101
|
Shao D, Li M, Wang Z, Zheng X, Lao YH, Chang Z, Zhang F, Lu M, Yue J, Hu H, Yan H, Chen L, Dong WF, Leong KW. Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801198. [PMID: 29808576 DOI: 10.1002/adma.201801198] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/06/2018] [Indexed: 05/20/2023]
Abstract
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide-bond-containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual-responsiveness is reported. These diselenide-bridged MSNs can encapsulate cytotoxic RNase A into the 8-10 nm internal pores via electrostatic interaction and release the payload via a matrix-degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer-cell-derived membrane fragments, these bioinspired RNase A-loaded MSNs exhibit homologous targeting and immune-invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti-cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell-membrane-coated, dual-responsive degradable MSNs represent a promising platform for the delivery of bio-macromolecules such as protein and nucleic acid therapeutics.
Collapse
Affiliation(s)
- Dan Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zheng Wang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Fan Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mengmeng Lu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Juan Yue
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Huize Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Kam W Leong
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
102
|
Yang H, Feng Y, Cai H, Jia D, Li H, Tao Z, Zhong Y, Li Z, Shi Q, Wan L, Li L, Lu X. Endogenous IgG-based affinity-controlled release of TRAIL exerts superior antitumor effects. Am J Cancer Res 2018; 8:2459-2476. [PMID: 29721092 PMCID: PMC5928902 DOI: 10.7150/thno.23880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 02/05/2023] Open
Abstract
The inefficiency of recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based clinical regimens has been dominantly attributed to the short half-life of TRAIL. Affinity-controlled release using endogenous long-acting proteins, such as IgG and albumin, as carriers is extremely attractive for improving the pharmacokinetics of TRAIL. Up to now, it is unclear whether IgG-binding is efficient for affinity-controlled release of TRAIL. Methods: An IgG-binding affibody, IgBD, was genetically fused to the N-terminus of TRAIL to produce IgBD-TRAIL.The IgG-binding ability, cytotoxicity, serum half-life, and in vivo antitumor effect of IgBD-TRAIL were compared with that of TRAIL. In addition, an albumin-binding affibody, ABD, was fused to TRAIL to produce ABD-TRAIL. The cytototoxicity, serum half-life, and antitumor effect of IgBD-TRAIL and ABD-TRAIL were compared. Results: IgBD fusion endowed TRAIL with high affinity (nM) for IgG without interference with its cytotoxicity. The serum half-life of IgBD-TRAIL is 50-60 times longer than that of TRAIL and the tumor uptake of IgBD-TRAIL at 8-24 h post-injection was 4-7-fold that of TRAIL. In vivo antitumor effect of IgBD-TRAIL was at least 10 times greater than that of TRAIL. Owing to the high affinity (nM) for albumin, the serum half-life of ABD-TRAIL was 80-90 times greater than that of TRAIL. However, after binding to albumin, the cytotoxicity of ABD-TRAIL was reduced more than 10 times. In contrast, binding to IgG had little impact on the cytotoxicity of IgBD-TRAIL. Consequently, intravenously injected IgBD-TRAIL showed antitumor effects superior to those of ABD-TRAIL. Conclusions: Endogenous long-acting proteins, particularly IgG-based affinity-controlled release, prolonged the serum half-life as well as significantly enhanced the antitumor effect of TRAIL. IgBD-mediated endogenous IgG binding might be a novel approach for the affinity-controlled release of other protein drugs.
Collapse
|
103
|
Duque L, Körber M, Bodmeier R. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin. Int J Pharm 2018; 538:139-146. [DOI: 10.1016/j.ijpharm.2018.01.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 12/20/2022]
|
104
|
Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur J Pharm Biopharm 2018; 124:95-103. [DOI: 10.1016/j.ejpb.2017.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
105
|
Han J, Kim YS, Lim MY, Kim HY, Kong S, Kang M, Choo YW, Jun JH, Ryu S, Jeong HY, Park J, Jeong GJ, Lee JC, Eom GH, Ahn Y, Kim BS. Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS NANO 2018; 12:1959-1977. [PMID: 29397689 DOI: 10.1021/acsnano.7b09107] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Development of localized inflammatory environments by M1 macrophages in the cardiac infarction region exacerbates heart failure after myocardial infarction (MI). Therefore, the regulation of inflammation by M1 macrophages and their timely polarization toward regenerative M2 macrophages suggest an immunotherapy. Particularly, controlling cellular generation of reactive oxygen species (ROS), which cause M1 differentiation, and developing M2 macrophage phenotypes in macrophages propose a therapeutic approach. Previously, stem or dendritic cells were used in MI for their anti-inflammatory and cardioprotective potentials and showed inflammation modulation and M2 macrophage progression for cardiac repair. However, cell-based therapeutics are limited due to invasive cell isolation, time-consuming cell expansion, labor-intensive and costly ex vivo cell manipulation, and low grafting efficiency. Here, we report that graphene oxide (GO) can serve as an antioxidant and attenuate inflammation and inflammatory polarization of macrophages via reduction in intracellular ROS. In addition, GO functions as a carrier for interleukin-4 plasmid DNA (IL-4 pDNA) that propagates M2 macrophages. We synthesized a macrophage-targeting/polarizing GO complex (MGC) and demonstrated that MGC decreased ROS in immune-stimulated macrophages. Furthermore, DNA-functionalized MGC (MGC/IL-4 pDNA) polarized M1 to M2 macrophages and enhanced the secretion of cardiac repair-favorable cytokines. Accordingly, injection of MGC/IL-4 pDNA into mouse MI models attenuated inflammation, elicited early polarization toward M2 macrophages, mitigated fibrosis, and improved heart function. Taken together, the present study highlights a biological application of GO in timely modulation of the immune environment in MI for cardiac repair. Current therapy using off-the-shelf material GO may overcome the shortcomings of cell therapies for MI.
Collapse
Affiliation(s)
- Jin Han
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
| | - Min-Young Lim
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Saerom Kong
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program of Bioengineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Yeon Woong Choo
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
| | - Seungmi Ryu
- Interdisciplinary Program of Bioengineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Hye-Yun Jeong
- Cell Regeneration Research Center, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
| | - Jooyeon Park
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School , Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
- Department of Cardiology, Chonnam National University Hospital , Gwangju, 61649, Republic of Korea
- BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School , 160 Baekseo-ro, Gwangju, 61469, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, Seoul National University , Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University , Seoul, 08826, Republic of Korea
| |
Collapse
|
106
|
Duque L, Körber M, Bodmeier R. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants. Eur J Pharm Sci 2018; 117:128-137. [PMID: 29452211 DOI: 10.1016/j.ejps.2018.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired.
Collapse
Affiliation(s)
- Luisa Duque
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany
| | - Martin Körber
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany; Pensatech Pharma GmbH, Kelchstrasse 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany.
| |
Collapse
|
107
|
Ickenstein LM, Garidel P. Hydrogel formulations for biologicals: current spotlight from a commercial perspective. Ther Deliv 2018; 9:221-230. [PMID: 29424291 DOI: 10.4155/tde-2017-0085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2025] Open
Abstract
Hydrogels are, from a commercial perspective especially because of their ease of production, attractive sustained-release systems for high potent immunoglobulins with short circulation half-lives. Hydrogel formulations can reduce the dosing frequency while maintaining therapeutically relevant drug concentrations locally as well as systemically. However, hydrogels have only limited loading capacities and release hydrophilic immunoglobulins typically within hours or days, whereas weeks or months would be more preferable. Despite an evident medical need, the call for novel depot formulations seems to go unheard. This special report explores sought-after hydrogel properties, discusses arguments for using established versus novel excipients and provides selected examples for hydrogel formulations of biologicals that have proceeded into clinical development.
Collapse
Affiliation(s)
- Ludger M Ickenstein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Biologicals Development Germany, D-88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Biologicals Development Germany, D-88397 Biberach an der Riss, Germany
| |
Collapse
|
108
|
Pharmacokinetics of a sustained release formulation of PDGFβ-receptor directed carrier proteins to target the fibrotic liver. J Control Release 2018; 269:258-265. [DOI: 10.1016/j.jconrel.2017.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 02/02/2023]
|
109
|
Liu R, Chen Y, Liu L, Gong Y, Wang M, Li S, Chen C, Yu B. Long-term delivery of rhIGF-1 from biodegradable poly(lactic acid)/hydroxyapatite@Eudragit double-layer microspheres for prevention of bone loss and articular degeneration in C57BL/6 mice. J Mater Chem B 2018; 6:3085-3095. [PMID: 32254343 DOI: 10.1039/c8tb00324f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor (IGF-1) has encouraged researchers to investigate its various potential therapeutic uses such as in the treatment of osteoporosis and repair of articular cartilage.
Collapse
Affiliation(s)
- Rui Liu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Yan Chen
- Department of Ultrasonic Diagnosis
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Yong Gong
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Mingbo Wang
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Songjian Li
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Bo Yu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| |
Collapse
|
110
|
Pitorre M, Gondé H, Haury C, Messous M, Poilane J, Boudaud D, Kanber E, Rossemond Ndombina GA, Benoit JP, Bastiat G. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J Control Release 2017; 266:140-155. [PMID: 28951319 DOI: 10.1016/j.jconrel.2017.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/02/2023]
Abstract
The combination of pharmaceutical technologies can be a wise choice for developing innovative therapeutic strategies. The association of nanocarriers and gels provides new therapeutic possibilities due to the combined properties of the two technologies. Gels support the nanocarriers, localize their administration to the target tissue, and sustain their release. In addition to the properties afforded by the gel, nanocarriers can provide additional drug sustained release or different pharmacokinetic and biodistribution profiles than those from nanocarriers administered by the conventional route to improve the drug therapeutic index. This review focuses on recent (over the last ten years) in vivo data showing the advances and advantages of using nanocarrier-loaded gels. Liposomes, micelles, liquid and solid lipid nanocapsules, polymeric nanoparticles, dendrimers, and fullerenes are all nanotechnologies which have been recently assessed for medical applications, such as cancer therapy, the treatment of cutaneous and infectious diseases, anesthesia, the administration of antidepressants, and the treatment of unexpected diseases, such as alopecia.
Collapse
Affiliation(s)
- Marion Pitorre
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Henri Gondé
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Clotilde Haury
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Marwa Messous
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Jérémie Poilane
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - David Boudaud
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Erdem Kanber
- Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | | | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France
| | - Guillaume Bastiat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Master 2 Nanomédecines et R&D Pharmaceutique, Pharmacy Department, UFR Santé, Université Bretagne Loire, Angers, France.
| |
Collapse
|
111
|
Dai J, Long W, Liang Z, Wen L, Yang F, Chen G. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev Ind Pharm 2017; 44:89-98. [PMID: 28851247 DOI: 10.1080/03639045.2017.1373803] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.
Collapse
Affiliation(s)
- Juan Dai
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Wei Long
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Zhongping Liang
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Lu Wen
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China
| | - Fan Yang
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Gang Chen
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| |
Collapse
|
112
|
Bulkescher R, Starkuviene V, Erfle H. Solid-phase reverse transfection for intracellular delivery of functionally active proteins. Genome Res 2017; 27:1752-1758. [PMID: 28874398 PMCID: PMC5630038 DOI: 10.1101/gr.215103.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
Delivery of large and functionally active biomolecules across cell membranes presents a challenge in cell biological experimentation. For this purpose, we developed a novel solid-phase reverse transfection method that is suitable for the intracellular delivery of proteins into mammalian cells with preservation of their function. We show results for diverse application areas of the method, ranging from antibody-mediated inhibition of protein function to CRISPR/Cas9-based gene editing in living cells. Our method enables prefabrication of "ready to transfect" substrates carrying diverse proteins. This allows their easy distribution and standardization of biological assays across different laboratories.
Collapse
Affiliation(s)
- Ruben Bulkescher
- BioQuant, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany.,Life Sciences Center, Vilnius University, Vilnius 10223, Lithuania
| | - Holger Erfle
- BioQuant, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
113
|
Wang Q, Zhang Y, Li B, Chen L. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B 2017; 5:6963-6972. [PMID: 32264345 DOI: 10.1039/c7tb00949f] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The controlled co-release of osteoinductive and angiogenic factors is an efficient approach to promote vascularized bone regeneration, and a suitable controlled release system can largely reduce the usage of these factors to avoid cost and safety problems. In this study, a cell-free vascularized bone tissue engineering system based on a silk fibroin (SF)/nanohydroxyapatite (nHAp) scaffold was developed, in which very low doses of osteoinductive and angiogenic factors, bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), were embedded and released in a controlled manner to facilitate bone formation and vascularization, respectively. BMP-2 and VEGF were adsorbed onto SF microspheres (diameter of 1.5 ± 0.3 μm) that were prepared using a co-flow capillary device, and these microspheres were subsequently incorporated within the SF/nHAp scaffolds to provide controlled release. BMP-2 and VEGF were incorporated into SF microspheres via chemical covalent bonding and physical adsorption, respectively, leading to their controlled and sustained release from the SF/nHAp scaffolds. The rapid initial release of VEGF mimicked its expression at the early bone healing stage and promoted angiogenesis, and the relatively slow and sustained release of BMP-2 facilitated osteogenic differentiation both in vitro and in vivo, and the bone completely bridged the rat calvarial defects after 12 weeks of implantation. Overall, our findings suggest that the controlled dual release of very low doses of BMP-2 (300 ng per scaffold) and VEGF (20 ng per scaffold) from SF/nHAp scaffolds results in a synergistic effect on vascularized bone regeneration; this controlled release system can largely reduce the usage of BMP-2 as compared to other systems.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China.
| | | | | | | |
Collapse
|
114
|
Everaert A, Wouters Y, Melsbach E, Zakaria N, Ludwig A, Kiekens F, Weyenberg W. Optimisation of HPMC ophthalmic inserts with sustained release properties as a carrier for thermolabile therapeutics. Int J Pharm 2017. [PMID: 28624658 DOI: 10.1016/j.ijpharm.2017.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A methodology was developed and optimised for the preparation of a new drug delivery system (DDS) with sustained release properties to allow ocular protein delivery and to limit destructive production steps during manufacturing. Elevated temperatures, shear forces and an oxidative environment should be avoided in order to prevent denaturation or oxidation of proteins. An aqueous HPMC solution was prepared using heat and casted into small semi-rod-shaped PVC blisters. The polymer solution was allowed to cool down and was partially dehydrated at room temperature. A drug solution containing glycerol, drug and water was subsequently added to rehydrate the partially dehydrated polymer matrix at a temperature of 2°C. Several parameters of the production process were varied to determine their influence on the release kinetics from HPMC inserts from three different molecules of different molecular weight. This production method was further optimised in order to shorten the rehydration time from weeks to days, while eliminating heat and shear forces on the selected drug molecules sodium fluorescein, lysozyme and albumin. Slow release kinetics were achieved for sodium fluorescein and lysozyme as model drug molecules. The higher molecular weight of albumin prevented a good penetration into the insert during the rehydration process resulting in predominantly burst release. The biocompatibility of a viscous HPMC solution was evaluated on SV40-human corneal epithelial cells with PrestoBlue® and no cytotoxic effects were observed.
Collapse
Affiliation(s)
- Arnout Everaert
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Yannick Wouters
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Eline Melsbach
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Nadia Zakaria
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Annick Ludwig
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Wim Weyenberg
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
115
|
Zhu J, Dong X. Preparation and Characterization of Novel HDL-mimicking Nanoparticles for Nerve Growth Factor Encapsulation. J Vis Exp 2017. [PMID: 28570541 DOI: 10.3791/55584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The objective of this article is to introduce preparation and characterization methods for nerve growth factor (NGF)-loaded, high-density, lipoprotein (HDL)-mimicking nanoparticles (NPs). HDLs are endogenous NPs and have been explored as vehicles for the delivery of therapeutic agents. Various methods have been developed to prepare HDL-mimicking NPs. However, they are generally complicated, time consuming, and difficult for industrial scale-up. In this study, one-step homogenization was used to mix the excipients and form the prototype NPs. NGF is a water-soluble protein of 26 kDa. To facilitate the encapsulation of NGF into the lipid environment of HDL-mimicking NPs, protamine USP was used to form an ion-pair complex with NGF to neutralize the charges on the NGF surface. The NGF/protamine complex was then introduced into the prototype NPs. Apolipoprotein A-I was finally coated on the surface of the NPs. NGF HDL-mimicking NPs showed preferable properties in terms of particle size, size distribution, entrapment efficiency, in vitro release, bioactivity, and biodistribution. With the careful design and exploration of homogenization in HDL-mimicking NPs, the procedure was greatly simplified, and the NPs were made scalable. Moreover, various challenges, such as separating unloaded NGF from the NPs, conducting reliable in vitro release studies, and measuring the bioactivity of the NPs, were overcome.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center;
| |
Collapse
|
116
|
Kim WJ, Islam R, Kim BS, Cho YD, Yoon WJ, Baek JH, Woo KM, Ryoo HM. Direct Delivery of Recombinant Pin1 Protein Rescued Osteoblast Differentiation of Pin1-Deficient Cells. J Cell Physiol 2017; 232:2798-2805. [PMID: 27800612 DOI: 10.1002/jcp.25673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/06/2022]
Abstract
Pin1 is a peptidyl prolyl cis-trans isomerase that specifically binds to the phosphoserine-proline or phosphothreonine-proline motifs of several proteins. We reported that Pin1 plays a critical role in the fate determination of Smad1/5, Runx2, and β-catenin that are indispensable nuclear proteins for osteoblast differentiation. Though several chemical inhibitors has been discovered for Pin1, no activator has been reported as of yet. In this study, we directly introduced recombinant Pin1 protein successfully into the cytoplasm via fibroin nanoparticle encapsulated in cationic lipid. This nanoparticle-lipid complex delivered its cargo with a high efficiency and a low cytotoxicity. Direct delivery of Pin1 leads to increased Runx2 and Smad signaling and resulted in recovery of the osteogenic marker genes expression and the deposition of mineral in Pin1-deficient cells. These result indicated that a direct Pin1 protein delivery method could be a potential therapeutics for the osteopenic diseases. J. Cell. Physiol. 232: 2798-2805, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Young-Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
117
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
118
|
Seong KY, Seo MS, Hwang DY, O'Cearbhaill ED, Sreenan S, Karp JM, Yang SY. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. J Control Release 2017; 265:48-56. [PMID: 28344013 DOI: 10.1016/j.jconrel.2017.03.041] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023]
Abstract
Proteins are important biologic therapeutics used for the treatment of various diseases. However, owing to low bioavailability and poor skin permeability, transdermal delivery of protein therapeutics poses a significant challenge. Here, we present a new approach for transdermal protein delivery using bullet-shaped double-layered microneedle (MN) arrays with water-swellable tips. This design enabled the MNs to mechanically interlock with soft tissues by selective distal swelling after skin insertion. Additionally, prolonged release of loaded proteins by passive diffusion through the swollen tips was obtained. The bullet-shaped MNs provided an optimal geometry for mechanical interlocking, thereby achieving significant adhesion strength (~1.6Ncm-2) with rat skin. By harnessing the MN's reversible swelling/deswelling property, insulin, a model protein drug, was loaded in the swellable tips using a mild drop/dry procedure. The insulin-loaded MN patch released 60% of insulin when immersed in saline over the course of 12h and approximately 70% of the released insulin appeared to have preserved structural integrity. An in vivo pilot study showed a prolonged release of insulin from swellable MN patches, leading to a gradual decrease in blood glucose levels. This self-adherent transdermal MN platform can be applied to a variety of protein drugs requiring sustained release kinetics.
Collapse
Affiliation(s)
- Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Eoin D O'Cearbhaill
- School of Mechanical and Materials Engineering, UCD Centre for Biomedical Engineering, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Seamus Sreenan
- 3U Diabetes, Dept of Endocrinology, Royal College of Surgeons in Ireland, Connolly Hospital, Blanchardstown, Dublin 15, Ireland
| | - Jeffrey M Karp
- Division of BioEngineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
119
|
Haidari H, Zhang Q, Melville E, Kopecki Z, Song Y, Cowin AJ, Garg S. Development of Topical Delivery Systems for Flightless Neutralizing Antibody. J Pharm Sci 2017; 106:1795-1804. [PMID: 28336300 DOI: 10.1016/j.xphs.2017.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Flightless I (Flii) is an actin remodeling protein important for cytoskeletal regulation and cellular processes including migration, proliferation, and adhesion. Previous studies have clearly identified Flii as a novel therapeutical target for improved wound repair and have demonstrated Flii regulation using Flii neutralizing antibodies (FnAb) in different models of wound healing in vivo. Here we describe the development of an optimized topical delivery system that can neutralize Flii activity in the epidermis. Topical delivery of FnAb is an attractive approach as it provides a convenient application, sustained release, localized effect, and reduced dosage. Three successful formulations were developed, and their physical and chemical stability examined. The in vitro release revealed prolonged and sustained release of FnAb in all the tested formulations. Additionally, penetration studies using intact porcine skin showed that FnAb penetrated the epidermis and upper papillary dermis. The penetrated FnAb significantly reduced Flii expression compared to dosed matched IgG controls. This study has successfully developed a topical delivery system for FnAb that could serve as a potential platform for future localized wound treatments.
Collapse
Affiliation(s)
- Hanif Haidari
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Qian Zhang
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Elizabeth Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
120
|
Schaefer E, Smith SM, Salmon J, Abbaraju S, Amin R, Weiss S, Grau U, Velagaleti P, Gilger B. Evaluation of Intracameral Pentablock Copolymer Thermosensitive Gel for Sustained Drug Delivery to the Anterior Chamber of the Eye. J Ocul Pharmacol Ther 2017; 33:353-360. [PMID: 28300477 DOI: 10.1089/jop.2016.0181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To investigate PTSgels (Pentablock copolymers) as an injectable formulation technology for sustained ocular drug delivery. Drug release profile, tolerability, and polymer degradation for one of the thermosensitive, biodegradable, and biocompatible compositions were investigated through intracameral (IC) injection in rabbits. METHODS New Zealand White rabbit eyes were injected IC (50 μL) with 100 μg near-infrared-immunoglobulin G (NIR-IgG) in balanced salt solution (BSS) or 20% PTSgel; or with PTSgel or BSS alone. Ocular irritation scoring, intraocular pressure (IOP), and corneal thickness (CT) measurement, as well as color and infrared photography, were performed for up to 28 days postinjection. Upon euthanasia at 7, 14, or 28 days, eyes underwent ex vivo imaging (Xenogen IVIS) followed by tissue fixation and histopathology. RESULTS IC injection of PTSgel (liquid at room temperature) was performed without difficulty using a 31G needle. The polymer quickly gelled in the IC space resulting in an inferior anterior chamber deposit. The tested PTSgel was well tolerated, with no significant changes in IOP or CT. Eyes injected with NIR-IgG in PTSgel had visible NIR-IgG through 9 days postinjection, and ex vivo imaging detected a strong NIR-IgG signal in the anterior chamber through day 28. The gel deposit steadily decreased in size over time and was nearly eliminated by 28 days. CONCLUSIONS The PTSgel released IgG for 28 days and was well tolerated. The polymer degraded in parallel with drug release. These results demonstrate the potential of intracameral PTSgel formulations for sustained delivery of biologic therapies to the ocular anterior segment.
Collapse
Affiliation(s)
- Elizabeth Schaefer
- 1 Laboratory of Ocular Toxicology, Immunology, and Drug Delivery, North Carolina State University , Raleigh, North Carolina
| | - Sara M Smith
- 1 Laboratory of Ocular Toxicology, Immunology, and Drug Delivery, North Carolina State University , Raleigh, North Carolina
| | - Jacklyn Salmon
- 1 Laboratory of Ocular Toxicology, Immunology, and Drug Delivery, North Carolina State University , Raleigh, North Carolina
| | - Santhi Abbaraju
- 2 Symmetry Biosciences , Research Triangle Park, North Carolina
| | - Rasidul Amin
- 2 Symmetry Biosciences , Research Triangle Park, North Carolina
| | | | | | | | - Brian Gilger
- 1 Laboratory of Ocular Toxicology, Immunology, and Drug Delivery, North Carolina State University , Raleigh, North Carolina.,3 i-novion, Inc. , Randolph, New Jersey
| |
Collapse
|
121
|
Zhang X, Chen W, Zhu X, Lu Y. Encapsulating Therapeutic Proteins with Polyzwitterions for Lower Macrophage Nonspecific Uptake and Longer Circulation Time. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7972-7978. [PMID: 28194937 DOI: 10.1021/acsami.6b16413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Numerous efforts have been made to promote the efficiency of protein delivery through tuning the protein surface properties such as grafting polymers on protein surface, but limited successes have been achieved, and their great clinical expectation has not yet been realized. The main reason is that proteins are readily recognized as foreign materials under physiological conditions due to the genetic distance between species, leading to rapid decrease in activity and clearance by mononuclear phagocyte system. In this study, we encapsulated proteins within nonfouling polyzwitterionic shells, which offer the protein with the significantly improved stability, reduced phagocytosis, and prolonged circulation time. Exemplified with urate oxidase (UOx), the encapsulated UOx noted as n(UOx) could facilely escape from macrophage uptake in medium with or without serum. In contrast, the native protein rapidly induced high-uptake and accumulated into the macrophages under the same conditions. Moreover, the similar result is also observed in liver-resident kupffer cells, which were isolated from the mice after treated with fluorescent-labeled native UOx and n(UOx). Furthermore, n(UOx) exhibited significantly improved stability in vivo and a more than eightfold improvement in circulation time when compared with native UOx. Because of its superior ability to reduce macrophage uptake and promote the circulation time, this technique also makes it an ideal candidate for the enhancement of targeting efficiency in drug delivery and biodetection, which affords an alternative method for diverse medical applications.
Collapse
Affiliation(s)
- Xiaopei Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
- Department of Chemical and Bimolecular Engineering, University of California , Los Angeles, California 90095, United States
| | - Wei Chen
- Beijing Institute of Biotechnology , Beijing 100071, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yunfeng Lu
- Department of Chemical and Bimolecular Engineering, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
122
|
Phan VG, Thambi T, Gil MS, Lee DS. Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
123
|
Ravichandran R, Astrand C, Patra HK, Turner APF, Chotteau V, Phopase J. Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications. RSC Adv 2017; 7:21068-21078. [DOI: 10.1039/c7ra02927f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
A one-pot approach to fabricate in situ-gellable, thermo- and pH-responsive, hydrogels based on covalently crosslinked networks of collagen-I and thermo-responsive polymer.
Collapse
Affiliation(s)
- R. Ravichandran
- Division of Molecular Physics
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
| | - C. Astrand
- School of Biotechnology
- KTH-Royal Institute of Technology
- Stockholm
- Sweden
| | - H. K. Patra
- Biosensors and Bioelectronics Centre
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - Anthony P. F. Turner
- Biosensors and Bioelectronics Centre
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - V. Chotteau
- School of Biotechnology
- KTH-Royal Institute of Technology
- Stockholm
- Sweden
| | - J. Phopase
- Division of Molecular Physics
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
| |
Collapse
|
124
|
Cossé A, König C, Lamprecht A, Wagner KG. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants. AAPS PharmSciTech 2017; 18:15-26. [PMID: 27193002 DOI: 10.1208/s12249-016-0548-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
The design of biodegradable implants for sustained release of proteins is a complex challenge optimizing protein polymer interaction in combination with a mini-scale process which is predictive for production. The process of hot melt extrusion (HME) was therefore conducted on 5- and 9-mm mini-scale twin screw extruders. Poly(lactic-co-glycolic acid) (PLGA) implants were characterized for their erosion properties and the in vitro release of the embedded protein (bovine serum albumin, BSA). The release of acidic monomers as well as other parameters (pH value, mass loss) during 16 weeks indicated a delayed onset of matrix erosion in week 3. BSA-loaded implants released 17.0% glycolic and 5.9% lactic acid after a 2-week lag time. Following a low burst release (3.7% BSA), sustained protein release started in week 4. Storage under stress conditions (30°C, 75% rH) revealed a shift of erosion onset of 1 week (BSA-loaded implants: 26.9% glycolic and 9.3% lactic acid). Coherent with the changed erosion profiles, an influence on the protein release was observed. Confocal laser scanning and Raman microscopy showed a homogenous protein distribution throughout the matrix after extrusion and during release studies. Raman spectra indicated a conformational change of the protein structure which could be one reason for incomplete protein release. The study underlined the suitability of the HME process to obtain a solid dispersion of protein inside a polymeric matrix providing sustained protein release. However, the incomplete protein release and the impact by storage conditions require thorough characterization and understanding of erosion and release mechanisms.
Collapse
|
125
|
Tsintou M, Wang C, Dalamagkas K, Weng D, Zhang YN, Niu W. Nanogels for biomedical applications. NANOBIOMATERIALS SCIENCE, DEVELOPMENT AND EVALUATION 2017:87-124. [DOI: 10.1016/b978-0-08-100963-5.00005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
126
|
Hasegawa K, Kawachi E, Uehara Y, Yoshida T, Imaizumi S, Ogawa M, Miura SI, Saku K. Improved 68 Ga-labeling method using ethanol addition: Application to the α-helical peptide DOTA-FAMP. J Labelled Comp Radiopharm 2016; 60:55-61. [PMID: 27925294 DOI: 10.1002/jlcr.3474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 01/10/2023]
Abstract
We examined the 68 Ga labeling of the α-helical peptide, DOTA-FAMP, and evaluated conformational changes during radiolabeling. 68 Ga-DOTA-FAMP is a positron emission tomography probe candidate for atherosclerotic plaques. The labeling yield achieved by Zhernosekov's method (using acetone for 68 Ga purification) was compared with that achieved by the original and 2 modified Mueller's methods (using NaCl solution). Modified method I involves desalting the 68 Ga prior to labeling, and modified method II involves the inclusion of ethanol in the labeling solution. The labeling yield using Zhernosekov's method was 62% ± 5.4%. In comparison, Mueller's original method gave 8.9% ± 1.7%. Modified method I gave a slight improvement of 32% ± 2.1%. Modified method II further increased the yield to 66% ± 3.4%. Conformational changes were determined by circular dichroism spectroscopy, revealing that these differences could be attributed to conformational changes. Heat treatment affects peptide conformation, which leads to aggregation and decreases the labeling yield. Mueller's method is simpler, but harsh conditions preclude its application to biomolecules. To suppress aggregation, we included a desalting process and added ethanol in the labeling solution. These changes significantly improved the labeling yield. Before use for imaging, conformational changes of biomolecules during radiolabeling should be evaluated by circular dichroism spectroscopy to ensure the homogeneity of the labeled product.
Collapse
Affiliation(s)
- Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Emi Kawachi
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Tsuyoshi Yoshida
- Department of Radiology, Koga Hospital 21, Kurume, Fukuoka, Japan
| | - Satoshi Imaizumi
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masahiro Ogawa
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keijiro Saku
- Department of Cardiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
127
|
Double stimuli-responsive polymer systems: How to use crosstalk between pH- and thermosensitivity for drug depots. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
128
|
Omer AM, Tamer TM, Hassan MA, Rychter P, Mohy Eldin MS, Koseva N. Development of amphoteric alginate/aminated chitosan coated microbeads for oral protein delivery. Int J Biol Macromol 2016; 92:362-370. [PMID: 27392773 DOI: 10.1016/j.ijbiomac.2016.07.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
A new amphoteric biopolymer carrier based on alginate and aminated chitosan coated microbeads (Alg/AmCS) was developed and characterized for bovine serum albumin (BSA) protein delivery. The amphoteric character was investigated through studying the swelling and in vitro BSA release behaviors of the developed microbeads in simulated gastric (SGF; pH1.2), intestinal (SIF; pH6.8), and colonic (SCF; pH7.4) fluids. The pH sensitivity was found to depend on the amount of AmCS in the coating medium. The results were interpreted from the view of the individual pH sensitivity of alginate and aminated chitosan in addition to the ionic interaction between them under the studied pHs. Besides; it was found that the BSA loading efficiency (LE) exceeded 82% regardless of the initial concentration of BSA. The released amount of BSA reached approximately 63% and 86% in SIF and SCF, respectively, using 0.25% AmCS. The stability of alginate microbeads in SCF was improved with increasing AmCS concentration in the coating medium up to 2%. Furthermore, the developed microbeads demonstrated their ability for biodegradation in addition to their antibacterial activities against selected bacterial strains. The results clearly suggested that Alg/AmCS coated microbeads could be suitable carriers for site-specific protein delivery in the intestinal and colon tracts.
Collapse
Affiliation(s)
- A M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| | - T M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - M A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - P Rychter
- Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University, Armii Krajowej 13/15, 42-200, Częstochowa, Poland
| | - M S Mohy Eldin
- Chemistry Department, Faculty of Science, University of Jeddah, Asfan, P. O. Box: 80203, Jeddah, 21589, Saudi Arabia
| | - N Koseva
- Laboratory of Phosphorus-containing Monomers and Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
129
|
Sustained Release of Protein Therapeutics from Subcutaneous Thermosensitive Biocompatible and Biodegradable Pentablock Copolymers (PTS gels). JOURNAL OF DRUG DELIVERY 2016; 2016:2407459. [PMID: 27800184 PMCID: PMC5069382 DOI: 10.1155/2016/2407459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022]
Abstract
Objective. To evaluate thermosensitive, biodegradable pentablock copolymers (PTSgel) for sustained release and integrity of a therapeutic protein when injected subcutaneously. Materials and Methods. Five PTSgels with PEG-PCL-PLA-PCL-PEG block arrangements were synthesized. In vitro release of IgG from PTSgels and concentrations was evaluated at 37°C. Released IgG integrity was characterized by SDS-PAGE. In vitro disintegration for 10GH PTSgel in PBS was monitored at 37°C over 72 days using gravimetric loss and GPC analysis. Near-infrared IgG in PTSgel was injected subcutaneously and examined by in vivo imaging and histopathology for up to 42 days. Results. IgG release was modulated from approximately 7 days to more than 63 days in both in vitro and in vivo testing by varying polymer composition, concentration of PTSgel aqueous solution, and concentration of IgG. Released IgG in vitro maintained structural integrity by SDS-PAGE. Subcutaneous PTSgels were highly biocompatible and in vitro IgG release occurred in parallel with the disappearance of subcutaneous gel in vivo. Conclusions. Modulation of release of biologics to fit the therapeutic need can be achieved by varying the biocompatible and biodegradable PTSgel composition. Release of IgG parallels disappearance of the polymeric gel; hence, little or no PTSgel remains after drug release is complete.
Collapse
|
130
|
Zhang CZ, Niu J, Chong YS, Huang YF, Chu Y, Xie SY, Jiang ZH, Peng LH. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro &in vivo. Eur J Pharm Biopharm 2016; 109:1-13. [PMID: 27614186 DOI: 10.1016/j.ejpb.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
Asiaticoside is a natural compound possessing diverse pharmacological effects with great potential for clinical use. However, the low solubility and oil-water partition coefficient of asiaticoside lead to reduced effect and limited application. This study aims to construct a porous microsphere for the sustained release of asiaticoside to improve its absorption and enhance the therapeutic effects. Parameters of the formulations, including the drug to polymer ratio, solvent amounts of the inner and external phases, the stirring speed for preparation, and the drug entrapment efficiency were investigated and optimized. Particle size, morphology, pores structure, and Fourier transform infrared spectrum of the microsphere were characterized. The release kinetics and cellular uptake profiles of the asiaticoside-microspheres were examined. The therapeutic effects of asiaticoside-microspheres on wound healing and skin appendages regeneration were investigated in vitro & in vivo. Results showed that the optimized asiaticoside-microspheres possess spherical spongy structure with cylindrical holes. Asiaticoside can be loaded in the microsphere with high efficiency and released with sustained manner. The cellular uptake of asiaticoside from the microspheres was increased with 9.1 folds higher than that of free solution. Asiaticoside-microspheres expressed the strong promotion in the proliferation, migration of keratinocytes and wound scratching healing in vitro. More importantly, they significantly accelerated the re-epithelization, collagen synthesis and pro-angiogenesis in the rat full-skin wound healing. Porous microsphere was shown a novel carrier for the sustained delivery of poorly soluble asiaticoside, with absorption and therapeutic effects improved. Asiaticoside-microsphere is a promising topical preparation with excellent regenerative effects for the wound therapy.
Collapse
Affiliation(s)
- Chen-Zhen Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yee-Song Chong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan-Fen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Chu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Sheng-Yang Xie
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Pharmacy Division, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| | - Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
131
|
Prathipati P, Zhu J, Dong X. Development of novel HDL-mimicking α-tocopherol-coated nanoparticles to encapsulate nerve growth factor and evaluation of biodistribution. Eur J Pharm Biopharm 2016; 108:126-135. [PMID: 27531623 DOI: 10.1016/j.ejpb.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Nerve Growth Factor (NGF) is one of the members of the neurotrophin family with multifaceted functions. However, clinical application of NGF is hurdled by the challenge on formulation development. The objective of this study was to develop novel high-density lipoproteins (HDL)-mimicking nanoparticles (NPs) coated with α-tocopherol to incorporate NGF by a self-assembly approach. The NPs were prepared by an optimized self-assembly method that is simple and scalable. The composition of HDL-mimicking NPs was optimized. The prototype of the HDL-mimicking α-tocopherol-coated NPs contained phosphatidylserine (a negative charged phospholipid) and d-α-Tocopheryl polyethylene glycol succinate (a source of vitamin E) to enhance the entrapment efficiency of apolipoprotein A-I in the NPs. The entrapment efficiency of apolipoprotein A-I was about 30%. The NPs had particle size about 200nm with a relatively narrow size distribution. Finally, cationic ion-pair agents were optimized to form ion-pairs with NGF to facilitate the incorporation of NGF into the NPs. Protamine sodium salt USP formed an optimal ion-pair complex with NGF. The results showed that the novel HDL-mimicking α-tocopherol-coated NPs successfully encapsulated NGF with over 65% entrapment efficiency by using this ion-pair strategy. In vitro release studies demonstrated a slow release of NGF from NGF NPs in PBS containing 5% BSA at 37°C for 72 h. Further biodistribution studies showed that intravenously injected NGF NPs significantly increased NGF concentration in plasma and decreased the uptake in liver, spleen and kidney, compared to free NGF in mice.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA(1)
| | - Jing Zhu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
132
|
Composition and Function of the Interstitial Fluid. Protein Sci 2016. [DOI: 10.1201/9781315374307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
133
|
Carlini A, Adamiak L, Gianneschi NC. Biosynthetic Polymers as Functional Materials. Macromolecules 2016; 49:4379-4394. [PMID: 27375299 PMCID: PMC4928144 DOI: 10.1021/acs.macromol.6b00439] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/06/2016] [Indexed: 02/07/2023]
Abstract
The synthesis of functional polymers encoded with biomolecules has been an extensive area of research for decades. As such, a diverse toolbox of polymerization techniques and bioconjugation methods has been developed. The greatest impact of this work has been in biomedicine and biotechnology, where fully synthetic and naturally derived biomolecules are used cooperatively. Despite significant improvements in biocompatible and functionally diverse polymers, our success in the field is constrained by recognized limitations in polymer architecture control, structural dynamics, and biostabilization. This Perspective discusses the current status of functional biosynthetic polymers and highlights innovative strategies reported within the past five years that have made great strides in overcoming the aforementioned barriers.
Collapse
Affiliation(s)
- Andrea
S. Carlini
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Lisa Adamiak
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
134
|
Negri GE, Deming TJ. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Graciela E. Negri
- Department of Chemistry and Biochemistry; University of California; Los Angeles 607 Charles E Young Dr. E, Los Angeles CA 90095-1600 USA
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry; University of California; Los Angeles 607 Charles E Young Dr. E, Los Angeles CA 90095-1600 USA
- Department of Bioengineering; University of California; Los Angeles 5121 Engineering 5, Los Angeles CA 90095-1600 USA
| |
Collapse
|
135
|
Pakulska MM, Miersch S, Shoichet MS. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016; 351:aac4750. [PMID: 26989257 DOI: 10.1126/science.aac4750] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shane Miersch
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
136
|
Nagy-Smith K, Yamada Y, Schneider JP. Protein release from highly charged peptide hydrogel networks. J Mater Chem B 2016; 4:1999-2007. [PMID: 32263077 PMCID: PMC8244587 DOI: 10.1039/c5tb02137e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels are useful delivery vehicles for therapeutic proteins. The ability to control the rate of protein release is paramount to a gel's utility and, in part, defines its clinical application. Electrostatic interactions made between encapsulated protein and a gel's network represents one modality in which protein motility can be controlled. For many gels this strategy works well under low ionic strength solution conditions, but dramatically less so in solutions of physiologically relevant ionic strength where electrostatic interactions are more effectively screened. Herein, we find that highly charged self-assembling peptides can be used to prepare fibrillar hydrogels of sufficient electropotential to allow electrostatic-based control over protein release under physiological buffer conditions. Rheology shows that proteins, differing significantly in their isoelectric point, can be directly encapsulated within negatively- or positively-charged peptide hydrogel networks during the peptide self-assembly event leading to gelation. Bulk adsorption studies coupled with transmission electron microscopy shows that electrostatic interactions drive the association of protein to oppositely charged fibrils in the final gel state, which in turn, dictates the diffusion and retention of these macromolecules in the hydrogel network.
Collapse
Affiliation(s)
- Katelyn Nagy-Smith
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
137
|
Fakhari A, Anand Subramony J. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J Control Release 2015; 220:465-475. [PMID: 26585504 DOI: 10.1016/j.jconrel.2015.11.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023]
Abstract
Chemotherapy is the traditional treatment for intermediate and late stage cancers. The search for treatment options with minimal side effects has been ongoing for several years. Drug delivery technologies that result in minimal or no side effects with improved ease of use for the patients are receiving increased attention. Polymer drug conjugates and nanoparticles can potentially offset the volume of drug distribution while enhancing the accumulation of the active drug in tumors thereby reducing side effects. Additionally, development of localized drug delivery platforms is being investigated as another key approach to target tumors with minimal or no toxicity. Development of in-situ depot-forming gel systems for intratumoral delivery of immuno-oncology actives can enhance drug bioavailability to the tumor site and reduce systemic toxicity. This field of drug delivery is critical to develop given the advent of immunotherapy and the availability of novel biological molecules for treating solid tumors. This article reviews the advances in the field of engineered in-situ gelling platforms as a practical tool for local delivery of active oncolytic agents to tumor sites.
Collapse
Affiliation(s)
- Amir Fakhari
- Drug Delivery and Device Development, Medimmune LLC, United States
| | | |
Collapse
|
138
|
Extended release microparticle-in-gel formulation of octreotide: Effect of polymer type on acylation of peptide during in vitro release. Int J Pharm 2015; 496:676-88. [PMID: 26561725 DOI: 10.1016/j.ijpharm.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
Polymeric microparticles (MPs)-in-gel formulations for extended delivery of octreotide were developed. We investigated influence of polymer composition on acylation of octreotide and kinetics of release during in vitro release from biodegradable polymeric formulations. Polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid (PGA) and polyethylene glycol (PEG) based triblock (TB≈PCL10k-PEG2k-PCL10k) and pentablock (PBA≈PLA3k-PCL7k-PEG2k-PCL7k-PLA3k and PBB≈PGA3k-PCL7k-PEG2k-PCL7k-PGA3k) polymers were investigated. Octreotide was encapsulated in MPs using methanol-oil/water emulsion solvent evaporation method. The particles were characterized for size, morphology, encapsulation efficiency, drug loading and in vitro release. Release samples were subjected to HPLC analysis for quantitation and HPLC-MS analysis for identification of native and chemically modified octreotide adducts. Entrapment efficiency of methanol-oil/water method with TB, PBA and PBB polymers were 45%, 60%, and 82%, respectively. A significant fraction of released octreotide was acylated from lactide and glycolide based PBA (53%) and PBB (92%) polymers. Substantial amount of peptide was not released from PBB polymers after 330 days of incubation. Complete release of octreotide was achieved from TB polymer over a period of 3 months with minimal acylation of peptide (13%). PCL based polymers resulted in minimal acylation of peptide and hence may be suitable for extended peptide and protein delivery. Conversely, polymers having PLA and PGA blocks may not be appropriate for peptide delivery due to acylation and incomplete release.
Collapse
|
139
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
140
|
Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration. Biochim Biophys Acta Gen Subj 2015; 1860:258-68. [PMID: 26026469 DOI: 10.1016/j.bbagen.2015.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αA- and αB crystallins are principal members of the small heat shock protein family and elicit both a cell protective function and a chaperone function. α-Crystallins have been found to be prominent proteins in normal and pathological retina emphasizing the importance for in-depth understanding of their function and significance. SCOPE OF REVIEW Retinal pigment epithelial cells (RPE) play a vital role in the pathogenesis of age-related macular degeneration (AMD). This review addresses a number of cellular functions mediated by α-crystallins in the retina. Prominent expression of αB crystallin in mitochondria may serve to protect cells from oxidative injury. αB crystallin as secretory protein via exosomes can offer neuroprotection to adjacent RPE cells and photoreceptors. The availability of chaperone-containing minipeptides of αB crystallin could prove to be a valuable new tool for therapeutic treatment of retinal disorders. MAJOR CONCLUSIONS α-Crystallins are expressed in cytosol and mitochondria of RPE cells and are regulated during oxygen-induced retinopathy and during development. α-Crystallins protect RPE from oxidative-and ER stress-induced injury and autophagy. αB-Crystallin is a modulator of angiogenesis and vascular endothelial growth factor. αB Crystallin is secreted via exosomal pathway. Minichaperone peptides derived from αB Crystallin prevent oxidant induced cell death and have therapeutic potential. GENERAL SIGNIFICANCE Overall, this review summarizes several novel properties of α-crystallins and their relevance to maintaining normal retinal function. In particular, the use of α-crystallin derived peptides is a promising therapeutic strategy to combat retinal diseases such as AMD. This article is part of a Special Issue entitled Crystallin biochemistry in health and disease.
Collapse
|
141
|
Reversible hydrophobic ion-paring complex strategy to minimize acylation of octreotide during long-term delivery from PLGA microparticles. Int J Pharm 2015; 489:237-45. [PMID: 25940041 DOI: 10.1016/j.ijpharm.2015.04.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022]
Abstract
Acylation of peptide has been reported for a number of peptides and proteins during release from polymers comprising of lactide and glycolide. We hypothesize that reversible hydrophobic ion-pairing (HIP) complex may minimize octreotide acylation during release. Sodium dodecyl sulfate (SDS), dextran sulfate A (DSA, Mw 9-20 kDa) and dextran sulfate B (DSB, Mw 36-50 kDa) were selected as ion-pairing agents to prepare reversible HIP complex with octreotide. Complexation efficiency was optimized with respect to the mole ratio of ion-pairing agent to octreotide to achieve 100% complexation of octreotide. Dissociation studies suggested that DSA-octreotide and DSB-octreotide complexes dissociate completely at physiological pH in presence of counter ions unlike SDS-octreotide complex. DSA-octreotide and DSB-octreotide complex encapsulated PLGA microparticles (DSAMPs and DSBMPs) were prepared using the S/O/W emulsion method. Entrapment efficiencies for DSAMPs and DSBMPs were 74.7±8.4% and 81.7±6.3%, respectively. In vitro release of octreotide was performed by suspending MPs in gel. A large fraction of peptide was released in chemically intact form and <7% was acylated from DSAMPs and DSBMPs in gel over 55 days. Therefore, HIP complexation could be a viable strategy to minimize acylation of peptides and proteins during extended release from lactide and glycolide based polymers.
Collapse
|
142
|
Teekamp N, Duque LF, Frijlink HW, Hinrichs WLJ, Olinga P. Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert Opin Drug Deliv 2015; 12:1311-31. [DOI: 10.1517/17425247.2015.1003807] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
143
|
Sim HJ, Thambi T, Lee DS. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J Mater Chem B 2015; 3:8892-8901. [DOI: 10.1039/c5tb01399b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Polysaccharide-based biodegradable, biocompatible and temperature-sensitive injectable hydrogels have been developed for the sustained delivery of proteins.
Collapse
Affiliation(s)
- Hye Jin Sim
- School of Chemical Engineering
- Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering
- Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering
- Theranostic Macromolecules Research Center
- Sungkyunkwan University
- Suwon
- Republic of Korea
| |
Collapse
|