101
|
Armbruster D, Mueller A, Strobel A, Lesch KP, Brocke B, Kirschbaum C. Predicting cortisol stress responses in older individuals: influence of serotonin receptor 1A gene (HTR1A) and stressful life events. Horm Behav 2011; 60:105-11. [PMID: 21459095 DOI: 10.1016/j.yhbeh.2011.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/17/2011] [Accepted: 03/27/2011] [Indexed: 12/21/2022]
Abstract
Considerable variability in the activity of the hypothalamus-pituitary-adrenal (HPA) axis in response to stress has been found in quantitative genetic studies investigating healthy individuals suggesting that at least part of this variance is due to genetic factors. Since the HPA axis is regulated by a neuronal network including amygdala, hippocampus, prefrontal cortex as well as brainstem circuits, the investigation of candidate genes that impact neurotransmitter systems related to these brain regions might further elucidate the genetic underpinnings of the stress response. However, aside from genetic risk factors, past stressful life events might also result in long-term adjustments of HPA axis reactivity. Here, we investigated the effects of the -1019 G/C polymorphism in the HTR1A gene encoding the serotonin (5-HT) receptor 1A (5-HT(1A)) and stressful life events experienced during childhood and adolescence on changes in cortisol levels in response to the Trier Social Stress Test (TSST) in a sample of healthy older adults (N=97). Regression analyses revealed a significant effect of HTR1A genotype with the G allele being associated with a less pronounced stress response. In addition, an inverse relationship between past stressful life events and cortisol release but no gene × environment interaction was detected. The results further underscore the crucial role of functional serotonergic genetic variation as well as stressful events during critical stages of development on the acute stress response later in life.
Collapse
Affiliation(s)
- Diana Armbruster
- Institute of Psychology II, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
102
|
Albert PR, Le François B, Millar AM. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Mol Brain 2011; 4:21. [PMID: 21619616 PMCID: PMC3130656 DOI: 10.1186/1756-6606-4-21] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/27/2011] [Indexed: 12/15/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is among the most abundant and widely distributed 5-HT receptors in the brain, but is also expressed on serotonin neurons as an autoreceptor where it plays a critical role in regulating the activity of the entire serotonin system. Over-expression of the 5-HT1A autoreceptor has been implicated in reducing serotonergic neurotransmission, and is associated with major depression and suicide. Extensive characterization of the transcriptional regulation of the 5-HT1A gene (HTR1A) using cell culture systems has revealed a GC-rich "housekeeping" promoter that non-selectively drives its expression; this is flanked by a series of upstream repressor elements for REST, Freud-1/CC2D1A and Freud-2/CC2D1B factors that not only restrict its expression to neurons, but may also regulate the level of expression of 5-HT1A receptors in various subsets of neurons, including serotonergic neurons. A separate set of allele-specific factors, including Deaf1, Hes1 and Hes5 repress at the HTR1A C(-1019)G (rs6295) polymorphism in serotonergic neurons in culture, as well as in vivo. Pet1, an obligatory enhancer for serotonergic differentiation, has been identified as a potent activator of 5-HT1A autoreceptor expression. Taken together, these results highlight an integrated regulation of 5-HT1A autoreceptors that differs in several aspects from regulation of post-synaptic 5-HT1A receptors, and could be selectively targeted to enhance serotonergic neurotransmission.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| | | | | |
Collapse
|
103
|
Morey RA, Hariri AR, Gold AL, Hauser MA, Munger HJ, Dolcos F, McCarthy G. Serotonin transporter gene polymorphisms and brain function during emotional distraction from cognitive processing in posttraumatic stress disorder. BMC Psychiatry 2011; 11:76. [PMID: 21545724 PMCID: PMC3112079 DOI: 10.1186/1471-244x-11-76] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 05/05/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Serotonergic system dysfunction has been implicated in posttraumatic stress disorder (PTSD). Genetic polymorphisms associated with serotonin signaling may predict differences in brain circuitry involved in emotion processing and deficits associated with PTSD. In healthy individuals, common functional polymorphisms in the serotonin transporter gene (SLC6A4) have been shown to modulate amygdala and prefrontal cortex (PFC) activity in response to salient emotional stimuli. Similar patterns of differential neural responses to emotional stimuli have been demonstrated in PTSD but genetic factors influencing these activations have yet to be examined. METHODS We investigated whether SLC6A4 promoter polymorphisms (5-HTTLPR, rs25531) and several downstream single nucleotide polymorphisms (SNPs) modulated activity of brain regions involved in the cognitive control of emotion in post-9/11 veterans with PTSD. We used functional MRI to examine neural activity in a PTSD group (n = 22) and a trauma-exposed control group (n = 20) in response to trauma-related images presented as task-irrelevant distractors during the active maintenance period of a delayed-response working memory task. Regions of interest were derived by contrasting activation for the most distracting and least distracting conditions across participants. RESULTS In patients with PTSD, when compared to trauma-exposed controls, rs16965628 (associated with serotonin transporter gene expression) modulated task-related ventrolateral PFC activation and 5-HTTLPR tended to modulate left amygdala activation. Subsequent to combat-related trauma, these SLC6A4 polymorphisms may bias serotonin signaling and the neural circuitry mediating cognitive control of emotion in patients with PTSD. CONCLUSIONS The SLC6A4 SNP rs16965628 and 5-HTTLPR are associated with a bias in neural responses to traumatic reminders and cognitive control of emotions in patients with PTSD. Functional MRI may help identify intermediate phenotypes and dimensions of PTSD that clarify the functional link between genes and disease phenotype, and also highlight features of PTSD that show more proximal influence of susceptibility genes compared to current clinical categorizations.
Collapse
Affiliation(s)
- Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA.
| | - Ahmad R Hariri
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC 27705 USA,Department of Psychology & Neuroscience, and Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708 USA
| | - Andrea L Gold
- Department of Psychology, Yale University, New Haven, CT 06520 USA
| | - Michael A Hauser
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC 27705 USA,Center for Human Genetics, Duke University, Durham, NC 27710 USA
| | - Heidi J Munger
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC 27705 USA,Center for Human Genetics, Duke University, Durham, NC 27710 USA
| | - Florin Dolcos
- Department of Psychology, Neuroscience Program, and Beckman Institute for Advanced Science & Technology, University of Illinois, Urbana-Champaign, IL, USA
| | - Gregory McCarthy
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC 27705 USA,Department of Psychology, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
104
|
Jacobsen KX, Czesak M, Deria M, Le François B, Albert PR. Region-specific regulation of 5-HT1A receptor expression by Pet-1-dependent mechanisms in vivo. J Neurochem 2011; 116:1066-76. [PMID: 21182526 PMCID: PMC4540595 DOI: 10.1111/j.1471-4159.2010.07161.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is negatively regulated by 5-HT1A autoreceptors on raphe neurons, and is implicated in mood disorders. Pet-1/FEV is an ETS transcription factor expressed exclusively in serotonergic neurons and is essential for serotonergic differentiation, although its regulation of 5-HT receptors has not yet been studied. Here, we show by electrophoretic mobility shift assay that recombinant human Pet-1/FEV binds directly to multiple Pet-1 elements of the human 5-HT1A receptor promoter to enhance its transcriptional activity. In luciferase reporter assays, mutational analysis indicated that while several sites contribute, the Pet-1 site at -1406 bp had the greatest effect on 5-HT1A promoter activity. To address the effect of Pet-1 on 5-HT1A receptor regulation in vivo, we compared the expression of 5-HT1A receptor RNA and protein in Pet-1 null and wild-type littermate mice. In the raphe nuclei of Pet-1-/- mice tryptophan hydroxylase 2 (TPH2) RNA, and 5-HT and TPH immunostaining were greatly reduced, indicating a deficit in 5-HT production. Raphe 5-HT1A RNA and protein levels were also reduced in Pet-1-deficient mice, consistent with an absence of Pet-1-mediated transcriptional enhancement of 5-HT1A autoreceptors in serotonergic neurons. Interestingly, 5-HT1A receptor expression was up-regulated in the hippocampus, but down-regulated in the striatum and cortex. These data indicate that, in addition to transcriptional regulation by Pet-1 in raphe neurons, 5-HT1A receptor expression is regulated indirectly by alterations in 5-HT neurotransmission in a region-specific manner that together may contribute to the aggressive/anxiety phenotype observed in Pet-1 null mice.
Collapse
Affiliation(s)
- Kristen X. Jacobsen
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret Czesak
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mariam Deria
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brice Le François
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul R. Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
105
|
Markus CR, De Raedt R. Differential effects of 5-HTTLPR genotypes on inhibition of negative emotional information following acute stress exposure and tryptophan challenge. Neuropsychopharmacology 2011; 36:819-26. [PMID: 21150915 PMCID: PMC3055739 DOI: 10.1038/npp.2010.221] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous data suggest that a polymorphism at the serotonin (5-HT) transporter gene (5-HTTLPR) may influence stress resilience and stress-related depression symptoms due to interactions between brain 5-HT dysfunction and stress exposure. Although attentional bias for emotional information has been reliably observed in depression, the interaction between 5-HT transporter-linked promoter region (5-HTTLPR), brain 5-HT vulnerability, and acute stress on affective information processing has not yet been investigated. This study examines the effects of tryptophan (TRP) augmentation (indicating 5-HT manipulation) on inhibition of negative emotional information under stress in mainly female S'/S'- vs L'/L'-allele carriers. A total of 15 female homozygotic short-allele 5-HTTLPR (S'/S'=S/S, S/L(G), L(G)/L(G)) and 13 female homozygotic long-allele 5-HTTLPR (L'/L'=L(A)/L(A)) subjects were tested for mood and inhibition of emotional information in a double-blind, placebo-controlled design before and after stress exposure following TRP manipulation. Stress exposure significantly impaired inhibition of negative affective information only in S'/S' carriers, whereas L'/L' carriers even showed increased inhibition of negative information. The S'/S' allele 5-HTTLPR genotype increases cognitive-attentional bias for negative emotional information under acute stress. As this bias is an important component of depression, this may be a mediating mechanism making S'/S'-allele carriers more vulnerability for stress-induced depression symptoms. Moreover, current data suggest that L'/L'-allele genotypes are more resilient, even increasing cognitive emotional (inhibitory) control after stress.
Collapse
Affiliation(s)
- C Rob Markus
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Universiteitssingel, Maastricht, The Netherlands.
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
106
|
Rethorst CD, Landers DM, Nagoshi CT, Ross JTD. Efficacy of exercise in reducing depressive symptoms across 5-HTTLPR genotypes. Med Sci Sports Exerc 2011; 42:2141-7. [PMID: 20351589 DOI: 10.1249/mss.0b013e3181de7d51] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Exercise is effective in the alleviation of depressive symptoms and may have physiological effects similar to those of selective serotonin reuptake inhibitors (SSRI). Recent research has identified the difference in treatment effects across genetic polymorphisms of the serotonin transporter polymorphic region (5-HTTLPR), in which the l allele has been associated with a better response to SSRI compared with the s allele. The purpose of the current research was to examine the antidepressant effects of exercise across 5-HTTLPR genotypes. METHODS Participants, ages 18–23 yr, were randomly assigned to a 5-wk exercise intervention or a no-treatment control group. Participants completed the Beck Depression Inventory before and after the intervention and provided a saliva sample for DNA analysis. RESULTS Exercise resulted in a significant reduction in depressive symptoms compared with the control group. In addition, individuals with at least one l allele demonstrated greater reductions in depressive symptoms compared with ss individuals. CONCLUSIONS The effects of exercise on depressive symptoms appear to be moderated by 5-HTTLPR genotype, suggesting that the mechanisms responsible for the alleviation of depressive symptoms are similar for exercise and SSRI treatment. Furthermore, these findings suggest that 5-HTTLPR genotype should be a factor in determining the proper line of treatment for depression.
Collapse
|
107
|
Rethorst CD, Landers DM, Nagoshi CT, Ross JTD. The association of 5-HTTLPR genotype and depressive symptoms is moderated by physical activity. J Psychiatr Res 2011; 45:185-9. [PMID: 20538286 DOI: 10.1016/j.jpsychires.2010.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 11/27/2022]
Abstract
The s allele serotonin transporter polymorphic region (5-HTTLPR) is associated with a number of physiological mechanisms that may increase the risk of elevated depressive symptoms. However, reports of a relationship between serotonin transporter polymorphic region (5-HTTLPR) genotype and depressive symptoms have thus far been inconclusive. This heterogeneity of results suggests that other factors may be moderating the relationship between 5-HTTLPR and depressive symptoms. Higher levels of physical activity are associated with lower levels of depressive symptoms. Mechanisms responsible for this association include alterations of the serotonergic system and the hypothalamic-pituitary axis. The aim of the current study was to measure the moderating effect of physical activity on the relationship between 5-HTTLPR genotype and depressive symptoms. Participants, ages 18-23, provided a saliva sample for DNA analysis and completed questionnaires to assess depressive symptoms and physical activity. A hierarchical multiple regression analysis was conducted to examine the moderating effect of physical activity on the relationship between 5-HTTLPR genotype and depressive symptoms. Analysis revealed a significant interaction between 5-HTTLPR and physical activity (p = .010). At low levels of physical activity, individuals with at least one s allele had significantly higher levels of depressive symptoms compared to ll individuals (p = .011). This finding provides preliminary support for a moderating effect of physical activity on the relationship between 5-HTTLPR and depressive symptoms.
Collapse
Affiliation(s)
- Chad D Rethorst
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
108
|
Rogers RD. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans. Neuropsychopharmacology 2011; 36:114-32. [PMID: 20881944 PMCID: PMC3055502 DOI: 10.1038/npp.2010.165] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 12/30/2022]
Abstract
Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive appraisal of reinforcers when selecting between actions, potentially accounting for its influence upon the processing salient aversive outcomes and social choice.
Collapse
Affiliation(s)
- Robert D Rogers
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
109
|
Mekli K, Payton A, Miyajima F, Platt H, Thomas E, Downey D, Lloyd-Williams K, Chase D, Toth ZG, Elliott R, Ollier WE, Anderson IM, Deakin JFW, Bagdy G, Juhasz G. The HTR1A and HTR1B receptor genes influence stress-related information processing. Eur Neuropsychopharmacol 2011; 21:129-39. [PMID: 20638825 DOI: 10.1016/j.euroneuro.2010.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 01/09/2023]
Abstract
The serotonergic system has been widely implicated in stress related psychiatric disorders such as depression and anxiety. We investigated the possible association between depression and anxiety scores and SNPs within the HTR1A and HTR1B genes in a population sample (n=1387). There was no direct SNP-phenotype association, but in interaction with recent stressful life events rs6295 G, rs878567 T alleles and rs6296 C alleles were associated with significantly higher symptom scores. A subset of control subjects (n=101) took part in a computerised face emotion processing task. Healthy rs6295 GG carriers did not show an affective bias to perceive more negative emotions but reacted more quickly to fearful faces. Thus we conclude that the serotonin-1A receptor conveys vulnerability to these psychiatric disorders by modulating threat-related information processing. Our results extend previous findings of an interaction between stressful life events and the serotonin transporter gene to two other genes in the serotonergic pathway and emphasise the possible role of increased threat-related information processing as an intermediate phenotype.
Collapse
Affiliation(s)
- Krisztina Mekli
- Neuroscience and Psychiatry Unit, School of Community Based Medicine, Faculty of Medical and Human Sciences, The University of Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Paterson DS, Rivera KD, Broadbelt KG, Trachtenberg FL, Belliveau RA, Holm IA, Haas EA, Stanley C, Krous HF, Kinney HC, Markianos K. Lack of association of the serotonin transporter polymorphism with the sudden infant death syndrome in the San Diego Dataset. Pediatr Res 2010; 68:409-13. [PMID: 20661167 PMCID: PMC3242414 DOI: 10.1203/pdr.0b013e3181f2edf0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dysfunction of medullary serotonin (5-HT)-mediated respiratory and autonomic function is postulated to underlie the pathogenesis of the majority of sudden infant death syndrome (SIDS) cases. Several studies have reported an increased frequency of the LL genotype and L allele of the 5-HT transporter (5-HTT) gene promoter polymorphism (5-HTTLPR), which is associated with increased transcriptional activity and 5-HT transport in vitro, in SIDS cases compared with controls. These findings raise the possibility that this polymorphism contributes to or exacerbates existing medullary 5-HT dysfunction in SIDS. In this study, we tested the hypothesis that the frequency of LL genotype and L allele are higher in 179 SIDS cases compared with 139 controls of multiple ethnicities in the San Diego SIDS Dataset. We observed no significant association of genotype or allele with SIDS cases either in the total cohort or on stratification for ethnicity. These observations do not support previous findings that the L allele and/or LL genotype of the 5-HTTLPR are associated with SIDS.
Collapse
Affiliation(s)
- David S Paterson
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Glenn AL. The other allele: exploring the long allele of the serotonin transporter gene as a potential risk factor for psychopathy: a review of the parallels in findings. Neurosci Biobehav Rev 2010; 35:612-20. [PMID: 20674598 DOI: 10.1016/j.neubiorev.2010.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/25/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Converging evidence suggests that the short allele of the serotonin transporter gene polymorphism increases risk for a variety of psychological disorders, including depression, anxiety, and alcoholism. Thus, the short allele is typically considered the "risk" allele, and findings related to the long allele are rarely discussed. However, upon closer examination, findings associated with the long allele of the serotonin transporter gene share striking similarities with findings from studies of psychopathy. Here, the parallels between findings associated with the long/long genotype and findings associated with psychopathic traits in the areas of neuropsychology, psychophysiology, hormones, and brain imaging are reviewed. It is suggested that the long/long genotype may be a potential risk factor for the development of psychopathic traits.
Collapse
Affiliation(s)
- Andrea L Glenn
- Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
112
|
Lothe A, Boni C, Costes N, Bouvard S, Gorwood P, Lavenne F, Alvarez M, Ryvlin P. 5-HT1A gene promoter polymorphism and [18F]MPPF binding potential in healthy subjects: a PET study. Behav Brain Funct 2010; 6:37. [PMID: 20609217 PMCID: PMC2909987 DOI: 10.1186/1744-9081-6-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/07/2010] [Indexed: 11/21/2022] Open
Abstract
Background Previous Positron Emission Tomography (PET) studies of 5-HT1A receptors have shown an influence of several genetic factors, including the triallelic serotonin transporter gene-linked polymorphic region on the binding potential (BPND) of these receptors. The aim of our study was to investigate the relationship between a 5-HT1A promoter polymorphism and the binding potential of another selective 5-HT1A receptor antagonist, [18F]MPPF, in healthy subjects. Methods Thirty-five volunteers, including 23 women, underwent an [18F]MPPF scan and were genotyped for both the C(-1019)G 5-HT1A promoter polymorphism and the triallelic serotonin transporter gene-linked polymorphic region. We used a simplified reference tissue model to generate parametric images of BPND. Whole brain Statistical Parametric Mapping and raphe nuclei region of interest analyses were performed to look for an association of [18F]MPPF BPND with the C(-1019)G 5-HT1A promoter polymorphism. Results Among the 35 subjects, 5-HT1A promoter genotypes occurred with the following frequencies: three G/G, twenty-one G/C, and eleven C/C. No difference of [18F]MPPF BPND between groups was observed, except for two women who were homozygote carriers for the G allele and showed greater binding potential compared to other age-matched women over the frontal and temporal neocortex. However, the biological relevance of this result remains uncertain due to the very small number of subjects with a G/G genotype. These findings were not modified by excluding individuals carrying the S/S genotype of the serotonin transporter gene-linked polymorphic region. Conclusions We failed to observe an association between the C(-1019)G 5-HT1A promoter polymorphism and [18F]MPPF binding in healthy subjects. However our data suggest that the small number of women homozygote for the G allele might have greater [18F]MPPF BPND relative to other individuals. This finding should be confirmed in a larger sample.
Collapse
|
113
|
Abstract
The molecular genetic research on panic disorder (PD) has grown tremendously in the past decade. Although the data from twin and family studies suggest an involvement of genetic factors in the familial transmission of PD with the heritability estimate near 40%, the genetic substrate underlying panicogenesis is not yet understood. The linkage studies so far have suggested that chromosomal regions 13q, 14q, 22q, 4q31-q34, and probably 9q31 are associated with the transmission of PD phenotypes. To date, more than 350 candidate genes have been examined in association studies of PD, but most of these results remain inconsistent, negative, or not clearly replicated. Only Val158Met polymorphism of the catechol-O-methyltransferase gene has been implicated in susceptibility to PD by several studies in independent samples and confirmed in a recent meta-analysis. However, the specific role of this genetic variation in PD requires additional analysis considering its gender- and ethnicity-dependent effect and putative impact on cognitive functions. The recent advantages in bioinformatics and genotyping technologies, including genome-wide association and gene expression methods, provide the means for far more comprehensive discovery in PD. The progress in clinical and neurobiological concepts of PD may further guide genetic research through the current controversies to more definitive findings.
Collapse
Affiliation(s)
- E Maron
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
114
|
Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 2010; 167:509-27. [PMID: 20231323 PMCID: PMC2943341 DOI: 10.1176/appi.ajp.2010.09101452] [Citation(s) in RCA: 884] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence of marked variability in response among people exposed to the same environmental risk implies that individual differences in genetic susceptibility might be at work. The study of such Gene-by-Environment (GxE) interactions has gained momentum. In this article, the authors review research about one of the most extensive areas of inquiry: variation in the promoter region of the serotonin transporter gene (SLC6A4; also known as 5-HTT) and its contribution to stress sensitivity. Research in this area has both advanced basic science and generated broader lessons for studying complex diseases and traits. The authors evaluate four lines of evidence about the 5-HTT stress-sensitivity hypothesis: 1) observational studies about the serotonin transporter linked polymorphic region (5-HTTLPR), stress sensitivity, and depression in humans; 2) experimental neuroscience studies about the 5-HTTLPR and biological phenotypes relevant to the human stress response; 3) studies of 5-HTT variation and stress sensitivity in nonhuman primates; and 4) studies of stress sensitivity and genetically engineered 5-HTT mutations in rodents. The authors then dispel some misconceptions and offer recommendations for GxE research. The authors discuss how GxE interaction hypotheses can be tested with large and small samples, how GxE research can be carried out before as well as after replicated gene discovery, the uses of GxE research as a tool for gene discovery, the importance of construct validation in evaluating GxE research, and the contribution of GxE research to the public understanding of genetic science.
Collapse
Affiliation(s)
- Avshalom Caspi
- Department of Psychology, and Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
115
|
Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Mol Psychiatry 2010; 15:512-22, 446. [PMID: 19721434 PMCID: PMC2861147 DOI: 10.1038/mp.2009.90] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A powerful convergence of genetics, neuroimaging and epidemiological research has identified the biological pathways mediating individual differences in complex behavioral processes and the related risk for disease. Orthologous genetic variation in non-human primates (NHPs) represents a unique opportunity to characterize the detailed molecular and cellular mechanisms that bias behaviorally and clinically relevant brain function. We report that a rhesus macaque orthologue of a common polymorphism of the serotonin transporter gene (rh5-HTTLPR) has strikingly similar effects on behavior and brain morphology to those in humans. Specifically, the rh5-HTTLPR (S)hort allele broadly affects cognitive choice behavior and brain morphology without observably affecting the 5-hydroxytryptamine (5-HT) transporter or 5-HT(1A) concentrations in vivo. Collectively, our findings indicate that 5-HTTLPR-associated behavioral effects reflect genotype-dependent biases in cortical development rather than static differences in serotonergic signaling mechanisms. Moreover, these data highlight the vast potential of NHP models in advancing our understanding of human genetic variation affecting behavior and neuropsychiatric disease liability.
Collapse
|
116
|
Willeit M, Praschak-Rieder N. Imaging the effects of genetic polymorphisms on radioligand binding in the living human brain: A review on genetic neuroreceptor imaging of monoaminergic systems in psychiatry. Neuroimage 2010; 53:878-92. [PMID: 20399868 DOI: 10.1016/j.neuroimage.2010.04.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 12/16/2022] Open
Abstract
Imaging genetics is a research field that describes the impact of genetic risk variants on brain structure and function. While magnetic resonance based imaging techniques are able to provide complex information on a system level, positron emission tomography (PET) and single photon emission computer tomography (SPECT) allow for determination of distribution and density of single receptor molecules in the human brain. Major psychiatric disorders are highly heritable, and have been associated with a dysregulation in brain dopamine and serotonin systems. Understanding the role of genetic polymorphisms within these neurotransmitter systems on brain phenotype is essential. This review tries to cover the literature on the impact of gene variants implicated in psychiatric disorders on serotonin, dopamine, and MAO-A radioligand binding in living humans. The majority of PET and SPECT studies investigated the role of polymorphisms within genes coding for the serotonin and dopamine transporters, the serotonin 1A receptor, and the dopamine D2 receptor on G protein coupled receptors or transporter proteins critically involved in serotonin or dopamine neurotransmission. Other studies investigated the impact of variants in genes for monoamine oxidase-A (MAO-A) or brain derived neurotrophic factor on monoamine transporters, receptors, or MAO-A activity. Two main findings in healthy subjects emerge from the current literature: one is an increased binding of the selective ligand [(11)C]DASB to serotonin transporters in subjects homozygous for the triallelic 5-HTTLPR LA allele. The other one is decreased binding of the radioligand [(11)C]raclopride to dopamine D2 receptors in D2 Taq1 A1 allele carriers. Other findings reported are highly interesting but require independent replication.
Collapse
Affiliation(s)
- Matthäus Willeit
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | | |
Collapse
|
117
|
Bennett MR, Maxwell R. Synapse regression in depression: the role of 5-HT receptors in modulating NMDA receptor function and synaptic plasticity. Aust N Z J Psychiatry 2010; 44:301-8. [PMID: 20307163 DOI: 10.3109/00048670903555146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Depression is accompanied by an increase in activity in the amygdala and a decrease in the rostral anterior cingulate cortex (rACC), with the former attributed to a failure of the latter to exert its normal inhibitory influence. This failure is likely due to regression of synaptic connections between the rACC and the amygdala, a process reversed in part by selective serotonin reuptake inhibitors (SSRIs). The present work presents a hypothesis as to how SSRIs might bring about this process and hence normalization of activity, at least in patients that are responsive to SSRIs. Serotonin receptors of the excitatory 5-HT(2A)R class increase N-methyl-D-aspartate receptor (NMDAR) efficacy, while those of the inhibitory 5-HT(1A)R class decrease NMDAR efficacy. A decrease of 5-HT transporter (5-HTT) efficacy, either during human development through functional polymorphisms, or in animals through 5-HTT transgenic knockouts, is accompanied by a decrease in 5-HT(1A)R and hence an increase in excitability and NMDAR efficacy which drives an increase in synaptic spines in the amygdala. As the limbic region of the brain normally possesses high levels of 5-HT(1A)R the effect of loss of these is to increase excitation in this region, as is observed. Changes in the level of extracellular 5-HT in adult animals also modulates the density of synaptic spines, with these increasing with an increase in 5-HT, possibly as a consequence of increases in 5-HT(2A)R activity over that of 5-HT(1A)R. Increasing extracellular levels of 5-HT with SSRIs would then lead to an increase in excitability and in synaptic spines for afferents in the dorsal rostral anterior cingulate cortex but not in the ventral regions such as the amygdala that have few 5-HT(2A)R. This allows dorsal regions to once more exert their inhibitory influence over ventral regions. In this way, SSRIs may exert their effect in normalizing dorsal hypometabolism and ventral hypermetabolism in those suffering from depression.
Collapse
Affiliation(s)
- Maxwell R Bennett
- Brain & Mind Research Institute, University Sydney, 100 Mallett Street, Camperdown, NSW 2050, Australia.
| | - R Maxwell
- University Chair, Scientific Director Brain & Mind Research Institute, University Sydney, 100 Mallett Street, Camperdown, NSW 2050, Australia
| |
Collapse
|
118
|
No association between the serotonin-1A receptor gene single nucleotide polymorphism rs6295C/G and symptoms of anxiety or depression, and no interaction between the polymorphism and environmental stressors of childhood anxiety or recent stressful life events on anxiety or depression. Psychiatr Genet 2010; 20:8-13. [PMID: 19997044 DOI: 10.1097/ypg.0b013e3283351140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND There are conflicting reports of an association between a common functional single nucleotide polymorphism (rs6295C/G) in the serotonin-1A receptor gene (HTR1A) and psychological disorders. METHODS In our study we investigated associations between this polymorphism and symptoms of anxiety and depression in a population sample of 6445 Caucasians in the age groups 20-24, 40-44, and 60-64 years. We also looked for interactions between the polymorphism and environmental stressors of childhood adversity or recent stressful life events on anxiety and depression. RESULTS There were no significant associations between the polymorphism and anxiety, depression or associated personality traits in the three age cohorts. There were no significant gene-environment interactions between the polymorphism and either of the environmental stressors on anxiety or depression. CONCLUSION We found no associations or gene-environment interactions involving the polymorphism and symptoms of anxiety or depression.
Collapse
|
119
|
Bosia M, Anselmetti S, Pirovano A, Ermoli E, Marino E, Bramanti P, Smeraldi E, Cavallaro R. HTTLPR functional polymorphism in schizophrenia: executive functions vs. sustained attention dissociation. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:81-5. [PMID: 19818823 DOI: 10.1016/j.pnpbp.2009.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/23/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recently attention has been addressed to the role of 5-HT in cognition and several experimental studies revealed that manipulations of the central 5-HT system can produce quite specific changes in cognitive functioning. These results may suggest new treatment strategies to improve cognition in psychiatric conditions characterized by neuropsychological impairments, such as schizophrenia. It is possible to investigate the involvement of 5-HT in cognition by examining the impact of genetic variation in key regulators of serotoninergic neurotransmission. Among these, the serotonin transporter (5-HTT) presents a functional polymorphism in the transcriptional control region of the gene (5-HTTLPR) affecting transcriptional efficiency. In the present study, we aimed to analyze the effect of 5-HTTLPR polymorphism on specific cognitive functions, known to be affected by 5-HT manipulation and altered in schizophrenia. METHODS 223 schizophrenia patients were tested with Wisconsin Card Sorting Test (WCST), for the evaluation of cognitive flexibility, Continuous Performance Test (CPT), for the evaluation of attention, and genotyped for the 5-HTTLPR. RESULTS We found a significant association between HTT polymorphism and executive functions and inversely with sustained attention. The presence of the high-activity long (L) allele in homozygosis was a predictor of better executive performances and poorer performances of attention. CONCLUSIONS Our findings suggest that factors affecting serotonin availability may play a specific role in cognitive processes, probably through complex modulation of the different performance components.
Collapse
Affiliation(s)
- Marta Bosia
- Department of Clinical Neurosciences, San Raffaele Universitary Scientific Institute Hospital, Via Stamira d'Ancona 20, 20127 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Kieran N, Ou XM, Iyo AH. Chronic social defeat downregulates the 5-HT1A receptor but not Freud-1 or NUDR in the rat prefrontal cortex. Neurosci Lett 2010; 469:380-4. [PMID: 20026183 PMCID: PMC2815082 DOI: 10.1016/j.neulet.2009.12.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 12/22/2022]
Abstract
The serotonin 1A receptor (5-HT1A) and its associated transcriptional regulators, five prime repressor element under dual repression (Freud-1) and nuclear-deformed epidermal autoregulatory factor (NUDR/Deaf-1) have been previously found to be the repressors for 5-HT1A in the serotonergic raphe neurons, and are also altered in postmortem brains of individuals with major depressive disorder (MDD) and in rats exposed to chronic restraint stress. We sought to find out if rats exposed to chronic social defeat (CSD) stress also show altered expression of these genes. Adult male Wistar rats were exposed to CSD stress for four consecutive weeks following which they were sacrificed and gene expression assessed in the prefrontal cortex (PFC) by quantitative real-time polymerase chain reaction. While CSD had no significant effects on NUDR and Freud-1 mRNA levels, 5-HT1A mRNA levels were significantly downregulated in defeated animals. The data suggest that regulatory factors other than Freud-1 and NUDR may be involved in the regulation of 5-HT1A expression in PFC during CSD stress. Furthermore, decreased levels of 5-HT1A following social defeat in the PFC are consistent with human postmortem results for this receptor in major depression and demonstrate the possibility that this receptor is involved in the pathophysiology of depression and other stress related disorders.
Collapse
Affiliation(s)
- Niamh Kieran
- Department of Psychiatry and Human Behavior and Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216 USA
| | - Xiao-Ming Ou
- Department of Psychiatry and Human Behavior and Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216 USA
| | - Abiye H. Iyo
- Department of Psychiatry and Human Behavior and Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216 USA
| |
Collapse
|
121
|
Differential effects of tri-allelic 5-HTTLPR polymorphisms in healthy subjects on mood and stress performance after tryptophan challenge. Neuropsychopharmacology 2009; 34:2667-74. [PMID: 19675533 DOI: 10.1038/npp.2009.92] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Earlier data suggest that a polymorphism at the serotonin (5-HT) transporter gene (5-HTTLPR) may affect depression particularly in the face of stress due to interactions between 5-HT vulnerability and stress exposure. However, this interaction between 5-HT transporter-linked transcriptional promoter region (5-HTTLPR), 5-HT vulnerability and the affective effects of stress exposure has not yet been investigated. As participants with short-allele 5-HTTLPR genotypes may exhibit enhanced 5-HT vulnerability, this study examines the effects of tryptophan challenge on stress reactivity and performance in healthy participants with S'/S' vs L'/L' genotypes. Sixteen healthy subjects with homozygotic short alleles (S'/S'=S/L(G,) L(G)/L(G)) and 14 subjects with homozygotic long alleles (L'/L'=L(A)/L(A)) of the 5-HTTLPR were tested in a double-blind placebo-controlled design under acute stress exposure following tryptophan challenge or placebo. Although there were no 5-HTTLPR-related differences in stress responses, significant beneficial effects of tryptophan challenge on mood and stress performance were exclusively found in participants with S'/S' genotypes. These findings suggest greater brain 5-HT vulnerability to tryptophan manipulations in participants with S'/S' as compared with L'/L' 5-HTTLPR genotypes. This apparent genetic 5-HT vulnerability may become a meaningful risk factor for depression when brain 5-HT falls below functional need in the face of real severe stressful life events.
Collapse
|
122
|
Savitz JB, Drevets WC. Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience 2009; 164:300-30. [PMID: 19358877 PMCID: PMC2760612 DOI: 10.1016/j.neuroscience.2009.03.082] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/20/2009] [Accepted: 03/30/2009] [Indexed: 02/06/2023]
Abstract
Imaging techniques are a potentially powerful method of identifying phenotypes that are associated with, or are indicative of, a vulnerability to developing major depressive disorder (MDD). Here we identify seven promising MDD-associated traits identified by magnetic resonance imaging (MRI) or positron emission tomography (PET). We evaluate whether these traits are state-independent, heritable endophenotypes, or state-dependent phenotypes that may be useful markers of treatment efficacy. In MDD, increased activity of the amygdala in response to negative stimuli appears to be a mood-congruent phenomenon, and is likely moderated by the 5-HT transporter gene (SLC6A4) promoter polymorphism (5-HTTLPR). Hippocampal volume loss is characteristic of elderly or chronically-ill samples and may be impacted by the val66met brain-derived neurotrophic factor (BDNF) gene variant and the 5-HTTLPR SLC6A4 polymorphism. White matter pathology is salient in elderly MDD cohorts but is associated with cerebrovascular disease, and is unlikely to be a useful marker of a latent MDD diathesis. Increased blood flow or metabolism of the subgenual anterior cingulate cortex (sgACC), together with gray matter volume loss in this region, is a well-replicated finding in MDD. An attenuation of the usual pattern of fronto-limbic connectivity, particularly a decreased temporal correlation in amygdala-anterior cingulate cortex (ACC) activity, is another MDD-associated trait. Concerning neuroreceptor PET imaging, decreased 5-HT(1A) binding potential in the raphe, medial temporal lobe, and medial prefrontal cortex (mPFC) has been strongly associated with MDD, and may be impacted by a functional single nucleotide polymorphism in the promoter region of the 5-HT(1A) gene (HTR1A: -1019 C/G; rs6295). Potentially indicative of inter-study variation in MDD etiology or mood state, both increased and decreased binding potential of the 5-HT transporter has been reported. Challenges facing the field include the problem of phenotypic and etiological heterogeneity, technological limitations, the confounding effects of medication, and non-disease related inter-individual variation in brain morphology and function. Further advances are likely as epigenetic, copy-number variant, gene-gene interaction, and genome-wide association (GWA) approaches are brought to bear on imaging data.
Collapse
Affiliation(s)
- J B Savitz
- Mood and Anxiety Disorders Program, NIH/NIMH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
123
|
Influence of escitalopram treatment on 5-HT 1A receptor binding in limbic regions in patients with anxiety disorders. Mol Psychiatry 2009; 14:1040-50. [PMID: 18362913 DOI: 10.1038/mp.2008.35] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is an increasing interest in the underlying mechanisms of the antidepressant and anxiolytic treatment effect associated with changes in serotonergic neurotransmission after treatment with selective serotonin (5-HT) reuptake inhibitors (SSRIs) in humans. The 5-HT(1A) receptor is known to play a crucial role in the pathophysiology of affective disorders, and altered 5-HT(1A) receptor binding has been found in anxiety patients. SSRI treatment raises the 5-HT level in the synaptic cleft and might change postsynaptic receptor densities. Therefore, our study in patients suffering from anxiety disorders investigated the effects of long-term treatment with escitalopram on the 5-HT(1A) receptor. A longitudinal positrone emission tomography (PET) study in 12 patients suffering from anxiety disorders was conducted. Two dynamic PET scans were performed applying the selective 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635. Eight regions of interest were defined a priori (orbitofrontal cortex, amygdala, hippocampus, subgenual cortex, anterior and posterior cingulate cortex, dorsal raphe nucleus and cerebellum as reference). After the baseline PET scan, patients were administered escitalopram (average dose of 11.2+/-6.0 mg day(-1)) for a minimum of 12 weeks. A second PET scan was conducted after 109+/-27 days. 5-HT(1A) receptor binding potentials in 12 patients were assessed by PET applying the Simplified Reference Tissue Model.There was a significant reduction in the 5-HT(1A) receptor binding potential after a minimum of 12 weeks of escitalopram treatment in the hippocampus (P=0.006), subgenual cortex (P=0.017) and posterior cingulate cortex (P=0.034). The significance of the hippocampus region survived the Bonferroni-adjusted threshold for multiple comparisons. These PET data in humans in vivo demonstrate a reduction of the 5-HT(1A) binding potential after SSRI treatment.
Collapse
|
124
|
Abstract
Neuroimaging, especially BOLD fMRI, has begun to identify how variability in brain function contributes to individual differences in complex behavioral traits. In parallel, pharmacological fMRI and multimodal PET/fMRI are identifying how variability in molecular signaling pathways influences individual differences in brain function. Against this background, functional genetic polymorphisms are being utilized to understand the origins of variability in signaling pathways as well as to model efficiently how such emergent variability impacts behaviorally relevant brain function. This article provides an overview of a research strategy seeking to integrate these complementary technologies and utilizes existing empirical data to illustrate its effectiveness in illuminating the neurobiology of individual differences in complex behavioral traits. The article also discusses how such efforts can contribute to the identification of predictive markers that interact with environmental factors to precipitate disease and to develop more effective and individually tailored treatment regimes.
Collapse
Affiliation(s)
- Ahmad R Hariri
- Department of Psychology and Neuroscience, Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
125
|
Murphy SE, Longhitano C, Ayres RE, Cowen PJ, Harmer CJ, Rogers RD. The role of serotonin in nonnormative risky choice: the effects of tryptophan supplements on the "reflection effect" in healthy adult volunteers. J Cogn Neurosci 2009; 21:1709-19. [PMID: 18823228 DOI: 10.1162/jocn.2009.21122] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Risky decision-making involves weighing good and bad outcomes against their probabilities in order to determine the relative values of candidate actions. Although human decision-making sometimes conforms to rational models of how this weighting is achieved, irrational (or nonnormative) patterns of risky choice, including shifts between risk-averse and risk-seeking choices involving equivalent-value gambles (the "reflection effect"), are frequently observed. In the present experiment, we investigated the role of serotonin in decision-making under conditions of uncertainty. Fifteen healthy adult volunteers received a treatment of 3 g per day of the serotonin precursor, tryptophan, in the form of dietary supplements over a 14-day period, whereas 15 age- and IQ-matched control volunteers received a matched placebo substance. At test, all participants completed a risky decision-making task involving a series of choices between two simultaneously presented gambles, differing in the magnitude of their possible gains, the magnitude of their possible losses, and the probabilities with which these outcomes were delivered. Tryptophan supplements were associated with alterations in the weighting of gains and small losses perhaps reflecting reduced loss-aversion, and a marked and significant diminution of the reflection effect. We conclude that serotonin activity plays a significant role in nonnormative risky decision-making under conditions of uncertainty.
Collapse
|
126
|
Hadjighassem MR, Austin MC, Szewczyk B, Daigle M, Stockmeier CA, Albert PR. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol Psychiatry 2009; 66:214-22. [PMID: 19423080 PMCID: PMC4084727 DOI: 10.1016/j.biopsych.2009.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 02/11/2009] [Accepted: 02/28/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. METHODS Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. RESULTS Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. CONCLUSIONS Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.
Collapse
Affiliation(s)
- Mahmoud R. Hadjighassem
- Ottawa Health Research Institute (Neuroscience)1, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H-8M5
| | - Mark C. Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MI, U.S.A
| | - Bernadeta Szewczyk
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MI, U.S.A,Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Mireille Daigle
- Ottawa Health Research Institute (Neuroscience)1, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H-8M5
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MI, U.S.A,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Paul R. Albert
- Ottawa Health Research Institute (Neuroscience)1, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H-8M5,To whom correspondence should be addressed, phone: (613) 562-5800 ext. 8307, Fax: (613) 562-5403;
| |
Collapse
|
127
|
Iyo AH, Kieran N, Chandran A, Albert PR, Wicks I, Bissette G, Austin MC. Differential regulation of the serotonin 1 A transcriptional modulators five prime repressor element under dual repression-1 and nuclear-deformed epidermal autoregulatory factor by chronic stress. Neuroscience 2009; 163:1119-27. [PMID: 19647046 DOI: 10.1016/j.neuroscience.2009.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/15/2009] [Accepted: 07/23/2009] [Indexed: 02/07/2023]
Abstract
Chronic stress is known to affect brain areas involved in learning and emotional responses. These changes, thought to be related to the development of cognitive deficits are evident in major depressive disorder and other stress-related pathophysiologies. The serotonin-related transcription factors (Freud-1/CC2D1A; five prime repressor element under dual repression/coiled-coil C2 domain 1a, and NUDR/Deaf-1; nuclear-deformed epidermal autoregulatory factor) are two important regulators of the 5-HT1A receptor. Using Western blotting and quantitative real-time polymerase chain reaction (qPCR) we examined the expression of mRNA and proteins for Freud-1, NUDR, and the 5-HT1A receptor in the prefrontal cortex (PFC) of male rats exposed to chronic restraint stress (CRS; 6 h/day for 21 days). After 21 days of CRS, significant reductions in both Freud-1 mRNA and protein were observed in the PFC (36.8% and 32%, respectively; P<0.001), while the levels of both NUDR protein and mRNA did not change significantly. Consistent with reduced Freud-1 protein, 5-HT1A receptor mRNA levels were equally upregulated in the PFC, while protein levels actually declined, suggesting post-transcriptional receptor downregulation. The data suggest that CRS produces distinct alterations in the serotonin system specifically altering Freud-1 and the 5-HT1A receptor in the PFC of the male rat while having no effect on NUDR. These results point to the importance of understanding the mechanism for the differential regulation of Freud-1 and NUDR in the PFC as a basis for understanding the related effects of chronic stress on the serotonin system (serotonin-related transcription factors) and stress-related disorders like depression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Chronic Disease
- Corticosterone/blood
- Gene Expression
- Male
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polymerase Chain Reaction
- Prefrontal Cortex/metabolism
- RNA, Messenger/metabolism
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Restraint, Physical
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Transcription Factors
Collapse
Affiliation(s)
- A H Iyo
- Department of Psychiatry and Human Behavior, Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | | | | | | | | | | | | |
Collapse
|
128
|
Kosek E, Jensen KB, Lonsdorf TB, Schalling M, Ingvar M. Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans. Mol Pain 2009; 5:37. [PMID: 19570226 PMCID: PMC2717925 DOI: 10.1186/1744-8069-5-37] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/01/2009] [Indexed: 12/11/2022] Open
Abstract
Background There is evidence from animal studies that serotonin (5-HT) can influence the antinociceptive effects of opioids at the spinal cord level. Therefore, there could be an influence of genetic polymorphisms in the serotonin system on individual variability in response to opioid treatment of pain. The serotonin transporter (5-HTT) is a key regulator of serotonin metabolism and availability and its gene harbors several known polymorphisms that are known to affect 5-HTT expression (e.g. 5-HTTLPR, rs25531). The aim of this study was to investigate if the triallelic 5-HTTLPR influences pain sensitivity or the analgesic effect of opioids in humans. 43 healthy volunteers (12 men, 31 women, mean age 26 years) underwent heat pain stimulations before and after intravenous injection of Remifentanil; a rapid and potent opioid drug acting on μ-type receptors. Subjects rated their perceived pain on a visual analogue scale (VAS). All participants were genotyped for the 5-HTTLPR and the rs25531 polymorphism. We recruited by advertising, with no history of drug abuse, chronic pain or psychiatric disorders. Results At baseline, there was no difference in pain ratings for the different triallelic 5-HTTLPR genotype groups. However, the opiod drug had a differential analgesic effect depending on the triallelic 5-HTTLPR genotype. Remifentanil had a significantly better analgesic effect in individuals with a genotype coding for low 5-HTT expression (SA/SA and SA/LG) as compared to those with high expression(LA/LA), p < 0.02. The analgesic effect for the three different genotype groups was linear to degree of 5-HTT expression. Conclusion This is the first report showing an influence of the triallelic 5-HTTLPR on pain sensitivity or the analgesic effect of opioids in humans. Previously the 5-HTTLPR s-allele has been associated with higher risk of developing chronic pain conditions but in this study we show that the genotype coding for low 5-HTT expression is associated with a better analgesic effect of an opioid. The s-allele has been associated with downregulation of 5-HT1 receptors and we suggest that individuals with a desensitization of 5-HT1 receptors have an increased analgesic response to opioids during acute pain stimuli, but may still be at increased risk of developing chronic pain conditions.
Collapse
Affiliation(s)
- Eva Kosek
- Osher Center For Integrative Medicine, Stockholm Brain Institute, Department of Clinical Neuroscience, Karolinska Institutet, Sweden.
| | | | | | | | | |
Collapse
|
129
|
Serotonin transporter genotype is associated with cognitive performance but not regional 5-HT1A receptor binding in humans. Int J Neuropsychopharmacol 2009; 12:783-92. [PMID: 19126263 DOI: 10.1017/s1461145708009759] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human serotonin transporter (5-HTT) gene is one of the most extensively studied in psychiatry. A functional polymorphism in the promoter region of the 5-HTT gene (5-HTTLPR) has been associated with several psychiatric disorders as well as anxiety-related personality traits. In search of a mechanistic understanding of the functional implications of 5-HTTLPR, the influence of this polymorphism on regional 5-HT1A receptor density has previously been examined in two positron emission tomography (PET) studies in humans, yielding, however, contradictory results. In the present study, 54 control subjects were examined with [11C]WAY 100635 PET and a battery of cognitive tests. Regional binding potential (BP) of [11C]WAY 100635 to 5-HT1A receptor was calculated for the dorsal raphe nuclei, the hippocampus, the anterior cingulate, the insula, the temporal cortex and the frontal cortex. The influence of 5-HTTLPR genotype on regional 5-HT1A BP and cognitive performance was investigated. No differences in 5-HT1A receptor density between carriers and non-carriers of the S allele were found. Thus, we could not replicate any of the previously reported associations between 5-HTTLPR and 5-HT1A density. There was, however, a highly significant association between 5-HTTLPR genotype and performance in Wisconsin Card Sorting Test; carriers of the S allele had a superior performance compared to the LL carriers. These observations suggest that functional implications of the 5-HTTLPR polymorphism are not likely to be mediated by differences in 5-HT1A expression levels and that other biomarkers must be considered for future investigations at phenotype level.
Collapse
|
130
|
Differential associations between brain 5-HT1A receptor binding and response to pain versus touch. J Neural Transm (Vienna) 2009; 116:821-30. [DOI: 10.1007/s00702-009-0248-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/28/2009] [Indexed: 11/25/2022]
|
131
|
Christian BT, Fox AS, Oler JA, Vandehey NT, Murali D, Rogers J, Oakes TR, Shelton SE, Davidson RJ, Kalin NH. Serotonin transporter binding and genotype in the nonhuman primate brain using [C-11]DASB PET. Neuroimage 2009; 47:1230-6. [PMID: 19505582 DOI: 10.1016/j.neuroimage.2009.05.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 05/21/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The length polymorphism of the serotonin (5-HT) transporter gene promoter region has been implicated in altered 5-HT function and, in turn, neuropsychiatric illnesses, such as anxiety and depression. The nonhuman primate has been used as a model to study anxiety-related mechanisms in humans based upon similarities in behavior and the presence of a similar 5-HT transporter gene polymorphism. Stressful and threatening contexts in the nonhuman primate model have revealed 5-HT transporter genotype dependent differences in regional glucose metabolism. Using the rhesus monkey, we examined the extent to which serotonin transporter genotype is associated with 5-HT transporter binding in brain regions implicated in emotion-related pathology. METHODS Genotype data and high resolution PET scans were acquired in 29 rhesus (Macaca mulatta) monkeys. [C-11]DASB dynamic PET scans were acquired for 90 min in the anesthetized animals and images of distribution volume ratio (DVR) were created to serve as a metric of 5-HT transporter binding for group comparison based on a reference region method of analysis. Regional and voxelwise statistical analysis were performed with corrections for anatomical differences in gray matter probability, sex, age and radioligand mass. RESULTS There were no significant differences when comparing l/l homozygotes with s-carriers in the regions of the brain implicated in anxiety and mood related illnesses (amygdala, striatum, thalamus, raphe nuclei, temporal and prefrontal cortex). There was a significant sex difference in 5-HT transporter binding in all regions with females having 18%-28% higher DVR than males. CONCLUSIONS Because these findings are consistent with similar genotype findings in humans, this further strengthens the use of the rhesus model for studying anxiety-related neuropathologies.
Collapse
Affiliation(s)
- B T Christian
- Department of Psychiatry, Harlow Primate Center, University of Wisconsin-Madison, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Lothe A, Boni C, Costes N, Gorwood P, Bouvard S, Le Bars D, Lavenne F, Ryvlin P. Association between triallelic polymorphism of the serotonin transporter and [18F]MPPF binding potential at 5-HT1A receptors in healthy subjects. Neuroimage 2009; 47:482-92. [PMID: 19409499 DOI: 10.1016/j.neuroimage.2009.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/11/2009] [Accepted: 04/15/2009] [Indexed: 12/30/2022] Open
Abstract
Previous [(11)C]WAY100-635 PET studies have demonstrated that the short (S) and long (L) alleles of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) were associated with distinct patterns of 5-HT(1A) receptor distribution in human. However, these studies reported discordant findings and did not take into account the recent description of two functional variants of the L allele (L(A)/L(G)). To further explore this issue, we investigated the triallelic functional polymorphism of the 5-HTTLPR in 38 healthy volunteers who underwent a [(18)F]MPPF PET study of 5-HT1A receptors. We used a simplified reference tissue model to generate parametric images of [(18)F]MPPF binding potential (BP(ND)), and compared these data among the different genotypes using statistical parametric mapping and region of interest of the raphe nuclei. Homozygote carriers of the S allele demonstrated greater [(18)F]MPPF BP(ND) than carriers of the L(A) allele, but this association was only found in women. Differences in [(18)F]MPPF BP(ND) between women with and without L(A) allele were observed over large clusters encompassing the right and left temporal lobes, cingulate and perisylvian regions, as well as the right precuneus and frontal dorso-lateral cortex, and the left orbitofrontal cortex. In contrast, no difference was found between groups in the raphe nuclei. The greater [(18)F]MPPF BP(ND) observed in women homozygote carriers of the S allele could either reflect a greater 5-HT1A receptor density or a lower extracellular concentration of 5-HT. Our data suggest that any future PET studies of 5-HT1A receptors should incorporate the 5-HTTLPR polymorphism status of the population studied.
Collapse
|
133
|
Landolt HP, Wehrle R. Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood? Eur J Neurosci 2009; 29:1795-809. [PMID: 19473234 DOI: 10.1111/j.1460-9568.2009.06718.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] and 5-HT receptors are involved in sleep and in waking functions such as cognition and mood. Animal and human studies support a particular role for the 5-HT(2A) receptor in sleep, which has led to renewed interest in this receptor subtype as a target for the development of novel pharmacological agents to treat insomnia. Focusing primarily on findings in healthy human volunteers, a review of the available data suggests that antagonistic interaction with 5-HT(2A) receptors (and possibly also 5-HT(2C) receptors) prolongs the duration of slow wave sleep and enhances low-frequency (< 7 Hz) activity in the sleep electroencephalogram (EEG), a widely accepted marker of sleep intensity. Despite certain differences, the changes in sleep and the sleep EEG appear to be remarkably similar to those of physiologically more intense sleep after sleep deprivation. It is currently unclear whether these changes in sleep are associated with improved vigilance, cognition and mood during wakefulness. While drug-induced interaction with sleep must be interpreted cautiously, too few studies are available to provide a clear answer to this question. Moreover, functional relationships between sleep and waking functions may differ between healthy controls and patients with sleep disorders. A multimodal approach investigating subjective and objective aspects of sleep and wakefulness provides a promising research avenue for shedding light on the complex relationships among 5-HT(2A/2C) receptor-mediated effects on sleep, the sleep EEG, cognition and mood in health and various diseases associated with disturbed sleep and waking functions.
Collapse
Affiliation(s)
- H-P Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|
134
|
Kauffman MA, Consalvo D, Gonzalez-Morón D, Aguirre F, D'Alessio L, Kochen S. Serotonin transporter gene variation and refractory mesial temporal epilepsy with hippocampal sclerosis. Epilepsy Res 2009; 85:231-4. [PMID: 19375285 DOI: 10.1016/j.eplepsyres.2009.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 03/05/2009] [Accepted: 03/15/2009] [Indexed: 12/18/2022]
Abstract
We performed a molecular epidemiology study in a population of 105 mesial temporal lobe epilepsy with hippocampal sclerosis (MTE-HS) patients in order to investigate the role of a polymorphism in the serotonin transporter gene (SLC6A4) in the prediction of antiepileptic drug (AED) treatment response. Homozygous carriers of the 12-repeat allele had an almost fourfold increase in risk for a MTE-HS not responding to medical treatment (OR 3.88; CI 95% 1.40-10.7; p=0.006) compared to carriers of the 10-repeat allele. Therefore, a polymorphism of SLC6A4 might be a genetic marker of pharmacoresistance in MTE-HS patients.
Collapse
Affiliation(s)
- Marcelo Andrés Kauffman
- Centro de Epilepsia, División Neurología, Hospital Ramos Mejía, CEFYBO, CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
135
|
Zhang K, Xu Q, Xu Y, Yang H, Luo J, Sun Y, Sun N, Wang S, Shen Y. The combined effects of the 5-HTTLPR and 5-HTR1A genes modulates the relationship between negative life events and major depressive disorder in a Chinese population. J Affect Disord 2009; 114:224-31. [PMID: 18848359 DOI: 10.1016/j.jad.2008.07.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND Serotonin transporter (5-HTT) and 5-HT receptor (5-HTR) involved in the neurotransmission of 5-HT may play an important role in the development of major depression disorder (MDD). Several lines of evidence suggested that the gene-environment interaction may confer susceptibility to depression. The aim of this study is to analyze the combined effect of four serotonin-related genes and two environmental factors on MDD in a Chinese population. METHODS This study recruited a total of 401 patients with MDD and 391 age- and gender-matched control subjects. They were all Chinese Han origin. Negative life events and objective social supports were assessed using standard rating scales. Six polymorphisms in the four serotonin-related genes (5-HTT, 5-HTR1A, 5-HTR1B and 5-HTR2A) were selected to detect. The analyses of the gene-environment interactions were performed by the Multifactor Dimensionality Reduction (MDR). RESULTS Allelic associations between patients with MDD and controls were observed for the polymorphism of 5-HTTLPR and for rs6295 at the 5-HTR1A locus. The 5-HTTLPR polymorphism was associated with negative life events on MDD. A three-way interaction between the 5-HTTLPR polymorphism, rs6295 and negative life events on MDD was found in the individuals aged from 20 years to 29 years. In addition, the individuals carrying the L/L genotype of 5-HTTLPR could be susceptible to MDD when exposed to negative life events. CONCLUSIONS The 5-HTTLPR polymorphism may modify the interaction between negative life events and MDD in the Chinese population. To our knowledge, this is the first report on the combined effect for the 5-HTTLPR polymorphism and 5-HTR1A genes on modifying the response to negative life events conferring susceptibility to MDD in the 20-29 year group.
Collapse
Affiliation(s)
- Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
CONTEXT Wisdom is a unique psychological trait noted since antiquity, long discussed in humanities disciplines, recently operationalized by psychology and sociology researchers, but largely unexamined in psychiatry or biology. OBJECTIVE To discuss recent neurobiological studies related to subcomponents of wisdom identified from several published definitions/descriptions of wisdom by clinical investigators in the field, ie, prosocial attitudes/behaviors, social decision making/pragmatic knowledge of life, emotional homeostasis, reflection/self-understanding, value relativism/tolerance, and acknowledgment of and dealing effectively with uncertainty. DATA SOURCES Literature focusing primarily on neuroimaging/brain localization and secondarily on neurotransmitters, including their genetic determinants. STUDY SELECTION Studies involving functional neuroimaging or neurotransmitter functioning, examining human (rather than animal) subjects, and identified via a PubMed search using keywords from any of the 6 proposed subcomponents of wisdom were included. DATA EXTRACTION Studies were reviewed by both of us, and data considered to be potentially relevant to the neurobiology of wisdom were extracted. DATA SYNTHESIS Functional neuroimaging permits exploration of neural correlates of complex psychological attributes such as those proposed to comprise wisdom. The prefrontal cortex figures prominently in several wisdom subcomponents (eg, emotional regulation, decision making, value relativism), primarily via top-down regulation of limbic and striatal regions. The lateral prefrontal cortex facilitates calculated, reason-based decision making, whereas the medial prefrontal cortex is implicated in emotional valence and prosocial attitudes/behaviors. Reward neurocircuitry (ventral striatum, nucleus accumbens) also appears important for promoting prosocial attitudes/behaviors. Monoaminergic activity (especially dopaminergic and serotonergic), influenced by several genetic polymorphisms, is critical to certain subcomponents of wisdom such as emotional regulation (including impulse control), decision making, and prosocial behaviors. CONCLUSIONS We have proposed a speculative model of the neurobiology of wisdom involving frontostriatal and frontolimbic circuits and monoaminergic pathways. Wisdom may involve optimal balance between functions of phylogenetically more primitive brain regions (limbic system) and newer ones (prefrontal cortex). Limitations of the putative model are stressed. It is hoped that this review will stimulate further research in characterization, assessment, neurobiology, and interventions related to wisdom.
Collapse
Affiliation(s)
- Thomas W. Meeks
- University of California, San Diego, Department of Psychiatry
- Sam and Rose Stein Institute for Research on Aging, UCSD
| | - Dilip V. Jeste
- University of California, San Diego, Department of Psychiatry
- Sam and Rose Stein Institute for Research on Aging, UCSD
- VA San Diego Healthcare System
| |
Collapse
|
137
|
Genetic and pharmacokinetic factors affecting the initial pharmacotherapeutic effect of paroxetine in Japanese patients with panic disorder. Eur J Clin Pharmacol 2009; 65:685-91. [DOI: 10.1007/s00228-009-0633-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 02/06/2009] [Indexed: 11/25/2022]
|
138
|
Kellner M, Muhtz C, Demiralay C, Husemann J, Koelsch W, Yassouridis A, Wiedemann K. The selective serotonin re-uptake inhibitor escitalopram modulates the panic response to cholecystokinin tetrapeptide in healthy men depending on 5-HTTLPR genotype. J Psychiatr Res 2009; 43:642-8. [PMID: 18930474 DOI: 10.1016/j.jpsychires.2008.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/11/2008] [Accepted: 09/03/2008] [Indexed: 11/27/2022]
Abstract
Selective serotonin re-uptake inhibitors, such as escitalopram, are currently the treatment of choice for patients with panic disorder. The panic response to intravenous cholecystokinin tetrapeptide, a potentially useful paradigm for volunteer translational studies, has so far not been investigated in healthy man after respective pre-treatment. In a double-blind, placebo-controlled, randomized, within subject cross-over design 30 healthy young men, 15 each with the long/long or short/short genotype for the serotonin transporter linked polymorphic region, were pre-treated with 10mg/d of escitalopram orally for six weeks and then challenged with 50 microg of cholecystokinin tetrapeptide. The primary outcome measure was the increase of Acute Panic Inventory ratings by cholecystokinin tetrapeptide. The increase of anxiety, tension and stress hormone secretion were secondary outcome measures. A significant treatment by genotype effect on the increases of Acute Panic Inventory ratings emerged. Panic induced by cholecystokinin tetrapeptide was significantly more pronounced in the short/short genotype subjects under escitalopram vs. placebo pre-treatment. With the exception of significantly elevated serum prolactin after escitalopram, no effects in the secondary outcome measures were detected. Contrary to our expectation, no inhibitory effect of escitalopram upon panic symptoms elicited by choleystokinin tetrapeptide could be demonstrated in healthy men. These findings do not support the potential usefulness of this panic model for proof-of-concept studies. The biological underpinnings of the increased panic symptoms after escitalopram in our volunteers with short/short genotype need further research.
Collapse
Affiliation(s)
- Michael Kellner
- University Hospital Hamburg-Eppendorf, Department of Psychiatry, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
139
|
Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 2009; 88:17-31. [PMID: 19428959 DOI: 10.1016/j.pneurobio.2009.01.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 12/22/2008] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Dysfunction of the serotonin 1A receptor (5-HT(1A)) may play a role in the genesis of major depressive disorder (MDD). Here we review the pharmacological, post-mortem, positron emission tomography (PET), and genetic evidence in support of this statement. We also touch briefly on two MDD-associated phenotypes, cognitive impairment and somatic pain. The results of pharmacological challenge studies with 5-HT(1A) receptor agonists are indicative of blunted endocrine responses in depressed patients. Lithium, valproate, selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and other treatment, such as electroconvulsive shock therapy (ECT), all increase post-synaptic 5-HT(1A) receptor signaling through either direct or indirect effects. Reduced somatodendritic and postsynaptic 5-HT(1A) receptor numbers or affinity have been reported in some post-mortem studies of suicide victims, a result consistent with well-replicated PET analyses demonstrating reduced 5-HT(1A) receptor binding potential in diverse regions such as the dorsal raphe, medial prefrontal cortex (mPFC), amygdala and hippocampus. 5-HT(1A) receptor knockout (KO) mice display increased anxiety-related behavior, which, unlike in their wild-type counterparts, cannot be rescued with antidepressant drug (AD) treatment. In humans, the G allele of a single nucleotide polymorphism (SNP) in the 5-HT(1A) receptor gene (HTR1A; rs6295), which abrogates a transcription factor binding site for deformed epidermal autoregulatory factor-1 (Deaf-1) and Hes5, has been reported to be over-represented in MDD cases. Conversely, the C allele has been associated with better response to AD drugs. We raise the possibility that 5-HT(1A) receptor dysfunction represents one potential mechanism underpinning MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Jonathan Savitz
- Section on Neuroimaging in Mood and Anxiety Disorders, Mood and Anxiety Disorders Program, NIH/NIMH, Bethesda, MD 20892, United States.
| | | | | |
Collapse
|
140
|
Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 2009; 33:699-771. [PMID: 19428491 DOI: 10.1016/j.neubiorev.2009.01.004] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 01/30/2023]
Abstract
Both major depressive disorder and bipolar disorder are the subject of a voluminous imaging and genetics literature. Here, we attempt a comprehensive review of MRI and metabolic PET studies conducted to date on these two disorders, and interpret our findings from the perspective of developmental and degenerative models of illness. Elevated activity and volume loss of the hippocampus, orbital and ventral prefrontal cortex are recurrent themes in the literature. In contrast, dorsal aspects of the PFC tend to display hypometabolism. Ventriculomegaly and white matter hyperintensities are intimately associated with depression in elderly populations and likely have a vascular origin. Important confounding influences are medication, phenotypic and genetic heterogeneity, and technological limitations. We suggest that environmental stress and genetic risk variants interact with each other in a complex manner to alter neural circuitry and precipitate illness. Imaging genetic approaches hold out promise for advancing our understanding of affective illness.
Collapse
|
141
|
Fakra E, Hyde LW, Gorka A, Fisher PM, Muñoz KE, Kimak M, Halder I, Ferrell RE, Manuck SB, Hariri AR. Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. ACTA ACUST UNITED AC 2009; 66:33-40. [PMID: 19124686 DOI: 10.1001/archpsyc.66.1.33] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Serotonin 1A (5-hydroxytryptamine 1A [5-HT(1A)]) autoreceptors mediate negative feedback inhibition of serotonergic neurons and play a critical role in regulating serotonin signaling involved in shaping the functional response of major forebrain targets, such as the amygdala, supporting complex behavioral processes. A common functional variation (C[-1019]G) in the human 5-HT(1A) gene (HTR1A) represents 1 potential source of such interindividual variability. Both in vitro and in vivo, -1019G blocks transcriptional repression, leading to increased autoreceptor expression. Thus, -1019G may contribute to relatively decreased serotonin signaling at postsynaptic forebrain target sites via increased negative feedback. OBJECTIVES To evaluate the effects of HTR1A C(-1019)G on amygdala reactivity and to use path analyses to explore the impact of HTR1A-mediated variability in amygdala reactivity on individual differences in trait anxiety. We hypothesized that -1019G, which potentially results in decreased serotonin signaling, would be associated with relatively decreased amygdala reactivity and related trait anxiety. DESIGN Imaging genetics in participants from an archival database. PARTICIPANTS Eighty-nine healthy adults. RESULTS Consistent with prior findings, -1019G was associated with significantly decreased threat-related amygdala reactivity. Importantly, this effect was independent of that associated with another common functional polymorphism that affects serotonin signaling, 5-HTTLPR. While there were no direct genotype effects on trait anxiety, HTR1A C(-1019)G indirectly predicted 9.2% of interindividual variability in trait anxiety through its effects on amygdala reactivity. CONCLUSIONS Our findings further implicate relatively increased serotonin signaling, associated with a genetic variation that mediates increased 5-HT(1A) autoreceptors, in driving amygdala reactivity and trait anxiety. Moreover, they provide empirical documentation of the basic premise that genetic variation indirectly affects emergent behavioral processes related to psychiatric disease risk by biasing the response of underlying neural circuitries.
Collapse
Affiliation(s)
- Eric Fakra
- Hôpital de laTimone, ServiceHospitalo-Universitaire dePsychiatrie, Hôpital SteMarguerite, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S, Yamashita M, Hosoi Y, Azuma J, Kinoshita T, Serretti A. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:115-23. [PMID: 18484082 DOI: 10.1002/ajmg.b.30783] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Variability in antidepressant response is due to genetic and environmental factors. Among genetic factors, the ones controlling for availability of the drug at the target site are interesting candidates. Rs6295C/G SNP in the 5-HT1A gene (HTR1A) has been found to affect the expression and function of HTR1A. In fact rs6295C/G is in strong linkage disequilibrium with other polymorphisms of HTR1A suggesting that those functional effects could be associated with polymorphisms other than or together with the synonymous rs6295C/G. In the present study we examined the possible association of a panel of markers in strong linkage disequilibrium of the HTR1A with SSRI/SNRI response in 137 Japanese major depression subjects followed for 6 weeks. We observed a significant association of better response to antidepressant in rs10042486C/C (P < 0.0001), rs6295G/G (P < 0.0001) and rs1364043T/T (P = 0.018) genotype carriers (minor allele homozygotes), independently from clinical variables. Furthermore minor allele homozygous carriers in all these three SNPs were associated with treatment response by various assessment such as HAM-D score change over time (P = 0.001), week 2 (P < 0.0001), 4 (P = 0.007), and 6 (P = 0.048) as well as response rate (P = 0.0005) and remission rate (P = 0.004). We also pointed out the genotyping mis-definition of rs6295C/G in the previous four articles. In conclusion, this is the first study that reports a significant association of antidepressant response with rs10042486C/T and rs1364043T/G variants of HTR1A and also with rs10042486-rs6295-rs1364043 combination. This finding adds an important information for the pathway of detecting the genetics of antidepressant response even if results must be verified on larger samples.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Vaske J, Newsome J, Makarios M, Wright JP, Boutwell BB, Beaver KM. Interaction of 5HTTLPR and marijuana use on property offending. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2009; 55:93-102. [PMID: 19835103 DOI: 10.1080/19485560903054762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study uses data from the National Longitudinal Study of Adolescent Health to examine whether a polymorphism in the serotonin transporter gene (SHTTLPR) moderates the effects of marijuana use on property offending. The results reveal that 5HTTLPR interacts with marijuana use to predict significantly higher levels of property offending for African American females. The interaction coefficient is not statistically significant for Caucasian males, African American males, or Caucasian females. These findings suggest that marijuana use is associated only with higher levels of property offending among African American females who carry one or more copies of the 5HTTLPR short allele.
Collapse
Affiliation(s)
- Jamie Vaske
- Division of Criminal Justice, University of Cincinnati, 600 Dyer Hall, PO Box 210389, Cincinnati, OH 45221-0389, USA.
| | | | | | | | | | | |
Collapse
|
144
|
Ezaki N, Nakamura K, Sekine Y, Thanseem I, Anitha A, Iwata Y, Kawai M, Takebayashi K, Suzuki K, Takei N, Iyo M, Inada T, Iwata N, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Mori N. Short allele of 5-HTTLPR as a risk factor for the development of psychosis in Japanese methamphetamine abusers. Ann N Y Acad Sci 2008; 1139:49-56. [PMID: 18991848 DOI: 10.1196/annals.1432.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulating evidence suggests that genetic factors contribute to the vulnerability to methamphetamine (MAP) abuse and associated psychiatric symptoms. Chronic MAP abuse leads to psychosis, which may be of a transient or a prolonged type. Serotonergic dysfunction has been proposed as one of the contributory factors in the development of MAP psychosis. Our PET studies revealed that the serotonin transporter (5-HTT) density in global brain regions is significantly lower in MAP abusers. In this study, we examined the role of a functional polymorphism in the 5' flanking region of the 5-HTT gene (5-HTTLPR) in the development of MAP psychosis in a Japanese population. We analyzed DNA samples from 166 MAP patients (95 with transient and 71 with prolonged psychosis) and 197 age-, sex-, and geographic-origin-matched healthy controls. Patients were also subdivided according to the presence (n= 119) or absence (n= 148) of spontaneous relapse. We observed significant genotypic association of the 5-HTTLPR polymorphism with MAP psychosis (P= 0.022), particularly in patients who show prolonged psychosis. The frequency of the S allele in patients with prolonged psychosis was significantly higher than that of the controls (P= 0.045); it was further higher in patients with prolonged psychosis with spontaneous relapse (P= 0.004). 5-HTTLPR has been suggested to regulate the transcriptional activity of 5-HTT, with S alleles showing lesser transcriptional efficiency and also lower 5-HT(1A) receptor-binding potential. Prolonged MAP use, combined with the high frequency of 5-HTTLPR S-alleles, may lead to reduced 5-HTT levels and 5-HT(1A) receptor-binding potential in the brain, resulting in the dysfunction of the serotonergic system. Thus, we suggest a possible role for the 5-HTTLPR polymorphism in MAP psychosis.
Collapse
Affiliation(s)
- Norikazu Ezaki
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Borg J. Molecular imaging of the 5-HT1A receptor in relation to human cognition. Behav Brain Res 2008; 195:103-11. [DOI: 10.1016/j.bbr.2008.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
146
|
Abstract
In a number of human diseases, including depression, interactions between genetic and environmental factors have been identified in the absence of direct genotype-disorder associations. The lack of genes with major direct pathogenic effect suggests that genotype-specific vulnerabilities are balanced by adaptive advantages and implies aetiological heterogeneity. A model of depression is proposed that incorporates the interacting genetic and environmental factors over the life course and provides an explanatory framework for the heterogeneous aetiology of depression. Early environmental influences act on the genome to shape the adaptability to environmental changes in later life. The possibility is explored that genotype- and epigenotype-related traits can be harnessed to develop personalized therapeutic interventions. As diagnosis of depression alone is a weak predictor of response to specific treatments, aetiological subtypes can be used to inform the choice between treatments. As a specific application of this notion, a hypothesis is proposed regarding relative responsiveness of aetiological subtypes of depression to psychological treatment and antidepressant medication. Other testable predictions are likely to emerge from the general framework of interacting genetic, epigenetic and environmental mechanisms in depression.
Collapse
|
147
|
Abstract
The serotonergic system, including the serotonin 1A (5-HT(1A)) receptor, has been implicated in the pathophysiology of a number of neuropsychiatric disorders. Current data show substantial interindividual variation in the regional concentration of this receptor site, the source of which is unclear. Monoamine oxidase A (MAO-A) is a key regulator of serotonin metabolism, and polymorphic variation in the X-linked MAO-A gene influences its expression. We hypothesized that polymorphism in the MAO-A gene would be associated with sex-specific variation in 5-HT(1A) receptor expression. We used positron emission tomography and [(11)C]WAY-100635 to quantify 5-HT(1A) receptors in a group of 31 healthy and unmedicated depressed individuals. The same individuals were genotyped for an upstream variable number tandem repeat polymorphism in the promoter of the MAO-A gene. ANOVA of 5-HT(1A) receptor availability demonstrated a significant effect of MAO-A genotype in the raphe nuclei, medial and inferior temporal cortex, insula, medial prefrontal cortex, and anterior cingulate (p < 0.05). The effect persisted when age, race, body mass index, and diagnosis were included in the model. Genotypes with greater putative MAO-A activity were associated with greater 5-HT(1A) receptor availability in women, but not in men. Genotype predicted a substantial 42-74% of the variance in receptor availability in women, depending on the brain region (p < 0.05). Depression diagnosis was not associated with MAO-A genotype or 5-HT(1A) receptor availability in these regions. These results demonstrate a sex-specific interaction between two key molecules of the human serotonergic system, and suggest a neurobiological basis for sexual dimorphism in serotonin-modulated phenotypes.
Collapse
|
148
|
David SP, Johnstone EC, Murphy MF, Aveyard P, Guo B, Lerman C, Munafò MR. Genetic variation in the serotonin pathway and smoking cessation with nicotine replacement therapy: new data from the Patch in Practice trial and pooled analyses. Drug Alcohol Depend 2008; 98:77-85. [PMID: 18562131 PMCID: PMC4439462 DOI: 10.1016/j.drugalcdep.2008.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/20/2008] [Accepted: 04/23/2008] [Indexed: 11/24/2022]
Abstract
The serotonin pathway has been implicated in nicotine dependence and may influence smoking cessation. Therefore, 792 cigarette smokers from the Patch in Practice trial were genotyped for the tryptophan hydroxylase (TPH1 A779C), serotonin transporter (SLC6A45-HTTLPR), and 5-HT1A (HTR1A C-1019G) polymorphisms. Cox regression analysis did not demonstrate significant effects of any of the three genotypes on relapse to smoking: TPH1 (Reference AA; AC: hazard ratio (HR) 0.99, 95% confidence interval (CI) 0.78, 1.24, p=0.90; CC: HR 0.93, 95% CI 0.73, 1.18, p=0.55); 5-HTTLPR (Reference LL; SL: HR 1.01, 95% CI 0.85, 1.20, p=0.90; SS: HR 1.13, 95% CI 0.91, 1.39, p=0.27); HTR1A (Reference CC; CG: HR 1.04, 95% CI 0.86, 1.25, p=0.70; GG: HR 1.01, 95% CI 0.82, 1.24, p=0.93). Moreover, pooled analyses of data from all three extant pharmacogenetic NRT trials (N=1398) found no significant effect of 5-HTTLPR genotype on continuous abstinence at 12-week (Reference LL; SL: odds ratio (OR)=1.25, 95% CI 0.89, 1.74, p=0.19; SS: OR=1.31, 95% CI 0.86, 1.98, p=0.21) or 26-week follow-up (Reference LL; SL: OR=0.93, 95% CI 0.64, 1.33, p=0.68; SS: OR=1.00, 95% CI 0.63, 1.58, p=1.00). These data do not support a statistically or clinically significant moderating effect of these specific 5-HT pathway genetic variants on smoking cessation. However, the possibility remains that other variants in these or other 5-HT genes may influence NRT efficacy for smoking cessation in treatment seeking smokers.
Collapse
Affiliation(s)
- Sean P. David
- Department of Family Medicine, Center for Primary Care & Prevention, The Warren Alpert Medical School of Brown University, 111 Brewster Street, Pawtucket, RI 02806, USA,Corresponding author at: Brown University Center for Primary Care & Prevention, 111 Brewster Street, Pawtucket, RI 02860, USA. Tel.: +1 401 729 2071; fax: +1 401 729 2494. (S.P. David)
| | - Elaine C. Johnstone
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford OX3 7DQ, UK
| | - Michael F.G. Murphy
- Department of Paediatrics, Childhood Cancer Research Group, University of Oxford, 57 Woodstock Road, Oxford OX2 6HJ, UK
| | - Paul Aveyard
- Department of Primary Care and General Practice, University of Birmingham, Edgbaston B15 2TT, UK
| | - Boliang Guo
- Department of Public Health and Epidemiology, University of Birmingham, Birmingham B15 2TT, UK
| | - Caryn Lerman
- Department of Psychiatry, Tobacco Use Research Center, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19194, USA
| | - Marcus R. Munafò
- Department of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
| |
Collapse
|
149
|
Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJ, Banaschewski T, Chen W, Anney RJ, Buitelaar JK, Ebstein RP, Franke B, Gill M, Miranda A, Roeyers H, Rothenberger A, Sergeant JA, Steinhausen HC, Taylor EA, Thompson M, Asherson P. The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behav Brain Funct 2008; 4:48. [PMID: 18937842 PMCID: PMC2577091 DOI: 10.1186/1744-9081-4-48] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/20/2008] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Low serotonergic (5-HT) activity correlates with increased impulsive-aggressive behavior, while the opposite association may apply to cognitive impulsiveness. Both types of impulsivity are associated with attention-deficit/hyperactivity disorder (ADHD), and genes of functional significance for the 5-HT system are implicated in this disorder. Here we demonstrate the separation of aggressive and cognitive components of impulsivity from symptom ratings and test their association with 5-HT and functionally related genes using a family-based association test (FBAT-PC). METHODS Our sample consisted of 1180 offspring from 607 families from the International Multicenter ADHD Genetics (IMAGE) study. Impulsive symptoms were assessed using the long forms of the Conners and the Strengths and Difficulties parent and teacher questionnaires. Factor analysis showed that the symptoms aggregated into parent- and teacher-rated behavioral and cognitive impulsivity. We then selected 582 single nucleotide polymorphisms (SNPs) from 14 genes directly or indirectly related to 5-HT function. Associations between these SNPs and the behavioral/cognitive groupings of impulsive symptoms were evaluated using the FBAT-PC approach. RESULTS In the FBAT-PC analysis for cognitive impulsivity 2 SNPs from the gene encoding phenylethanolamine N-methyltransferase (PNMT, the rate-limiting enzyme for adrenalin synthesis) attained corrected gene-wide significance. Nominal significance was shown for 12 SNPs from BDNF, DRD1, HTR1E, HTR2A, HTR3B, DAT1/SLC6A3, and TPH2 genes replicating reported associations with ADHD. For overt aggressive impulsivity nominal significance was shown for 6 SNPs from BDNF, DRD4, HTR1E, PNMT, and TPH2 genes that have also been reported to be associated with ADHD. Associations for cognitive impulsivity with a SERT/SLC6A4 variant (STin2: 12 repeats) and aggressive behavioral impulsivity with a DRD4 variant (exon 3: 3 repeats) are also described. DISCUSSION A genetic influence on monoaminergic involvement in impulsivity shown by children with ADHD was found. There were trends for separate and overlapping influences on impulsive-aggressive behavior and cognitive impulsivity, where an association with PNMT (and arousal mechanisms affected by its activity) was more clearly involved in the latter. Serotonergic and dopaminergic mechanisms were implicated in both forms of impulsivity with a wider range of serotonergic mechanisms (each with a small effect) potentially influencing cognitive impulsivity. These preliminary results should be followed up with an examination of environmental influences and associations with performance on tests of impulsivity in the laboratory.
Collapse
Affiliation(s)
- Robert D Oades
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Adaptations in pre- and postsynaptic 5-HT1A receptor function and cocaine supersensitivity in serotonin transporter knockout rats. Psychopharmacology (Berl) 2008; 200:367-80. [PMID: 18581099 DOI: 10.1007/s00213-008-1212-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 05/25/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout (SERT-/-) rat and the involvement of compensatory changes in 5-HT1A receptor function are the objectives of the study. MATERIALS AND METHODS The SERT-/- rat was tested for cocaine-induced locomotor activity, cocaine-induced conditioned place preference, and intravenous cocaine self-administration. In addition, the function and expression of 5-HT1A receptors was assessed using telemetry and autoradiography, respectively, and the effect of 5-HT1A receptor ligands on cocaine's psychomotor effects were studied. RESULTS Cocaine-induced hyperactivity and conditioned place preference, as well as intravenous cocaine self-administration were enhanced in SERT-/- rats. Furthermore, SERT-/- rats displayed a reduced hypothermic response to the 5-HT1A receptor agonist 8-OHDPAT. S-15535, a selective somatodendritic 5-HT1A receptor agonist, reduced stress-induced hyperthermia (SIH) in wild-type controls (SERT+/+), while it increased SIH in SERT-/- rats. As 5-HT1A receptor binding was reduced in selective brain regions, these thermal responses may be indicative for desensitized 5-HT1A receptors. We further found that both 8-OHDPAT and S-15535 pretreatment increased low-dose cocaine-induced locomotor activity in SERT-/- rats, but not SERT+/+ rats. At a high cocaine dose, only SERT+/+ animals responded to 8-OHDPAT and S-15535. CONCLUSION These data indicate that SERT-/- -associated 5-HT1A receptor adaptations facilitate low-dose cocaine effects and attenuate high-dose cocaine effects in cocaine supersensitive animals. The role of postsynaptic and somatodendritic 5-HT1A receptors is discussed.
Collapse
|