101
|
Intra-axonal protein synthesis in development and beyond. Int J Dev Neurosci 2016; 55:140-149. [PMID: 26970010 DOI: 10.1016/j.ijdevneu.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Proteins can be locally produced in the periphery of a cell, allowing a rapid and spatially precise response to the changes in its environment. This process is especially relevant in highly polarized and morphologically complex cells such as neurons. The study of local translation in axons has evolved from being primarily focused on developing axons, to the notion that also mature axons can produce proteins. Axonal translation has been implied in several physiological and pathological conditions, and in all cases it shares common molecular actors and pathways as well as regulatory mechanisms. Here, we review the main findings in these fields, and attempt to highlight shared principles.
Collapse
|
102
|
Kaufman OH, Marlow FL. Methods to study maternal regulation of germ cell specification in zebrafish. Methods Cell Biol 2016; 134:1-32. [PMID: 27312489 DOI: 10.1016/bs.mcb.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4-5h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology.
Collapse
Affiliation(s)
- O H Kaufman
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - F L Marlow
- Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
103
|
Korsak LIT, Mitchell ME, Shepard KA, Akins MR. Regulation of neuronal gene expression by local axonal translation. CURRENT GENETIC MEDICINE REPORTS 2016; 4:16-25. [PMID: 27722035 DOI: 10.1007/s40142-016-0085-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RNA localization is a key mechanism in the regulation of protein expression. In neurons, this includes the axonal transport of select mRNAs based on the recognition of axonal localization motifs in these RNAs by RNA binding proteins. Bioinformatic analyses of axonal RNAs suggest that selective inclusion of such localization motifs in mature mRNAs is one mechanism controlling the composition of the axonal transcriptome. The subsequent translation of axonal transcripts in response to specific stimuli provides precise spatiotemporal control of the axonal proteome. This axonal translation supports local phenomena including axon pathfinding, mitochondrial function, and synapse-specific plasticity. Axonal protein synthesis also provides transport machinery and signals for retrograde trafficking to the cell body to effect somatic changes including altering the transcriptional program. Here we review the remarkable progress made in recent years to identify and characterize these phenomena.
Collapse
Affiliation(s)
- Lulu I T Korsak
- Drexel University, PISB 312; 3245 Chestnut St, Philadelphia, PA 19104,
| | - Molly E Mitchell
- Drexel University, PISB 312; 3245 Chestnut St, Philadelphia, PA 19104,
| | | | - Michael R Akins
- Assistant Professor, Department of Biology, Department of Neurobiology & Anatomy, Drexel University, PISB 319; 3245 Chestnut St, Philadelphia, PA 19104,
| |
Collapse
|
104
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
105
|
Twiss JL, Merianda TT. Old dogs with new tricks: intra-axonal translation of nuclear proteins. Neural Regen Res 2015; 10:1560-2. [PMID: 26692839 PMCID: PMC4660735 DOI: 10.4103/1673-5374.165264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA ; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Tanuja T Merianda
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
106
|
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2015; 27:518-34. [PMID: 26658614 PMCID: PMC4751602 DOI: 10.1091/mbc.e15-07-0504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022] Open
Abstract
A novel posttranscriptional mechanism for regulating the neuronal protein GAP-43 is reported. The mRNA-binding protein hnRNP-Q1 represses Gap-43 mRNA translation by a mechanism involving a 5′ untranslated region G-quadruplex structure, which affects GAP-43 function, as demonstrated by a GAP-43–dependent increase in neurite length and number with hnRNP-Q1 knockdown. Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.
Collapse
Affiliation(s)
- Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
107
|
Chetta J, Love JM, Bober BG, Shah SB. Bidirectional actin transport is influenced by microtubule and actin stability. Cell Mol Life Sci 2015; 72:4205-20. [PMID: 26043972 PMCID: PMC11113749 DOI: 10.1007/s00018-015-1933-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
Local and long-distance transport of cytoskeletal proteins is vital to neuronal maintenance and growth. Though recent progress has provided insight into the movement of microtubules and neurofilaments, mechanisms underlying the movement of actin remain elusive, in large part due to rapid transitions between its filament states and its diverse cellular localization and function. In this work, we integrated live imaging of rat sensory neurons, image processing, multiple regression analysis, and mathematical modeling to perform the first quantitative, high-resolution investigation of GFP-actin identity and movement in individual axons. Our data revealed that filamentous actin densities arise along the length of the axon and move short but significant distances bidirectionally, with a net anterograde bias. We directly tested the role of actin and microtubules in this movement. We also confirmed a role for actin densities in extension of axonal filopodia, and demonstrated intermittent correlation of actin and mitochondrial movement. Our results support a novel mechanism underlying slow component axonal transport, in which the stability of both microtubule and actin cytoskeletal components influence the mobility of filamentous actin.
Collapse
Affiliation(s)
- Joshua Chetta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - James M Love
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Brian G Bober
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA, 92093, USA.
| |
Collapse
|
108
|
Competing Interactions of RNA-Binding Proteins, MicroRNAs, and Their Targets Control Neuronal Development and Function. Biomolecules 2015; 5:2903-18. [PMID: 26512708 PMCID: PMC4693262 DOI: 10.3390/biom5042903] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional mechanisms play critical roles in the control of gene expression during neuronal development and maturation as they allow for faster responses to environmental cues and provide spatially-restricted compartments for local control of protein expression. These mechanisms depend on the interaction of cis-acting elements present in the mRNA sequence and trans-acting factors, such as RNA-binding proteins (RBPs) and microRNAs (miRNAs) that bind to those cis-elements and regulate mRNA stability, subcellular localization, and translation. Recent studies have uncovered an unexpected complexity in these interactions, where coding and non-coding RNAs, termed competing endogenous RNAs (ceRNAs), compete for binding to miRNAs. This competition can, thereby, control a larger number of miRNA target transcripts. However, competing RNA networks also extend to competition between target mRNAs for binding to limited amounts of RBPs. In this review, we present evidence that competitions between target mRNAs for binding to RBPs also occur in neurons, where they affect transcript stability and transport into axons and dendrites as well as translation. In addition, we illustrate the complexity of these mechanisms by demonstrating that RBPs and miRNAs also compete for target binding and regulation.
Collapse
|
109
|
mRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth. J Neurosci 2015; 35:10357-70. [PMID: 26180210 DOI: 10.1523/jneurosci.1249-15.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Although intra-axonal protein synthesis is well recognized in cultured neurons and during development in vivo, there have been few reports of mRNA localization and/or intra-axonal translation in mature CNS axons. Indeed, previous work indicated that mature CNS axons contain much lower quantities of translational machinery than PNS axons, leading to the conclusion that the capacity for intra-axonal protein synthesis is linked to the intrinsic capacity of a neuron for regeneration, with mature CNS neurons showing much less growth after injury than PNS neurons. However, when regeneration by CNS axons is facilitated, it is not known whether the intra-axonal content of translational machinery changes or whether mRNAs localize into these axons. Here, we have used a peripheral nerve segment grafted into the transected spinal cord of adult rats as a supportive environment for regeneration by ascending spinal axons. By quantitative fluorescent in situ hybridization combined with immunofluorescence to unambiguously distinguish intra-axonal mRNAs, we show that regenerating spinal cord axons contain β-actin, GAP-43, Neuritin, Reg3a, Hamp, and Importin β1 mRNAs. These axons also contain 5S rRNA, phosphorylated S6 ribosomal protein, eIF2α translation factor, and 4EBP1 translation factor inhibitory protein. Different levels of these mRNAs in CNS axons from regenerating PNS axons may relate to differences in the growth capacity of these neurons, although the presence of mRNA transport and likely local translation in both CNS and PNS neurons suggests an active role in the regenerative process. SIGNIFICANCE STATEMENT Although peripheral nerve axons retain the capacity to locally synthesize proteins into adulthood, previous studies have argued that mature brain and spinal cord axons cannot synthesize proteins. Protein synthesis in peripheral nerve axons is increased during regeneration, and intra-axonally synthesized proteins have been shown to contribute to nerve regeneration. Here, we show that mRNAs and translational machinery are transported into axons regenerating from the spinal cord into the permissive environment of a peripheral nerve graft. Our data raise the possibility that spinal cord axons may make use of localized protein synthesis for regeneration.
Collapse
|
110
|
Abstract
Cytoskeleton-dependent RNA transport and local translation in axons are gaining increased attention as key processes in the maintenance and functioning of neurons. Specific axonal transcripts have been found to play roles in many aspects of axonal physiology including axon guidance, axon survival, axon to soma communication, injury response and regeneration. This axonal transcriptome requires long-range transport that is achieved by motor proteins carrying transcripts as messenger ribonucleoprotein (mRNP) complexes along microtubules. Other than transport, the mRNP complex plays a major role in the generation, maintenance, and regulation of the axonal transcriptome. Identification of axonal RNA-binding proteins (RBPs) and analyses of the dynamics of their mRNPs are of high interest to the field. Here, we describe methods for the study of interactions between RNA and proteins in axons. First, we describe a protocol for identifying binding proteins for an RNA of interest by using RNA affinity chromatography. Subsequently, we discuss immunoprecipitation (IP) methods allowing the dissection of protein-RNA and protein-protein interactions in mRNPs under various physiological conditions.
Collapse
|
111
|
Gaynes JA, Otsuna H, Campbell DS, Manfredi JP, Levine EM, Chien CB. The RNA Binding Protein Igf2bp1 Is Required for Zebrafish RGC Axon Outgrowth In Vivo. PLoS One 2015; 10:e0134751. [PMID: 26325373 PMCID: PMC4556669 DOI: 10.1371/journal.pone.0134751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/13/2015] [Indexed: 02/03/2023] Open
Abstract
Attractive growth cone turning requires Igf2bp1-dependent local translation of β-actin mRNA in response to external cues in vitro. While in vivo studies have shown that Igf2bp1 is required for cell migration and axon terminal branching, a requirement for Igf2bp1 function during axon outgrowth has not been demonstrated. Using a timelapse assay in the zebrafish retinotectal system, we demonstrate that the β-actin 3'UTR is sufficient to target local translation of the photoconvertible fluorescent protein Kaede in growth cones of pathfinding retinal ganglion cells (RGCs) in vivo. Igf2bp1 knockdown reduced RGC axonal outgrowth and tectal coverage and retinal cell survival. RGC-specific expression of a phosphomimetic Igf2bp1 reduced the density of axonal projections in the optic tract while sparing RGCs, demonstrating for the first time that Igf2bp1 is required during axon outgrowth in vivo. Therefore, regulation of local translation mediated by Igf2bp proteins may be required at all stages of axon development.
Collapse
Affiliation(s)
- John A. Gaynes
- Program in Neuroscience, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Ophthalmology/Visual Sciences, John A. Moran Center, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| | - Hideo Otsuna
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| | - Douglas S. Campbell
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - John P. Manfredi
- Sfida BioLogic, Inc., Salt Lake City, Utah, United States of America
| | - Edward M. Levine
- Program in Neuroscience, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Ophthalmology/Visual Sciences, John A. Moran Center, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Chi-Bin Chien
- Program in Neuroscience, University of Utah Medical Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
112
|
Abstract
Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves.
Collapse
Affiliation(s)
- Barbara Hausott
- Division of Neuroanatomy, Department of Anatomy, Histology and Embryology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy, Histology and Embryology, Medical University Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
113
|
Donnelly CJ, Grima JC, Sattler R. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Neurodegener Dis Manag 2015; 4:417-37. [PMID: 25531686 DOI: 10.2217/nmt.14.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron degeneration. The disease pathogenesis is multifaceted in that multiple cellular and molecular pathways have been identified as contributors to the disease progression. Consequently, numerous therapeutic targets have been pursued for clinical development, unfortunately with little success. The recent discovery of mutations in RNA modulating genes such as TARDBP/TDP-43, FUS/TLS or C9ORF72 changed our understanding of neurodegenerative mechanisms in ALS and introduced the role of dysfunctional RNA processing as a significant contributor to disease pathogenesis. This article discusses the latest findings on such RNA toxicity pathways in ALS and potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Christopher J Donnelly
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
114
|
Local axonal protection by WldS as revealed by conditional regulation of protein stability. Proc Natl Acad Sci U S A 2015. [PMID: 26209654 DOI: 10.1073/pnas.1508337112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of the mutant Wallerian degeneration slow (WldS) protein significantly delays axonal degeneration from various nerve injuries and in multiple species; however, the mechanism for its axonal protective property remains unclear. Although WldS is localized predominantly in the nucleus, it also is present in a smaller axonal pool, leading to conflicting models to account for the WldS fraction necessary for axonal protection. To identify where WldS activity is required to delay axonal degeneration, we adopted a method to alter the temporal expression of WldS protein in neurons by chemically regulating its protein stability. We demonstrate that continuous WldS activity in the axonal compartment is both necessary and sufficient to delay axonal degeneration. Furthermore, by specifically increasing axonal WldS expression postaxotomy, we reveal a critical period of 4-5 h postinjury during which the course of Wallerian axonal degeneration can be halted. Finally, we show that NAD(+), the metabolite of WldS/nicotinamide mononucleotide adenylyltransferase enzymatic activity, is sufficient and specific to confer WldS-like axon protection and is a likely molecular mediator of WldS axon protection. The results delineate a therapeutic window in which the course of Wallerian degeneration can be delayed even after injures have occurred and help narrow the molecular targets of WldS activity to events within the axonal compartment.
Collapse
|
115
|
Cho Y, Park D, Cavalli V. Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J Biol Chem 2015; 290:22759-70. [PMID: 26157139 DOI: 10.1074/jbc.m115.638445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
Microtubule dynamics are important for axon growth during development as well as axon regeneration after injury. We have previously identified HDAC5 as an injury-regulated tubulin deacetylase that functions at the injury site to promote axon regeneration. However, the mechanisms involved in the spatial control of HDAC5 activity remain poorly understood. Here we reveal that HDAC5 interacts with the actin binding protein filamin A via its C-terminal domain. Filamin A plays critical roles in HDAC5-dependent tubulin deacetylation because, in cells lacking filamin A, the levels of acetylated tubulin are elevated markedly. We found that nerve injury increases filamin A axonal expression in a protein synthesis-dependent manner. Reducing filamin A levels or interfering with the interaction between HDAC5 and filamin A prevents injury-induced tubulin deacetylation as well as HDAC5 localization at the injured axon tips. In addition, neurons lacking filamin A display reduced axon regeneration. Our findings suggest a model in which filamin A local translation following axon injury controls localized HDAC5 activity to promote axon regeneration.
Collapse
Affiliation(s)
- Yongcheol Cho
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110 and
| | - Dongeun Park
- the School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
116
|
Abstract
High mobility group (HMG) proteins concentrate in the nucleus, interacting with chromatin. Amphoterin is an HMG protein (HMGB1) that has been shown to have extranuclear functions and can be secreted from some cell types. Exogenous amphoterin can increase neurite growth, suggesting that the secreted protein may have growth promoting activities in neurons. Consistent with this, we show that depletion of amphoterin mRNA from cultured adult rat DRG neurons attenuates neurite outgrowth, pointing to autocrine or paracrine mechanisms for its growth-promoting effects. The mRNA encoding amphoterin localizes to axonal processes and we showed recently that its 3'-UTR is sufficient for axonal localization of heterologous transcripts (Donnelly et al., 2013). Here, we show that amphoterin mRNA is transported constitutively into axons of adult DRG neurons. A preconditioning nerve injury increases the levels of amphoterin protein in axons without a corresponding increase in amphoterin mRNA in the axons. A 60 nucleotide region of the amphoterin mRNA 3'-UTR is necessary and sufficient for its localization into axons of cultured sensory neurons. Amphoterin mRNA 3'-UTR is also sufficient for axonal localization in distal axons of DRG neurons in vivo. Overexpression of axonally targeted amphoterin mRNA increases axon outgrowth in cultured sensory neurons, but axon growth is not affected when the overexpressed mRNA is restricted to the cell body.
Collapse
|
117
|
Jain S, Tran TH, Amiji M. Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 2015; 61:162-77. [PMID: 26004232 DOI: 10.1016/j.biomaterials.2015.05.028] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/10/2015] [Accepted: 05/16/2015] [Indexed: 02/04/2023]
Abstract
In this study, we have shown for the first time the effectiveness of a non-viral gene transfection strategy to re-polarize macrophages from M1 to M2 functional sub-type for the treatment of rheumatoid arthritis (RA). An anti-inflammatory (IL-10) cytokine encoding plasmid DNA was successfully encapsulated into non-condensing alginate based nanoparticles and the surface of the nano-carriers was modified with tuftsin peptide to achieve active macrophage targeting. Enhanced localization of tuftsin-modified alginate nanoparticles was observed in the inflamed paws of arthritic rats upon intraperitoneal administration. Importantly, targeted nanoparticle treatment was successful in reprogramming macrophage phenotype balance as ∼66% of total synovial macrophages from arthritic rats treated with the IL-10 plasmid DNA loaded tuftsin/alginate nanoparticles were in the M2 state compared to ∼9% of macrophages in the M2 state from untreated arthritic rats. Treatment significantly reduced systemic and joint tissue pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression and prevented the progression of inflammation and joint damage as revealed by magnetic resonance imaging and histology. Treatment enabled animals to retain their mobility throughout the course of study, whereas untreated animals suffered from impaired mobility. Overall, this study demonstrates that targeted alginate nanoparticles loaded with IL-10 plasmid DNA can efficiently re-polarize macrophages from an M1 to an M2 state, offering a novel treatment paradigm for treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shardool Jain
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Thanh-Huyen Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
118
|
Maizels Y, Oberman F, Miloslavski R, Ginzach N, Berman M, Yisraeli JK. Localization of cofilin mRNA to the leading edge of migrating cells promotes directed cell migration. J Cell Sci 2015; 128:1922-33. [DOI: 10.1242/jcs.163972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
mRNA trafficking, which enables the localization of mRNAs to particular intracellular targets, occurs in a wide variety of cells. The importance of the resulting RNA distribution for cellular functions, however, has been difficult to assess. We have found that cofilin-1 mRNA is rapidly localized to the leading edge of human lung carcinoma cells and that VICKZ family RNA-binding proteins help mediate this localization through specific interactions with the 3′UTR of cofilin mRNA. Using a phagokinetic assay for cell motility, we have been able to quantify the effect of mRNA localization on the rescue of lung carcinoma cells in which cofilin was knocked down by using short hairpin RNA (shRNA). Although restoring cofilin protein to normal endogenous levels rescues general lamellipodia formation around the periphery of the cell, only when the rescuing cofilin mRNA can localize to the leading edge is it capable of also fully rescuing directed cell movement. These results demonstrate that localization of an mRNA can provide an additional level of regulation for the function of its protein product.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Rachel Miloslavski
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Nava Ginzach
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Malka Berman
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Joel K. Yisraeli
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
119
|
Growth control mechanisms in neuronal regeneration. FEBS Lett 2015; 589:1669-77. [DOI: 10.1016/j.febslet.2015.04.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022]
|
120
|
Sensing nerve injury at the axonal ER: activated Luman/CREB3 serves as a novel axonally synthesized retrograde regeneration signal. Proc Natl Acad Sci U S A 2014; 111:16142-7. [PMID: 25349404 DOI: 10.1073/pnas.1407462111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Luman/cAMP response element binding protein 3 is an endoplasmic reticulum (ER) transmembrane basic leucine zipper transcription factor whose mRNA and protein localize to adult sensory axons, the latter with axonal ER components along the axon length. Here we show that axon-derived Luman plays an important role in relaying information about axonal injury to the neuronal cell body. Axotomy induces axonal Luman synthesis and also release from the axonal ER of Luman's transcriptionally active amino terminus, which is transported to the cell body in an importin-mediated manner. Visualization of the activation and retrograde translocation of Luman into the nucleus in real time both in vivo and in vitro was accomplished using a specially created N- and C-terminal-tagged Luman adenoviral vector. Small interfering RNA used to reduce Luman expression either neuronally or just axonally significantly impaired the ability of 24-h injury-conditioned sensory neurons to extend the regeneration-associated elongating form of axon growth but had no impact on axon outgrowth in naïve neurons. Collectively, these findings link injury-associated axonal ER responses proximal to the site of injury to the intrinsic regenerative growth capacity of adult sensory neurons.
Collapse
|
121
|
Hao LT, Duy PQ, Jontes JD, Beattie CE. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy. Hum Mol Genet 2014; 24:346-60. [PMID: 25180019 DOI: 10.1093/hmg/ddu447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.
Collapse
Affiliation(s)
- Le Thi Hao
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - Phan Q Duy
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - James D Jontes
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - Christine E Beattie
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| |
Collapse
|
122
|
Marvaldi L, Thongrong S, Kozłowska A, Irschick R, Pritz CO, Bäumer B, Ronchi G, Geuna S, Hausott B, Klimaschewski L. Enhanced axon outgrowth and improved long-distance axon regeneration in sprouty2 deficient mice. Dev Neurobiol 2014; 75:217-31. [PMID: 25104556 DOI: 10.1002/dneu.22224] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 12/31/2022]
Abstract
Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal-regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2(+/-) neuron cultures, whereas homozygous Spry2(-/-) neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2(+/-) mice recovered faster in motor but not sensory testing paradigms (Spry2(-/-) mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP-43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2(-/-) mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4-positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long-distance axon regeneration in injured peripheral nerves.
Collapse
Affiliation(s)
- Letizia Marvaldi
- Division of Neuroanatomy, Department of Anatomy and Histology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Silva JF, Ocarino NM, Serakides R. Luteal activity of pregnant rats with hypo-and hyperthyroidism. J Ovarian Res 2014; 7:75. [PMID: 25298361 PMCID: PMC4107585 DOI: 10.1186/1757-2215-7-75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022] Open
Abstract
Background Luteal activity is dependent on the interaction of various growth factors, cytokines and hormones, including the thyroid hormones, being that hypo- and hyperthyroidism alter the gestational period and are also a cause of miscarriage and stillbirth. Because of that, we evaluated the proliferation, apoptosis and expression of angiogenic factors and COX-2 in the corpus luteum of hypo- and hyperthyroid pregnant rats. Methods Seventy-two adult female rats were equally distributed into three groups: hypothyroid, hyperthyroid and control. Hypo- and hyperthyroidism were induced by the daily administration of propylthiouracil and L-thyroxine, respectively. The administration began five days before becoming pregnant and the animals were sacrificed at days 10, 14, and 19 of gestation. We performed an immunohistochemical analysis to evaluate the expression of CDC-47, VEGF, Flk-1 (VEGF receptor) and COX-2. Apoptosis was evaluated by the TUNEL assay. We assessed the gene expression of VEGF, Flk-1, caspase 3, COX-2 and PGF2α receptor using real time RT-PCR. The data were analyzed by SNK test. Results Hypothyroidism reduced COX-2 expression on day 10 and 19 (P < 0.05), endothelial/pericyte and luteal cell proliferation on day 10 and 14 (p < 0.05), apoptotic cell numbers on day 19 (p < 0.05) and the expression of Flk-1 and VEGF on day 14 and 19, respectively (p < 0.05). Hyperthyroidism increased the expression of COX-2 on day 19 (P < 0.05) and the proliferative activity of endothelial/pericytes cells on day 14 (p <0.05), as well as the expression of VEGF and Flk-1 on day 19 (P < 0.05). Conclusions Hypothyroidism reduces the proliferation, apoptosis and expression of angiogenic factors and COX-2in the corpus luteum of pregnant rats, contrary to what is observed in hyperthyroid animals, being this effect dependent of the gestational period.
Collapse
|
124
|
Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior. J Neurosci 2014; 34:3674-86. [PMID: 24599466 DOI: 10.1523/jneurosci.3703-13.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The proper functions of cortical circuits are dependent upon both appropriate neuronal subtype specification and their maturation to receive appropriate signaling. These events establish a balanced circuit that is important for learning, memory, emotion, and complex motor behaviors. Recent research points to mRNA metabolism as a key regulator of this development and maturation process. Hu antigen D (HuD), an RNA-binding protein, has been implicated in the establishment of neuronal identity and neurite outgrowth in vitro. Therefore, we investigated the role of HuD loss of function on neuron specification and dendritogenesis in vivo using a mouse model. We found that loss of HuD early in development results in a defective early dendritic overgrowth phase and pervasive deficits in neuron specification in the lower neocortical layers and defects in dendritogenesis in the CA3 region of the hippocampus. Subsequent behavioral analysis revealed a deficit in performance of a hippocampus-dependent task: the Morris water maze. Further, HuD knock-out (KO) mice exhibited lower levels of anxiety than their wild-type counterparts and were overall less active. Last, we found that HuD KO mice are more susceptible to auditory-induced seizures, often resulting in death. Our findings suggest that HuD is necessary for the establishment of neocortical and hippocampal circuitry and is critical for their function.
Collapse
|
125
|
Cho Y, Di Liberto V, Carlin D, Abe N, Li KH, Burlingame AL, Guan S, Michaelevski I, Cavalli V. Syntaxin13 expression is regulated by mammalian target of rapamycin (mTOR) in injured neurons to promote axon regeneration. J Biol Chem 2014; 289:15820-32. [PMID: 24737317 DOI: 10.1074/jbc.m113.536607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Injured peripheral neurons successfully activate intrinsic signaling pathways to enable axon regeneration. We have previously shown that dorsal root ganglia (DRG) neurons activate the mammalian target of rapamycin (mTOR) pathway following injury and that this activity enhances their axon growth capacity. mTOR plays a critical role in protein synthesis, but the mTOR-dependent proteins enhancing the regenerative capacity of DRG neurons remain unknown. To identify proteins whose expression is regulated by injury in an mTOR-dependent manner, we analyzed the protein composition of DRGs from mice in which we genetically activated mTOR and from mice with or without a prior nerve injury. Quantitative label-free mass spectrometry analyses revealed that the injury effects were correlated with mTOR activation. We identified a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family of proteins, syntaxin13, whose expression was increased by injury in an mTOR-dependent manner. Increased syntaxin13 levels in injured nerves resulted from local protein synthesis and not axonal transport. Finally, knockdown of syntaxin13 in cultured DRG neurons prevented axon growth and regeneration. Together, these data suggest that syntaxin13 translation is regulated by mTOR in injured neurons to promote axon regeneration.
Collapse
Affiliation(s)
- Yongcheol Cho
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Valentina Di Liberto
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Dan Carlin
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Namiko Abe
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110
| | - Kathy H Li
- the Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2517, and
| | - Alma L Burlingame
- the Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2517, and
| | - Shenheng Guan
- the Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158-2517, and
| | - Izhak Michaelevski
- the Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University in St Louis, School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
126
|
Neumann JR, Dash-Wagh S, Jüngling K, Tsai T, Meschkat M, Räk A, Schönfelder S, Riedel C, Hamad MIK, Wiese S, Pape HC, Gottmann K, Kreutz MR, Wahle P. Y-P30 promotes axonal growth by stabilizing growth cones. Brain Struct Funct 2014; 220:1935-50. [PMID: 24728870 DOI: 10.1007/s00429-014-0764-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/24/2014] [Indexed: 11/29/2022]
Abstract
The 30-amino acid peptide Y-P30, generated from the N-terminus of the human dermcidin precursor protein, has been found to promote neuronal survival, cell migration and neurite outgrowth by enhancing the interaction of pleiotrophin and syndecan-3. We now show that Y-P30 activates Src kinase and extracellular signal-regulated kinase (ERK). Y-P30 promotes axonal growth of mouse embryonic stem cell-derived neurons, embryonic mouse spinal cord motoneurons, perinatal rat retinal neurons, and rat cortical neurons. Y-P30-mediated axon growth was dependent on heparan sulfate chains. Y-P30 decreased the proportion of collapsing/degenerating growth cones of cortical axons in an Src and ERK-dependent manner. Y-P30 increased for 90 min in axonal growth cones the level of Tyr418-phosphorylated Src kinase and the amount of F-actin, and transiently the level of Tyr-phosphorylated ERK. Levels of total Src kinase, actin, GAP-43, cortactin and the glutamate receptor subunit GluN2B were not altered. When exposed to semaphorin-3a, Y-P30 protected a significant fraction of growth cones of cortical neurons from collapse. These results suggest that Y-P30 promotes axonal growth via Src- and ERK-dependent mechanisms which stabilize growth cones and confer resistance to collapsing factors.
Collapse
Affiliation(s)
- Janine R Neumann
- AG Entwicklungsneurobiologie, Fakultät für Biologie und Biotechnologie, ND 6/72, Ruhr-Universität, 44801, Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Development of the nervous system requires efficient extension and guidance of axons and dendrites culminating in synapse formation. Axonal growth and navigation during embryogenesis are controlled by extracellular cues. Many of the same extracellular signals also regulate axonal branching. The emergence of collateral branches from the axon augments the complexity of nervous system innervation and provides an additional mechanism for target selection. Rho-family GTPases play an important role in regulating intracellular cytoskeletal and signaling pathways that facilitate axonal morphological changes. RhoA/G and Rac1 GTPase functions are complex and they can induce or inhibit branch formation, depending on neuronal type, cell context or signaling mechanisms. Evidence of a role of Cdc42 in axon branching is mostly lacking. In contrast, Rac3 has thus far been implicated in the regulation of axon branching. Future analysis of the upstream regulators and downstream effectors mediating the effects of Rho-family GTPase will provide insights into the cellular processes effected, and shed light on the sometimes opposing roles of these GTPases in the regulation of axon branching.
Collapse
Affiliation(s)
- Mirela Spillane
- Shriners Hospitals Pediatric Research Center; Center for Neural Repair and Rehabilitation; Temple University; Department of Anatomy and Cell Biology; Philadelphia, PA USA
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center; Center for Neural Repair and Rehabilitation; Temple University; Department of Anatomy and Cell Biology; Philadelphia, PA USA
| |
Collapse
|
128
|
Gomes C, Merianda TT, Lee SJ, Yoo S, Twiss JL. Molecular determinants of the axonal mRNA transcriptome. Dev Neurobiol 2014; 74:218-32. [PMID: 23959706 PMCID: PMC3933445 DOI: 10.1002/dneu.22123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Tanuja T. Merianda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Seung Joon Lee
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29201
| |
Collapse
|
129
|
Abstract
Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease.
Collapse
Affiliation(s)
- Fernando M Mar
- Nerve Regeneration Group Instituto de Biologia Molecular e Celular - IBMC University of Porto, Porto, Portugal
| | | | | |
Collapse
|
130
|
Di Liegro CM, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). Int J Mol Med 2014; 33:747-62. [PMID: 24452120 PMCID: PMC3976132 DOI: 10.3892/ijmm.2014.1629] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, I-90127 Palermo, Italy
| |
Collapse
|
131
|
Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 2013; 5:1564-75. [PMID: 24332852 DOI: 10.1016/j.celrep.2013.11.022] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/30/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
The branching of axons is a fundamental aspect of nervous system development and neuroplasticity. We report that branching of sensory axons in the presence of nerve growth factor (NGF) occurs at sites populated by stalled mitochondria. Translational machinery targets to presumptive branching sites, followed by recruitment of mitochondria to these sites. The mitochondria promote branching through ATP generation and the determination of localized hot spots of active axonal mRNA translation, which contribute to actin-dependent aspects of branching. In contrast, mitochondria do not have a role in the regulation of the microtubule cytoskeleton during NGF-induced branching. Collectively, these observations indicate that sensory axons exhibit multiple potential sites of translation, defined by presence of translational machinery, but active translation occurs following the stalling and respiration of mitochondria at these potential sites of translation. This study reveals a local role for axonal mitochondria in the regulation of the actin cytoskeleton and axonal mRNA translation underlying branching.
Collapse
Affiliation(s)
- Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Tanuja T Merianda
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19210, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
132
|
Kar AN, Sun CY, Reichard K, Gervasi NM, Pickel J, Nakazawa K, Gioio AE, Kaplan BB. Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev Neurobiol 2013; 74:333-50. [PMID: 24151253 DOI: 10.1002/dneu.22141] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/03/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
Abstract
Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Overexpression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this "competition" phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Toward this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an "anxiety-like" behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior.
Collapse
Affiliation(s)
- Amar N Kar
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Minis A, Dahary D, Manor O, Leshkowitz D, Pilpel Y, Yaron A. Subcellular transcriptomics-Dissection of the mRNA composition in the axonal compartment of sensory neurons. Dev Neurobiol 2013; 74:365-81. [DOI: 10.1002/dneu.22140] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/06/2013] [Accepted: 10/03/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Adi Minis
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Dvir Dahary
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Ohad Manor
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Dena Leshkowitz
- Biological Services Department; Bioinformatics Unit, Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Avraham Yaron
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
134
|
KSRP modulation of GAP-43 mRNA stability restricts axonal outgrowth in embryonic hippocampal neurons. PLoS One 2013; 8:e79255. [PMID: 24244461 PMCID: PMC3828348 DOI: 10.1371/journal.pone.0079255] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/20/2013] [Indexed: 12/02/2022] Open
Abstract
The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43′s ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp+/− and Ksrp −/−embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3′ UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs.
Collapse
|
135
|
Lewis TL, Courchet J, Polleux F. Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. ACTA ACUST UNITED AC 2013; 202:837-48. [PMID: 24043699 PMCID: PMC3776347 DOI: 10.1083/jcb.201305098] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proper brain wiring during development is pivotal for adult brain function. Neurons display a high degree of polarization both morphologically and functionally, and this polarization requires the segregation of mRNA, proteins, and lipids into the axonal or somatodendritic domains. Recent discoveries have provided insight into many aspects of the cell biology of axonal development including axon specification during neuronal polarization, axon growth, and terminal axon branching during synaptogenesis.
Collapse
Affiliation(s)
- Tommy L Lewis
- The Scripps Research Institute, Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037
| | | | | |
Collapse
|
136
|
Axonal localization of neuritin/CPG15 mRNA in neuronal populations through distinct 5' and 3' UTR elements. J Neurosci 2013; 33:13735-42. [PMID: 23966695 DOI: 10.1523/jneurosci.0962-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many neuronal mRNAs are actively transported into distal axons. The 3' untranslated regions (UTRs) of axonal mRNAs often contain cues for their localization. The 3' UTR of neuritin mRNA was shown to be sufficient for localization into axons of hippocampal neurons. Here, we show that neuritin mRNA localizes into axons of rat sensory neurons, but this is predominantly driven by the 5' rather than 3' UTR. Neuritin mRNA shifts from cell body to axon predominantly after nerve crush injury, suggesting that it encodes a growth-associated protein. Consistent with this, overexpression of neuritin increases axon growth but only when its mRNA localizes into the axons.
Collapse
|
137
|
Perry RB, Fainzilber M. Local translation in neuronal processes-in vivotests of a “heretical hypothesis”. Dev Neurobiol 2013; 74:210-7. [DOI: 10.1002/dneu.22115] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Rotem B. Perry
- Department of Biological Chemistry; Weizmann Institute of Science; 76100 Rehovot Israel
| | - Mike Fainzilber
- Department of Biological Chemistry; Weizmann Institute of Science; 76100 Rehovot Israel
| |
Collapse
|
138
|
Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, Rossoll W, Bassell GJ. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev Neurobiol 2013; 74:319-332. [PMID: 23897586 DOI: 10.1002/dneu.22111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1.
Collapse
Affiliation(s)
- Claudia Fallini
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology, UMASS Medical School, Worcester, MA 01605, USA
| | - Jeremy P Rouanet
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Guo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Honglai Zhang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
139
|
Kalous A, Stake JI, Yisraeli JK, Holt CE. RNA-binding protein Vg1RBP regulates terminal arbor formation but not long-range axon navigation in the developing visual system. Dev Neurobiol 2013; 74:303-18. [PMID: 23853158 DOI: 10.1002/dneu.22110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 12/21/2022]
Abstract
Local synthesis of β-actin is required for attractive turning responses to guidance cues of growth cones in vitro but its functional role in axon guidance in vivo is poorly understood. The transport and translation of β-actin mRNA is regulated by the RNA-binding protein, Vg1RBP (zipcode-binding protein-1). To examine whether Vg1RBP plays a role in axon navigation in vivo, we disrupted Vg1RBP function in embryonic Xenopus laevis retinal ganglion cells by expressing a dominant-negative Vg1RBP and by antisense morpholino knockdown. We found that attractive turning to a netrin-1 gradient in vitro was abolished in Vg1RBP-deficient axons but, surprisingly, the long-range navigation from the retina to the optic tectum was unaffected. Within the tectum, however, the branching and complexity of axon terminals were significantly reduced. High-resolution time-lapse imaging of axon terminals in vivo revealed that Vg1RBP-GFP-positive granules accumulate locally in the axon shaft immediately preceding the emergence a filopodial-like protrusion. Comparative analysis of branch dynamics showed that Vg1RBP-deficient axons extend far fewer filopodial-like protrusions than control axons and indicate that Vg1RBP promotes filopodial formation, an essential step in branch initiation. Our findings show that Vg1RBP is required for terminal arborization but not long-range axon navigation and suggest that Vg1RBP-regulated mRNA translation promotes synaptic complexity.
Collapse
Affiliation(s)
- Adrianna Kalous
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY, United Kingdom
| | | | | | | |
Collapse
|
140
|
Jablonka S, Dombert B, Asan E, Sendtner M. Mechanisms for axon maintenance and plasticity in motoneurons: alterations in motoneuron disease. J Anat 2013; 224:3-14. [PMID: 24007389 DOI: 10.1111/joa.12097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
In motoneuron disease and other neurodegenerative disorders, the loss of synapses and axon branches occurs early but is compensated by sprouting of neighboring axon terminals. Defective local axonal signaling for maintenance and dynamics of the axonal microtubule and actin cytoskeleton plays a central role in this context. The molecular mechanisms that lead to defective cytoskeleton architecture in two mouse models of motoneuron disease are summarized and discussed in this manuscript. In the progressive motor neuropathy (pmn) mouse model of motoneuron disease that is caused by a mutation in the tubulin-specific chaperone E gene, death of motoneuron cell bodies appears as a consequence of axonal degeneration. Treatment with bcl-2 overexpression or with glial-derived neurotrophic factor prevents loss of motoneuron cell bodies but does not influence the course of disease. In contrast, treatment with ciliary neurotrophic factor (CNTF) significantly delays disease onset and prolongs survival of pmn mice. This difference is due to the activation of Stat-3 via the CNTF receptor complex in axons of pmn mutant motoneurons. Most of the activated Stat-3 protein is not transported to the nucleus to activate transcription, but interacts locally in axons with stathmin, a protein that destabilizes microtubules. This interaction plays a major role in CNTF signaling for microtubule dynamics in axons. In Smn-deficient mice, a model of spinal muscular atrophy, defects in axonal translocation of β-actin mRNA and possibly other mRNA species have been observed. Moreover, the regulation of local protein synthesis in response to signals from neurotrophic factors and extracellular matrix proteins is altered in motoneurons from this model of motoneuron disease. These findings indicate that local signals are important for maintenance and plasticity of axonal branches and neuromuscular endplates, and that disturbances in these signaling mechanisms could contribute to the pathophysiology of motoneuron diseases.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute for Clinical Neurobiology, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | |
Collapse
|
141
|
Peripheral nerve axons contain machinery for co-translational secretion of axonally-generated proteins. Neurosci Bull 2013; 29:493-500. [PMID: 23839054 DOI: 10.1007/s12264-013-1360-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022] Open
Abstract
The axonal compartment of developing neurons and mature peripheral nervous system (PNS) neurons has the capacity to locally synthesize proteins. Axonally-synthesized proteins have been shown to facilitate axonal pathfinding and maintenance in developing central nervous system (CNS) and PNS neurons, and to facilitate the regeneration of mature PNS neurons. RNA-profiling studies of the axons of cultured neurons have shown a surprisingly complex population of mRNAs that encode proteins for a myriad of functions. Although classic-appearing rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (ER) and Golgi apparatus have not been documented in axons by ultrastructural studies, axonal RNA profiling studies show several membrane and secreted protein-encoding mRNAs whose translation products would need access to a localized secretory mechanism. We previously showed that the axons of cultured neurons contain functional equivalents of RER and Golgi apparatus. Here, we show that markers for the signal-recognition particle, RER, ER, and Golgi apparatus are present in PNS axons in vivo. Co-localization of these proteins mirrors that seen for cultured axons where locally-translated proteins are localized to the axoplasmic membrane. Moreover, nerve injury increases the levels and/or aggregation of these proteins, suggesting that the regenerating axon has an increased capacity for membrane targeting of locally synthesized proteins.
Collapse
|
142
|
Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J Neurosci 2013; 33:7165-74. [PMID: 23616526 DOI: 10.1523/jneurosci.2040-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, miR16, modulates the axonal expression of eIF2B2 and eIF4G2. Transfection of axons with precursor miR16 and anti-miR16 showed that local miR16 levels modulated axonal eIF2B2 and eIF4G2 mRNA and protein levels, as well as axon outgrowth. siRNA-mediated knock-down of axonal eIF2B2 and eIF4G2 mRNA also resulted in a significant decrease in axonal eIF2B2 and eIF4G2 protein. Moreover, results of metabolic labeling studies showed that downregulation of axonal eIF2B2 and eIF4G2 expression also inhibited local protein synthesis and axon growth. Together, these data provide evidence that miR16 mediates axonal growth, at least in part, by regulating the local protein synthesis of eukaryotic translation initiation factors eIF2B2 and eIF4G2 in the axon.
Collapse
|
143
|
Hörnberg H, Holt C. RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci 2013; 7:81. [PMID: 23734093 PMCID: PMC3661996 DOI: 10.3389/fnins.2013.00081] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/06/2013] [Indexed: 01/11/2023] Open
Abstract
RNA localization and regulation play an important role in the developing and adult nervous system. In navigating axons, extrinsic cues can elicit rapid local protein synthesis that mediates directional or morphological responses. The mRNA repertoire in axons is large and dynamically changing, yet studies suggest that only a subset of these mRNAs are translated after cue stimulation, suggesting the need for a high level of translational regulation. Here, we review the role of RNA-binding proteins (RBPs) as local regulators of translation in developing axons. We focus on their role in growth, guidance, and synapse formation, and discuss the mechanisms by which they regulate translation in axons.
Collapse
Affiliation(s)
- Hanna Hörnberg
- Department of Physiology Development and Neuroscience, University of Cambridge Cambridge, UK
| | | |
Collapse
|
144
|
Yoo S, Kim HH, Kim P, Donnelly CJ, Kalinski AL, Vuppalanchi D, Park M, Lee SJ, Merianda TT, Perrone-Bizzozero NI, Twiss JL. A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3' untranslated region AU-rich regulatory element. J Neurochem 2013; 126:792-804. [PMID: 23586486 DOI: 10.1111/jnc.12266] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
Abstract
Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β-actin and GAP-43 mRNAs. β-actin 3'UTR has a defined element for interaction with ZBP1, but GAP-43 mRNA shows no homology to this RNA sequence. Here, we show that an AU-rich regulatory element (ARE) in GAP-43's 3'UTR is necessary and sufficient for its axonal localization. Axonal GAP-43 mRNA levels increase after in vivo injury, and GAP-43 mRNA shows an increased half-life in regenerating axons. GAP-43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co-immunoprecipitate in an RNA-dependent fashion. Reporter mRNA with the GAP-43 ARE competes with endogenous β-actin mRNA for axonal localization and decreases axon length and branching similar to the β-actin 3'UTR competing with endogenous GAP-43 mRNA. Conversely, over-expressing GAP-43 coding sequence with its 3'UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP-43's 3'UTR. We have recently found that over-expression of GAP-43 using an axonally targeted construct with the 3'UTRs of GAP-43 promoted elongating growth of axons, while restricting the mRNA to the cell body with the 3'UTR of γ-actin had minimal effect on axon length. In this study, we show that the ARE in GAP-43's 3'UTR is responsible for localization of GAP-43 mRNA into axons and is sufficient for GAP-43 protein's role in elongating axonal growth.
Collapse
Affiliation(s)
- Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, Delaware, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|