hierarchy of EVGR expression levels with MCPyV, HPyV12, and STLPyV NCCRs conferring stronger levels and HPyV6, HPyV9, and HPyV10 NCCRs weaker levels, while LVGR expression was less variable and showed comparable activity levels. Transfection of HEK293T cells expressing simian virus 40 (SV40) large T antigen (LTag) increased EVGR expression for most HPyV NCCRs, which correlated with the number of LTag-binding sites (Spearman's r, 0.625; P < 0.05) and decreased following SV40 LTag small interfering RNA (siRNA) knockdown. LTag-dependent activation was specifically confirmed for two different MCPyV NCCRs in 293MCT cells expressing the cognate MCPyV LTag. HPyV NCCR expression in different cell lines derived from skin (A375), cervix (HeLaNT), lung (A549), brain (Hs683), and colon (SW480) demonstrated that host cell properties significantly modulate the baseline HPyV NCCR activity, which partly synergized with SV40 LTag expression. Clinically occurring NCCR sequence rearrangements of HPyV7 PITT-1 and -2 and HPyV9 UF1 were found to increase EVGR expression compared to the respective HPyV archetype, but this was partly host cell type specific.IMPORTANCE HPyV NCCRs integrate essential viral functions with respect to host cell specificity, persistence, viral replication, and disease. Here, we show that HPyV NCCRs not only differ in sequence length, number, and position of LTag- and common transcription factor-binding sites but also confer differences in bidirectional viral gene expression. Importantly, EVGR reporter expression was significantly modulated by LTag expression and by host cell properties. Clinical sequence variants of HPyV7 and HPyV9 NCCRs containing deletions and insertions were associated with increased EVGR expression, similar to BKPyV and JCPyV rearrangements, emphasizing that HPyV NCCR sequences are major determinants not only of host cell tropism but also of pathogenicity. These results will help to define secondary HPyV cell tropism beyond HPyV surface receptors, to identify key viral and host factors shaping the viral life cycle, and to develop preclinical models of HPyV persistence and replication and suitable antiviral targets.
Collapse
|
106
|
Van Doorslaer K, Kraberger S, Austin C, Farkas K, Bergeman M, Paunil E, Davison W, Varsani A. Fish polyomaviruses belong to two distinct evolutionary lineages. J Gen Virol 2018. [PMID: 29517483 PMCID: PMC5982132 DOI: 10.1099/jgv.0.001041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Polyomaviridae is a diverse family of circular double-stranded DNA viruses. Polyomaviruses have been isolated from a wide array of animal hosts. An understanding of the evolutionary and ecological dynamics of these viruses is essential to understanding the pathogenicity of polyomaviruses. Using a high throughput sequencing approach, we identified a novel polyomavirus in an emerald notothen (Trematomus bernacchii) sampled in the Ross sea (Antarctica), expanding the known number of fish-associated polyomaviruses. Our analysis suggests that polyomaviruses belong to three main evolutionary clades; the first clade is made up of all recognized terrestrial polyomaviruses. The fish-associated polyomaviruses are not monophyletic, and belong to two divergent evolutionary lineages. The fish viruses provide evidence that the evolution of the key viral large T protein involves gain and loss of distinct domains.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, Bio5 Institute, and the University of Arizona Cancer Center University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,School of Environment, Natural Resources and Geography Bangor University Bangor, LL57 2UW, UK
| | - Melissa Bergeman
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Emma Paunil
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
107
|
Smeele ZE, Burns JM, Van Doorsaler K, Fontenele RS, Waits K, Stainton D, Shero MR, Beltran RS, Kirkham AL, Berngartt R, Kraberger S, Varsani A. Diverse papillomaviruses identified in Weddell seals. J Gen Virol 2018; 99:549-557. [PMID: 29469687 DOI: 10.1099/jgv.0.001028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.
Collapse
Affiliation(s)
- Zoe E Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Koenraad Van Doorsaler
- School of Animal and Comparative Biomedical Sciences, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and Bio5, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Kara Waits
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Roxanne S Beltran
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK 99775, USA
| | - Amy L Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd Juneau, Alaska 99801, USA
| | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.,The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
108
|
Identification and genetic characterization of polyomaviruses in estrildid and fringillid finches. Arch Virol 2018; 163:895-909. [DOI: 10.1007/s00705-017-3688-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
|
109
|
Larsen BB, Cole KL, Worobey M. Ancient DNA provides evidence of 27,000-year-old papillomavirus infection and long-term codivergence with rodents. Virus Evol 2018; 4:vey014. [PMID: 29977605 PMCID: PMC6007503 DOI: 10.1093/ve/vey014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The long-term evolutionary history of many viral lineages is poorly understood. Novel sources of ancient DNA combined with phylogenetic analyses can provide insight into the time scale of virus evolution. Here we report viral sequences from ancient North American packrat middens. We screened samples up to 27,000-years old and found evidence of papillomavirus (PV) infection in Neotoma cinerea (Bushy-tailed packrat). Phylogenetic analysis placed the PV sequences in a clade with other previously published PV sequences isolated from rodents. Concordance between the host and virus tree topologies along with a correlation in branch lengths suggests a shared evolutionary history between rodents and PVs. Based on host divergence times, PVs have likely been circulating in rodents for at least 17 million years. These results have implications for our understanding of PV evolution and for further research with ancient DNA from Neotoma middens.
Collapse
Affiliation(s)
- Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, 85721 AZ, USA
| | - Kenneth L Cole
- Northern Arizona University, School of Earth Sciences and Environmental Sustainability, 525 S. Beaver St., Flagstaff, 86011 AZ, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, 85721 AZ, USA
| |
Collapse
|
110
|
Henriques AM, Fagulha T, Barros SC, Ramos F, Duarte MD, Luís T, Carvalho P, Mendonça P, Monteiro M, Craveiro H, Fevereiro M. AVES POLYOMAVIRUS 1 IN ARA CHLOROPTERA AND ECLECTUS RORATUS WITH DISCLOSURE OF FULL GENOMIC SEQUENCES. J Exot Pet Med 2018. [DOI: 10.1053/j.jepm.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
111
|
Cytomegaloviruses in a Community of Wild Nonhuman Primates in Taï National Park, Côte D'Ivoire. Viruses 2017; 10:v10010011. [PMID: 29286318 PMCID: PMC5795424 DOI: 10.3390/v10010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/01/2022] Open
Abstract
Cytomegaloviruses (CMVs) are known to infect many mammals, including a number of nonhuman primates (NHPs). However, most data available arose from studies led on captive individuals and little is known about CMV diversity in wild NHPs. Here, we analyzed a community of wild nonhuman primates (seven species) in Taï National Park (TNP), Côte d’Ivoire, with two PCR systems targeting betaherpesviruses. CMV DNA was detected in 17/87 primates (4/7 species). Six novel CMVs were identified in sooty mangabeys, Campbell’s monkeys and Diana monkeys, respectively. In 3/17 positive individuals (from three NHP species), different CMVs were co-detected. A major part of the glycoprotein B coding sequences of the novel viruses was amplified and sequenced, and phylogenetic analyses were performed that included three previously discovered CMVs of western red colobus from TNP and published CMVs from other NHP species and geographic locations. We find that, despite this locally intensified sampling, NHP CMVs from TNP are completely host-specific, pinpointing the absence or rarity of cross-species transmission. We also show that on longer timescales the evolution of CMVs is characterized by frequent co-divergence with their hosts, although other processes, including lineage duplication and host switching, also have to be invoked to fully explain their evolutionary relationships.
Collapse
|
112
|
Gedvilaite A, Tryland M, Ulrich RG, Schneider J, Kurmauskaite V, Moens U, Preugschas H, Calvignac-Spencer S, Ehlers B. Novel polyomaviruses in shrews ( Soricidae) with close similarity to human polyomavirus 12. J Gen Virol 2017; 98:3060-3067. [PMID: 29095685 DOI: 10.1099/jgv.0.000948] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shrews (family Soricidae) have already been reported to host microorganisms pathogenic for humans. In an effort to search for additional infectious agents with zoonotic potential, we detected polyomaviruses (PyVs) in common shrew, crowned shrew, and pygmy shrew (Sorex araneus, S. coronatus and S. minutus). From these, 11 full circular genomes were determined. Phylogenetic analysis based on large T protein sequences showed that these novel PyVs form a separate clade within the genus Alphapolyomavirus. Within this clade, the phylogenetic relationships suggest host-virus co-divergence. Surprisingly, one PyV from common shrew showed a genomic sequence nearly identical to that of the human polyomavirus 12 (HPyV12). This indicated that HPyV12 is a variant of a non-human PyV that naturally infects shrews. Whether HPyV12 is a bona fide human-tropic polyomavirus arising from a recent shrew-to-human transmission event or instead reflects a technical artefact, such as consumable contamination with shrew material, needs further investigation.
Collapse
Affiliation(s)
- Alma Gedvilaite
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Morten Tryland
- Department of Arctic and Marine Biology, Arctic Infection Biology, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Julia Schneider
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.,Present address: NMI TT Pharmaservices, c/o CoLaborator, Berlin, Germany
| | | | - Ugo Moens
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | | - Bernhard Ehlers
- Division 12 'Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| |
Collapse
|
113
|
Sarker S, Roberts HK, Tidd N, Ault S, Ladmore G, Peters A, Forwood JK, Helbig K, Raidal SR. Molecular and microscopic characterization of a novel Eastern grey kangaroopox virus genome directly from a clinical sample. Sci Rep 2017; 7:16472. [PMID: 29184134 PMCID: PMC5705601 DOI: 10.1038/s41598-017-16775-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022] Open
Abstract
Poxviruses are large DNA viruses with varying zoonotic potential, and are recognised in a broad range of wildlife. Although poxviruses have been detected in kangaroos, their genetic relationships to poxviruses in other animals and humans is not well understood. Here, we present a novel genome sequence of a marsupial poxvirus, the Eastern grey kangaroopox virus (EKPV-NSW), isolated from a wild eastern grey kangaroo. In the present study, histopathologically confirmed epidermal pox lesions were used to recover the full-length viral genome and perform electron microscopic analysis, with both immature virions and intracellular mature virions detected. Subsequent analysis of the EKPV-NSW genome demonstrated the highest degree of sequence similarity with EKPV-SC strain (91.51%), followed by WKPV-WA (87.93%), and MOCV1 (44.05%). The novel EKPV-NSW complete genome encompasses most of the chordopoxviruses protein coding genes (138) that are required for genome replication and expression, with only three essential protein coding genes being absent. The novel EKPV-NSW is missing 28 predicted genes compared to the recently isolated EKPV-SC, and carries 21 additional unique genes, encoding unknown proteins. Phylogenetic and recombination analyses showed EKPV-NSW to be the distinct available candidate genome of chordopoxviruses.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Hayley K Roberts
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Naomie Tidd
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Shayne Ault
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Lake Road Veterinary Clinic, 327 Lake Albert Road, Kooringal, NSW 2650, Australia
| | - Georgia Ladmore
- Lake Road Veterinary Clinic, 327 Lake Albert Road, Kooringal, NSW 2650, Australia
| | - Andrew Peters
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Karla Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Shane R Raidal
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
114
|
Balakrishnan L, Milavetz B. Epigenetic Regulation of Viral Biological Processes. Viruses 2017; 9:v9110346. [PMID: 29149060 PMCID: PMC5707553 DOI: 10.3390/v9110346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
It is increasingly clear that DNA viruses exploit cellular epigenetic processes to control their life cycles during infection. This review will address epigenetic regulation in members of the polyomaviruses, adenoviruses, human papillomaviruses, hepatitis B, and herpes viruses. For each type of virus, what is known about the roles of DNA methylation, histone modifications, nucleosome positioning, and regulatory RNA in epigenetic regulation of the virus infection will be discussed. The mechanisms used by certain viruses to dysregulate the host cell through manipulation of epigenetic processes and the role of cellular cofactors such as BRD4 that are known to be involved in epigenetic regulation of host cell pathways will also be covered. Specifically, this review will focus on the role of epigenetic regulation in maintaining viral episomes through the generation of chromatin, temporally controlling transcription from viral genes during the course of an infection, regulating latency and the switch to a lytic infection, and global dysregulation of cellular function.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Barry Milavetz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA.
| |
Collapse
|
115
|
Moens U, Song X, Van Ghelue M, Lednicky JA, Ehlers B. A Role of Sp1 Binding Motifs in Basal and Large T-Antigen-Induced Promoter Activities of Human Polyomavirus HPyV9 and Its Variant UF-1. Int J Mol Sci 2017; 18:ijms18112414. [PMID: 29135936 PMCID: PMC5713382 DOI: 10.3390/ijms18112414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Human polyomavirus 9 (HPyV9) was originally detected in the serum of a renal transplant patient. Seroepidemiological studies showed that ~20-50% of the human population have antibodies against this virus. HPyV9 has not yet been associated with any disease and little is known about the route of infection, transmission, host cell tropism, and genomic variability in circulating strains. Recently, the HPyV9 variant UF-1 with an eight base-pair deletion, a thirteen base-pair insertion and with point mutations, creating three putative Sp1 binding sites in the late promoter was isolated from an AIDS patient. Transient transfection studies with a luciferase reporter plasmid driven by HPyV9 or UF1 promoter demonstrated that UF1 early and late promoters were stronger than HPyV9 promoters in most cell lines, and that the UF1 late promoter was more potently activated by HPyV9 large T-antigen (LTAg). Mutation of two Sp1 motifs strongly reduced trans-activation of the late UF1 promoter by HPyV9 LTAg in HeLa cells. In conclusion, the mutations in the UF1 late promoter seem to strengthen its activity and its response to stimulation by HPyV9 LTAg in certain cells. It remains to be investigated whether these promoter changes have an influence on virus replication and affect the possible pathogenic properties of the virus.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway.
| | - Xiaobo Song
- Host Microbe Interaction Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway.
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital Northern-Norway, 9038 Tromsø, Norway.
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville , FL 32603, USA.
| | - Bernhard Ehlers
- Division 12, Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, 13353 Berlin, Germany.
| |
Collapse
|
116
|
Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res 2017; 243:91-105. [PMID: 29111456 PMCID: PMC7114543 DOI: 10.1016/j.virusres.2017.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Abstract
Summary of identified viruses associated with Antarctic animals. Genomes of Antarctic animals viruses have only been determine in the last five years. Limited knowledge of animal virology relative to environmental virology in Antarctica.
The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches. This review summaries the knowledge of animal Antarctic virology and discusses potential future directions with the advent of HTS in virus discovery and ecology.
Collapse
|
117
|
Qi D, Shan T, Liu Z, Deng X, Zhang Z, Bi W, Owens JR, Feng F, Zheng L, Huang F, Delwart E, Hou R, Zhang W. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca). Virol J 2017; 14:207. [PMID: 29078783 PMCID: PMC5658932 DOI: 10.1186/s12985-017-0867-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Polyomaviruses infect a wide variety of mammalian and avian hosts with a broad spectrum of outcomes including asymptomatic infection, acute systemic disease, and tumor induction. Methods Viral metagenomics and general PCR methods were used to detected viral nucleic acid in the samples from a diseased and healthy giant pandas. Results A novel polyomavirus, the giant panda polyomavirus 1 (GPPyV1) from the nasal cavity of a dead giant panda (Ailuropoda melanoleuca) was characterized. The GPPyV1 genome is 5144 bp in size and reveals five putative open-reading frames coding for the classic small and large T antigens in the early region, and the VP1, VP2 and VP3 capsid proteins in the late region. Phylogenetic analyses of the large T antigen of the GPPyV1 indicated GPPyV1 belonged to a putative new species within genus Deltapolyomavirus, clustering with four human polyomavirus species. The GPPyV1 VP1 and VP2 clustered with genus Alphapolyomavirus. Our epidemiologic study indicated that this novel polyomavirus was also detected in nasal swabs and fecal samples collected from captive healthy giant pandas. Conclusion A novel polyomavirus was detected in giant pandas and its complete genome was characterized, which may cause latency infection in giant pandas.
Collapse
Affiliation(s)
- Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China.,Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhijian Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, 94118, USA
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Jacob Robert Owens
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Feifei Feng
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Lisong Zheng
- Liziping Nature Reserve, YaAn, Sichuan Province, Sichuan, 625499, China
| | - Feng Huang
- Liziping Nature Reserve, YaAn, Sichuan Province, Sichuan, 625499, China
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, 94118, USA
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
118
|
Ancient Evolution and Dispersion of Human Papillomavirus 58 Variants. J Virol 2017; 91:JVI.01285-17. [PMID: 28794033 PMCID: PMC5640864 DOI: 10.1128/jvi.01285-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 01/03/2023] Open
Abstract
Human papillomavirus 58 (HPV58) is found in 10 to 18% of cervical cancers in East Asia but is rather uncommon elsewhere. The distribution and oncogenic potential of HPV58 variants appear to be heterogeneous, since the E7 T20I/G63S variant is more prevalent in East Asia and confers a 7- to 9-fold-higher risk of cervical precancer and cancer. However, the underlying genomic mechanisms that explain the geographic and carcinogenic diversity of HPV58 variants are still poorly understood. In this study, we used a combination of phylogenetic analyses and bioinformatics to investigate the deep evolutionary history of HPV58 complete genome variants. The initial splitting of HPV58 variants was estimated to occur 478,600 years ago (95% highest posterior density [HPD], 391,000 to 569,600 years ago). This divergence time is well within the era of speciation between Homo sapiens and Neanderthals/Denisovans and around three times longer than the modern Homo sapiens divergence times. The expansion of present-day variants in Eurasia could be the consequence of viral transmission from Neanderthals/Denisovans to non-African modern human populations through gene flow. A whole-genome sequence signature analysis identified 3 amino acid changes, 16 synonymous nucleotide changes, and a 12-bp insertion strongly associated with the E7 T20I/G63S variant that represents the A3 sublineage and carries higher carcinogenetic potential. Compared with the capsid proteins, the oncogenes E7 and E6 had increased substitution rates indicative of higher selection pressure. These data provide a comprehensive evolutionary history and genomic basis of HPV58 variants to assist further investigation of carcinogenic association and the development of diagnostic and therapeutic strategies.IMPORTANCE Papillomaviruses (PVs) are an ancient and heterogeneous group of double-stranded DNA viruses that preferentially infect the cutaneous and mucocutaneous epithelia of vertebrates. Persistent infection by specific oncogenic human papillomaviruses (HPVs), including HPV58, has been established as the primary cause of cervical cancer. In this work, we reveal the complex evolutionary history of HPV58 variants that explains the heterogeneity of oncogenic potential and geographic distribution. Our data suggest that HPV58 variants may have coevolved with archaic hominins and dispersed across the planet through host interbreeding and gene flow. Certain genes and codons of HPV58 variants representing higher carcinogenic potential and/or that are under positive selection may have important implications for viral host specificity, pathogenesis, and disease prevention.
Collapse
|
119
|
Van Doorslaer K, Ruoppolo V, Schmidt A, Lescroël A, Jongsomjit D, Elrod M, Kraberger S, Stainton D, Dugger KM, Ballard G, Ainley DG, Varsani A. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins. Virus Evol 2017; 3:vex027. [PMID: 29026649 PMCID: PMC5632515 DOI: 10.1093/ve/vex027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.
Collapse
Affiliation(s)
| | - Valeria Ruoppolo
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Annie Schmidt
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | - Amelie Lescroël
- Point Blue Conservation Science, Petaluma, CA 94954, USA.,Centre d'Ecologie Fonctionnelle et Evolutive - CNRS, UMR 5175, Montpellier, France
| | | | - Megan Elrod
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Daisy Stainton
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Katie M Dugger
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
120
|
Carr M, Gonzalez G, Sasaki M, Dool SE, Ito K, Ishii A, Hang'ombe BM, Mweene AS, Teeling EC, Hall WW, Orba Y, Sawa H. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events. J Gen Virol 2017; 98:2771-2785. [PMID: 28984241 DOI: 10.1099/jgv.0.000935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Collapse
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Serena E Dool
- Zoological Institute and Museum, University of Greifswald, Anklamer Street 20, D-17489 Greifswald, Germany
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Virus Network, Baltimore, MD 21201, USA.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
121
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
122
|
Davies SI, Muranski P. T cell therapies for human polyomavirus diseases. Cytotherapy 2017; 19:1302-1316. [PMID: 28927823 DOI: 10.1016/j.jcyt.2017.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Rapid restoration of virus-specific T immunity via adoptive transfer of ex vivo generated T cells has been proven as a powerful therapy for patients with advanced cancers and refractory viral infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). BK virus (BKV), John Cunningham virus (JCV), and Merkel cell carcinoma virus (MCV) are the members of the rapidly growing human polyomavirus (hPyV) family that commonly infects most healthy humans. These viruses have a clearly established potential for causing severe end-organ damage or malignant transformation, especially in individuals with weakened immunity who are unable to mount or regain endogenous T-cell responses as a result of underlying leukemia or iatrogenic immunosuppression in autoimmunity, bone marrow and solid organ transplant settings. Here we will discuss recent advances in using T-cell-based immunotherapies to save patients suffering from PyV-associated diseases including hemorrhagic cystitis, BKV virus-associated nephropathy, and JC-associated progressive multifocal leukoencephalopathy (PML). We will also review progress in the understanding of Merkel cell carcinoma (MCC) as a virally driven tumor that is amenable to immune intervention and can be targeted with adoptively transferred T cells specific for viral oncoproteins.
Collapse
Affiliation(s)
- Sarah I Davies
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Pawel Muranski
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Columbia Center for Translational Immunology, Division of Hematology and Oncology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
123
|
Li Y, Khalafalla AI, Paden CR, Yusof MF, Eltahir YM, Al Hammadi ZM, Tao Y, Queen K, Hosani FA, Gerber SI, Hall AJ, Al Muhairi S, Tong S. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates. PLoS One 2017; 12:e0184718. [PMID: 28902913 PMCID: PMC5597213 DOI: 10.1371/journal.pone.0184718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023] Open
Abstract
Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population.
Collapse
Affiliation(s)
- Yan Li
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Clinton R. Paden
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Mohammed F. Yusof
- Animal Wealth Sector, Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates
| | - Yassir M. Eltahir
- Animal Wealth Sector, Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates
| | | | - Ying Tao
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Krista Queen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | | | - Susan I. Gerber
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aron J. Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Salama Al Muhairi
- Animal Wealth Sector, Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
124
|
Puustusmaa M, Kirsip H, Gaston K, Abroi A. The Enigmatic Origin of Papillomavirus Protein Domains. Viruses 2017; 9:v9090240. [PMID: 28832519 PMCID: PMC5618006 DOI: 10.3390/v9090240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022] Open
Abstract
Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae. However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific.
Collapse
Affiliation(s)
- Mikk Puustusmaa
- Department of Bioinformatics, University of Tartu, Riia 23a, Tartu 51010, Estonia.
| | - Heleri Kirsip
- Department of Bioinformatics, University of Tartu, Riia 23a, Tartu 51010, Estonia.
| | - Kevin Gaston
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Aare Abroi
- Estonian Biocentre, Riia 23b, Tartu 51010, Estonia.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| |
Collapse
|
125
|
Besch-Williford C, Pesavento P, Hamilton S, Bauer B, Kapusinszky B, Phan T, Delwart E, Livingston R, Cushing S, Watanabe R, Levin S, Berger D, Myles M. A Naturally Transmitted Epitheliotropic Polyomavirus Pathogenic in Immunodeficient Rats: Characterization, Transmission, and Preliminary Epidemiologic Studies. Toxicol Pathol 2017; 45:593-603. [PMID: 28782456 DOI: 10.1177/0192623317723541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the identification, pathogenesis, and transmission of a novel polyomavirus in severe combined immunodeficient F344 rats with null Prkdc and interleukin 2 receptor gamma genes. Infected rats experienced weight loss, decreased fecundity, and mortality. Large basophilic intranuclear inclusions were observed in epithelium of the respiratory tract, salivary and lacrimal glands, uterus, and prostate gland. Unbiased viral metagenomic sequencing of lesioned tissues identified a novel polyomavirus, provisionally named Rattus norvegicus polyomavirus 2 (RatPyV2), which clustered with Washington University (WU) polyomavirus in the Wuki clade of the Betapolyomavirus genus. In situ hybridization analyses and quantitative polymerase chain reaction (PCR) results demonstrated viral nucleic acids in epithelium of respiratory, glandular, and reproductive tissues. Polyomaviral disease was reproduced in Foxn1rnu nude rats cohoused with infected rats or experimentally inoculated with virus. After development of RatPyV2-specific diagnostic assays, a survey of immune-competent rats from North American research institutions revealed detection of RatPyV2 in 7 of 1,000 fecal samples by PCR and anti-RatPyV2 antibodies in 480 of 1,500 serum samples. These findings suggest widespread infection in laboratory rat populations, which may have profound implications for established models of respiratory injury. Additionally, RatPyV2 infection studies may provide an important system to investigate the pathogenesis of WU polyomavirus diseases of man.
Collapse
Affiliation(s)
| | - Patricia Pesavento
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Beth Bauer
- 1 IDEXX BioResearch, Columbia, Missouri, USA
| | - Beatrix Kapusinszky
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Tung Phan
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Eric Delwart
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | - Rie Watanabe
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Stephen Levin
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | - Diana Berger
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
126
|
Genome Sequence of Canine Polyomavirus in Respiratory Secretions of Dogs with Pneumonia of Unknown Etiology. GENOME ANNOUNCEMENTS 2017; 5:5/29/e00615-17. [PMID: 28729262 PMCID: PMC5522929 DOI: 10.1128/genomea.00615-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We report here the first canine polyomavirus genome, identified by metagenomics in respiratory secretions of two dogs with severe pneumonia, which tested negative for all canine respiratory pathogens except Mycoplasma cynos. The isolate, Canis familiaris polyomavirus 1 (DogPyV-1), is a beta polyomavirus whose closest known LT antigen relatives are primate polyomaviruses.
Collapse
|
127
|
Fahsbender E, Burns JM, Kim S, Kraberger S, Frankfurter G, Eilers AA, Shero MR, Beltran R, Kirkham A, McCorkell R, Berngartt RK, Male MF, Ballard G, Ainley DG, Breitbart M, Varsani A. Diverse and highly recombinant anelloviruses associated with Weddell seals in Antarctica. Virus Evol 2017; 3:vex017. [PMID: 28744371 PMCID: PMC5518176 DOI: 10.1093/ve/vex017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The viruses circulating among Antarctic wildlife remain largely unknown. In an effort to identify viruses associated with Weddell seals (Leptonychotes weddellii) inhabiting the Ross Sea, vaginal and nasal swabs, and faecal samples were collected between November 2014 and February 2015. In addition, a Weddell seal kidney and South Polar skua (Stercorarius maccormicki) faeces were opportunistically sampled. Using high throughput sequencing, we identified and recovered 152 anellovirus genomes that share 63–70% genome-wide identities with other pinniped anelloviruses. Genome-wide pairwise comparisons coupled with phylogenetic analysis revealed two novel anellovirus species, tentatively named torque teno Leptonychotes weddellii virus (TTLwV) -1 and -2. TTLwV-1 (n = 133, genomes encompassing 40 genotypes) is highly recombinant, whereas TTLwV-2 (n = 19, genomes encompassing three genotypes) is relatively less recombinant. This study documents ubiquitous TTLwVs among Weddell seals in Antarctica with frequent co-infection by multiple genotypes, however, the role these anelloviruses play in seal health remains unknown.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Stacy Kim
- Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Greg Frankfurter
- Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | | | - Michelle R Shero
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Roxanne Beltran
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,Department of Biology and Wildlife, University of Alaska Fairbanks, PO Box 756100, Fairbanks, AK 99775, USA
| | - Amy Kirkham
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Rd, Juneau, Alaska 99801, USA
| | - Robert McCorkell
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Maketalena F Male
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287-5001, USA.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
128
|
Identification of a Second Raccoon-Associated Polyomavirus. GENOME ANNOUNCEMENTS 2017; 5:5/26/e00548-17. [PMID: 28663292 PMCID: PMC5638276 DOI: 10.1128/genomea.00548-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Raccoon polyomavirus 1 (RacPyV1) is the suspected cause of an outbreak of fatal brain tumors among raccoons (Procyon lotor) in the western United States. Spleen samples from Georgia raccoons were screened for polyomaviruses. Although RacPyV1 was not detected, a previously unknown polyomavirus, which we designate RacPyV2, was identified and sequenced.
Collapse
|
129
|
Masek-Hammerman K, Brown TP, Bobrowski WF, Tomlinson L, Debrue M, Whiteley L, Radi Z. Polyomavirus-associated Prostatitis in Wistar Han Rats Following Immunosuppression in a Chronic Toxicity Study. Toxicol Pathol 2017. [PMID: 28639520 DOI: 10.1177/0192623317713320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic prostatitis characterized on light microscopic examination by moderate, multifocal, predominantly lymphocytic inflammation associated with epithelial atypia and intranuclear and cytoplasmic inclusion-like material was identified in the prostate gland of 2 Wistar Han rats administered an immunomodulatory test article in a 6-month chronic toxicity study. Transmission electron microscopy of the prostate glands identified 45-nm, nonenveloped, icosahedral virions arranged in paracrystalline array within the cell nuclei in 1 of the 2 rats. The size, shape, location, and array pattern were most consistent with a polyomavirus. The light and electron microscopic findings after immunosuppression in our case have a resemblance to a polyomavirus recently reported to affect prostate gland epithelium in a colony of immunocompromised X-linked severe combined immune deficiency rats. To the best of our knowledge, this is the first report of light and electronic microscopic lesions in the reproductive tract associated with polyomavirus following chronic immunosuppression in a widely used, wild-type Wistar Han rat.
Collapse
Affiliation(s)
| | - Thomas P Brown
- 2 Pfizer Inc., Drug Safety Research and Development, Groton, Connecticut, USA
| | - Walter F Bobrowski
- 2 Pfizer Inc., Drug Safety Research and Development, Groton, Connecticut, USA
| | - Lindsay Tomlinson
- 1 Pfizer Inc., Drug Safety Research and Development, Cambridge, Massachusetts, USA
| | - Marie Debrue
- 1 Pfizer Inc., Drug Safety Research and Development, Cambridge, Massachusetts, USA
| | - Laurence Whiteley
- 3 Pfizer Inc., Drug Safety Research and Development, Andover, Massachusetts, USA
| | - Zaher Radi
- 3 Pfizer Inc., Drug Safety Research and Development, Andover, Massachusetts, USA
| |
Collapse
|
130
|
Moens U, Calvignac-Spencer S, Lauber C, Ramqvist T, Feltkamp MCW, Daugherty MD, Verschoor EJ, Ehlers B, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Polyomaviridae. J Gen Virol 2017. [PMID: 28640744 PMCID: PMC5656788 DOI: 10.1099/jgv.0.000839] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Polyomaviridae is a family of small, non-enveloped viruses with circular dsDNA genomes of approximately 5 kbp. The family includes four genera whose members have restricted host range, infecting mammals and birds. Polyomavirus genomes have also been detected recently in fish. Merkel cell polyomavirus and raccoon polyomavirus are associated with cancer in their host; other members are human and veterinary pathogens. Clinical manifestations are obvious in immunocompromised patients but not in healthy individuals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Polyomaviridae, which is available at www.ictv.global/report/polyomaviridae.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, 9037 Tromsø, Norway
| | | | - Chris Lauber
- Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Carr M, Gonzalez G, Sasaki M, Ito K, Ishii A, Hang’ombe BM, Mweene AS, Orba Y, Sawa H. Discovery of African bat polyomaviruses and infrequent recombination in the large T antigen in the Polyomaviridae. J Gen Virol 2017; 98:726-738. [DOI: 10.1099/jgv.0.000737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Lusaka, Zambia
| | - Bernard M Hang’ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- Global Virus Network, Baltimore, Maryland 21201, USA
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
132
|
Gheit T, Dutta S, Oliver J, Robitaille A, Hampras S, Combes JD, McKay-Chopin S, Le Calvez-Kelm F, Fenske N, Cherpelis B, Giuliano AR, Franceschi S, McKay J, Rollison DE, Tommasino M. Isolation and characterization of a novel putative human polyomavirus. Virology 2017; 506:45-54. [PMID: 28342387 DOI: 10.1016/j.virol.2017.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
Abstract
The small double-stranded DNA polyomaviruses (PyVs) form a family of 73 species, whose natural hosts are primarily mammals and birds. So far, 13 PyVs have been isolated in humans, and some of them have clearly been associated with several diseases, including cancer. In this study, we describe the isolation of a novel PyV in human skin using a sensitive degenerate PCR protocol combined with next-generation sequencing. The new virus, named Lyon IARC PyV (LIPyV), has a circular genome of 5269 nucleotides. Phylogenetic analyses showed that LIPyV is related to the raccoon PyV identified in neuroglial tumours in free-ranging raccoons. Analysis of human specimens from cancer-free individuals showed that 9 skin swabs (9/445; 2.0%), 3 oral gargles (3/140; 2.1%), and one eyebrow hair sample (1/439; 0.2%) tested positive for LIPyV. Future biological and epidemiological studies are needed to confirm the human tropism and provide insights into its biological properties.
Collapse
Affiliation(s)
- Tarik Gheit
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Sankhadeep Dutta
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Javier Oliver
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Alexis Robitaille
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Shalaka Hampras
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jean-Damien Combes
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Sandrine McKay-Chopin
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | | | - Neil Fenske
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA; Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Basil Cherpelis
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA; Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anna R Giuliano
- Center for Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL, USA
| | - Silvia Franceschi
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - James McKay
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France
| | - Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon 69372, France.
| |
Collapse
|
133
|
Bhattacharjee S, Chattaraj S. Entry, infection, replication, and egress of human polyomaviruses: an update. Can J Microbiol 2017; 63:193-211. [DOI: 10.1139/cjm-2016-0519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyomaviruses (PyVs), belonging to the family Polyomaviridae, are a group of small, nonenveloped, double-stranded, circular DNA viruses widely distributed in the vertebrates. PyVs cause no apparent disease in adult laboratory mice but cause a wide variety of tumors when artificially inoculated into neonates or semipermissive animals. A few human PyVs, such as BK, JC, and Merkel cell PyVs, have been unequivocally linked to pathogenesis under conditions of immunosuppression. Infection is thought to occur early in life and persists for the lifespan of the host. Over evolutionary time scales, it appears that PyVs have slowly co-evolved with specific host animal lineages. Host cell surface glycoproteins and glycolipids seem to play a decisive role in the entry stage of viral infection and in channeling the virions to specific intracellular membrane-bound compartments and ultimately to the nucleus, where the genomes are replicated and packaged for release. Therefore the transport of the infecting virion or viral genome to this site of multiplication is an essential process in productive viral infection as well as in latent infection and transformation. This review summarizes the major findings related to the characterization of the nature of the interactions between PyV and host protein and their impact in host cell invasion.
Collapse
Affiliation(s)
- Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| | - Sutanuka Chattaraj
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| |
Collapse
|
134
|
Varsani A, Frankfurter G, Stainton D, Male MF, Kraberger S, Burns JM. Identification of a polyomavirus in Weddell seal (Leptonychotes weddellii) from the Ross Sea (Antarctica). Arch Virol 2017; 162:1403-1407. [PMID: 28124141 DOI: 10.1007/s00705-017-3239-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 12/23/2016] [Indexed: 11/25/2022]
Abstract
Viruses are ubiquitous in nature, however, very few have been identified that are associated with Antarctic animals. Here we report the identification of a polyomavirus in the kidney tissue of a deceased Weddell seal from the Ross Sea, Antarctica. The circular genome (5186 nt) has typical features of polyomaviruses with a small and larger T-antigen open reading frames (ORFs) and three ORFs encoding VP1, VP2 and VP3 capsid proteins. The genome of the Weddell seal polyomavirus (WsPyV) shares 85.4% genome-wide pairwise identity with a polyomavirus identified in a California sea lion. To our knowledge WsPyV is the first viral genome identified in Antarctic pinnipeds and the third polyomavirus to be identified from an Antarctic animal, the other two being from Adélie penguin (Pygoscelis adeliae) and a sharp-spined notothen (Trematomus pennellii), both sampled in the Ross sea. The GenBank accession number: KX533457.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, 7001, South Africa.
| | - Greg Frankfurter
- Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maketalena F Male
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer M Burns
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA.
| |
Collapse
|
135
|
Complete Genome Sequence of a Polyomavirus Recovered from a Pomona Leaf-Nosed Bat (Hipposideros pomona) Metagenome Data Set. GENOME ANNOUNCEMENTS 2017; 5:5/3/e01053-16. [PMID: 28104645 PMCID: PMC5255915 DOI: 10.1128/genomea.01053-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the complete genome sequence of a polyomavirus found in a nasal/rectal metagenome of Hipposideros pomona (Pomona leaf-nosed bat). Interestingly, the genetic organization and phylogenetic relationships of the new virus suggest greater similarity to recently discovered fish-associated polyomaviruses rather than to polyomavirus species previously observed in bats.
Collapse
|
136
|
McBride AA. The Promise of Proteomics in the Study of Oncogenic Viruses. Mol Cell Proteomics 2017; 16:S65-S74. [PMID: 28104704 DOI: 10.1074/mcp.o116.065201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/16/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic viruses are responsible for about 15% human cancers. This article explores the promise and challenges of viral proteomics in the study of the oncogenic human DNA viruses, HPV, McPyV, EBV and KSHV. These viruses have coevolved with their hosts and cause persistent infections. Each virus encodes oncoproteins that manipulate key cellular pathways to promote viral replication and evade the host immune response. Viral proteomics can identify cellular pathways perturbed by viral infection, identify cellular proteins that are crucial for viral persistence and oncogenesis, and identify important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Alison A McBride
- From the ‡Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
137
|
Das S, Fearnside K, Sarker S, Forwood JK, Raidal SR. A novel pathogenic aviadenovirus from red-bellied parrots (Poicephalus rufiventris) unveils deep recombination events among avian host lineages. Virology 2017; 502:188-197. [PMID: 28063343 DOI: 10.1016/j.virol.2016.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 01/22/2023]
Abstract
Competing roles of coevolution, selective pressure and recombination are an emerging interest in virus evolution. We report a novel aviadenovirus from captive red-bellied parrots (Poicephalus rufiventris) that uncovers evidence of deep recombination among aviadenoviruses. The sequence identity of the virus was most closely related to Turkey adenovirus D (42% similarity) and other adenoviruses in chickens, turkeys and pigeons. Sequencing and comparative analysis showed that the genome comprised 40,930 nucleotides containing 42 predicted open reading frames (ORFs) 19 of which had strong similarity with genes from other adenovirus species. The new genome unveiled a lineage that likely participated in deep recombination events across the genus Aviadenovirus accounting for an ancient evolutionary relationship. We hypothesize frequent host switch events and recombination among adenovirus progenitors in Galloanserae hosts caused the radiation of extant aviadenoviruses and the newly assembled Poicephalus adenovirus genome points to a potentially broader host range of these viruses among birds.
Collapse
Affiliation(s)
- Shubhagata Das
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, New South Wales 2678, Australia.
| | - Kathleen Fearnside
- Hills District Veterinary Hospital, Unit 1, 276 New Line Road, Dural, NSW 2158, Australia.
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Jade K Forwood
- School of Biomedical Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, New South Wales 2678, Australia.
| |
Collapse
|
138
|
[How polyomavirus crosses the endoplasmic reticulum membrane to gain entry into the cytosol]. Uirusu 2017; 67:121-132. [PMID: 30369536 DOI: 10.2222/jsv.67.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Polyomavirus (Py) is a non-enveloped, double stranded DNA virus that causes a myriad of devastating human diseases for immunocompromised individuals. To cause infection, Py binds to its receptors on the plasma membrane, is endocytosed, and sorts to the endoplasmic reticulum (ER). From here, Py penetrates the ER membrane to reach the cytosol. Ensuing nuclear entry enables the virus to cause infection. How Py penetrates the ER membrane to access the cytosol is a decisive infection step that is enigmatic. In this review, I highlight the mechanisms by which host cell functions facilitate Py translocation across the ER membrane into the cytosol.
Collapse
|
139
|
Identification and Characterization of Novel Rat Polyomavirus 2 in a Colony of X-SCID Rats by P-PIT assay. mSphere 2016; 1:mSphere00334-16. [PMID: 28028546 PMCID: PMC5177731 DOI: 10.1128/msphere.00334-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies. Polyomaviruses (PyVs) are known to infect a wide range of vertebrates and invertebrates and are associated with a broad spectrum of diseases, including cancers, particularly in immune-suppressed hosts. A novel polyomavirus, designated rat polyomavirus 2 (RatPyV2), was identified from a breeding colony of rats having X-linked severe combined immunodeficiency. Using a human panpolyomavirus immunohistochemistry test (P-PIT), RatPyV2 was initially detected in the parotid salivary gland of a colony member. Rolling circle amplification using DNA from harderian and parotid glands identified a novel 5.1-kb polyomavirus genome closely related to human Washington University (WU) and Karolinska Institute (KI) and vole polyomaviruses but notably divergent from Rattus norvegicus PyV1 (RnorPyV1; also designated RatPyV1). Further screening showed RatPyV2 inclusion body infection in the lung epithelium and variably in other respiratory, reproductive, and glandular tissues of 12/12 (100%) rats. IMPORTANCE Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies.
Collapse
|
140
|
Toribio AL, Alako B, Amid C, Cerdeño-Tarrága A, Clarke L, Cleland I, Fairley S, Gibson R, Goodgame N, Ten Hoopen P, Jayathilaka S, Kay S, Leinonen R, Liu X, Martínez-Villacorta J, Pakseresht N, Rajan J, Reddy K, Rosello M, Silvester N, Smirnov D, Vaughan D, Zalunin V, Cochrane G. European Nucleotide Archive in 2016. Nucleic Acids Res 2016; 45:D32-D36. [PMID: 27899630 PMCID: PMC5210577 DOI: 10.1093/nar/gkw1106] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) offers a rich platform for data sharing, publishing and archiving and a globally comprehensive data set for onward use by the scientific community. With a broad scope spanning raw sequencing reads, genome assemblies and functional annotation, the resource provides extensive data submission, search and download facilities across web and programmatic interfaces. Here, we outline ENA content and major access modalities, highlight major developments in 2016 and outline a number of examples of data reuse from ENA.
Collapse
Affiliation(s)
- Ana Luisa Toribio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Blaise Alako
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Clara Amid
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ana Cerdeño-Tarrága
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Iain Cleland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Susan Fairley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Richard Gibson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Neil Goodgame
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Petra Ten Hoopen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Suran Jayathilaka
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Simon Kay
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rasko Leinonen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Xin Liu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Josué Martínez-Villacorta
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nima Pakseresht
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jeena Rajan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kethi Reddy
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Marc Rosello
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nicole Silvester
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dmitriy Smirnov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniel Vaughan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Vadim Zalunin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Guy Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
141
|
Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes. J Virol 2016; 90:8531-41. [PMID: 27440885 DOI: 10.1128/jvi.00247-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. IMPORTANCE The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.
Collapse
|