101
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
102
|
Iqbal S, Zhao Z. Poly (β amino esters) copolymers: Novel potential vectors for delivery of genes and related therapeutics. Int J Pharm 2022; 611:121289. [PMID: 34775041 DOI: 10.1016/j.ijpharm.2021.121289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
The unique properties of polymers have performed an essential contribution to the drug delivery system by providing an outstanding platform for the delivery of macromolecules and genes. However, the block copolymers have been the subject of many recently published works whose results have demonstrated excellent performance in drug targeting. Poly(β-amino esters) (PβAEs) copolymers are the synthetic cationic polymers that are tailored by chemically joining PβAEs with other additives to demonstrate extraordinary efficiency in designing pre-defined and pre-programmed nanostructures, site-specific delivery, andovercoming the distinct cellular barriers. Different compositional and structural libraries could be generated by combinatorial chemistry and by the addition of various novel functional additives that fulfill the multiple requirements of targeted delivery. These intriguing attributes allow PβAE-copolymers to have customized therapeutic functions such as excellent encapsulation capacity, high stability, and stimuli-responsive release. Here, we give an overview of PβAE copolymers-based formulations along with focusing on most notable improvements such as structural modifications, bio-conjugations, and stimuli-responsive approaches, for safe and effective nucleic acids delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
103
|
Yang C, Zhao H, Sun Y, Wang C, Geng X, Wang R, Tang L, Han D, Liu J, Tan W. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3083-3095. [PMID: 35293579 PMCID: PMC8989545 DOI: 10.1093/nar/gkac156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Cheng Wang
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyao Geng
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruowen Wang
- To whom correspondence should be addressed. Tel: +86 02168385698; Fax:+86 02168385698;
| | - Lumin Tang
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine (IMM), Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianjun Liu
- Correspondence may also be addressed to Jianjun Liu.
| | - Weihong Tan
- Correspondence may also be addressed to Weihong Tan.
| |
Collapse
|
104
|
Dubey SK, Bhatt T, Agrawal M, Saha RN, Saraf S, Saraf S, Alexander A. Application of chitosan modified nanocarriers in breast cancer. Int J Biol Macromol 2022; 194:521-538. [PMID: 34822820 DOI: 10.1016/j.ijbiomac.2021.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
As per the WHO, every year around 2.1 million women are detected with breast cancer. It is one of the most invasive cancer in women and second most among all, contributing around 15% of death worldwide. The available anticancer therapies including chemo, radio, and hormone therapy are associated with a high load of reversible and irreversible adverse effects, limited therapeutic efficacy, and low chances of quality survival. To minimize the side effects, improving therapeutic potency and patient compliance promising targeted therapies are highly desirable. In this sequence, various nanocarriers and target modified systems have been explored by researchers throughout the world. Among these chitosan-based nanocarriers offers one of the most interesting, flexible, and biocompatible systems. The unique characteristics of chitosan like surface flexibility, biocompatibility, hydrophilicity, non-toxic and cost-effective behavior assist to overcome the inadequacy of existing therapy. The present review throws light on the successes, failures, and current status of chitosan modified novel techniques for tumor targeting of bioactives. It also emphasizes the molecular classification of breast cancer and current clinical development of novel therapies. The review compiles most relevant works of the past 10 years focusing on the application of chitosan-based nanocarrier against breast cancer.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, 700056 Kolkata, India; Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Tanya Bhatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, 781101 Guwahati, Assam, India.
| |
Collapse
|
105
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1282-1295. [DOI: 10.1093/jpp/rgac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022]
|
106
|
Gould A, Zhang D, Arrieta VA, Stupp R, Sonabend AM. Delivering albumin-bound paclitaxel across the blood-brain barrier for gliomas. Oncotarget 2021; 12:2474-2475. [PMID: 34917265 PMCID: PMC8664395 DOI: 10.18632/oncotarget.28018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/30/2022] Open
|
107
|
Katekar R, Singh P, Garg R, Verma S, Gayen JR. Emerging nanotechnology based combination therapies of taxanes for multiple drug-resistant cancers. Pharm Dev Technol 2021; 27:95-107. [PMID: 34806547 DOI: 10.1080/10837450.2021.2009861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
'One drug- one target' to 'multiple drug- multiple targets' paradigm shifted to produce combination therapies, have found great outcomes to overcome multiple drug resistance (MDR). MDR is a significant barrier to the delivery of taxane-based anticancer medicines such as docetaxel, paclitaxel, and cabazitaxel. Due to MDR induced by drug efflux transporters, clinical application of these medications is impeded. To date, nanoformulations such as liposomes, micelles, polymeric nanoparticles, and gold nanoparticles have been investigated to deliver taxanes alone and in combination to reverse drug resistance. Despite the fact that various groups have already looked into taxane nano formulations in the literature, there isn't much in the way of polypharmacology and advanced nanoformulations with a focus on MDR. In this overview, we briefly covered the insights regarding MDR, difficulties related to current pharmaceutical products of taxanes, combination therapies of taxanes to combat MDR, all of which can be used to delve into cancer treatment.
Collapse
Affiliation(s)
- Roshan Katekar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
108
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
109
|
Zhang H, Xu J, Gao B, Wang H, Huang J, Zhou J, Yang R, Yan F, Peng Y. Synergistic Cascade Strategy Based on Modifying Tumor Microenvironment for Enhanced Breast Cancer Therapy. Front Pharmacol 2021; 12:750847. [PMID: 34867360 PMCID: PMC8636108 DOI: 10.3389/fphar.2021.750847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with very few treatment options. Although tumor-targeted nanomedicines hold great promise for the treatment of TNBC, the tumor microenvironment (TME) continues to be a major cause of failure in nanotherapy and immunotherapy. To overcome this barrier, we designed a new synergistic cascade strategy (SCS) that uses mild hyperthermia and smart drug delivery system (SDDS) to alter TME resistance in order to improve drug delivery and therapeutic efficacy of TNBC. Methods: Mild hyperthermia was produced by microwave (MW) irradiation. SDDS were formulated with thermosensitive polymer-lipid nanoparticles (HA-BNPs@Ptx), composed of polymer PLGA, phospholipid DPPC, hyaluronic acid (HA, a differentiation-44-targeted molecule, also known as CD44), 1-butyl-3-methylimidazolium-L-lactate (BML, a MW sensitizer), and paclitaxel (Ptx, chemotherapy drug). 4T1 breast tumor-bearing mice were treated with two-step MW combined with HA-BNPs@Ptx. Tumors in mice were pretreated with first MW irradiation prior to nanoparticle injection to modify and promote TME and promoting nanoparticle uptake and retention. The second MW irradiation was performed on the tumor 24 h after the injection of HA-BNPs@Ptx to produce a synergistic cascade effect through activating BML, thus, enhancing a hyperthermia effect, and instantly releasing Ptx at the tumor site. Results: Multifunctional CD44-targeted nanoparticles HA-BNPs@Ptx were successfully prepared and validated in vitro. After the first MW irradiation of tumors in mice, the intratumoral perfusion increased by two times, and the nanoparticle uptake was augmented by seven times. With the second MW irradiation, remarkable antitumor effects were obtained with the inhibition rate up to 88%. In addition, immunohistochemical analysis showed that SCS therapy could not only promote tumor cell apoptosis but also significantly reduce lung metastasis. Conclusion: The SCS using mild hyperthermia combined with SDDS can significantly improve the efficacy of TNBC treatment in mice by modifying TME and hyperthermia-mediated EPR effects.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jinshun Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Binyang Gao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Yang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Yan
- Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu, China
| | - Yulan Peng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
110
|
Ladaycia A, Passirani C, Lepeltier E. Microbiota and nanoparticles: Description and interactions. Eur J Pharm Biopharm 2021; 169:220-240. [PMID: 34736984 DOI: 10.1016/j.ejpb.2021.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The healthy human body is inhabited with a large number of bacteria, forming natural flora. It is even estimated that for a human body, its amount of DNA is less important that its bacterial genetic material. This flora plays major roles in the sickness and health of the human body and any change in its composition may lead to different diseases. Nanoparticles are widely used in numerous fields: cosmetics, food, industry, and as drug delivery carrier in the medical field. Being included in these various applications, nanoparticles may interact with the human body at various levels and with different mechanisms. These interactions differ depending on the nanoparticle nature, its structure, its concentration and manifest in different ways on the microbiota, leading to its destabilization, its restoring or showing no toxic effect. Nanoparticles may also be used as a vehicle to regulate the microbiota or to treat some of its diseases.
Collapse
Affiliation(s)
- Abdallah Ladaycia
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
111
|
Hwang D, Vinod N, Skoczen SL, Ramsey JD, Snapp KS, Montgomery SA, Wang M, Lim C, Frank JE, Sokolsky-Papkov M, Li Z, Yuan H, Stern ST, Kabanov AV. Bioequivalence assessment of high-capacity polymeric micelle nanoformulation of paclitaxel and Abraxane® in rodent and non-human primate models using a stable isotope tracer assay. Biomaterials 2021; 278:121140. [PMID: 34634661 PMCID: PMC10726948 DOI: 10.1016/j.biomaterials.2021.121140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023]
Abstract
The in vivo fate of nanoformulated drugs is governed by the physicochemical properties of the drug and the functionality of nanocarriers. Nanoformulations such as polymeric micelles, which physically encapsulate poorly soluble drugs, release their payload into the bloodstream during systemic circulation. This results in three distinct fractions of the drug-nanomedicine: encapsulated, protein-bound, and free drug. Having a thorough understanding of the pharmacokinetic (PK) profiles of each fraction is essential to elucidate mechanisms of nanomedicine-driven changes in drug exposure and PK/PD relationships pharmacodynamic activity. Here, we present a comprehensive preclinical assessment of the poly (2-oxazoline)-based polymeric micelle of paclitaxel (PTX) (POXOL hl-PM), including bioequivalence comparison to the clinically approved paclitaxel nanomedicine, Abraxane®. Physicochemical characterization and toxicity analysis of POXOL hl-PM was conducted using standardized protocols by the Nanotechnology Characterization Laboratory (NCL). The bioequivalence of POXOL hl-PM to Abraxane® was evaluated in rats and rhesus macaques using the NCL's established stable isotope tracer ultrafiltration assay (SITUA) to delineate the plasma PK of each PTX fraction. The SITUA study revealed that POXOL hl-PM and Abraxane® had comparable PK profiles not only for total PTX but also for the distinct drug fractions, suggesting bioequivalence in given animal models. The comprehensive preclinical evaluation of POXOL hl-PM in this study showcases a series of widely applicable standardized studies by NCL for assessing nanoformulations prior to clinical investigation.
Collapse
Affiliation(s)
- Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Natasha Vinod
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, 27599, United States; Joint UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Sarah L Skoczen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, United States
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Kelsie S Snapp
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, United States
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Mengzhe Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Jonathan E Frank
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Hong Yuan
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, United States
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, 27599, United States; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
112
|
Mu QG, Lin G, Jeon M, Wang H, Chang FC, Revia RA, Yu J, Zhang M. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:149-169. [PMID: 34987308 PMCID: PMC8722574 DOI: 10.1016/j.mattod.2021.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triple negative breast cancer is difficult to treat effectively, due to its aggressiveness, drug resistance, and lack of the receptors required for hormonal therapy, particularly at the metastatic stage. Here, we report the development and evaluation of a multifunctional nanoparticle formulation containing an iron oxide core that can deliver doxorubicin, a cytotoxic agent, and polyinosinic:polycytidylic acid (Poly IC), a TLR3 agonist, in a targeted and simultaneous fashion to both breast cancer and dendritic cells. Endoglin-binding peptide (EBP) is used to target both TNBC cells and vasculature epithelia. The nanoparticle demonstrates favorable physicochemical properties and a tumor-specific targeting profile. The nanoparticle induces tumor apoptosis through multiple mechanisms including direct tumor cell killing, dendritic cell-initiated innate and T cell-mediated adaptive immune responses. The nanoparticle markedly inhibits tumor growth and metastasis and substantially extends survival in an aggressive and drug-resistant metastatic mouse model of triple negative breast cancer (TNBC). This study points to a promising platform that may substantially improve the therapeutic efficacy for treating metastatic TNBC.
Collapse
Affiliation(s)
- Qin gxin Mu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Mike Jeon
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - John Yu
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
113
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
114
|
Comini LR, Alasino RV, Leonhard V, Bierbrauer KL, Beltramo DM. Self-assembled micelles of the (lipo) glycopeptides, teicoplanin, as taxane nanocarriers. NANOTECHNOLOGY 2021; 32:465102. [PMID: 34330111 DOI: 10.1088/1361-6528/ac1979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles is one of the strategies currently studied to minimize the toxicity and lack of tissue specificity of many cancer drugs used in chemotherapy. In this research the physicochemical and biological behavior of a novel self-assembled nanostructure of the antibiotic Teicoplanin (Teico) was characterized as a nanocarrier system for solubilizing highly hydrophobic drugs like Paclitaxel (Ptx) in aqueous media. The Teico micelles were loaded with Ptx in DMSO or PEG-400. The interaction between the loaded micelles and Albumin human serum albumin (HSA) was then studied by size exclusion chromatography. Transmission electron microscopy, dynamic light scattering and high-resolution liquid chromatography were also used to characterize the physicochemical and structural properties of the micelles to form the Teico/Ptx and Teico/Ptx/HSA micelles. Cellular uptake of Ptx was evaluated by fluorescent microscopy. Thein vitrocytotoxicity of the complexes was studied on Hep-2 tumor cells, by a Crystal Violet assay. Teico cosolvent-free micelles can solubilize up to 20 mg.ml-1of Ptx dissolved in PEG, increasing four times the solubility of Ptx in water compared to Abraxane, and 20 000 times the intrinsic solubility of Ptx in water. In addition, Teico/Ptx micelles binds spontaneously HSA through hydrophobic interaction. Teico and Teico/HSA micelles as a Ptx transporter does not affect its release or biological activity. Therefore, Teico/Ptx or Teico/Ptx/HSA complexes appear as new alternatives for transporting larger amounts of hydrophobic drugs that offer advantages, turning it an interesting option for further study.
Collapse
Affiliation(s)
- Laura Raquel Comini
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Roxana Valeria Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Leonhard
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Karina Lilian Bierbrauer
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Dante Miguel Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Cátedra de Biotecnología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
115
|
Beh CY, Prajnamitra RP, Chen LL, Hsieh PCH. Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules 2021; 26:molecules26165052. [PMID: 34443638 PMCID: PMC8401254 DOI: 10.3390/molecules26165052] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Biomimetic nanoparticles have recently emerged as a novel drug delivery platform to improve drug biocompatibility and specificity at the desired disease site, especially the tumour microenvironment. Conventional nanoparticles often encounter rapid clearance by the immune system and have poor drug-targeting effects. The rapid development of nanotechnology provides an opportunity to integrate different types of biomaterials onto the surface of nanoparticles, which enables them to mimic the natural biological features and functions of the cells. This mimicry strategy favours the escape of biomimetic nanoparticles from clearance by the immune system and reduces potential toxic side effects. Despite the rapid development in this field, not much has progressed to the clinical stage. Thus, there is an urgent need to develop biomimetic-based nanomedicine to produce a highly specific and effective drug delivery system, especially for malignant tumours, which can be used for clinical purposes. Here, the recent developments for various types of biomimetic nanoparticles are discussed, along with their applications for cancer imaging and treatments.
Collapse
|
116
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
117
|
Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. The Current Treatment Paradigm for Pancreatic Ductal Adenocarcinoma and Barriers to Therapeutic Efficacy. Front Oncol 2021; 11:688377. [PMID: 34336673 PMCID: PMC8319847 DOI: 10.3389/fonc.2021.688377] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival time of 10-12 months. Clinically, these poor outcomes are attributed to several factors, including late stage at the time of diagnosis impeding resectability, as well as multi-drug resistance. Despite the high prevalence of drug-resistant phenotypes, nearly all patients are offered chemotherapy leading to modest improvements in postoperative survival. However, chemotherapy is all too often associated with toxicity, and many patients elect for palliative care. In cases of inoperable disease, cytotoxic therapies are less efficacious but still carry the same risk of serious adverse effects, and clinical outcomes remain particularly poor. Here we discuss the current state of pancreatic cancer therapy, both surgical and medical, and emerging factors limiting the efficacy of both. Combined, this review highlights an unmet clinical need to improve our understanding of the mechanisms underlying the poor therapeutic responses seen in patients with PDAC, in hopes of increasing drug efficacy, extending patient survival, and improving quality of life.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jose G. Trevino
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
118
|
Ye J, Li R, Yang Y, Dong W, Wang Y, Wang H, Sun T, Li L, Shen Q, Qin C, Xu X, Liao H, Jin Y, Xia X, Liu Y. Comparative colloidal stability, antitumor efficacy, and immunosuppressive effect of commercial paclitaxel nanoformulations. J Nanobiotechnology 2021; 19:199. [PMID: 34225762 PMCID: PMC8256566 DOI: 10.1186/s12951-021-00946-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background Standard chemotherapy with taxanes, such as paclitaxel (PTX), remains the mainstay of systemic treatment of triple-negative breast cancer. Nanotechnology-based formulations have gradually replaced PTX injection and are widely used in China. However, no studies have compared the colloidal stability, antitumor efficacy, and safety of commercial PTX nanoformulations. Additionally, the desire to evaluate preclinical antitumor efficacy in human-derived tumor cells led to the widespread application of immunodeficient mouse models that likely contributed to the neglect of nanomedicines-immune system interactions. The present study investigated the colloidal stability, antitumor efficacy and safety, and nanomedicines-host immune system interactions of PTX nanoformulations. A further comparative analysis was performed to evaluate the clinical potential. Results Compared with liposome, PTX emulsion and PTX nanoparticle exhibited favorable colloidal stability. PTX emulsion was superior in inducing apoptosis and had a more pronounced inhibitory effect on 4T1-tumor spheroids compared with PTX liposome and PTX nanoparticle. Although PTX emulsion exhibited superior in vitro antitumor effect, no significant differences in the in vivo antitumor efficacy were found among the three types of PTX nanoformulations in an immunocompetent orthotopic 4T1 murine triple-negative breast cancer model. All PTX nanoformulations at maximum tolerated dose (MTD) induced lymphopenia and immunosuppression, as evidenced by the reduction of T cell subpopulations and inhibition of the dendritic cells maturation. Conclusions The MTD PTX nanomedicines-induced lymphopenia and immunosuppression may weaken the lymphocyte-mediated antitumor cellular immune response and partly account for the lack of differences in the in vivo antitumor outcomes of PTX nanoformulations. Understanding of what impacts PTX nanomedicines has on the immune system may be critical to improve the design and conduct of translational research of PTX nanomedicines in monotherapy or combination therapy with immunotherapy. Graphic abstract ![]()
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Renjie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yujie Wang
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Tong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qiqi Shen
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Caiyun Qin
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Xiaoyan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yiqun Jin
- Beijing Wehand-Bio Pharmaceutical Co. Ltd., Beijing, 102600, People's Republic of China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Beijing, 100050, People's Republic of China. .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
119
|
Jenkins IC, Milligan JJ, Chilkoti A. Genetically Encoded Elastin-Like Polypeptides for Drug Delivery. Adv Healthc Mater 2021; 10:e2100209. [PMID: 34080796 DOI: 10.1002/adhm.202100209] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers that consist of a repeated amino acid motif derived from human tropoelastin. These peptides exhibit temperature-dependent phase behavior that can be harnessed to produce stimuli-responsive biomaterials, such as nanoparticles or injectable drug delivery depots. As ELPs are genetically encoded, the properties of ELP-based biomaterials can be controlled with a precision that is unattainable with synthetic polymers. Unique ELP architectures, such as spherical or rod-like micelles or injectable coacervates, can be designed by manipulating the ELP amino acid sequence and length. ELPs can be loaded with drugs to create controlled, intelligent drug delivery systems. ELPs are biodegradable, nonimmunogenic, and tolerant of therapeutic additives. These qualities make ELPs exquisitely well-suited to address current challenges in drug delivery and have spurred the development of ELP-based therapeutics to treat diseases-such as cancer and diabetes-and to promote wound healing. This review focuses on the use of ELPs in drug delivery systems.
Collapse
Affiliation(s)
- Irene C. Jenkins
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Joshua J. Milligan
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 277018 USA
| |
Collapse
|
120
|
Chiang CL, Cheng MH, Lin CH. From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. NANOMATERIALS 2021; 11:nano11071727. [PMID: 34209111 PMCID: PMC8308137 DOI: 10.3390/nano11071727] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Anticancer nanomedicines have been studied over 30 years, but fewer than 10 formulations have been approved for clinical therapy today. Despite abundant options of anticancer drugs, it remains challenging to have agents specifically target cancer cells while reducing collateral toxicity to healthy tissue. Nanocompartments that can be selective toward points deeply within malignant tissues are a promising concept, but the heterogeneity of tumor tissue, inefficiency of cargo loading and releasing, and low uniformity of manufacture required from preclinical to commercialization are major obstacles. Technological advances have been made in this field, creating engineered nanomaterials with improved uniformity, flexibility of cargo loading, diversity of surface modification, and less inducible immune responses. This review highlights the developmental process of approved nanomedicines and the opportunities for novel materials that combine insights of tumors and nanotechnology to develop a more effective nanomedicine for cancer patients.
Collapse
Affiliation(s)
- Chi-Ling Chiang
- Comprehensive Cancer Center, Division of Hematology, Ohio State University, Columbus, OH 43202, USA;
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43202, USA
| | - Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
121
|
Seki H, Higeta K, Sakurai T, Sakurada A, Kinoshita T, Shimizu K. Feasibility Study of Nanoparticle Albumin-Bound-Paclitaxel and S-1 Followed by Epirubicin/Cyclophosphamide as Neoadjuvant Chemotherapy in Patients With Operable Breast Cancer: A Prospective Study. Clin Breast Cancer 2021; 22:235-243. [PMID: 34289949 DOI: 10.1016/j.clbc.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND The efficacy and safety of nanoparticle albumin-bound (nab)-paclitaxel combined with S-1 in patients with operable breast cancer is uncertain. We evaluated the feasibility of this combination followed by epirubicin/cyclophosphamide (EC) as neoadjuvant chemotherapy in such patients. PATIENTS AND METHODS This was an open-label, single-arm, phase II, single-institution prospective study of 4 cycles of nab-paclitaxel (260 mg/m2) administered intravenously on day 1 in combination with S-1 (65 mg/m2 orally twice daily) on days 1 to 14 every 21 days followed by EC as neoadjuvant chemotherapy. RESULTS Of 30 patients, 1 required a dose interruption for nab-paclitaxel combined with S-1; 4 required a dose reduction for nab-paclitaxel, 1 for S-1, and 4 for EC. Mean relative dose intensities of nab-paclitaxel, S-1, and EC were 98.0%, 99.3%, and 98.2%, respectively. Overall clinical response rate was 96.7%. In histological response, grade 3, pathological complete response (pCR; ypT0/is and ypN0) rate was 63.3% and grade 2b (near pCR) was 3.3%. pCR was observed in 57.1% of luminal B human epidermal growth factor receptor type 2 (HER2)-negative patients, 55.6% of luminal B HER2-positive patients, 100% of HER2-positive patients, and 57.1% of triple-negative breast cancer patients. Grade 3/4 neutropenia was observed in 1 patient during nab-paclitaxel combined with S-1 and in 7 during EC treatments. The most frequent nonhematological severe adverse events were grade 3 peripheral neuropathy in 2 patients and grade 3 arthralgia in 2 patients during nab-paclitaxel combined with S-1. CONCLUSION Tri-weekly nab-paclitaxel with S-1 followed by EC is effective and well tolerated as neoadjuvant chemotherapy in patients with operable breast cancer.
Collapse
Affiliation(s)
- Hirohito Seki
- Department of Breast Surgery, Saitama Medical Center, Saitama, Japan.
| | - Kaori Higeta
- Department of Pharmacy, Saitama Medical Center, Saitama, Japan
| | - Takashi Sakurai
- Department of Breast Surgery, Saitama Medical Center, Saitama, Japan
| | - Akihisa Sakurada
- Department of Breast Surgery, Saitama Medical Center, Saitama, Japan
| | | | - Ken Shimizu
- Department of Pathology, Saitama Medical Center, Saitama, Japan
| |
Collapse
|
122
|
Davis HW, Kaynak A, Vallabhapurapu SD, Qi X. Targeting of elevated cell surface phosphatidylserine with saposin C-dioleoylphosphatidylserine nanodrug as individual or combination therapy for pancreatic cancer. World J Gastrointest Oncol 2021; 13:550-559. [PMID: 34163572 PMCID: PMC8204355 DOI: 10.4251/wjgo.v13.i6.550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the deadliest of cancers with a five-year survival of roughly 8%. Current therapies are: surgery, radiation and chemotherapy. Surgery is curative only if the cancer is caught very early, which is rare, and the latter two modalities are only marginally effective and have significant side effects. We have developed a nanosome comprised of the lysosomal protein, saposin C (SapC) and the acidic phospholipid, dioleoylphosphatidylserine (DOPS). In the acidic tumor microenvironment, this molecule, SapC-DOPS, targets the phosphatidylserine cancer-biomarker which is predominantly elevated on the surface of cancer cells. Importantly, SapC-DOPS can selectively target pancreatic tumors and metastases. Furthermore, SapC-DOPS has exhibited an impressive safety profile with only a few minor side effects in both preclinical experiments and in phase I clinical trials. With the dismal outcomes for pancreatic cancer there is an urgent need for better treatments and SapC-DOPS is a good candidate for addition to the oncologist’s toolbox.
Collapse
Affiliation(s)
- Harold W Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
| | - Ahmet Kaynak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
123
|
Heat/pH-boosted release of 5-fluorouracil and albumin-bound paclitaxel from Cu-doped layered double hydroxide nanomedicine for synergistical chemo-photo-therapy of breast cancer. J Control Release 2021; 335:49-58. [PMID: 33989692 DOI: 10.1016/j.jconrel.2021.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/24/2022]
Abstract
Considerable attention has been devoted to nanomedicine development for breast cancer therapy, while the therapeutic efficiency is far from satisfactory owing to non-specific biodistribution-caused side effects and limitation of single modal treatment. In this study, we have developed a novel nanomedicine for efficient combination breast cancer therapy. This nanomedicine was based on copper-doped layered double hydroxide (Cu-LDH) nanoparticles loaded with two FDA-approved anticancer drugs, i.e. 5-fluorouracil (5-FU) and albumin-bound paclitaxel (nAb-PTX) with complementary chemotherapeutic actions. The 5-FU/Cu-LDH@nAb-PTX nanomedicine showed pH-sensitive heat-facilitated therapeutic on-demand release and demonstrated the moderate-to-strong synergy of photothermal therapy and chemotherapy in inducing apoptosis of breast cancer cells (4 T1). This nanomedicine had a high colloidal stability in saline and serum, and efficiently accumulated in the tumor tissue. Remarkably, this nanomedicine nearly eliminated 4 T1 tumors in vivo after a two-course treatment under mild 808 nm laser irradiation (0.75 W/cm2, 3 min) at very low doses of 5-FU and nAb-PTX (0.25 and 0.50 mg/kg, 8-50 times less than that used in other nanoformulations), without observable side effects. Therefore, this research provides a novel approach to designing multifunctional nanomedicines for on-demand release of chemotherapeutics to cost-effectively treat breast cancer with minimal side effects in future clinic applications.
Collapse
|
124
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
125
|
Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021; 11:886-902. [PMID: 33996405 PMCID: PMC8105773 DOI: 10.1016/j.apsb.2021.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Current advances of immunotherapy have greatly changed the way of cancer treatment. At the same time, a great number of nanoparticle-based cancer immunotherapies (NBCIs) have also been explored to elicit potent immune responses against tumors. However, few NBCIs are nearly in the clinical trial which is mainly ascribed to a lack understanding of in vivo fate of nanoparticles (NPs) for cancer immunotherapy. NPs for cancer immunotherapy mainly target the immune organs or immune cells to enable efficient antitumor immune responses. The physicochemical properties of NPs including size, shape, elasticity and surface properties directly affect their interaction with immune systems as well as their in vivo fate and therapeutic effect. Hence, systematic analysis of the physicochemical properties and their effect on in vivo fate is urgently needed. In this review, we first recapitulate the fundamentals for the in vivo fate of NBCIs including physio-anatomical features of lymphatic system and strategies to modulate immune responses. Moreover, we highlight the effect of physicochemical properties on their in vivo fate including lymph nodes (LNs) drainage, cellular uptake and intracellular transfer. Challenges and opportunities for rational design of NPs for cancer immunotherapy are also discussed in detail.
Collapse
|
126
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
127
|
Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021; 7:33. [PMID: 33804970 PMCID: PMC8103278 DOI: 10.3390/gels7020033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery of paclitaxel (PTX) has been a milestone in anti-cancer therapy and has promoted the development and marketing of various formulations that have revolutionized the therapeutic approach towards several malignancies. Despite its peculiar anti-cancer activity, the physico-chemical properties of PTX compromise the administration of the compound in polar media. Because of this, since the development of the first Food and Drug Administration (FDA)-approved formulation (Taxol®), consistent efforts have been made to obtain suitable delivery systems able to preserve/increase PTX efficacy and to overcome the side effects correlated to the presence of some excipients. The exploitation of natural polymers as potential materials for drug delivery purposes has favored the modulation of the bioavailability and the pharmacokinetic profiles of the drug, and in this regard, several formulations have been developed that allow the controlled release of the active compound. In this mini-review, the recent advances concerning the design and applications of natural polymer-based hydrogels containing PTX-loaded biocompatible nanocarriers are discussed. The technological features of these formulations as well as the therapeutic outcome achieved following their administration will be described, demonstrating their potential role as innovative systems to be used in anti-tumor therapy.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | | | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
128
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
129
|
Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Sajid Jamal QM, Alzohairy MA, Almatroudi A, Alomary MN, Chung IM, Al-Suhaimi EA. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2021; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX, 77204, United States
| | - Govindaswamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al-Bukayriyah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ebtesam Abdullah Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
130
|
Norouzi M, Hardy P. Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater 2021; 121:134-142. [PMID: 33301981 DOI: 10.1016/j.actbio.2020.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Owing to a lack of early-stage diagnosis, most lung cancers are detected in advanced stages, limiting the available therapeutic options. Moreover, extensive systemic chemotherapy of lung tumors is often associated with severe off-target toxicity and drug resistance of cancer cells, thus diminishing the outcomes of chemotherapy modalities. In this light, nanomedicines have opened an alternative avenue to develop more efficacious therapeutic platforms while addressing several current challenges. Clinical findings have revealed that nanomedicines improve the pharmacokinetics and biodistribution of the therapeutic agents while decreasing their systemic toxicity. This review provides an update on nanomedicines that have been clinically approved or are undergoing clinical trials for treatment of lung cancer. By discussing the clinical findings of the current nanoformulations, this review provides prospects for the development of more efficacious nanomedicines to improve the clinical outcomes of lung cancer treatment.
Collapse
|
131
|
Huang M, Lu JJ, Ding J. Natural Products in Cancer Therapy: Past, Present and Future. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:5-13. [PMID: 33389713 PMCID: PMC7933288 DOI: 10.1007/s13659-020-00293-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 05/02/2023]
Abstract
Natural products, with remarkable chemical diversity, have been extensively investigated for their anticancer potential for more than a half-century. The collective efforts of the community have achieved the tremendous advancements, bringing natural products to clinical use and discovering new therapeutic opportunities, yet the challenges remain ahead. With remarkable changes in the landscape of cancer therapy and growing role of cutting-edge technologies, we may have come to a crossroads to revisit the strategies to understand nature products and to explore their therapeutic utility. This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches, new pharmacological models, and exploration of emerging directions to revitalize natural products search in cancer therapy.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
132
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
133
|
Ali S, Albekairi NA, Al-Enazy S, Shah M, Patrikeeva S, Nanovskaya TN, Ahmed MS, Rytting E. Formulation effects on paclitaxel transfer and uptake in the human placenta. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102354. [PMID: 33429062 DOI: 10.1016/j.nano.2020.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/20/2020] [Indexed: 11/30/2022]
Abstract
Diagnosis and treatment of breast cancer in pregnancy can result in morbidity and mortality for the mother and fetus. Many new paclitaxel nanoformulations commercially available worldwide for breast cancer treatment are being adopted due to favorable dosing regimens and side effect profiles, but their transplacental transport and resultant fetal exposure remain unknown. Here, we examine three formulations: Taxol (paclitaxel dissolved in Kolliphor EL and ethanol); Abraxane (albumin nanoparticle); and Genexol-PM (polymeric micelle). In the ex vivo dually perfused human placental cotyledon, placental accumulation of Genexol-PM is higher than Taxol, and both nanoformulations have lower maternal concentrations of paclitaxel over time. In vitro studies of these formulations and fluorescent nanoparticle analogs demonstrate that Genexol-PM allows paclitaxel to overcome P-glycoprotein efflux, but Abraxane behaves as a free drug formulation. We anticipate that these findings will impact future development of rational and safe treatment strategies for pregnancy-associated breast cancer and other diseases.
Collapse
Affiliation(s)
- Shariq Ali
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sanaalarab Al-Enazy
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Mansi Shah
- Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Svetlana Patrikeeva
- Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Tatiana N Nanovskaya
- Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Mahmoud S Ahmed
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA; Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Erik Rytting
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA; Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA.
| |
Collapse
|
134
|
Boilève A, Hilmi M, Gougis P, Cohen R, Rousseau B, Blanc JF, Ben Abdelghani M, Castanié H, Dahan L, Tougeron D, Metges JP, Tournigand C, Garcia-Larnicol ML, Vernerey D, Turpin A, Neuzillet C. Triplet combination of durvalumab, tremelimumab, and paclitaxel in biliary tract carcinomas: Safety run-in results of the randomized IMMUNOBIL PRODIGE 57 phase II trial. Eur J Cancer 2021; 143:55-63. [PMID: 33279854 DOI: 10.1016/j.ejca.2020.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND The IMMUNOBIL PRODIGE 57 trial is a non-comparative randomized phase II study assessing the efficacy and safety of the durvalumab (an anti-PD-L1) and tremelimumab (an anti-CTLA4) combination with or without weekly paclitaxel in patients with advanced biliary tract carcinoma (BTC) after failure of platinum-based chemotherapy. Taxanes have already been safely combined with immune checkpoint inhibitors in other tumors. We report results of the 20-patient safety run-in. METHODS Patients received durvalumab (1500 mg at day 1 [D1] of each cycle)/tremelimumab (75 mg at D1 for 4 cycles; Arm A) or durvalumab/tremelimumab with paclitaxel (80 mg/m2 at D1, D8, D15; Arm B) every 28 days. RESULTS Twenty patients were enrolled (Arm A/B: 10/10). There were no dose-limiting toxicities (DLTs) in Arm A. Six DLTs were observed in five patients (50%) in Arm B, meeting a stopping rule for the trial inclusions. DLTs included three serious anaphylactic reactions (with one cardiac arrest), two enterocolitis, and one infectious pneumopathy with septic shock. There were no patients with history of personal or familial auto-immune disease. CONCLUSION The safety run-in part of IMMUNOBIL PRODIGE 57 raised concerns regarding co-administration of paclitaxel with durvalumab and tremelimumab in BTC, with an unexpected increase in anaphylactic adverse events. Phase II of the study will only evaluate the durvalumab and tremelimumab combination arm. CLINICALTRIALS REGISTRATION NCT03704480.
Collapse
Affiliation(s)
- Alice Boilève
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France; GERCOR, Paris, France
| | - Marc Hilmi
- GERCOR, Paris, France; Department of Medical Oncology, Institut Curie - Site Saint Cloud, Versailles Saint-Quentin University, Paris Saclay University, Saint-Cloud, France
| | - Paul Gougis
- Department of Pharmacology Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP(2) Galilée, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Romain Cohen
- GERCOR, Paris, France; Department of Medical Oncology, Sorbonne Université, Assistance-Publique - Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France
| | - Benoît Rousseau
- GERCOR, Paris, France; Department of Medicine, Solid Tumor Division, Mortimer B. Zuckerman Research Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jean-Frédéric Blanc
- Department of Hepato-Gastro-Enterology and Digestive Oncology, Hôpital Haut-Lévêque, CHU de Bordeaux, Bordeaux, France
| | | | - Hélène Castanié
- Institut de Cancérologie Catherine de Sienne, L'Hôpital Privé Du Confluent, Nantes, France
| | - Laëtitia Dahan
- Department of Digestive Oncology, Centre Hospitalo-Universitaire La Timone, Marseille, France
| | - David Tougeron
- Department of Hepato-Gastro-Enterology, Centre Hospitalo-Universitaire de Poitiers, Poitiers, France
| | - Jean-Philippe Metges
- Centre Hospitalo-Universitaire Brest-Institut de Cancerologie et D'Hematologie, Brest, France
| | - Christophe Tournigand
- Department of Medical Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Henri-Mondor, University Paris Est Créteil, Créteil, France
| | | | - Dewi Vernerey
- GERCOR, Paris, France; Unité de Méthodologie et de Qualité de Vie en Cancérologie (INSERM UMR 1098), CHU Besançon, Besançon, France
| | - Anthony Turpin
- GERCOR, Paris, France; Department of Medical Oncology, Centre Hospitalo-Universitaire Lille, Lille, France
| | - Cindy Neuzillet
- GERCOR, Paris, France; Department of Medical Oncology, Institut Curie - Site Saint Cloud, Versailles Saint-Quentin University, Paris Saclay University, Saint-Cloud, France.
| |
Collapse
|
135
|
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. NATURE REVIEWS. MATERIALS 2021; 6:766-783. [PMID: 34026278 PMCID: PMC8132739 DOI: 10.1038/s41578-021-00315-x] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Biomolecule-based nanostructures are inherently multifunctional and harbour diverse biological activities, which can be explored for cancer nanomedicine. The supramolecular properties of biomolecules can be precisely programmed for the design of smart drug delivery vehicles, enabling efficient transport in vivo, targeted drug delivery and combinatorial therapy within a single design. In this Review, we discuss biomolecule-based nanostructures, including polysaccharides, nucleic acids, peptides and proteins, and highlight their enormous design space for multifunctional nanomedicines. We identify key challenges in cancer nanomedicine that can be addressed by biomolecule-based nanostructures and survey the distinct biological activities, programmability and in vivo behaviour of biomolecule-based nanostructures. Finally, we discuss challenges in the rational design, characterization and fabrication of biomolecule-based nanostructures, and identify obstacles that need to be overcome to enable clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
136
|
Long Q, Zhu W, Guo L, Pu L. RGD-Conjugated Resveratrol HSA Nanoparticles as a Novel Delivery System in Ovarian Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5747-5756. [PMID: 33408463 PMCID: PMC7779302 DOI: 10.2147/dddt.s248950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022]
Abstract
Background To establish a novel delivery system of RGD-conjugated resveratrol human serum albumin (HAS) nanoparticles in ovarian cancer therapy. Methods The nanoparticles system was characterized for physicochemical properties, the stability in the serum and in vitro release. The comparison between RVT injection, HSA-RVT NPs and RGD-HSA-RVT NPs regarding tissue distributions and pharmacokinetics was also carried out using mice as the animal models. Results The results showed that RGD-HSA-RVT NPs were characterized of small particle size about 128.2 nm and negative zeta potential about -21.42 mV, and drug controlled to release slowly on a biphasic pattern. Compared with control groups, RGD-HSA-RVT NPs showed the higher cellular uptake and cell inhibition rates. In vivo data showed that RGD-HSA-RVT NPs have good tumor enrichment characteristics and a significant difference in tumor inhibition, compared with the control group. Conclusion RGD-conjugated resveratrol HSA nanoparticles are an ideal drug delivery system, which can play a role in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qifang Long
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Liangsheng Guo
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Pu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
137
|
Chemotherapy Options beyond the First Line in HER-Negative Metastatic Breast Cancer. JOURNAL OF ONCOLOGY 2020; 2020:9645294. [PMID: 33312203 PMCID: PMC7719522 DOI: 10.1155/2020/9645294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/05/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Despite the recent advances in the biological understanding of breast cancer (BC), chemotherapy still represents a key component in the armamentarium for this disease. Different agents are available as mono-chemotherapy options in patients with locally advanced or metastatic BC (MBC) who progress after a first- and second-line treatment with anthracyclines and taxanes. However, no clear indication exists on what the best option is in some populations, such as heavily pretreated, elderly patients, triple-negative BC (TNBC), and those who do not respond to the first-line therapy. In this article, we summarize available literature evidence on different chemotherapy agents used beyond the first-line, in locally advanced or MBC patients, including rechallenge with anthracyclines and taxanes, antimetabolite and antimicrotubule agents, such as vinorelbine, capecitabine, eribulin, ixabepilone, and the newest developed agents, such as vinflunine, irinotecan, and etirinotecan.
Collapse
|
138
|
Chauhan K, Sengar P, Juarez-Moreno K, Hirata GA, Vazquez-Duhalt R. Camouflaged, activatable and therapeutic tandem bionanoreactors for breast cancer theranosis. J Colloid Interface Sci 2020; 580:365-376. [PMID: 32688126 DOI: 10.1016/j.jcis.2020.07.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
The one-pot cascade reaction of naturally occurring enzymes is exciting for highly selective complex reaction and biodegradable approaches. Tamoxifen is the main drug against breast cancer for decades and induces an anticancerous effect upon metabolic activation by cytochrome P450 (CYP450). Herein, bi-enzymatic nanoreactors (NRs) are developed as a multimodality platform for smart action against breast tumors. CYPBM3 of Bacillus magaterium (CYP) is co-confined with glucose oxidase (GOx) where GOx produces H2O2 in the presence of glucose that elicits the CYP-mediated transformation of tamoxifen. The scintillating and mesoporous LaF3:Tb as nanocarrier showed advantages like a wide range of pore size and positive surface charge for efficient loading of enzyme couple, while the smallest pores were available for substrate/product diffusion. The obtained NRs were camouflaged with human serum albumin (HSA) to overcome premature enzyme leaching and provide active stealth properties. The nanocomposite was characterized for physicochemical properties and glucose-mediated sequential catalysis. The in vitro studies demonstrated the cell internalization of NRs in both ER+ and triple-negative breast cancer cell lines and showed significant cytotoxicity. The developed NRs not only improve the outcomes of endocrine therapy in ER+ cells but also synergistically act with oxidation therapy for enhanced therapeutic effect. Importantly, inhibition of triple-negative cells was also achieved. Thus, the development of the new multimodal nanomedicine of the present work should afford new tools towards the theranosis of breast cancer with minimized adverse effects.
Collapse
Affiliation(s)
- Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico.
| | - Prakhar Sengar
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico
| | - Karla Juarez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico
| | - Gustavo A Hirata
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja CA 22860, Mexico.
| |
Collapse
|
139
|
Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M, Pottoo FH, Ahmad N. Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Curr Pharm Des 2020; 26:1128-1137. [PMID: 31951165 DOI: 10.2174/1381612826666200116153912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Nanoparticles (NPs) are unique may be organic or inorganic, play a vital role in the development of drug delivery targeting the central nervous system (CNS). Intranasal drug delivery has shown to be an efficient strategy with attractive application for drug delivery to the CNS related diseases, such as Parkinson's disease, Alzheimer 's disease and brain solid tumors. Blood brain barrier (BBB) and blood-cerebrospinal fluid barriers are natural protective hindrances for entry of drug molecules into the CNS. Nanoparticles exhibit excellent intruding capacity for therapeutic agents and overcome protective barriers. By using nanotechnology based NPs targeted, drug delivery can be improved across BBB with discharge drugs in a controlled manner. NPs confer safe from degradation phenomenon. Several kinds of NPs are used for nose to the brain (N2B) enroute, such as lipidemic nanoparticles, polymeric nanoparticles, inorganic NPs, solid lipid NPs, dendrimers. Among them, popular lipidemic and polymeric NPs are discussed, and their participation in anti-cancer activity has also been highlighted in this review.
Collapse
Affiliation(s)
- Mohammad A Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Govindasamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
140
|
Oda CMR, Silva JDO, Fernandes RS, Braga AV, Machado RDR, Coelho MDM, Cassali GD, Reis DC, de Barros ALB, Leite EA. Encapsulating paclitaxel in polymeric nanomicelles increases antitumor activity and prevents peripheral neuropathy. Biomed Pharmacother 2020; 132:110864. [PMID: 33254426 DOI: 10.1016/j.biopha.2020.110864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Paclitaxel (PTX) has a great clinical significance as an antitumor drug, although several side effects are strongly dose-limiting. In this way, we prepared a PTX-loaded 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] polymeric micelles (PM/PTX) in an attempt to improve safety and effectiveness of conventional PTX formulation (CrEL/EtOH/PTX). In this study, we evaluated from both formulations: stability after dilution, hemocompatibility, cellular uptake, acute toxicity in healthy mice, antitumor activity, and toxicity after multiple-dose treatment. PM/PTX appeared to be more stable than CrEL/EtOH/PTX after dilution. PM/PTX did not exhibit hemolytic activity (values <1%), even at high concentrations. In vitro cellular uptake study indicated that polymeric micelles were able to deliver more PTX (5.8 %) than CrEL/EtOH (2.7 %) to 4T1 cells. In the acute toxicity evaluation in healthy mice, CrEL/EtOH/PTX (single dose of 20 mg/kg) induced peripheral neuropathy, which was not observed in PM/PTX group. Similar results were observed after tumor-bearing mice received a multiple-dose regimen (seven doses of 10 mg/kg). Worth mentioning, we also evaluated vehicles, and CrEL/EtOH alone was not capable of inducing neuropathic pain. Besides, PM/PTX exhibited a higher antitumor activity with an inhibition ratio approximately 1.5-fold higher than CrEL/EtOH/PTX group. This study suggested that PM/PTX is safer than CrEL/EtOH/PTX, and was able to improve the antitumor effectiveness in a 4T1 breast cancer model.
Collapse
Affiliation(s)
- Caroline Mari Ramos Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Salgado Fernandes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Alysson Vinícius Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Renes de Resende Machado
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio de Matos Coelho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Carlos Reis
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
141
|
Chen Y, Bao B, Lv Y, Sun D, Zhang L, Wang J, Zhao W. Nab-paclitaxel-based regimens with docetaxel-based regimens as neoadjuvant treatment for early breast cancer. Invest New Drugs 2020; 39:524-529. [PMID: 33140143 DOI: 10.1007/s10637-020-01029-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Background Nanoparticle albumin-bound paclitaxel (nab-PTX) and docetaxel (DOC) both demonstrated favorable efficacy as neoadjuvant therapy in breast cancer. We retrospectively evaluated the efficacy and safety of nab-PTX-based chemotherapy (nPBC) and DOC-based chemotherapy (DBC) as neoadjuvant therapy in patients with breast cancer. Methods Breast cancer patients who received neoadjuvant nPBC or DBC and underwent surgery from January 2018 to June 2020 were consecutively analyzed. Pathologic complete response (pCR) was defined as no residual invasive cells in the breast and axillary nodes (ypT0/is ypN0) after surgery. The pCR, clinical complete response (cCR), and safety profiles were assessed in the two groups. Results A total of 104 breast cancer patients were included in this study. Fourty one patients received nPBC, and 63 patients received DBC The pCR was 34.1% in the nPBC group and 12.7% in the DBC group. Additionally, the cCR was 36.6% in the nPBC group and 15.9% in the DBC group. Peripheral sensory neuropathy was more common in the nPBC group, while hematologic toxicity was observed more frequently in the DBC group. Conclusions This study presented antitumor activity of nPBC and DBC in patients with early breast cancer receiving neoadjuvant treatment in a real-world setting. Further prospective research is warranted to confirm the results and to develop biomarkers for better patient selection.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baoshi Bao
- Department of Breast Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao Lv
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Decong Sun
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Zhang
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiandong Wang
- Department of Breast Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Weihong Zhao
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
142
|
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020; 12:E1028. [PMID: 33126622 PMCID: PMC7692572 DOI: 10.3390/pharmaceutics12111028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, the field of cancer therapy has seen a significant change in the way in which formulations are designed and developed, resulting in more efficient products that allow us to ultimately achieve improved drug bioavailability, efficacy, and safety. However, although many formulations have entered the market, many others have fallen by the wayside leaving the scientific community with several lessons to learn. The successes (and failures) achieved with formulations that have been approved in Europe and/or by the FDA for the three major types of cancer therapy (peptide-based therapy, chemotherapy, and radiotherapy) are reviewed herein, covering the period from the approval of the first prolonged-release system for hormonal therapy to the appearance of the first biodegradable microspheres intended for chemoembolization in 2020. In addition, those products that have entered phase III clinical trials that have been active over the last five years are summarized in order to outline future research trends and possibilities that lie ahead to develop clinically translatable formulations for cancer treatment.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
143
|
Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, Kakkar A. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. Int J Mol Sci 2020; 21:ijms21218019. [PMID: 33126533 PMCID: PMC7662525 DOI: 10.3390/ijms21218019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular internalization of inorganic, lipidic and polymeric nanoparticles is of great significance in the quest to develop effective formulations for the treatment of high morbidity rate diseases. Understanding nanoparticle–cell interactions plays a key role in therapeutic interventions, and it continues to be a topic of great interest to both chemists and biologists. The mechanistic evaluation of cellular uptake is quite complex and is continuously being aided by the design of nanocarriers with desired physico-chemical properties. The progress in biomedicine, including enhancing the rate of uptake by the cells, is being made through the development of structure–property relationships in nanoparticles. We summarize here investigations related to transport pathways through active and passive mechanisms, and the role played by physico-chemical properties of nanoparticles, including size, geometry or shape, core-corona structure, surface chemistry, ligand binding and mechanical effects, in influencing intracellular delivery. It is becoming clear that designing nanoparticles with specific surface composition, and engineered physical and mechanical characteristics, can facilitate their internalization more efficiently into the targeted cells, as well as enhance the rate of cellular uptake.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Ghazaleh Yazdani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
| | - Seyed Sajad Ashraf
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
- Correspondence: (M.F.); (A.K.)
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
- Correspondence: (M.F.); (A.K.)
| |
Collapse
|
144
|
Chen W, Sun Z, Lu L. Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2020; 60:5626-5643. [PMID: 32096328 DOI: 10.1002/anie.201914511] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Severe side effects and poor therapeutic efficacy are the main drawbacks of current anticancer drugs. These problems can be mitigated by targeting, but the targeting efficacy of current drugs is poor and urgently needs improvement. Taking this into consideration, this Review first summarizes the current targeting strategies for cancer therapy in terms of cancer tissue and organelles. Then, we analyse the systematic targeting of anticancer drugs and conclude that a typical journey for a targeted drug administered by intravenous injection is a CTIO cascade of at least four steps. Furthermore, to ensure high overall targeting efficacy, the properties of a targeting drug needed in each step are further analysed, and some guidelines for structure optimization to obtain effective targeting drugs are offered. Finally, some viewpoints highlighting the crucial problems and potential challenges of future research on targeted cancer therapy are presented. This review could actively promote the development of precision medicine against cancer.
Collapse
Affiliation(s)
- Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| |
Collapse
|
145
|
Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
146
|
Yu J, Mu Q, Perazzolo S, Griffin JI, Zhu L, McConnachie LA, Shen DD, Ho RJ. Novel Long-Acting Drug Combination Nanoparticles Composed of Gemcitabine and Paclitaxel Enhance Localization of Both Drugs in Metastatic Breast Cancer Nodules. Pharm Res 2020; 37:197. [PMID: 32968837 PMCID: PMC8686529 DOI: 10.1007/s11095-020-02888-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop drug-combination nanoparticles (DcNPs) composed of hydrophilic gemcitabine (G) and hydrophobic paclitaxel (T) and deliver both drugs to metastatic cancer cells. METHODS GT DcNPs were evaluated based on particle size and drug association efficiency (AE%). The effect of DcNP on GT plasma time-course and tissue distribution was characterized in mice and a pharmacokinetic model was developed. A GT distribution study into cancer nodules (derived from 4 T1 cells) was performed. RESULTS An optimized GT DcNP composition (d = 59.2 nm ±9.2 nm) was found to be suitable for IV formulation. Plasma exposure of G and T were enhanced 61-fold and 3.8-fold when given in DcNP form compared to the conventional formulation, respectively. Mechanism based pharmacokinetic modeling and simulation show that both G and T remain highly associated to DcNPs in vivo (G: 98%, T:75%). GT DcNPs have minimal distribution to healthy organs with selective distribution and retention in tumor burdened tissue. Tumor bearing lungs had a 5-fold higher tissue-to-plasma ratio of gemcitabine in GT DcNPs compared to healthy lungs. CONCLUSIONS DcNPs can deliver hydrophilic G and hydrophobic T together to cancer nodules and produce long acting exposure, likely due to stable GT association to DcNPs in vivo.
Collapse
Affiliation(s)
- Jesse Yu
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA
| | - Qingxin Mu
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA
| | - Simone Perazzolo
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA
| | - James I Griffin
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA
| | - Linxi Zhu
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA
| | - Lisa A McConnachie
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA
| | - Danny D Shen
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA
| | - Rodney Jy Ho
- Departments of Pharmaceutics, University of Washington, Seattle, Washington, 98195, USA.
- Departments of Bioengineering, University of Washington, Seattle, Washington, 98195, USA.
| |
Collapse
|
147
|
Mu Q, Lin G, Stephen ZR, Chung S, Wang H, Patton VK, Gebhart RN, Zhang M. In vivo Serum Enabled Production of Ultrafine Nanotherapeutics for Cancer Treatment. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 38:10-23. [PMID: 33716549 PMCID: PMC7944405 DOI: 10.1016/j.mattod.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Systemic delivery of hydrophobic anti-cancer drugs with nanocarriers, particularly for drug-resistant and metastatic cancer, remain a challenge because of the difficulty to achieve high drug loading, while maintaining a small hydrodynamic size and colloid stability in blood to ensure delivery of an efficacious amount of drug to tumor cells. Here we introduce a new approach to address this challenge. In this approach, nanofibers of larger size with good drug loading capacity are first constructed by a self-assembly process, and upon intravascular injection and interacting with serum proteins in vivo, these nanofibers break down into ultra-fine nanoparticles of smaller size that inherit the drug loading property from their parent nanofibers. We demonstrate the efficacy of this approach with a clinically available anti-cancer drug: paclitaxel (PTX). In vitro, the PTX-loaded nanoparticles enter cancer cells and induce cellular apoptosis. In vivo, they demonstrate prolonged circulation in blood, induce no systemic toxicity, and show high potency in inhibiting tumor growth and metastasis in both mouse models of aggressive, drug-resistant breast cancer and melanoma. This study points to a new strategy toward improved anti-cancer drug delivery and therapy.
Collapse
Affiliation(s)
- Qingxin Mu
- Department of Materials Science and Engineering, University
of Washington, Seattle, Washington, 98195, USA
| | - Guanyou Lin
- Department of Materials Science and Engineering, University
of Washington, Seattle, Washington, 98195, USA
| | - Zachary R. Stephen
- Department of Materials Science and Engineering, University
of Washington, Seattle, Washington, 98195, USA
| | - Steve Chung
- Department of Materials Science and Engineering, University
of Washington, Seattle, Washington, 98195, USA
| | - Hui Wang
- Department of Materials Science and Engineering, University
of Washington, Seattle, Washington, 98195, USA
| | - Victoria K. Patton
- Department of Chemical Engineering, University of
Washington, Seattle, Washington, 98195, USA
| | - Rachel N. Gebhart
- Department of Chemistry, University of Washington, Seattle,
Washington, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University
of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
148
|
Shi Y. Clinical Translation of Nanomedicine and Biomaterials for Cancer Immunotherapy: Progress and Perspectives. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900215] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Shi
- Department of Nanomedicine and Theranostics Institute for Experimental Molecular Imaging Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering Faculty of Medicine RWTH Aachen University Aachen 52074 Germany
| |
Collapse
|
149
|
Tjandra KC, Forest CR, Wong CK, Alcantara S, Kelly HG, Ju Y, Stenzel MH, McCarroll JA, Kavallaris M, Caruso F, Kent SJ, Thordarson P. Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. Adv Healthc Mater 2020; 9:e2000261. [PMID: 32424998 DOI: 10.1002/adhm.202000261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Abstract
There is a need for improved nanomaterials to simultaneously target cancer cells and avoid non-specific clearance by phagocytes. An ellipsoidal polymersome system is developed with a unique tunable size and shape property. These particles are functionalized with in-house phage-display cell-targeting peptide to target a medulloblastoma cell line in vitro. Particle association with medulloblastoma cells is modulated by tuning the peptide ligand density on the particles. These polymersomes has low levels of association with primary human blood phagocytes. The stealth properties of the polymersomes are further improved by including the peptide targeting moiety, an effect that is likely driven by the peptide protecting the particles from binding blood plasma proteins. Overall, this ellipsoidal polymersome system provides a promising platform to explore tumor cell targeting in vivo.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| | - Chelsea R. Forest
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| | - Chin Ken Wong
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville VIC 3000 Australia
| | - Hannah G. Kelly
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville VIC 3000 Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Martina H. Stenzel
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- School of ChemistryCentre for Advanced Macromolecular Design (CAMD)The University of New South Wales Sydney NSW 2052 Australia
| | - Joshua A. McCarroll
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Translational Cancer Nanomedicine ThemeChildren's Cancer InstituteLowy Cancer Research CentreThe University of New South Wales Sydney NSW 2031 Australia
- School of Women's and Children's HealthFaculty of MedicineThe University of New South Wales Sydney NSW 2052 Australia
| | - Maria Kavallaris
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Translational Cancer Nanomedicine ThemeChildren's Cancer InstituteLowy Cancer Research CentreThe University of New South Wales Sydney NSW 2031 Australia
- School of Women's and Children's HealthFaculty of MedicineThe University of New South Wales Sydney NSW 2052 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville VIC 3000 Australia
| | - Pall Thordarson
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| |
Collapse
|
150
|
López-Laguna H, Sánchez-García L, Serna N, Voltà-Durán E, Sánchez JM, Sánchez-Chardi A, Unzueta U, Łoś M, Villaverde A, Vázquez E. Engineering Protein Nanoparticles Out from Components of the Human Microbiome. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001885. [PMID: 32578402 DOI: 10.1002/smll.202001885] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/13/2020] [Indexed: 05/14/2023]
Abstract
Nanoscale protein materials are highly convenient as vehicles for targeted drug delivery because of their structural and functional versatility. Selective binding to specific cell surface receptors and penetration into target cells require the use of targeting peptides. Such homing stretches should be incorporated to larger proteins that do not interact with body components, to prevent undesired drug release into nontarget organs. Because of their low interactivity with human body components and their tolerated immunogenicity, proteins derived from the human microbiome are appealing and fully biocompatible building blocks for the biofabrication of nonreactive, inert protein materials within the nanoscale. Several phage and phage-like bacterial proteins with natural structural roles are produced in Escherichia coli as polyhistidine-tagged recombinant proteins, looking for their organization as discrete, nanoscale particulate materials. While all of them self-assemble in a variety of sizes, the stability of the resulting constructs at 37 °C is found to be severely compromised. However, the fine adjustment of temperature and Zn2+ concentration allows the formation of robust nanomaterials, fully stable in complex media and under physiological conditions. Then, microbiome-derived proteins show promise for the regulatable construction of scaffold protein nanomaterials, which can be tailored and strengthened by simple physicochemical approaches.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba, X 5016GCA, Argentina
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, 08041, Spain
| | - Marcin Łoś
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza Street 59, Gdansk, 80-308, Poland
- Phage Consultants, Partyzantow Street 10/18, Gdansk, 80-254, Poland
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
| |
Collapse
|