101
|
Parsons LM, Bouwman KM, Azurmendi H, de Vries RP, Cipollo JF, Verheije MH. Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding. J Biol Chem 2019; 294:7797-7809. [PMID: 30902814 PMCID: PMC6514631 DOI: 10.1074/jbc.ra119.007532] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Avian coronaviruses, including infectious bronchitis virus (IBV), are important
respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is
responsible for binding to host tissues. Glycosylation sites in the spike
protein are highly conserved across viral genotypes, suggesting an important
role for this modification in the virus life cycle. Here, we analyzed the
N-glycosylation of the receptor-binding domain (RBD) of IBV
strain M41 spike protein and assessed the role of this modification in host
receptor binding. Ten single Asn–to–Ala substitutions at the
predicted N-glycosylation sites of the M41–RBD were
evaluated along with two control Val–to–Ala substitutions. CD
analysis revealed that the secondary structure of all variants was retained
compared with the unmodified M41–RBD construct. Six of the 10
glycosylation variants lost binding to chicken trachea tissue and an
ELISA-presented α2,3-linked sialic acid oligosaccharide ligand.
LC/MSE glycomics analysis revealed that glycosylation sites have
specific proportions of N-glycan subtypes. Overall, the
glycosylation patterns of most variant RBDs were highly similar to those of the
unmodified M41–RBD construct. In silico docking
experiments with the recently published cryo-EM structure of the M41 IBV spike
protein and our glycosylation results revealed a potential ligand receptor site
that is ringed by four glycosylation sites that dramatically impact ligand
binding. Combined with the results of previous array studies, the glycosylation
and mutational analyses presented here suggest a unique glycosylation-dependent
binding modality for the M41 spike protein.
Collapse
Affiliation(s)
- Lisa M Parsons
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kim M Bouwman
- the Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands, and
| | - Hugo Azurmendi
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Robert P de Vries
- the Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands
| | - John F Cipollo
- From the Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993,
| | - Monique H Verheije
- the Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands, and
| |
Collapse
|
102
|
Al Kahlout RA, Nasrallah GK, Farag EA, Wang L, Lattwein E, Müller MA, El Zowalaty ME, Al Romaihi HE, Graham BS, Al Thani AA, Yassine HM. Comparative Serological Study for the Prevalence of Anti-MERS Coronavirus Antibodies in High- and Low-Risk Groups in Qatar. J Immunol Res 2019; 2019:1386740. [PMID: 30906787 PMCID: PMC6398027 DOI: 10.1155/2019/1386740] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Infection with Middle East respiratory syndrome coronavirus (MERS-CoV) could be asymptomatic or cause mild influenza-like illness. Therefore, the prevalence of MERS-CoV infections in the general population could be underestimated, which necessitates active surveillance to determine the epidemiological importance of asymptomatic cases. The aim of this study is to evaluate the performance of various serological assays and to estimate the seroprevalence of anti-MERS-CoV antibodies in high- and low-risk groups in Qatar. A total of 4858 samples were screened, including 4719 samples collected from healthy blood donors (BD) over a period of five years (2012-2016), 135 samples from baseline case contacts (CC) collected from individuals in close contact with three positive PCR-confirmed patients (CP), and four samples from MERS-CoV CP. Initial screening using anti-MERS-CoV IgG (IgG rS1-ELISA kit) revealed ten reactive samples from BD (10/4719, 0.21%), one from CC (1/135, 0.74%), and three from CP (3/4, 75%). Samples from CP but not from BD were also reactive by whole-virus anti-MERS-CoV IgG (n = 3/4) and IgM (n = 1/4) indirect immunefluorescent tests (IIFT) and pseudoparticle neutralization test (ppNT). The reactive sample from CC was also confirmed by ppNT. Surprisingly, one out of thirteen (7.7%) randomly selected IgG rS1-ELISA-negative BD samples from the initial screening was reactive by the IgM-IIFT (but not by the IgG-IIFT) and was subsequently confirmed by ppNT. All IgG rS1-ELISA-reactive samples from BD exhibited considerable reactivity to the four circulating human coronaviruses (HKU1, OC43, 229E, and NL63). Cross-reactivity with SARS was only reported for samples from CP using IgG and IgM-IIFT. In conclusion, we report a low prevalence of anti-MERS antibodies in the general population, which coincides with the low number of all reported cases by the time of our study (2017) in Qatar (n = 21). The false-positive results and the observed cross-reactivity between MERS-CoV and other circulating human coronavirus necessitate more detailed evaluation of available serological assays.
Collapse
Affiliation(s)
- Reham A. Al Kahlout
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Elmoubasher A. Farag
- Communicable Diseases Control Programs, Public Health Department, Ministry of Public Health, Doha, Qatar
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | | | - Marcel A. Müller
- Institute of Virology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Mohamed E. El Zowalaty
- Virology and Microbiology Research Laboratory, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Hamad E. Al Romaihi
- Communicable Diseases Control Programs, Public Health Department, Ministry of Public Health, Doha, Qatar
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Asmaa A. Al Thani
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hadi M. Yassine
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
103
|
Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 2019; 176:1026-1039.e15. [PMID: 30712865 PMCID: PMC6751136 DOI: 10.1016/j.cell.2018.12.028] [Citation(s) in RCA: 487] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
Abstract
Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaoli Xiong
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA; Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Joost Snijder
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Robin Gopal
- National Infection Service, Public Health England, London NW9 5HT, UK
| | - Mian Dai
- Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Maria Zambon
- National Infection Service, Public Health England, London NW9 5HT, UK
| | - Félix A Rey
- Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Davide Corti
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
104
|
Ellis S, Keep S, Britton P, de Wit S, Bickerton E, Vervelde L. Recombinant Infectious Bronchitis Viruses Expressing Chimeric Spike Glycoproteins Induce Partial Protective Immunity against Homologous Challenge despite Limited Replication In Vivo. J Virol 2018; 92:e01473-18. [PMID: 30209177 PMCID: PMC6232476 DOI: 10.1128/jvi.01473-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination regimes against Infectious bronchitis virus (IBV), which are based on a single virus serotype, often induce insufficient levels of cross-protection against serotypes and two or more antigenically diverse vaccines are used in attempt to provide broader protection. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, are associated with poor cross-protection. Here, homologous vaccination trials with recombinant IBVs (rIBVs), based on the apathogenic strain, BeauR, were conducted to elucidate the role of S1 in protection. A single vaccination of specific-pathogen-free chickens with rIBV expressing S1 of virulent strains M41 or QX, BeauR-M41(S1) and BeauR-QX(S1), gave incomplete protection against homologous challenge, based on ciliary activity and clinical signs. There could be conformational issues with the spike if heterologous S1 and S2 are linked, suggesting a homologous S2 might be essential. To address this, a homologous vaccination-challenge trial incorporating rIBVs expressing full spike from M41, BeauR-M41(S), and S2 subunit from M41, BeauR-M41(S2) was conducted. All chimeric viruses grew to similar titers in vitro, induced virus-specific partial protective immunity, evident by cellular infiltrations, reductions in viral RNA load in the trachea and conjunctiva and higher serum anti-IBV titers. Collectively, these findings show that vaccination with rIBVs primed the birds for challenge but the viruses were cleared rapidly from the mucosal tissues in the head. Chimeric S1 and S2 viruses did not protect as effectively as BeauR-M41(S) based on ciliary activity and clinical signs. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.IMPORTANCE Infectious bronchitis virus causes an acute, highly contagious respiratory disease, responsible for significant economic losses to the poultry industry. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, have been associated with poor cross-protection. Available vaccines give poor cross-protection and rationally designed live attenuated vaccines, based on apathogenic BeauR, could address these. Here, to determine the role of S1 in protection, a series of homologous vaccination trials with rIBVs were conducted. Single vaccinations with chimeric rIBVs induced virus-specific partial protective immunity, characterized by reduction in viral load and serum antibody titers. However, BeauR-M41(S) was the only vaccination to improve the level of protection against clinical signs and the loss of tracheal ciliary activity. Growth characteristics show that all of the rIBVs replicated in vitro to similar levels. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.
Collapse
Affiliation(s)
- Samantha Ellis
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Penicuik, Midlothian, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | | | - Lonneke Vervelde
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Penicuik, Midlothian, United Kingdom
| |
Collapse
|
105
|
Hong SM, An SH, Lee CY, Song CS, Choi KS, Kim JH, Kwon HJ. Pathobiological and Genomic Characterization of a Cold-Adapted Infectious Bronchitis Virus (BP-caKII). Viruses 2018; 10:v10110652. [PMID: 30463206 PMCID: PMC6266813 DOI: 10.3390/v10110652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/02/2023] Open
Abstract
We established a cold-adapted infectious bronchitis virus (BP-caKII) by passaging a field virus through specific pathogen-free embryonated eggs 20 times at 32 °C. We characterized its growth kinetics and pathogenicity in embryonated eggs, and its tropism and persistence in different tissues from chickens; then, we evaluated pathogenicity by using a new premature reproductive tract pathogenicity model. Furthermore, we determined the complete genomic sequence of BP-caKII to understand the genetic changes related to cold adaptation. According to our results, BP-caKII clustered with the KII genotype viruses K2 and KM91, and showed less pathogenicity than K2, a live attenuated vaccine strain. BP-caKII showed delayed viremia, resulting in its delayed dissemination to the kidneys and cecal tonsils compared to K2 and KM91, the latter of which is a pathogenic field strain. A comparative genomics study revealed similar nucleotide sequences between BP-caKII, K2 and KM91 but clearly showed different mutations among them. BP-caKII shared several mutations with K2 (nsp13, 14, 15 and 16) following embryo adaptation but acquired multiple additional mutations in nonstructural proteins (nsp3, 4 and 12), spike proteins and nucleocapsid proteins following cold adaptation. Thus, the establishment of BP-caKII and the identified mutations in this study may provide insight into the genetic background of embryo and cold adaptations, and the attenuation of coronaviruses.
Collapse
Affiliation(s)
- Seung-Min Hong
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Se-Hee An
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Chung-Young Lee
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Chang-Seon Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Kang-Seuk Choi
- Avian Disease Division, animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-Do 39660, Korea.
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
- Reseach Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Korea.
| | - Hyuk-Joon Kwon
- Reseach Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Korea.
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
- Farm Animal Clinical Training and Research Center, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
106
|
Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism. J Virol 2018; 92:e01044-18. [PMID: 30021894 PMCID: PMC6146808 DOI: 10.1128/jvi.01044-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The spike (S) glycoprotein of the avian gammacoronavirus infectious bronchitis virus (IBV) is comprised of two subunits (S1 and S2), has a role in virulence in vivo, and is responsible for cellular tropism in vitro We have previously demonstrated that replacement of the S glycoprotein ectodomain from the avirulent Beaudette strain of IBV with the corresponding region from the virulent M41-CK strain resulted in a recombinant virus, BeauR-M41(S), with the in vitro cell tropism of M41-CK. The IBV Beaudette strain is able to replicate in both primary chick kidney cells and Vero cells, whereas the IBV M41-CK strain replicates in primary cells only. In order to investigate the region of the IBV S responsible for growth in Vero cells, we generated a series of recombinant IBVs expressing chimeric S glycoproteins, consisting of regions from the Beaudette and M41-CK S gene sequences, within the genomic background of Beaudette. The S2, but not the S1, subunit of the Beaudette S was found to confer the ability to grow in Vero cells. Various combinations of Beaudette-specific amino acids were introduced into the S2 subunit of M41 to determine the minimum requirement to confer tropism for growth in Vero cells. The ability of IBV to grow and produce infectious progeny virus in Vero cells was subsequently narrowed down to just 3 amino acids surrounding the S2' cleavage site. Conversely, swapping of the 3 Beaudette-associated amino acids with the corresponding ones from M41 was sufficient to abolish Beaudette growth in Vero cells.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines, both live attenuated and inactivated, are currently grown on embryonated hen's eggs, a cumbersome and expensive process due to the fact that most IBV strains do not grow in cultured cells. The reverse genetics system for IBV creates the opportunity for generating rationally designed and more effective vaccines. The observation that IBV Beaudette has the additional tropism for growth on Vero cells also invokes the possibility of generating IBV vaccines produced from cultured cells rather than by the use of embryonated eggs. The regions of the IBV Beaudette S glycoprotein involved in the determination of extended cellular tropism were identified in this study. This information will enable the rational design of a future generation of IBV vaccines that may be grown on Vero cells.
Collapse
|
107
|
Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018; 14:e1007236. [PMID: 30102747 PMCID: PMC6107290 DOI: 10.1371/journal.ppat.1007236] [Citation(s) in RCA: 583] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/23/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
The trimeric SARS coronavirus (SARS-CoV) surface spike (S) glycoprotein consisting of three S1-S2 heterodimers binds the cellular receptor angiotensin-converting enzyme 2 (ACE2) and mediates fusion of the viral and cellular membranes through a pre- to postfusion conformation transition. Here, we report the structure of the SARS-CoV S glycoprotein in complex with its host cell receptor ACE2 revealed by cryo-electron microscopy (cryo-EM). The complex structure shows that only one receptor-binding domain of the trimeric S glycoprotein binds ACE2 and adopts a protruding “up” conformation. In addition, we studied the structures of the SARS-CoV S glycoprotein and its complexes with ACE2 in different in vitro conditions, which may mimic different conformational states of the S glycoprotein during virus entry. Disassociation of the S1-ACE2 complex from some of the prefusion spikes was observed and characterized. We also characterized the rosette-like structures of the clustered SARS-CoV S2 trimers in the postfusion state observed on electron micrographs. Structural comparisons suggested that the SARS-CoV S glycoprotein retains a prefusion architecture after trypsin cleavage into the S1 and S2 subunits and acidic pH treatment. However, binding to the receptor opens up the receptor-binding domain of S1, which could promote the release of the S1-ACE2 complex and S1 monomers from the prefusion spike and trigger the pre- to postfusion conformational transition. The global outbreak of SARS in 2002–2003 was caused by infection by a human coronavirus, SARS-CoV. Although the virus has been extensively studied with regard to epidemiology, virology, clinical features and other aspects, there are still no approved antiviral drugs and vaccines to treat and prevent infections of SARS-CoV. The spike (S) glycoprotein of the coronavirus, responsible for host cell attachment and mediating host cell membrane and viral membrane fusion during infection, is key to the viral life cycle and a major target for antiviral drugs and vaccines. In this study, we report the structures of different conformational states of the SARS-CoV S glycoprotein during virus entry. Specifically, we found that the S glycoprotein retains the prefusion trimer structure after trypsin cleavage and low-pH treatment. Additionally, binding with host cell receptor ACE2 promotes the release of S1 subunits from the S trimer and triggers the pre- to postfusion conformational transition. Our results provide new insights for understanding the mechanisms involved in coronavirus S glycoprotein-mediated virus entry.
Collapse
|