101
|
Báez-Pagán CA, Martínez-Ortiz Y, Otero-Cruz JD, Salgado-Villanueva IK, Velázquez G, Ortiz-Acevedo A, Quesada O, Silva WI, Lasalde-Dominicci JA. Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor's activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome. Channels (Austin) 2008; 2:180-90. [PMID: 18836288 PMCID: PMC4495657 DOI: 10.4161/chan.2.3.6155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cholesterol modulates the plasmalemma's biophysical properties and influences the function and trafficking of membrane proteins. A fundamental phenomenon that remains obscure is how the plasmalemma's lipid composition regulates the activatable pool of membrane receptors. An outstanding model to study this phenomenon is the nicotinic acetylcholine receptor (nAChR), since the nAChR activatable pool has been estimated to be but a small fraction of the receptors present in the plasmalemma. Studies on the effect of cholesterol depletion in the function of the Torpedo californica nAChR, using the lipid-exposed nAChR mutation (alpha C418W) that produces a congenital myasthenic syndrome (CMS), demonstrated that cholesterol depletion causes a remarkable increase in the alpha C418W nAChR's macroscopic current whereas not in the wild-type (WT). A variety of approaches were used to define the mechanism responsible for the cholesterol depletion mediated-increase in the alpha C418W nAChR's macroscopic current. The present study suggests that a substantial fraction of the alpha C418W nAChRs is located in caveolin-1-positive domains, "trapped" in a non-activatable state, and that membrane cholesterol depletion results in the relocation of these receptors to the activatable pool. Co-fractionation and co-immunoprecipitation of the alpha C418W nAChR and the membrane raft protein caveolin-1 (cav1) support the notion that interactions at lipid-exposed domains regulate the partition of the receptor into membrane raft microdomains. These results have potential implications as a novel mechanism to fine-tune cholinergic transmission in the nervous system and in the pathogenesis associated to the alpha C418W nAChR.
Collapse
Affiliation(s)
- Carlos A. Báez-Pagán
- Department of Chemistry; University of Puerto Rico—Rio Piedras; San Juan, Puerto Rico
| | - Yaiza Martínez-Ortiz
- Department of Biology; University of Puerto Rico—Rio Piedras; San Juan, Puerto Rico
| | - José D. Otero-Cruz
- Department of Chemistry; University of Puerto Rico—Rio Piedras; San Juan, Puerto Rico
| | | | - Guermarie Velázquez
- Department of Physiology; School of Medicine; University of Puerto Rico; San Juan, Puerto Rico
| | | | - Orestes Quesada
- Department of Physical Sciences; University of Puerto Rico—Rio Piedras; San Juan, Puerto Rico
| | - Walter I. Silva
- Department of Physiology; School of Medicine; University of Puerto Rico; San Juan, Puerto Rico
| | | |
Collapse
|
102
|
Pato C, Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J. Role of lipid rafts in agrin-elicited acetylcholine receptor clustering. Chem Biol Interact 2008; 175:64-7. [PMID: 18485338 DOI: 10.1016/j.cbi.2008.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Emerging concepts of membrane organization point to the compartmentalization of the plasma membrane into distinct lipid microdomains. This lateral segregation within cellular membranes is based on cholesterol-sphingolipid-enriched microdomains or lipid rafts which can move laterally and assemble into large-scale domains to create plasma membrane specialized cellular structures at specific cell locations. Such domains are likely involved in the genesis of the postsynaptic specialization at the neuromuscular junction, which requires the accumulation of acetylcholine receptors (AChRs), through activation of the muscle specific kinase MuSK by the neurotropic factor agrin and the reorganization of the actin cytoskeleton. We used C2C12 myotubes as a model system to investigate whether agrin-elicited AChR clustering correlated with lipid rafts. In a previous study, using two-photon Laurdan confocal imaging, we showed that agrin-induced AChR clusters corresponded to condensed membrane domains: the biophysical hallmark of lipid rafts [F. Stetzkowski-Marden, K. Gaus, M. Recouvreur, A. Cartaud, J. Cartaud, Agrin elicits membrane condensation at sites of acetylcholine receptor clusters in C2C12 myotubes, J. Lipid Res. 47 (2006) 2121-2133]. We further demonstrated that formation and stability of AChR clusters depend on cholesterol. We also reported that three different extraction procedures (Triton X-100, pH 11 or isotonic Ca++, Mg++ buffer) generated detergent resistant membranes (DRMs) with similar cholesterol/GM1 ganglioside content, which are enriched in several signalling postsynaptic components, notably AChR, the agrin receptor MuSK, rapsyn and syntrophin. Upon agrin engagement, actin and actin-nucleation factors such as Arp2/3 and N-WASP were transiently recovered within raft fractions suggesting that the activation by agrin can trigger actin polymerization. Taken together, the present data suggest that AChR clustering at the neuromuscular junction relies upon a mechanism of raft coalescence driven by agrin-elicited actin polymerization.
Collapse
Affiliation(s)
- C Pato
- Institut Jacques Monod, UMR 7592, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, 2 Place Jussieu, Paris, France
| | | | | | | | | | | |
Collapse
|
103
|
Baenziger JE, Ryan SE, Goodreid MM, Vuong NQ, Sturgeon RM, daCosta CJB. Lipid composition alters drug action at the nicotinic acetylcholine receptor. Mol Pharmacol 2008; 73:880-90. [PMID: 18055762 DOI: 10.1124/mol.107.039008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
We tested the hypothesis that membrane lipid composition influences drug action at membrane proteins by studying local anesthetic action at the nicotinic acetylcholine receptor (nAChR). Infrared difference spectra show that concentrations of tetracaine consistent with binding to the ion channel (<50 microM) stabilize a resting-like state when the nAChR is reconstituted into phosphatidylcholine membranes containing the anionic lipid, phosphatidic acid, but have no effect on the nAChR reconstituted into membranes lacking phosphatidic acid, either in the presence or absence of cholesterol. Concentrations of tetracaine above 200 microM lead to neurotransmitter site binding in all membranes. In the presence of phosphatidic acid, cholesterol, or both, neurotransmitter site binding leads to the formation of quaternary amine-aromatic interactions between tetracaine and binding site tyrosine/tryptophan residues and the stabilization of a desensitized state. One interpretation suggested by lipid partitioning studies is that phosphatidic acid enhances tetracaine action at the channel pore by increasing the partitioning of tetracaine into the lipid bilayer, thereby enhancing access to the transmembrane pore. However, subtle membrane-dependent variations in the vibrations of tyrosine and tryptophan residues, and agonist analog binding studies indicate that the structures of the agonist-bound neurotransmitter sites of the nAChR in membranes lacking both phosphatidic acid and cholesterol differ from the structures of the agonist-desensitized neurotransmitter sites in the presence of both lipids. Lipid action at the nAChR thus involves more than a simple modulation of the equilibrium between resting and desensitized states.
Collapse
Affiliation(s)
- John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada.
| | | | | | | | | | | |
Collapse
|
104
|
Muscle-specific receptor tyrosine kinase endocytosis in acetylcholine receptor clustering in response to agrin. J Neurosci 2008; 28:1688-96. [PMID: 18272689 DOI: 10.1523/jneurosci.4130-07.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Agrin, a factor used by motoneurons to direct acetylcholine receptor (AChR) clustering at the neuromuscular junction, initiates signal transduction by activating the muscle-specific receptor tyrosine kinase (MuSK). However, the underlying mechanisms remain poorly defined. Here, we demonstrated that MuSK became rapidly internalized in response to agrin, which appeared to be required for induced AChR clustering. Moreover, we provided evidence for a role of N-ethylmaleimide sensitive factor (NSF) in regulating MuSK endocytosis and subsequent signaling in response to agrin stimulation. NSF interacts directly with MuSK with nanomolar affinity, and treatment of muscle cells with the NSF inhibitor N-ethylmaleimide, mutation of NSF, or suppression of NSF expression all inhibited agrin-induced AChR clustering. Furthermore, suppression of NSF expression and NSF mutation attenuate MuSK downstream signaling. Our study reveals a potentially novel mechanism that regulates agrin/MuSK signaling cascade.
Collapse
|
105
|
Functional coupling of Gs and CFTR is independent of their association with lipid rafts in epithelial cells. Pflugers Arch 2008; 456:929-38. [PMID: 18224335 DOI: 10.1007/s00424-008-0460-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/21/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) has been found to be colocalized with G-protein-coupled receptors (GPCRs) and the downstream signaling molecules; however, the mechanisms of the colocalization remain largely elusive. The present work has investigated the role of lipid rafts in the localized signaling from GPCRs to CFTR. Using commonly used sucrose gradient centrifugation, we found that CFTR along with G(alpha)S was associated with lipid rafts, and the association was disrupted by cholesterol depletion with methyl-beta-cyclodextrin (MCD) treatment in Calu-3 human airway epithelial cells. Using short-circuit current (I (sc)) as a readout of CFTR in Calu-3 cells or T84 human colonic epithelial cells, we showed that MCD, while increasing basal membrane permeability, had no effect on the I (sc) induced by several GPCR agonists. Similar results were also obtained with a cholesterol biosynthesis inhibitor lovastatin and a cholesterol-binding agent filipin in Calu-3 cells. Furthermore, cholesterol depletion did not impair cyclic AMP production elicited by the GPCR agonists in Calu-3 cells. Our data suggest that GPCR-mediated signaling maintain their integrity after lipid raft disruption in Calu-3 and T84 epithelial cells and cast doubts on the role of lipid rafts as signaling platforms in GPCR-mediated signaling.
Collapse
|
106
|
|
107
|
Nizhynska V, Neumueller R, Herbst R. Phosphoinositide 3-kinase acts through RAC and Cdc42 during agrin-induced acetylcholine receptor clustering. Dev Neurobiol 2007; 67:1047-58. [PMID: 17565704 DOI: 10.1002/dneu.20371] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The formation of the neuromuscular junction (NMJ) is regulated by the nerve-derived heparan sulfate proteoglycan agrin and the muscle-specific kinase MuSK. Agrin induces a signal transduction pathway via MuSK, which promotes the reorganization of the postsynaptic muscle membrane. Activation of MuSK leads to the phosphorylation and redistribution of acetylcholine receptors (AChRs) and other postsynaptic proteins to synaptic sites. The accumulation of high densities of AChRs at postsynaptic regions represents a hallmark of NMJ formation and is required for proper NMJ function. Here we show that phosphoinositide 3-kinase (PI3-K) represents a component of the agrin/MuSK signaling pathway. Muscle cells treated with specific PI3-K inhibitors are unable to form full-size AChR clusters in response to agrin and AChR phosphorylation is reduced. Moreover, agrin-induced activation of Rac and Cdc42 is impaired in the presence of PI3-K inhibitors. PI3-K is localized to the postsynaptic muscle membrane consistent with a role during agrin/MuSK signaling. These results put PI3-K downstream of MuSK as regulator of AChR phosphorylation and clustering. Its role during agrin-stimulated Rac and Cdc42 activation suggests a critical function during cytoskeletal reorganizations, which lead to the redistribution of actin-anchored AChRs.
Collapse
Affiliation(s)
- Viktoria Nizhynska
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
108
|
Li X, Serwanski DR, Miralles CP, Bahr BA, De Blas AL. Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex. J Neurochem 2007; 102:1329-45. [PMID: 17663755 PMCID: PMC2766244 DOI: 10.1111/j.1471-4159.2007.04635.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rat forebrain synaptosomes were extracted with Triton X-100 at 4 degrees C and the insoluble material, which is enriched in post-synaptic densities (PSDs), was subjected to sedimentation on a continuous sucrose gradient. Two pools of Triton X-100-insoluble gamma-aminobutyric acid type-A receptors (GABA(A)Rs) were identified: (i) a higher-density pool (rho = 1.10-1.15 mg/mL) of GABA(A)Rs that contains the gamma2 subunit (plus alpha and beta subunits) and that is associated to gephyrin and the GABAergic post-synaptic complex and (ii) a lower-density pool (rho = 1.06-1.09 mg/mL) of GABA(A)Rs associated to detergent-resistant membranes (DRMs) that contain alpha and beta subunits but not the gamma2 subunit. Some of these GABA(A)Rs contain the delta subunit. Two pools of GABA(A)Rs insoluble in Triton X-100 at 4 degrees C were also identified in cultured hippocampal neurons: (i) a GABA(A)R pool that forms clusters that co-localize with gephyrin and remains Triton X-100-insoluble after cholesterol depletion and (ii) a GABA(A)R pool that is diffusely distributed at the neuronal surface that can be induced to form GABA(A)R clusters by capping with an anti-alpha1 GABA(A)R subunit antibody and that becomes solubilized in Triton X-100 at 4 degrees C after cholesterol depletion. Thus, there is a pool of GABA(A)Rs associated to lipid rafts that is non-synaptic and that has a subunit composition different from that of the synaptic GABA(A)Rs. Some of the lipid raft-associated GABA(A)Rs might be involved in tonic inhibition.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - David R. Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Celia P. Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Ben A. Bahr
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| |
Collapse
|
109
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Grandl J, Sakr E, Kotzyba-Hibert F, Krieger F, Bertrand S, Bertrand D, Vogel H, Goeldner M, Hovius R. Fluorescent Epibatidine Agonists for Neuronal and Muscle-Type Nicotinic Acetylcholine Receptors. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
111
|
Grandl J, Sakr E, Kotzyba-Hibert F, Krieger F, Bertrand S, Bertrand D, Vogel H, Goeldner M, Hovius R. Fluorescent Epibatidine Agonists for Neuronal and Muscle-Type Nicotinic Acetylcholine Receptors. Angew Chem Int Ed Engl 2007; 46:3505-8. [PMID: 17385777 DOI: 10.1002/anie.200604807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jörg Grandl
- Laboratoire de Chimie Physique des Polymères et Membranes, Ecole Polytechniques Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Baier CJ, Barrantes FJ. Sphingolipids are necessary for nicotinic acetylcholine receptor export in the early secretory pathway. J Neurochem 2007; 101:1072-84. [PMID: 17437537 DOI: 10.1111/j.1471-4159.2007.04561.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the prototype ligand-gated ion channel, and its function is dependent on its lipid environment. In order to study the involvement of sphingolipids (SL) in AChR trafficking, we used pharmacological approaches to dissect the SL biosynthetic pathway in CHO-K1/A5 cells heterologously expressing the muscle-type AChR. When SL biosynthesis was impaired, the cell surface targeting of AChR diminished with a concomitant increase in the intracellular receptor pool. The SL-inhibiting drugs increased unassembled AChR forms, which were retained at the endoplasmic reticulum (ER). These effects on AChR biogenesis and trafficking could be reversed by the addition of exogenous SL, such as sphingomyelin. On the basis of these effects we propose a 'chaperone-like' SL intervention at early stages of the AChR biosynthetic pathway, affecting both the efficiency of the assembly process and subsequent receptor trafficking to the cell surface.
Collapse
Affiliation(s)
- C J Baier
- UNESCO Chair of Biophysics and Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
| | | |
Collapse
|
113
|
Schmitt HP. Profiling the culprit in Alzheimer's disease (AD): bacterial toxic proteins - Will they be significant for the aetio-pathogenesis of AD and the transmissible spongiform encephalopathies? Med Hypotheses 2007; 69:596-609. [PMID: 17337124 DOI: 10.1016/j.mehy.2007.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/02/2007] [Indexed: 11/25/2022]
Abstract
The aetiology of Alzheimer's disease (AD) and the transmissible spongiform encephalopathies (tSEs) is still elusive. The concept that prion protein (PrP(Sc)) is the aetiological agent (infectious protein) in the tSEs has recently been questioned. In AD, the cause of the aberrant cleavage of the beta-amyloid precursor protein (APP), resulting in the production of amyloidogenic Abeta fragments, has yet remained obscure. Moreover, the amyloid hypothesis of AD has been seriously challenged. In both AD and the tSEs, pathogens of various nature, including bacteria, have been discussed as possible causal factors. However, aetiological considerations have completely neglected microbial products such as the bacterial toxic proteins (BTPs). The present paper is aimed at drawing a "culprit profile" of these toxic molecules that can exert, at low-dosage, neuro-degeneration through various effects. Clearly, BTPs may affect cell-surface receptors including modulatory amine transmitter receptor expression, block neuro-transmitter release, increase intra-cellular Ca(2+) levels, affect intra-cellular signal transduction, change cyto-skeletal processing, alter synaptic transmission, influence APP proteolysis, interact with cell surface proteins like PrP(C) or their GPI anchors, act as chaperones inducing conformational change in proteins (e.g., PrP(C) to PrP(Sc)), alter lipid membrane integrity by affecting phospholipases or forming pores and channels, induce vacuolar (spongiform) change and elicit inflammatory reactions with cytokine production including cytokines that were demonstrated in the AD brain. Like PrP(Sc), BTPs can be heat-stable and acid-resistant. BTPs can meet the key-proteins of AD and tSEs in the lipid-rich domains of the plasma membrane called rafts. Basically, this might enable them to initiate a large variety of unfavourable molecular events, eventually resulting in pathogenetic cascades as in AD and the tSEs. All in all, their profile lends support to the hypothesis that BTPs might represent relevant culprits capable to cue and/or promote neuro-degeneration in both AD and the tSEs.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Germany.
| |
Collapse
|
114
|
Gervásio OL, Armson PF, Phillips WD. Developmental increase in the amount of rapsyn per acetylcholine receptor promotes postsynaptic receptor packing and stability. Dev Biol 2007; 305:262-75. [PMID: 17362913 DOI: 10.1016/j.ydbio.2007.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 02/07/2023]
Abstract
Neuromuscular synaptic transmission depends upon tight packing of acetylcholine receptors (AChRs) into postsynaptic AChR aggregates, but not all postsynaptic AChRs are aggregated. Here we describe a new confocal Fluorescence Resonance Energy Transfer (FRET) assay for semi-quantitative comparison of the degree to which AChRs are aggregated at synapses. During the first month of postnatal life the mouse tibialis anterior muscle showed increases both in the number of postsynaptic AChRs and the efficiency with which AChR was aggregated (by FRET). There was a concurrent two-fold increase in immunofluorescent labeling for the AChR-associated cytoplasmic protein, rapsyn. When 1-month old muscle was denervated, postsynaptic rapsyn immunostaining was reduced, as was the efficiency of AChR aggregation. In vivo electroporation of rapsyn-EGFP into muscle fibers increased postsynaptic rapsyn levels. Those synapses with higher ratios of rapsyn-EGFP to AChR displayed a slower metabolic turnover of AChR. Conversely, the reduction of postsynaptic rapsyn after denervation was accompanied by an acceleration of AChR turnover. Thus, a developmental increase in the amount of rapsyn targeted to the postsynaptic membrane may drive enhanced postsynaptic AChRs aggregation and AChR stability within the postsynaptic membrane.
Collapse
Affiliation(s)
- Othon L Gervásio
- School of Medical Sciences (Physiology), Bosch Institute, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
115
|
Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2006; 8:128-40. [PMID: 17195035 DOI: 10.1038/nrn2059] [Citation(s) in RCA: 656] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipid rafts are specialized structures on the plasma membrane that have an altered lipid composition as well as links to the cytoskeleton. It has been proposed that these structures are membrane domains in which neurotransmitter signalling might occur through a clustering of receptors and components of receptor-activated signalling cascades. The localization of these proteins in lipid rafts, which is affected by the cytoskeleton, also influences the potency and efficacy of neurotransmitter receptors and transporters. The effect of lipid rafts on neurotransmitter signalling has also been implicated in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- John A Allen
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
116
|
Ngo ST, Noakes PG, Phillips WD. Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol 2006; 39:863-7. [PMID: 17126587 DOI: 10.1016/j.biocel.2006.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 10/17/2006] [Accepted: 10/17/2006] [Indexed: 11/18/2022]
Abstract
Neural agrin is a heparan sulphate proteoglycan first defined by its ability to induce the clustering of acetylcholine receptors (AChRs) on cultured muscle cells. Neural agrin activates the transmembrane Muscle Specific Kinase (MuSK) on the postsynaptic muscle cell to stabilise the developing neuromuscular synapse. Three biological mechanisms for agrin/MuSK signalling are briefly discussed: selective transcription of synaptic genes such as MuSK itself, to reinforce developing postsynaptic clusters of AChRs; initiation of second messenger signalling pathways that can induce the formation of AChR clusters and retrograde signalling downstream of agrin/MuSK that may transform the growth cone of the motor axon into a stable differentiated nerve terminal, specialised for regulated exocytosis of neurotransmitter. Here we briefly review some key mechanisms through which neural agrin acts to foster the formation of mature neuromuscular synapses.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Synaptic Biology Group, School of Biomedical Sciences (Physiology), University of Queensland, St. Lucia, Queensland, Australia
| | | | | |
Collapse
|
117
|
Scheffer L, Fargion I, Addadi L. Structural Recognition of Cholesterol-Ceramide Monolayers by a Specific Monoclonal Antibody. Chembiochem 2006; 7:1680-2. [PMID: 17009277 DOI: 10.1002/cbic.200600294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Luana Scheffer
- Department of Structural Biology, Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | |
Collapse
|
118
|
Dufour F, Liu QY, Gusev P, Alkon D, Atzori M. Cholesterol-enriched diet affects spatial learning and synaptic function in hippocampal synapses. Brain Res 2006; 1103:88-98. [PMID: 16814755 DOI: 10.1016/j.brainres.2006.05.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 05/10/2006] [Accepted: 05/19/2006] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to determine the effect of a cholesterol-rich diet on learning performance and monitor possible related changes in synaptic function. To this purpose, we compared controls with rats fed with a cholesterol-enriched diet (CD). By using a Morris water-maze paradigm, we found that CD rats learned a water-maze task more quickly than rats fed with a regular diet (RD). A longer period of this diet tended to alter the retention of memory without affecting the improvement in the acquisition of the task. Because of the importance of the hippocampus in spatial learning, we hypothesized that these behavioral effects of cholesterol would involve synaptic changes at the hippocampal level. We used whole-cell patch-clamp recording in the CA1 area of a hippocampal rat slice preparation to test the influence of the CD on pre- and postsynaptic function. CD rats displayed an increase in paired-pulse ratio in both glutamatergic synapses (+48 +/- 9%) and GABAergic synapses (+41 +/- 8%), suggesting that the CD induces long-lasting changes in presynaptic function. Furthermore, by recording NMDA-receptor-mediated currents (I(NMDA)) and AMPA-receptor-mediated currents (I(AMPA)) in the same set of cells we found that CD rats display a lower I(NMDA)/I(AMPA) ratio (I(NMDA)/I(AMPA) = 0.75 +/- 0.32 in RD versus 0.10 +/- 0.03 in CD), demonstrating that cholesterol regulates also postsynaptic function. We conclude that a cholesterol-rich diet affects learning speed and performance, and that these behavioral changes occur together with robust, long-lasting, synaptic changes at both the pre- and postsynaptic level.
Collapse
Affiliation(s)
- Franck Dufour
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|