101
|
Keren K. Cell motility: the integrating role of the plasma membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1013-27. [PMID: 21833780 PMCID: PMC3158336 DOI: 10.1007/s00249-011-0741-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 07/24/2011] [Indexed: 11/30/2022]
Abstract
The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process.
Collapse
Affiliation(s)
- Kinneret Keren
- Department of Physics, The Network Biology Research Laboratories and The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
102
|
CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc Natl Acad Sci U S A 2011; 108:10946-51. [PMID: 21690351 DOI: 10.1073/pnas.1017400108] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD9 tetraspanin is the only egg membrane protein known to be essential for fertilization. To investigate its role, we have measured, on a unique acrosome reacted sperm brought in contact with an egg, the adhesion probability and strength with a sensitivity of a single molecule attachment. Probing the binding events at different locations of wild-type egg we described different modes of interaction. Here, we show that more gamete adhesion events occur on Cd9 null eggs but that the strongest interaction mode disappears. We propose that sperm-egg fusion is a direct consequence of CD9 controlled sperm-egg adhesion properties. CD9 generates adhesion sites responsible for the strongest of the observed gamete interaction. These strong adhesion sites impose, during the whole interaction lifetime, a tight proximity of the gamete membranes, which is a requirement for fusion to take place. The CD9-induced adhesion sites would be the actual location where fusion occurs.
Collapse
|
103
|
Mostowy S, Janel S, Forestier C, Roduit C, Kasas S, Pizarro-Cerdá J, Cossart P, Lafont F. A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. Biophys J 2011; 100:1949-59. [PMID: 21504731 PMCID: PMC3077699 DOI: 10.1016/j.bpj.2011.02.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/08/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022] Open
Abstract
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.
Collapse
Affiliation(s)
- Serge Mostowy
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - Sébastien Janel
- Cellular Microbiology of Infectious Pathogens—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- University Lille Nord-de-France, Lille, France
| | | | - Charles Roduit
- Laboratory of Physics of the Living Matter, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Physics of the Living Matter, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - Frank Lafont
- Cellular Microbiology of Infectious Pathogens—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- University Lille Nord-de-France, Lille, France
| |
Collapse
|
104
|
Mi L, Xiong R, Zhang Y, Yang W, Chen JY, Wang PN. Microscopic observation of the intercellular transport of CdTe quantum dot aggregates through tunneling-nanotubes. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbnb.2011.22022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
105
|
Abstract
Cell adhesion is an essential prerequisite for survival, communication, and navigation of cells in organisms. It is maintained by the organized binding of molecules from the cell membrane to the extracellular space. This chapter focuses on direct measurements of cellular binding strength at the level of single adhesion molecules. Using atomic force microscopy-based force measurements, adhesion strength can be monitored as a function of adhesion time and environmental conditions. In this way, cellular adhesion strategies like changes in affinity and avidity of adhesion molecules (e.g., integrins) are characterized as well as the molecular arrangement of adhesion molecules in the cell membrane (e.g., molecular clusters, focal adhesion spots, and linkage to the cytoskeleton or tether). Some prominent values for the data evaluation are presented as well as constraints and preparative techniques for successful cell adhesion force experiments.
Collapse
Affiliation(s)
- Martin Benoit
- Institute for Materials Science, University of Kiel, Kiel, Germany.
| | | |
Collapse
|
106
|
Hong Z, Luz GM, Hampel PJ, Jin M, Liu A, Chen X, Mano JF. Mono-dispersed bioactive glass nanospheres: Preparation and effects on biomechanics of mammalian cells. J Biomed Mater Res A 2010; 95:747-54. [DOI: 10.1002/jbm.a.32898] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
107
|
Lorenz B, Keller R, Sunnick E, Geil B, Janshoff A. Colloidal probe microscopy of membrane–membrane interactions: From ligand–receptor recognition to fusion events. Biophys Chem 2010; 150:54-63. [DOI: 10.1016/j.bpc.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
|
108
|
Python JL, Wilson KO, Snook JH, Guo B, Guilford WH. The viscoelastic properties of microvilli are dependent upon the cell-surface molecule. Biochem Biophys Res Commun 2010; 397:621-5. [PMID: 20570653 DOI: 10.1016/j.bbrc.2010.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 02/09/2023]
Abstract
We studied at nanometer resolution the viscoelastic properties of microvilli and tethers pulled from myelogenous cells via P-selectin glycoprotein ligand 1 (PSGL-1) and found that in contrast to pure membrane tethers, the viscoelastic properties of microvillus deformations are dependent upon the cell-surface molecule through which load is applied. A laser trap and polymer bead coated with anti-PSGL-1 (KPL-1) were used to apply step loads to microvilli. The lengthening of the microvillus in response to the induced step loads was fitted with a viscoelastic model. The quasi-steady state force on the microvillus at any given length was approximately fourfold lower in cells treated with cytochalasin D or when pulled with concanavalin A-coated rather than KPL-1-coated beads. These data suggest that associations between PSGL-1 and the underlying actin cytoskeleton significantly affect the early stages of leukocyte deformation under flow.
Collapse
Affiliation(s)
- Johanne L Python
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
109
|
Abstract
When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers.
Collapse
|
110
|
Membrane biophysics and mechanics in Alzheimer's disease. Mol Neurobiol 2010; 41:138-48. [PMID: 20437210 DOI: 10.1007/s12035-010-8121-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/17/2010] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a chronic neurodegenerative disorder characterized by neuronal loss, cerebrovascular inflammation, and accumulation of senile plaques in the brain parenchyma and cerebral blood vessels. Amyloid-beta peptide (Abeta), a major component of senile plaques, has been shown to exert multiple toxic effects to neurons, astrocytes, glial cells, and brain endothelium. Oligomeric Abeta can disturb the structure and function of cell membranes and alter membrane mechanical properties, such as membrane fluidity and molecular order. Much of these effects are attributed to their capability to trigger oxidative stress and inflammation. In this review, we discuss the effects of Abeta on neuronal cells, astrocytes, and cerebral endothelial cells with special emphasis on cell membrane properties and cell functions.
Collapse
|
111
|
Wu X, Sun Z, Foskett A, Trzeciakowski JP, Meininger GA, Muthuchamy M. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am J Physiol Heart Circ Physiol 2010; 298:H2071-81. [PMID: 20382852 DOI: 10.1152/ajpheart.01156.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Integrins link the extracellular matrix (ECM) with the intracellular cytoskeleton and other cell adhesion-associated signaling proteins to function as mechanotransducers. However, direct quantitative measurements of the cardiomyocyte mechanical state and its relationship to the interactions between specific ECM proteins and integrins are lacking. The purpose of this study was to characterize the interactions between the ECM protein fibronectin (FN) and integrins in cardiomyocytes and to test the hypothesis that these interactions would vary during contraction and relaxation states in cardiomyocytes. Using atomic force microscopy, we quantified the unbinding force (adhesion force) and adhesion probability between integrins and FN and correlated these measurements with the contractile state as indexed by cell stiffness on freshly isolated mouse cardiomyocytes. Experiments were performed in normal physiological (control), high-K(+) (tonically contracted), or low-Ca(2+) (fully relaxed) solutions. Under control conditions, the initial peak of adhesion force between FN and myocyte alpha(3)beta(1)- and/or alpha(5)beta(1)-integrins was 39.6 +/- 1.3 pN. The binding specificity between FN and alpha(3)beta(1)- and alpha(5)beta(1)-integrins was verified by using monoclonal antibodies against alpha(3)-, alpha(5)-, alpha(3) + alpha(5)-, or beta(1)-integrin subunits, which inhibited binding by 48%, 65%, 70%, or 75%, respectively. Cytochalasin D or 2,3-butanedione monoxime (BDM), to disrupt the actin cytoskeleton or block myofilament function, respectively, significantly decreased the cell stiffness; however, the adhesion force and binding probability were not altered. Tonic contraction with high-K(+) solution increased total cell adhesion (1.2-fold) and cell stiffness (27.5-fold) compared with fully relaxed cells with low-Ca(2+) solution. However, it could be partially prevented by high-K(+) bath solution containing BDM, which suppresses contraction by inhibiting the actin-myosin interactions. Thus, our results demonstrate that integrin binding to FN is modulated by the contractile state of cardiac myocytes.
Collapse
Affiliation(s)
- Xin Wu
- Dept. of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
112
|
Cell contraction forces in scaffolds with varying pore size and cell density. Biomaterials 2010; 31:4835-45. [PMID: 20362329 DOI: 10.1016/j.biomaterials.2010.01.149] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/17/2010] [Indexed: 11/22/2022]
Abstract
The contractile behavior of cells is relevant in understanding wound healing and scar formation. In tissue engineering, inhibition of the cell contractile response is critical for the regeneration of physiologically normal tissue rather than scar tissue. Previous studies have measured the contractile response of cells in a variety of conditions (e.g. on two-dimensional solid substrates, on free-floating tissue engineering scaffolds and on scaffolds under some constraint in a cell force monitor). Tissue engineering scaffolds behave mechanically like open-cell elastomeric foams: between strains of about 10 and 90%, cells progressively buckle struts in the scaffold. The contractile force required for an individual cell to buckle a strut within a scaffold has been estimated based on the strut dimensions (radius, r, and length, l) and the strut modulus, E(s). Since the buckling force varies, according to Euler's law, with r(4)/l(2), and the relative density of the scaffold varies as (r/l)(2), the cell contractile force associated with strut buckling is expected to vary with the square of the pore size for scaffolds of constant relative density. As the cell density increases, the force per cell to achieve a given strain in the scaffold is expected to decrease. Here we model the contractile response of fibroblasts by analyzing the response of a single tetrakaidecahedron to forces applied to individual struts (simulating cell contractile forces) using finite element analysis. We model tetrakaidecahedra of different strut lengths, corresponding to different scaffold pore sizes, and of varying numbers of loaded struts, corresponding to varying cell densities. We compare our numerical model with the results of free-floating contraction experiments of normal human dermal fibroblasts (NHDF) in collagen-GAG scaffolds of varying pore size and with varying cell densities.
Collapse
|
113
|
Almquist BD, Melosh NA. Fusion of biomimetic stealth probes into lipid bilayer cores. Proc Natl Acad Sci U S A 2010. [PMID: 20212151 DOI: 10.1073/proc.natl.acad.sci.u.s.a.0909250107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Many biomaterials are designed to regulate the interactions between artificial and natural surfaces. However, when materials are inserted through the cell membrane itself the interface formed between the interior edge of the membrane and the material surface is not well understood and poorly controlled. Here we demonstrate that by replicating the nanometer-scale hydrophilic-hydrophobic-hydrophilic architecture of transmembrane proteins, artificial "stealth" probes spontaneously insert and anchor within the lipid bilayer core, forming a high-strength interface. These nanometer-scale hydrophobic bands are readily fabricated on metallic probes by functionalizing the exposed sidewall of an ultrathin evaporated Au metal layer rather than by lithography. Penetration and adhesion forces for butanethiol and dodecanethiol functionalized probes were directly measured using atomic force microscopy (AFM) on thick stacks of lipid bilayers to eliminate substrate effects. The penetration dynamics were starkly different for hydrophobic versus hydrophilic probes. Both 5- and 10 nm thick hydrophobically functionalized probes naturally resided within the lipid core, while hydrophilic probes remained in the aqueous region. Surprisingly, the barrier to probe penetration with short butanethiol chains (E(o,5 nm) = 21.8k(b)T, E(o,10 nm) = 15.3k(b)T) was dramatically higher than longer dodecanethiol chains (E(o,5 nm) = 14.0k(b)T, E(o,10 nm) = 10.9k(b)T), indicating that molecular mobility and orientation also play a role in addition to hydrophobicity in determining interface stability. These results highlight a new strategy for designing artificial cell interfaces that can nondestructively penetrate the lipid bilayer.
Collapse
Affiliation(s)
- Benjamin D Almquist
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
114
|
Abstract
Many biomaterials are designed to regulate the interactions between artificial and natural surfaces. However, when materials are inserted through the cell membrane itself the interface formed between the interior edge of the membrane and the material surface is not well understood and poorly controlled. Here we demonstrate that by replicating the nanometer-scale hydrophilic-hydrophobic-hydrophilic architecture of transmembrane proteins, artificial "stealth" probes spontaneously insert and anchor within the lipid bilayer core, forming a high-strength interface. These nanometer-scale hydrophobic bands are readily fabricated on metallic probes by functionalizing the exposed sidewall of an ultrathin evaporated Au metal layer rather than by lithography. Penetration and adhesion forces for butanethiol and dodecanethiol functionalized probes were directly measured using atomic force microscopy (AFM) on thick stacks of lipid bilayers to eliminate substrate effects. The penetration dynamics were starkly different for hydrophobic versus hydrophilic probes. Both 5- and 10 nm thick hydrophobically functionalized probes naturally resided within the lipid core, while hydrophilic probes remained in the aqueous region. Surprisingly, the barrier to probe penetration with short butanethiol chains (E(o,5 nm) = 21.8k(b)T, E(o,10 nm) = 15.3k(b)T) was dramatically higher than longer dodecanethiol chains (E(o,5 nm) = 14.0k(b)T, E(o,10 nm) = 10.9k(b)T), indicating that molecular mobility and orientation also play a role in addition to hydrophobicity in determining interface stability. These results highlight a new strategy for designing artificial cell interfaces that can nondestructively penetrate the lipid bilayer.
Collapse
|
115
|
Dupres V, Verbelen C, Raze D, Lafont F, Dufrêne YF. Force spectroscopy of the interaction between mycobacterial adhesins and heparan sulphate proteoglycan receptors. Chemphyschem 2009; 10:1672-5. [PMID: 19475637 DOI: 10.1002/cphc.200900208] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding the molecular interactions between bacterial adhesion proteins (adhesins) and their receptors is essential for elucidating the molecular mechanisms of bacterial pathogenesis. Here, atomic force microscopy (AFM) is used to explore the specific interactions between the heparin-binding hemagglutinin (HBHA) from Mycobacterium tuberculosis, and heparan sulphate proteoglycan (HSPG) receptors on live A549 pneumocytes. First, we show that the specific binding forces between single HBHA-HSPG pairs, 57+/-16 pN, are similar to the forces measured earlier between HBHA and heparin molecules. Second, we mapped the distribution of single HSPG receptors on the surface of A549 cells, revealing that the proteins are widely and homogeneously exposed. Third, we observed force curves with constant force plateaus at large pulling velocities, reflecting the extraction of membrane tethers or nanotubes. These single-molecule measurements provide new avenues in pathogenesis research, particularly for elucidating the molecular basis of pathogen-host interactions.
Collapse
Affiliation(s)
- Vincent Dupres
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
116
|
Evanko SP, Potter-Perigo S, Johnson PY, Wight TN. Organization of hyaluronan and versican in the extracellular matrix of human fibroblasts treated with the viral mimetic poly I:C. J Histochem Cytochem 2009; 57:1041-60. [PMID: 19581629 DOI: 10.1369/jhc.2009.953802] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have examined structural details of hyaluronan- and versican-rich pericellular matrices in human lung fibroblasts, as well as fixation effects after treatment with the viral mimetic, poly I:C. Lateral aggregation of hyaluronan chains was promoted by acid-ethanol-formalin fixation compared with a network appearance with formalin alone. However, hyaluronidase-sensitive cable structures were seen in live cells, suggesting that they are not a fixation artifact. With all fixatives, versican and hyaluronan probes bound alternately along strands extending from the plasma membrane. However, a yellow colocalization signal required aggregation/overlap of several hyaluronan/versican strands and was more pronounced after acid-ethanol-formalin fixation. In addition to the main cell surface, hyaluronan and versican were also associated with fine actin-positive membrane protrusions, retraction fibers, and surface blebs. After wounding plus treatment with poly I:C, cells displayed larger hyaluronan coats and cable-like structures, as well as more membrane protrusions. However, treated cells did not migrate and had increased stress fibers compared with control wounded cells. Deposition of hyaluronan into cable-like structures in response to poly I:C was diminished but still apparent following actin filament disruption with cytochalasin D, suggesting that the protrusions only partially facilitate cable formation. As seen by scanning electron microscopy, the membrane protrusions may participate in poly I:C-induced binding of monocytes to hyaluronan- and versican-rich matrices. These results suggest that poly I:C-induced hyaluronan- and versican-rich cable structures are not deposited during migration, and that cellular protrusions partially contribute to hyaluronan cable formation. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Stephen P Evanko
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
117
|
Abstract
All cell functions that involve membrane deformation or a change in cell shape (e.g., endocytosis, exocytosis, cell motility, and cytokinesis) are regulated by membrane tension. While molecular contacts between the plasma membrane and the underlying actin cytoskeleton are known to make significant contributions to membrane tension, little is known about the molecules that mediate these interactions. We used an optical trap to directly probe the molecular determinants of membrane tension in isolated organelles and in living cells. Here, we show that class I myosins, a family of membrane-binding, actin-based motor proteins, mediate membrane/cytoskeleton adhesion and thus, make major contributions to membrane tension. These studies show that class I myosins directly control the mechanical properties of the cell membrane; they also position these motor proteins as master regulators of cellular events involving membrane deformation.
Collapse
|
118
|
|
119
|
Cuerrier CM, Gagner A, Lebel R, Gobeil F, Grandbois M. Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit 2009; 22:389-96. [DOI: 10.1002/jmr.953] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
120
|
Ramis-Conde I, Chaplain MAJ, Anderson ARA, Drasdo D. Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 2009; 6:016008. [PMID: 19321920 DOI: 10.1088/1478-3975/6/1/016008] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transendothelial migration is a crucial process of the metastatic cascade in which a malignant cell attaches itself to the endothelial layer forming the inner wall of a blood or lymph vessel and creates a gap through which it enters into the bloodstream (or lymphatic system) and then is transported to distant parts of the body. In this process both biological pathways involving cell adhesion molecules such as VE-cadherin and N-cadherin, and the biophysical properties of the cells play an important role. In this paper, we present one of the first mathematical models considering the problem of cancer cell intravasation. We use an individual force-based multi-scale approach which accounts for intra- and inter-cellular protein pathways and for the physical properties of the cells, and a modelling framework which accounts for the biological shape of the vessel. Using our model, we study the influence of different protein pathways in the achievement of transendothelial migration and give quantitative simulation results comparable with real experiments.
Collapse
Affiliation(s)
- Ignacio Ramis-Conde
- French National Institute for Research in Computer Science and Control, Le Chesnay, France.
| | | | | | | |
Collapse
|
121
|
Chapter 2 Biomechanics of Leukocyte and Endothelial Cell Surface. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
122
|
Ambrosi D, Preziosi L. Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech Model Mechanobiol 2008; 8:397-413. [PMID: 19115069 DOI: 10.1007/s10237-008-0145-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 12/02/2008] [Indexed: 01/16/2023]
Abstract
Tumour cells usually live in an environment formed by other host cells, extra-cellular matrix and extra-cellular liquid. Cells duplicate, reorganise and deform while binding each other due to adhesion molecules exerting forces of measurable strength. In this paper, a macroscopic mechanical model of solid tumour is investigated which takes such adhesion mechanisms into account. The extracellular matrix is treated as an elastic compressible material, while, in order to define the relationship between stress and strain for the cellular constituents, the deformation gradient is decomposed in a multiplicative way distinguishing the contribution due to growth, to cell rearrangement and to elastic deformation. On the basis of experimental results at a cellular level, it is proposed that at a macroscopic level there exists a yield condition separating the elastic and dissipative regimes. Previously proposed models are obtained as limit cases, e.g. fluid-like models are obtained in the limit of fast cell reorganisation and negligible yield stress. A numerical test case shows that the model is able to account for several complex interactions: how tumour growth can be influenced by stress, how and where it can generate cell reorganisation to release the stress level, how it can lead to capsule formation and compression of the surrounding tissue.
Collapse
Affiliation(s)
- Davide Ambrosi
- Dipartimento di Matematica, Politecnico di Torino, Turin, Italy.
| | | |
Collapse
|
123
|
Veranic P, Lokar M, Schütz GJ, Weghuber J, Wieser S, Hägerstrand H, Kralj-Iglic V, Iglic A. Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 2008; 95:4416-25. [PMID: 18658210 PMCID: PMC2567924 DOI: 10.1529/biophysj.108.131375] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 07/15/2008] [Indexed: 12/13/2022] Open
Abstract
Communication between cells is crucial for proper functioning of multicellular organisms. The recently discovered membranous tubes, named tunneling nanotubes, that directly bridge neighboring cells may offer a very specific and effective way of intercellular communication. Our experiments on RT4 and T24 urothelial cell lines show that nanotubes that bridge neighboring cells can be divided into two types. The nanotubes of type I are shorter and more dynamic than those of type II, and they contain actin filaments. They are formed when cells explore their surroundings to make contact with another cell. The nanotubes of type II are longer and more stable than type I, and they have cytokeratin filaments. They are formed when two already connected cells start to move apart. On the nanotubes of both types, small vesicles were found as an integral part of the nanotubes (that is, dilatations of the nanotubes). The dilatations of type II nanotubes do not move along the nanotubes, whereas the nanotubes of type I frequently have dilatations (gondolas) that move along the nanotubes in both directions. A possible model of formation and mechanical stability of nanotubes that bridge two neighboring cells is discussed.
Collapse
Affiliation(s)
- Peter Veranic
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Preziosi L, Tosin A. Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J Math Biol 2008; 58:625-56. [PMID: 18853162 DOI: 10.1007/s00285-008-0218-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 01/02/2008] [Indexed: 12/01/2022]
Abstract
Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis.
Collapse
Affiliation(s)
- Luigi Preziosi
- Department of Mathematics, Politecnico di Torino, Torino, Italy.
| | | |
Collapse
|
125
|
Tulla M, Helenius J, Jokinen J, Taubenberger A, Müller DJ, Heino J. TPA primes alpha2beta1 integrins for cell adhesion. FEBS Lett 2008; 582:3520-4. [PMID: 18804470 DOI: 10.1016/j.febslet.2008.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/24/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
Abstract
Integrin avidity is regulated by changes in the conformation of the heterodimer and cluster formation. We measured cell adhesion by integrin alpha2beta1 (CHO-alpha2) to collagen at short contact times (0.5-60s) by single cell force spectroscopy (SCFS). The adhesion increased rapidly with contact time and was further strengthened by the addition of 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) and integrin activator. TPA also improved the strength of adhesive units. Furthermore, changes in membrane nanotube properties indicated better coupling of integrins to the cell cytoskeleton. We conclude that in addition to increasing integrin avidity TPA strengthens integrin-cytoskeletal linkage.
Collapse
Affiliation(s)
- Mira Tulla
- Biotechnology Center, University of Technology Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
126
|
Helenius J, Heisenberg CP, Gaub HE, Muller DJ. Single-cell force spectroscopy. J Cell Sci 2008; 121:1785-91. [PMID: 18492792 DOI: 10.1242/jcs.030999] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The controlled adhesion of cells to each other and to the extracellular matrix is crucial for tissue development and maintenance. Numerous assays have been developed to quantify cell adhesion. Among these, the use of atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) has recently been established. This assay permits the adhesion of living cells to be studied in near-physiological conditions. This implementation of AFM allows unrivaled spatial and temporal control of cells, as well as highly quantitative force actuation and force measurement that is sufficiently sensitive to characterize the interaction of single molecules. Therefore, not only overall cell adhesion but also the properties of single adhesion-receptor-ligand interactions can be studied. Here we describe current implementations and applications of SCFS, as well as potential pitfalls, and outline how developments will provide insight into the forces, energetics and kinetics of cell-adhesion processes.
Collapse
Affiliation(s)
- Jonne Helenius
- Biotechnology Center, University of Technology Dresden, Germany.
| | | | | | | |
Collapse
|
127
|
Schmitz J, Gottschalk KE. Mechanical regulation of cell adhesion. SOFT MATTER 2008; 4:1373-1387. [PMID: 32907100 DOI: 10.1039/b716805p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular adhesion against external forces is governed by both the equilibrium affinity of the involved receptor-ligand bonds and the mechanics of the cell. Certain receptors like integrins change their affinity as well as the mechanics of their anchorage to tune the adhesiveness. Whereas in the last few years the focus of integrin research has lain on the affinity regulation of the adhesion receptors, more recently the importance of cellular mechanics became apparent. Here, we focus on different aspects of the mechanical regulation of the cellular adhesiveness.
Collapse
Affiliation(s)
- Julia Schmitz
- Applied Physics, LMU München, Amalienstr. 54, 80799 München, Germany.
| | | |
Collapse
|
128
|
Abstract
Cell adhesion mechanically couples cells to surfaces. The durability of individual bonds between the adhesive receptors and their ligands in the presence of forces determines the cellular adhesion strength. For adhesive receptors such as integrins, it is a common paradigm that the cell regulates its adhesion strength by altering the affinity state of the receptors. However, the probability distribution of rupture forces is dependent not only on the affinity of individual receptor-ligand bonds but also on the mechanical compliance of the cellular anchorage of the receptor. Hence, by altering the anchorage, the cell can regulate its adhesion strength without changing the affinity of the receptor. Here, we analyze the anchorage of the integrin VLA-4 with its ligand VCAM-1. For this purpose, we develop a model based on the Kelvin body, which allows one to quantify the mechanical properties of the adhesive receptor's anchorage using atomic force microscopy on living cells. As we demonstrate, the measured force curves give valuable insight into the mechanics of the cellular anchorage of the receptor, which is described by the tether stiffness, the membrane rigidity, and the membrane viscosity. The measurements relate to a tether stiffness of k(t) = 1.6 microN/m, an initial membrane rigidity of k(i) = 260 microN/m, and a viscosity of mu = 5.9 microN x s/m. Integrins exist in different activation states. When activating the integrin with Mg(2+), we observe altered viscoelastic parameters of k(t) = 0.9 microN/m, k(i) = 190 microN/m, and mu = 6.0 microN x s/m. Based on our model, we postulate that anchorage-related effects are common regulating mechanisms for cellular adhesion beyond affinity regulation.
Collapse
|
129
|
Gurke S, Barroso JFV, Gerdes HH. The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 2008; 129:539-50. [PMID: 18386044 PMCID: PMC2323029 DOI: 10.1007/s00418-008-0412-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2008] [Indexed: 12/11/2022]
Abstract
The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes.
Collapse
Affiliation(s)
- Steffen Gurke
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | |
Collapse
|
130
|
Sirghi L, Ponti J, Broggi F, Rossi F. Probing elasticity and adhesion of live cells by atomic force microscopy indentation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:935-45. [DOI: 10.1007/s00249-008-0311-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 03/10/2008] [Indexed: 01/30/2023]
|
131
|
AFM as a tool to probe and manipulate cellular processes. Pflugers Arch 2007; 456:61-70. [DOI: 10.1007/s00424-007-0414-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
132
|
Gimsa U, Iglic A, Fiedler S, Zwanzig M, Kralj-Iglic V, Jonas L, Gimsa J. Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn. Mol Membr Biol 2007; 24:243-55. [PMID: 17520481 DOI: 10.1080/09687860601141730] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We used sub-micron metal rod decorated surfaces, 'nano-lawn' structures, as a substrate to study cell-to-cell and cell-to-surface interactions of primary murine astrocytes. These cells form thin membranous tubes with diameters of less than 100 nm and a length of several microns, which make contact to neighboring cells and the substrate during differentiation. While membrane protrusions grow on top of the nano-lawn pillars, nuclei sink to the bottom of the substrate. We observed gondola-like structures along those tubes, suggestive of their function as transport vehicles. Elements of the cytoskeleton such as actin fibers are commonly believed to be essential for triggering the onset and growth of tubular membrane protrusions. A rope-pulling mechanism along actin fibers has recently been proposed to account for the transport or exchange of cellular material between cells. We present evidence for a complementary mechanism that promotes growth and stabilization of the observed tubular protrusions of cell membranes. This mechanism does not require active involvement of actin fibers as the formation of membrane protrusions could not be prevented by suppressing polymerization of actin by latrunculin B. Also theoretically, actin fibers are not essential for the growing and stability of nanotubes since curvature-driven self-assembly of interacting anisotropic raft elements is sufficient for the spontaneous formation of thin nano-tubular membrane protrusions.
Collapse
Affiliation(s)
- Ulrike Gimsa
- Research Institute for the Biology of Farm Animals, Research Unit Behavioural Physiology, Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
133
|
Evanko SP, Tammi MI, Tammi RH, Wight TN. Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev 2007; 59:1351-65. [PMID: 17804111 PMCID: PMC2174428 DOI: 10.1016/j.addr.2007.08.008] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/25/2007] [Accepted: 08/01/2007] [Indexed: 12/12/2022]
Abstract
Hyaluronan is a multifunctional glycosaminoglycan that forms the structural basis of the pericellular matrix. Hyaluronan is extruded directly through the plasma membrane by one of three hyaluronan synthases and anchored to the cell surface by the synthase or cell surface receptors such as CD44 or RHAMM. Aggregating proteoglycans and other hyaluronan-binding proteins, contribute to the material and biological properties of the matrix and regulate cell and tissue function. The pericellular matrix plays multiple complex roles in cell adhesion/de-adhesion, and cell shape changes associated with proliferation and locomotion. Time-lapse studies show that pericellular matrix formation facilitates cell detachment and mitotic cell rounding. Hyaluronan crosslinking occurs through various proteins, such as tenascin, TSG-6, inter-alpha-trypsin inhibitor, pentraxin and TSP-1. This creates higher order levels of structured hyaluronan that may regulate inflammation and other biological processes. Microvillous or filopodial membrane protrusions are created by active hyaluronan synthesis, and form the scaffold of hyaluronan coats in certain cells. The importance of the pericellular matrix in cellular mechanotransduction and the response to mechanical strain are also discussed.
Collapse
Affiliation(s)
- Stephen P. Evanko
- The Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9 Avenue, Seattle, WA 98101, USA
| | - Markku I. Tammi
- Department of Anatomy, Kuopio University, FIN-70211 Kuopio, Finland
| | - Raija H. Tammi
- Department of Anatomy, Kuopio University, FIN-70211 Kuopio, Finland
| | - Thomas N. Wight
- The Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9 Avenue, Seattle, WA 98101, USA
- *Correspondence: Thomas N. Wight, The Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 9 Avenue, Seattle, WA 98101, , Phone: (206) 341-1377, Fax: (206) 341-1370
| |
Collapse
|
134
|
Franz CM, Taubenberger A, Puech PH, Muller DJ. Studying Integrin-Mediated Cell Adhesion at the Single-Molecule Level Using AFM Force Spectroscopy. ACTA ACUST UNITED AC 2007; 2007:pl5. [PMID: 17911652 DOI: 10.1126/stke.4062007pl5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The establishment of cell adhesion involves specific recognition events between individual cell-surface receptors and molecules of the cellular environment. However, characterizing single-molecule adhesion events in the context of a living cell presents an experimental challenge. The atomic force microscope (AFM) operated in force spectroscopy mode provides an ultrasensitive method to investigate cell adhesion forces at the level of single receptor-ligand bonds. With a living cell attached to the AFM cantilever, the number of cell-substrate interactions can be controlled and limited to the formation of single receptor-ligand bonds. From force-distance (F-D) curves recorded during cell detachment, the strength of single receptor-ligand bonds can be determined. Furthermore, by varying the rate of force application during bond rupture, a dynamic force spectrum (DFS) can be generated from which additional parameters that describe the energy landscape of the interaction, such as dissociation rate and energy barrier width, can be obtained. Using the example of alpha(2)beta(1) integrin-mediated adhesion to type I collagen, we provide a detailed description of how dynamic AFM single-cell force spectroscopy (SCFS) adhesion measurements can be performed with single-molecule sensitivity, and how specific energy landscape parameters of the integrin-collagen bond can be extracted from the DFS.
Collapse
Affiliation(s)
- Clemens M Franz
- BioTechnological Center, University of Technology Dresden, Tatzberg 47-51, 01307 Dresden, Germany.
| | | | | | | |
Collapse
|
135
|
Lamontagne CA, Grandbois M. PKC-induced stiffening of hyaluronan/CD44 linkage; local force measurements on glioma cells. Exp Cell Res 2007; 314:227-36. [PMID: 17698062 DOI: 10.1016/j.yexcr.2007.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 11/25/2022]
Abstract
Interaction of cells with hyaluronan (HA) rich extracellular matrix involves the membrane receptor CD44. HA-CD44 interactions are particularly important in the development of glioma pathogenesis for its implication in tumor cells spreading. Highly motile states rely on the spaciotemporal regulation of HA-CD44 interactions occurring in specific cytoskeletal-supported membrane organization such as microvilli or the leading edge observed in migrating cell. We used AFM-based force measurement to probe the HA-CD44 interaction at localized regions at the surface of living glioma cells expressing high level of the CD44 standard isoform. We show that unstimulated cells interact with HA over their entire surfaces and are highly deformable when force is exerted on individual HA molecules bound to membrane CD44 receptors. Conversely, in PKC-activated cells the probed interactions are concentrated at the leading edge of the cells with reduced membrane deformability. Taken together, our results show that PKC-enhanced motility in glioma cells is associated with a redistribution of CD44 receptors at the leading edges concomitant with a stiffer anchoring of CD44 to the cell surface involving the actin cytoskeleton.
Collapse
|
136
|
Pontes B, Viana NB, Campanati L, Farina M, Neto VM, Nussenzveig HM. Structure and elastic properties of tunneling nanotubes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:121-9. [PMID: 17598104 DOI: 10.1007/s00249-007-0184-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/27/2007] [Accepted: 05/07/2007] [Indexed: 02/01/2023]
Abstract
We investigate properties of a reported new mechanism for cell-cell interactions, tunneling nanotubes (TNT's). TNT's mediate actin-based transfer of vesicles and organelles and they allow signal transmission between cells. The effects of lateral pulling with polystyrene beads trapped by optical tweezers on TNT's linking separate U-87 MG human glioblastoma cells in culture are described. This cell line was chosen for handling ease and possible pathology implications of TNT persistence in communication between cancerous cells. Observed nanotubes are shown to have the characteristic features of TNT's. We find that pulling induces two different types of TNT bifurcations. In one of them, termed V-Y bifurcation, the TNT is first distorted into a V-shaped form, following which a new branch emerges from the apex. In the other one, termed I-D bifurcation, the pulled TNT is bent into a curved arc of increasingly broader span. Curves showing the variation of pulling force with displacement are obtained. Results yield information on TNT structure and elastic properties.
Collapse
Affiliation(s)
- Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
137
|
Lugmaier RA, Schedin S, Kühner F, Benoit M. Dynamic restacking of Escherichia Coli P-pili. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:111-20. [PMID: 17554533 DOI: 10.1007/s00249-007-0183-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 05/07/2007] [Indexed: 01/31/2023]
Abstract
P-pili of uropathogenic Escherichia coli mediate the attachment to epithelial cells in the human urinary tract and kidney and therefore play an important role in infection. A better understanding of this mechanism could help to prevent bacteria from spreading but also provides interesting insights into molecular mechanics for future nanotech applications. The helical rod design of P-pili provides an efficient design to withstand hydrodynamic shear forces. The adhesive PapG unit at the distal end of the P-pilus forms a specific bond with the glycolipid Galabiose. This bond has a potential width Deltax = 0.7 +/- 0.15 nm and a dissociation rate K (Off) = 8.0.10(-4) +/- 5.0.10(-4) s(-1). It withstands a force of approximately 49 pN under physiological conditions. Additionally, we analyzed the behavior of unstacking and restacking of the P-pilus with dynamic force spectroscopy at velocities between 200 and 7,000 nm/s. Up to a critical extension of 66% of the totally stretched P-pilus, un/re-stacking was found to be fully reversible at velocities up to 200 nm/s. If the P-pilus is stretched beyond this critical extension a characteristic hysteresis appears upon restacking. This hysteresis originates from a nucleation process comparable to a first-order phase transition in an undercooled liquid. Analysis of the measurement data suggests that 20 PapA monomers are involved in the formation of a nucleation kernel.
Collapse
Affiliation(s)
- Robert A Lugmaier
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, 80799, Munich, Germany.
| | | | | | | |
Collapse
|
138
|
Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G. The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J Cell Sci 2007; 120:2223-31. [PMID: 17550968 DOI: 10.1242/jcs.001370] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whereas recent studies suggest that cholesterol plays important role in the regulation of membrane proteins, its effect on the interaction of the cell membrane with the underlying cytoskeleton is not well understood. Here, we investigated this by measuring the forces needed to extract nanotubes (tethers) from the plasma membrane, using atomic force microscopy. The magnitude of these forces provided a direct measure of cell stiffness, cell membrane effective surface viscosity and association with the underlying cytoskeleton. Furthermore, we measured the lateral diffusion constant of a lipid analog DiIC12, using fluorescence recovery after photobleaching, which offers additional information on the organization of the membrane. We found that cholesterol depletion significantly increased the adhesion energy between the membrane and the cytoskeleton and decreased the membrane diffusion constant. An increase in cellular cholesterol to a level higher than that in control cells led to a decrease in the adhesion energy and the membrane surface viscosity. Disassembly of the actin network abrogated all the observed effects, suggesting that cholesterol affects the mechanical properties of a cell through the underlying cytoskeleton. The results of these quantitative studies may help to better understand the biomechanical processes accompanying the development of atherosclerosis.
Collapse
Affiliation(s)
- Mingzhai Sun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Iglic A, Lokar M, Babnik B, Slivnik T, Veranic P, Hägerstrand H, Kralj-Iglic V. Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes. Blood Cells Mol Dis 2007; 39:14-23. [PMID: 17475520 DOI: 10.1016/j.bcmd.2007.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 02/03/2007] [Indexed: 11/26/2022]
Abstract
Tubular budding of the erythrocyte membrane may be induced by exogenously added substances. It is shown that tubular budding may be explained by self-assembly of anisotropic membrane nanodomains into larger domains forming nanotubular membrane protrusions. In contrast to some previously reported theories, no direct external mechanical force is needed to explain the observed tubular budding of the bilayer membrane. The mechanism that explains tubular budding may also be responsible for stabilization of the thin tubes that connect cells or cell organelles and which might be important for the transport of matter and information in cellular systems. It is shown that small carrier vesicles (gondolas), transporting enclosed material or the molecules composing their membrane, may travel over long distances along the nanotubes connecting two cells.
Collapse
Affiliation(s)
- Ales Iglic
- Laboratory of Physics, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
140
|
Hosu BG, Sun M, Marga F, Grandbois M, Forgacs G. Eukaryotic membrane tethers revisited using magnetic tweezers. Phys Biol 2007; 4:67-78. [PMID: 17664652 DOI: 10.1088/1478-3975/4/2/001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.
Collapse
Affiliation(s)
- Basarab G Hosu
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
141
|
Gerdes HH, Bukoreshtliev NV, Barroso JFV. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 2007; 581:2194-201. [PMID: 17433307 DOI: 10.1016/j.febslet.2007.03.071] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 11/24/2022]
Abstract
Recently, highly sensitive nanotubular structures mediating membrane continuity between mammalian cells have been discovered. With respect to their peculiar architecture, these membrane channels were termed tunneling nanotubes (TNTs). TNTs could form de novo between animal cells leading to the generation of complex cellular networks. They have been shown to facilitate the intercellular transfer of organelles as well as, on a limited scale, of membrane components and cytoplasmic molecules. It has been proposed that TNTs represent a novel and general biological principle of cell-to-cell communication and it becomes increasingly apparent that they fulfill important functions in the physiological processes of multicellular organisms.
Collapse
Affiliation(s)
- Hans-Hermann Gerdes
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway.
| | | | | |
Collapse
|
142
|
Iglic A, Slivnik T, Kralj-Iglic V. Elastic properties of biological membranes influenced by attached proteins. J Biomech 2007; 40:2492-500. [PMID: 17198707 DOI: 10.1016/j.jbiomech.2006.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 11/08/2006] [Indexed: 11/23/2022]
Abstract
Positively charged proteins can attach themselves to the negatively charged outer surface of biological cell membranes and liposomes. In this work, the influence of the intrinsic shape of the membrane-attached proteins on the elastic properties of the membrane is considered theoretically. It is shown that attachment of anisotropic proteins to the outer surface of biological membranes may induce tubulation of the membrane. The attachment of semi-flexible rod-like proteins increases the local bending constant, while the attachment of semi-flexible plate-like anisotropic proteins may also reduce the local bending constant of the membrane. The role of the hydrophobic protrusion of the attached protein which is embedded in the outer membrane layer is also discussed.
Collapse
Affiliation(s)
- Ales Iglic
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | | | | |
Collapse
|
143
|
Rico F, Roca-Cusachs P, Sunyer R, Farré R, Navajas D. Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J Mol Recognit 2007; 20:459-66. [PMID: 17891755 DOI: 10.1002/jmr.829] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell adhesion is required for essential biological functions such as migration, tissue formation and wound healing, and it is mediated by individual molecules that bind specifically to ligands on other cells or on the extracellular matrix. Atomic force microscopy (AFM) has been successfully used to measure cell adhesion at both single molecule and whole cell levels. However, the measurement of inherent cell adhesion properties requires a constant cell-probe contact area during indentation, a requirement which is not fulfilled in common pyramidal or spherical AFM tips. We developed a procedure using focused ion beam (FIB) technology by which we modified silicon pyramidal AFM cantilever tips to obtain flat-ended cylindrical tips with a constant and known area of contact. The tips were validated on elastic gels and living cells. Cylindrical tips showed a fairly linear force-indentation behaviour on both gels and cells for indentations >200 nm. Cylindrical tips coated with ligands were used to quantify inherent dynamic cell adhesion and elastic properties. Force, work of adhesion and elasticity showed a marked dynamic response. In contrast, the deformation applied to the cells before rupture was fairly constant within the probed dynamic range. Taken together, these results suggest that the dynamic adhesion strength is counterbalanced by the dynamic elastic response to keep a constant cell deformation regardless of the applied pulling rate.
Collapse
Affiliation(s)
- Félix Rico
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain
| | | | | | | | | |
Collapse
|
144
|
Girdhar G, Chen Y, Shao JY. Double-tether extraction from human umbilical vein and dermal microvascular endothelial cells. Biophys J 2006; 92:1035-45. [PMID: 17098792 PMCID: PMC1779988 DOI: 10.1529/biophysj.106.086256] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple tethers are very likely extracted when leukocytes roll on the endothelium under high shear stress. Endothelial cells have been predicted to contribute more significantly to simultaneous tethers and thus to the overall rolling stabilization. We therefore extracted and quantified double tethers from endothelial cells with the micropipette aspiration technique. We show that the constitutive parameters (threshold force (F0) and effective viscosity (etaeff)) for double-tether extraction are twice those for single-tether extraction and are remarkably similar for human neonatal (F0=105+/-5 pN; etaeff=1.0+/-0.1 pN.s/microm) and adult (F0=118+/-13 pN; etaeff=1.3+/-0.2 pN.s/microm) dermal microvascular, and human umbilical vein (F0=99+/-3 pN; etaeff=1.0+/-0.1 pN.s/microm) endothelial cells. Additionally, these parameters are also independent of surface receptor type, cytokine stimulation, and attachment state of the endothelial cell. We also introduce a novel correlation between the cell-substrate contact stress and gap width, with which we can predict the apparent cell-substrate separation range to be 0.01-0.1 microm during leukocyte rolling. With a biomechanical model of leukocyte rolling, we calculate the force history on the receptor-ligand bond during tether extraction and predict maximum stabilization for the double simultaneous tether extraction case.
Collapse
Affiliation(s)
- Gaurav Girdhar
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130-4899, USA
| | | | | |
Collapse
|
145
|
Sheetz MP, Sable JE, Döbereiner HG. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. ACTA ACUST UNITED AC 2006; 35:417-34. [PMID: 16689643 DOI: 10.1146/annurev.biophys.35.040405.102017] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasma membrane of most animal cells conforms to the cytoskeleton and only occasionally separates to form blebs. Previous studies indicated that many weak interactions between cytoskeleton and the lipid bilayer kept the surfaces together to counteract the normal outward pressure of cytoplasm. Either the loss of adhesion strength or the formation of gaps in the cytoskeleton enables the pressure to form blebs. Membrane-associated cytoskeleton proteins, such as spectrin and filamin, can control the movement and aggregation of membrane proteins and lipids, e.g., phosphoinositol phospholipids (PIPs), as well as blebbing. At the same time, lipids (particularly PIPs) and membrane proteins affect cytoskeleton and signaling dynamics. We consider here the roles of the major phosphatidylinositol-4,5-diphosphate (PIP2) binding protein, MARCKS, and PIP2 levels in controlling cytoskeleton dynamics. Further understanding of dynamics will provide important clues about how membrane-cytoskeleton adhesion rapidly adjusts to cytoskeleton and membrane dynamics.
Collapse
Affiliation(s)
- Michael P Sheetz
- Biological Sciences Department, Columbia University, New York, NY, 10027, USA.
| | | | | |
Collapse
|
146
|
Kultti A, Rilla K, Tiihonen R, Spicer AP, Tammi RH, Tammi MI. Hyaluronan synthesis induces microvillus-like cell surface protrusions. J Biol Chem 2006; 281:15821-8. [PMID: 16595683 DOI: 10.1074/jbc.m512840200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyaluronan synthases (HASs) are plasma membrane enzymes that simultaneously elongate, bind, and extrude the growing hyaluronan chain directly into extracellular space. In cells transfected with green fluorescent protein (GFP)-tagged Has3, the dorsal surface was decorated by up to 150 slender, 3-20-microm-long microvillus-type plasma membrane protrusions, which also contained filamentous actin, the hyaluronan receptor CD44, and lipid raft microdomains. Enzymatic activity of HAS was required for the growth of the microvilli, which were not present in cells transfected with other GFP proteins or inactive GFP-Has3 mutants or in cells incubated with exogenous soluble hyaluronan. The microvilli induced by HAS3 were gradually withered by introduction of an inhibitor of hyaluronan synthesis and rapidly retracted by hyaluronidase digestion, whereas they were not affected by competition with hyaluronan oligosaccharides and disruption of the CD44 gene, suggesting independence of hyaluronan receptors. The data bring out the novel concept that the glycocalyx created by dense arrays of hyaluronan chains, tethered to HAS during biosynthesis, can induce and maintain prominent microvilli.
Collapse
Affiliation(s)
- Anne Kultti
- Department of Anatomy, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
147
|
Chapter 5 Curvature-Induced Sorting of Bilayer Membrane Constituents and Formation of Membrane Rafts. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2006. [DOI: 10.1016/s1554-4516(06)05005-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|