101
|
Garg M. Epithelial plasticity and cancer stem cells: Major mechanisms of cancer pathogenesis and therapy resistance. World J Stem Cells 2017; 9:118-126. [PMID: 28928908 PMCID: PMC5583530 DOI: 10.4252/wjsc.v9.i8.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/22/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been linked with aggressive tumor biology and therapy resistance. It plays central role not only in the generation of cancer stem cells (CSCs) but also direct them across the multiple organ systems to promote tumor recurrence and metastasis. CSCs are reported to express stem cell genes as well as specific cell surface markers and allow aberrant differentiation of progenies. It facilitates cancer cells to leave primary tumor, acquire migratory characteristics, grow into new environment and develop radio-chemo-resistance. Based on the current information, present review discusses and summarizes the recent advancements on the molecular mechanisms that derive epithelial plasticity and its major role in generating a subset of tumor cells with stemness properties and pathophysiological spread of tumor. This paper further highlights the critical need to examine the regulation of EMT and CSC pathways in identifying the novel probable therapeutic targets. These improved therapeutic strategies based on the co-administration of inhibitors of EMT, CSCs as well as differentiated tumor cells may provide improved anti-neoplastic response with no tumor relapse.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
102
|
Burger GA, Danen EHJ, Beltman JB. Deciphering Epithelial-Mesenchymal Transition Regulatory Networks in Cancer through Computational Approaches. Front Oncol 2017; 7:162. [PMID: 28824874 PMCID: PMC5540937 DOI: 10.3389/fonc.2017.00162] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT), the process by which epithelial cells can convert into motile mesenchymal cells, plays an important role in development and wound healing but is also involved in cancer progression. It is increasingly recognized that EMT is a dynamic process involving multiple intermediate or “hybrid” phenotypes rather than an “all-or-none” process. However, the role of EMT in various cancer hallmarks, including metastasis, is debated. Given the complexity of EMT regulation, computational modeling has proven to be an invaluable tool for cancer research, i.e., to resolve apparent conflicts in experimental data and to guide experiments by generating testable hypotheses. In this review, we provide an overview of computational modeling efforts that have been applied to regulation of EMT in the context of cancer progression and its associated tumor characteristics. Moreover, we identify possibilities to bridge different modeling approaches and point out outstanding questions in which computational modeling can contribute to advance our understanding of pathological EMT.
Collapse
Affiliation(s)
- Gerhard A Burger
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Erik H J Danen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Joost B Beltman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
103
|
Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function. Sci Rep 2017; 7:6859. [PMID: 28761088 PMCID: PMC5537359 DOI: 10.1038/s41598-017-07049-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
Abstract
Despite the wide use of mesenchymal stromal cells (MSCs) for paracrine support in clinical trials, their variable and heterogeneous supporting activity pose major challenges. While three-dimensional (3D) MSC cultures are emerging as alternative approaches, key changes in cellular characteristics during 3D-spheroid formation remain unclear. Here, we show that MSCs in 3D spheroids undergo further progression towards the epithelial-mesenchymal transition (EMT), driven by upregulation of EMT-promoting microRNAs and suppression of EMT-inhibitory miRNAs. The shift of EMT in MSCs is associated with widespread histone modifications mimicking the epigenetic reprogramming towards enhanced chromatin dynamics and stem cell-like properties, but without changes in their surface phenotype. Notably, these molecular shifts towards EMT in 3D MSCs caused enhanced stem cell niche activity, resulting in higher stimulation of hematopoietic progenitor self-renewal and cancer stem cell metastasis. Moreover, miRNA-mediated induction of EMT in 2D MSCs were sufficient to mimic the enhanced niche activity of 3D spheroid MSCs. Thus, the molecular hierarchy in the EMT gradient among phenotypically indistinguishable MSCs revealed the previously unrecognized functional parameters in MSCs, and the EMT-enhanced “naïve” mesenchymal state represents an ‘activated mesenchymal niche’ in 3D spheroid MSCs.
Collapse
|
104
|
EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers (Basel) 2017; 9:cancers9080098. [PMID: 28758926 PMCID: PMC5575601 DOI: 10.3390/cancers9080098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET). In the saving economy of the living organisms, the same (Ying-Yang) tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs) have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D) cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This latter, in particular, for its ability to convey multiple types of stimuli into relevant changes of the cell transcriptional program, can be regarded as a heterogeneous "stress-sensor" for EMT-related inducers (growth factor, hypoxia, mechano-stress), and thus as a therapeutic target.
Collapse
|
105
|
Jia D, Jolly MK, Kulkarni P, Levine H. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory. Cancers (Basel) 2017; 9:E70. [PMID: 28640191 PMCID: PMC5532606 DOI: 10.3390/cancers9070070] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
106
|
Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol 2017; 11:739-754. [PMID: 28548388 PMCID: PMC5496493 DOI: 10.1002/1878-0261.12084] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Phenotypic plasticity, the ability of cells to reversibly alter their phenotypes in response to signals, presents a significant clinical challenge to treating solid tumors. Tumor cells utilize phenotypic plasticity to evade therapies, metastasize, and colonize distant organs. As a result, phenotypic plasticity can accelerate tumor progression. A well‐studied example of phenotypic plasticity is the bidirectional conversions among epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M) phenotype(s). These conversions can alter a repertoire of cellular traits associated with multiple hallmarks of cancer, such as metabolism, immune evasion, invasion, and metastasis. To tackle the complexity and heterogeneity of these transitions, mathematical models have been developed that seek to capture the experimentally verified molecular mechanisms and act as ‘hypothesis‐generating machines’. Here, we discuss how these quantitative mathematical models have helped us explain existing experimental data, guided further experiments, and provided an improved conceptual framework for understanding how multiple intracellular and extracellular signals can drive E/M plasticity at both the single‐cell and population levels. We also discuss the implications of this plasticity in driving multiple aggressive facets of tumor progression.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
107
|
Abstract
Metastases claim more than 90% of cancer-related patient deaths and are usually seeded by a subset of circulating tumor cells shed off from the primary tumor. In circulation, circulating tumor cells are found both as single cells and as clusters of cells. The clusters of circulating tumor cells, although many fewer in number, possess much higher metastatic potential as compared to that of individual circulating tumor cells. In this review, we highlight recent insights into molecular mechanisms that can enable the formation of these clusters—(a) hybrid epithelial/mesenchymal phenotype of cells that couples their ability to migrate and adhere, and (b) intercellular communication that can spatially coordinate the cluster formation and provide survival signals to cancer cells. Building upon these molecular mechanisms, we also offer a possible mechanistic understanding of why clusters are endowed with a higher metastatic potential. Finally, we discuss the highly aggressive Inflammatory Breast Cancer as an example of a carcinoma that can metastasize via clusters and corroborates the proposed molecular mechanisms.
Collapse
|
108
|
Jolly MK, Levine H. Computational systems biology of epithelial-hybrid-mesenchymal transitions. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
109
|
Epithelial-to-mesenchymal transition in tumor progression. Med Oncol 2017; 34:122. [PMID: 28560682 DOI: 10.1007/s12032-017-0980-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a biological process in which a non-motile epithelial cell changes to a mesenchymal state with invasive capacities. However, the EMT program is involved in both physiological and pathological processes. Cancer-associated EMT is known to contribute to increase invasiveness and metastasis, resistance to therapies, and generation of cell populations with stem cell-like characteristics and therefore is deeply involved in tumor progression. This process is finely orchestrated by multiple signaling pathways and regulatory transcriptional networks. The hallmark of EMT is the loss of epithelial surface markers, mainly E-cadherin, and the acquisition of mesenchymal phenotype. These events can be mediated by EMT transcription factors which can cooperate with several enzymes to repress the E-cadherin expression and regulate EMT at the epigenetic and post-translational level. A growing body of evidence indicates that cancer cells can reside in various phenotypic states along the EMT spectrum, where cells can jointly retain epithelial traits with mesenchymal ones. This type of phenotypic plasticity endows cancer cells with tumor-initiating potential. The identification of the signaling pathways and modulators that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
Collapse
|
110
|
Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M, Gilles C. Epithelial-mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Dev Dyn 2017; 247:432-450. [PMID: 28407379 DOI: 10.1002/dvdy.24506] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) associated with metastatic progression may contribute to the generation of hybrid phenotypes capable of plasticity. This cellular plasticity would provide tumor cells with an increased potential to adapt to the different microenvironments encountered during metastatic spread. Understanding how EMT may functionally equip circulating tumor cells (CTCs) with an enhanced competence to survive in the bloodstream and niche in the colonized organs has thus become a major cancer research axis. We summarize here clinical data with CTC endpoints involving EMT. We then review the work functionally linking EMT programs to CTC biology and deciphering molecular EMT-driven mechanisms supporting their metastatic competence. Developmental Dynamics 247:432-450, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Emilie Francart
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Justine Lambert
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Aline M Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, and Translational Research Institute Brisbane, and University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Morgane Bourcy
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S 903, University of Reims Champagne-Ardenne, Biopathology Laboratory, CHU of Reims, Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| |
Collapse
|
111
|
Jia D, Jolly MK, Harrison W, Boareto M, Ben-Jacob E, Levine H. Operating principles of tristable circuits regulating cellular differentiation. Phys Biol 2017; 14:035007. [PMID: 28443829 DOI: 10.1088/1478-3975/aa6f90] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many cell-fate decisions during embryonic development are governed by a motif comprised of two transcription factors (TFs) A and B that mutually inhibit each other and may self-activate. This motif, called as a self-activating toggle switch (SATS), can typically have three stable states (phenotypes)-two corresponding to differentiated cell fates, each of which has a much higher level of one TF than the other-[Formula: see text] or [Formula: see text]-and the third state corresponding to an 'undecided' stem-like state with similar levels of both A and B-[Formula: see text]. Furthermore, two or more SATSes can be coupled together in various topologies in different contexts, thereby affecting the coordination between multiple cellular decisions. However, two questions remain largely unanswered: (a) what governs the co-existence and relative stability of these three stable states? (b) What orchestrates the decision-making of coupled SATSes? Here, we first demonstrate that the co-existence and relative stability of the three stable states in an individual SATS can be governed by the relative strength of self-activation, external signals activating and/or inhibiting A and B, and mutual degradation between A and B. Simultaneously, we investigate the effects of these factors on the decision-making of two coupled SATSes. Our results offer novel understanding into the operating principles of individual and coupled tristable self-activating toggle switches (SATSes) regulating cellular differentiation and can yield insights into synthesizing three-way genetic circuits and understanding of cellular reprogramming.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, United States of America. Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005-1827, United States of America
| | | | | | | | | | | |
Collapse
|
112
|
Denisov EV, Skryabin NA, Gerashchenko TS, Tashireva LA, Wilhelm J, Buldakov MA, Sleptcov AA, Lebedev IN, Vtorushin SV, Zavyalova MV, Cherdyntseva NV, Perelmuter VM. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44 +CD24 - stemness. Oncotarget 2017; 8:61163-61180. [PMID: 28977854 PMCID: PMC5617414 DOI: 10.18632/oncotarget.18022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Abstract
Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.
Collapse
Affiliation(s)
- Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation.,Department of Organic Chemistry, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Nikolay A Skryabin
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory of Human Ontogenetics, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Tatiana S Gerashchenko
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Lubov A Tashireva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation
| | - Jochen Wilhelm
- Department of Internal Medicine, German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, D-35392, Giessen, Germany
| | - Mikhail A Buldakov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Aleksei A Sleptcov
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation
| | - Igor N Lebedev
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory of Human Ontogenetics, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Sergey V Vtorushin
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Department of Pathological Anatomy, Siberian State Medical University, 634050, Tomsk, Russian Federation
| | - Marina V Zavyalova
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation.,Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Department of Pathological Anatomy, Siberian State Medical University, 634050, Tomsk, Russian Federation
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050, Tomsk, Russian Federation
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050, Tomsk, Russian Federation.,Department of Pathological Anatomy, Siberian State Medical University, 634050, Tomsk, Russian Federation
| |
Collapse
|
113
|
Abstract
We discuss the hypothesis that ZEB1-Wnt-p300 signaling integrates epithelial to mesenchymal transition (EMT) and resistance to histone deacetylase inhibitors (HDACis) in colorectal cancer (CRC) cells. The HDACi butyrate, derived from dietary fiber, has been linked to CRC prevention, and other HDACis have been proposed as therapeutic agents against CRC. We have previously discussed that resistance to butyrate likely contributes to colonic carcinogenesis, and we have demonstrated that butyrate resistance leads to cross-resistance to cancer therapeutic HDACis. Deregulated Wnt signaling is the major initiating event in most CRC cases. One mechanism whereby butyrate and other HDACis exert their anti-CRC effects is via Wnt signaling hyperactivation, which promotes CRC cell apoptosis. The histone acetylases (HATs) CBP and p300 are mediators of Wnt transcriptional activity, and play divergent roles in the downstream consequences of Wnt signaling. CBP-mediated Wnt signaling is associated with cell proliferation and stem cell maintenance; whereas, p300-mediated Wnt activity is associated with differentiation. We have found that CBP and p300 differentially affect the ability of butyrate to influence Wnt signaling, apoptosis, and proliferation. ZEB1 is a Wnt signaling-targeted gene, whose product is a transcription factor expressed at the invasive front of carcinomas where it promotes malignant progression and EMT. ZEB1 is typically a transcriptional repressor; however, when associated with p300, ZEB1 enhances transcription. These changes in ZEB1 activity likely affect the cancer cell phenotype. ZEB1 has been shown to promote resistance to chemotherapeutic agents, and expression of ZEB1 is upregulated in butyrate-resistant CRC cells that lack p300 expression. Since the expression of ZEB1 correlates with poor outcomes in cancer, ZEB represents a relevant therapeutic target. Here we propose that targeting the signaling network established by ZEB1, Wnt signaling, and p300 signaling can reverse HDACi resistance and inhibit EMT.
Collapse
Affiliation(s)
- Darina Lazarova
- Department of Basic Sciences, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| | - Michael Bordonaro
- Department of Basic Sciences, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
114
|
Abstract
The success of anticancer therapy is usually limited by the development of drug resistance. Such acquired resistance is driven, in part, by intratumoural heterogeneity - that is, the phenotypic diversity of cancer cells co-inhabiting a single tumour mass. The introduction of the cancer stem cell (CSC) concept, which posits the presence of minor subpopulations of CSCs that are uniquely capable of seeding new tumours, has provided a framework for understanding one dimension of intratumoural heterogeneity. This concept, taken together with the identification of the epithelial-to-mesenchymal transition (EMT) programme as a critical regulator of the CSC phenotype, offers an opportunity to investigate the nature of intratumoural heterogeneity and a possible mechanistic basis for anticancer drug resistance. In fact, accumulating evidence indicates that conventional therapies often fail to eradicate carcinoma cells that have entered the CSC state via activation of the EMT programme, thereby permitting CSC-mediated clinical relapse. In this Review, we summarize our current understanding of the link between the EMT programme and the CSC state, and also discuss how this knowledge can contribute to improvements in clinical practice.
Collapse
|
115
|
Garg M. Epithelial, mesenchymal and hybrid epithelial/mesenchymal phenotypes and their clinical relevance in cancer metastasis. Expert Rev Mol Med 2017; 19:e3. [PMID: 28322181 DOI: 10.1017/erm.2017.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer metastasis occurs through local invasion of circulating tumour cells (CTCs), intravasation, transportation to distant sites, and their extravasation followed by colonisation at secondary sites. Epithelial-mesenchymal transition (EMT) is a normal developmental phenomenon, but its aberrant activation confers tumour cells with enhanced cell motility, metastatic properties, resistant to therapies and cancer stem cell (CSC) phenotype in epithelium-derived carcinoma. Experimental studies from various research papers have been reviewed to determine the factors, which interlink cancer stemness and cellular plasticity with EMT. Although existence of CSCs has been linked with EMT, nevertheless, there are controversies with the involvement of type of tumour cells, including cells with E (epithelial) and M (mesenchymal) phenotype alone or hybrid E/M phenotype in different types of cancers. Studies on CTCs with hybrid E/M phenotypes during different stages of cancer metastasis reveal strong association with tumour -initiation potential, cellular plasticity and types of cancer cells. Cells with the hybrid E/M state are strictly controlled by phenotypic stability factors coupled to core EMT decision-making circuits, miR200/ZEB and miR-34/Snail. Understanding the regulatory functions of EMT program in cancer metastasis can help us to characterise the biomarkers of prognostic and therapeutic potential. These biomarkers when targeted may act as metastatic suppressors, inhibit cellular plasticity and stemness ability of tumour cells and can block metastatic growth.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry,University of Lucknow,Lucknow - 226007,UP,India
| |
Collapse
|
116
|
Zhang M, Lee AV, Rosen JM. The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a027128. [PMID: 28062556 DOI: 10.1101/cshperspect.a027128] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we will discuss how the cell of origin may modulate breast cancer intratumoral heterogeneity (ITH) as well as the role of ITH in the evolution of cancer. The clonal evolution and the cancer stem cell (CSC) models, as well as a model that integrates clonal evolution with a CSC hierarchy, have all been proposed to explain the development of ITH. The extent of ITH correlates with clinical outcome and reflects the cellular complexity and dynamics within a tumor. A unique subtype of breast cancer, the claudin-low subtype that is highly resistant to chemotherapy and most closely resembles mammary epithelial stem cells, will be discussed. Furthermore, we will review how the interactions among various tumor cells, some with distinct mutations, may impact breast cancer treatment. Finally, novel technologies that may help advance our understanding of ITH and lead to improvements in the design of new treatments also will be discussed.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
117
|
Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 2017; 16:41. [PMID: 28209166 PMCID: PMC5314464 DOI: 10.1186/s12943-017-0600-4] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor heterogeneity represents an ongoing challenge in the field of cancer therapy. Heterogeneity is evident between cancers from different patients (inter-tumor heterogeneity) and within a single tumor (intra-tumor heterogeneity). The latter includes phenotypic diversity such as cell surface markers, (epi)genetic abnormality, growth rate, apoptosis and other hallmarks of cancer that eventually drive disease progression and treatment failure. Cancer stem cells (CSCs) have been put forward to be one of the determining factors that contribute to intra-tumor heterogeneity. However, recent findings have shown that the stem-like state in a given tumor cell is a plastic quality. A corollary to this view is that stemness traits can be acquired via (epi)genetic modification and/or interaction with the tumor microenvironment (TME). Here we discuss factors contributing to this CSC heterogeneity and the potential implications for cancer therapy.
Collapse
Affiliation(s)
- Pramudita R Prasetyanti
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.,Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, 1105AZ, Amsterdam, The Netherlands. .,Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands. .,Academic Medical Center, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
118
|
Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Du Y, Prior JL, Leib DJ, Chauchereau A, Sehn JK, Curiel DT, Arbeit JM. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget 2017; 8:12272-12289. [PMID: 28103576 PMCID: PMC5355343 DOI: 10.18632/oncotarget.14699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.
Collapse
Affiliation(s)
- Zhi Hong Lu
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Sergey Kaliberov
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca E. Sohn
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lyudmila Kaliberova
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yingqiu Du
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Julie L. Prior
- Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J. Leib
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
| | - Jennifer K. Sehn
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Anatomic and Molecular Pathology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David T. Curiel
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey M. Arbeit
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
119
|
Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao HP, Rycaj K, Takata Y, Lin K, Lu Y, Zhong Y, Krolewski J, Shen J, Tang DG. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun 2017; 8:14270. [PMID: 28112170 PMCID: PMC5264244 DOI: 10.1038/ncomms14270] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs play important roles in regulating tumour development, progression and metastasis. Here we show that one of the miR-200 family members, miR-141, is under-expressed in several prostate cancer (PCa) stem/progenitor cell populations in both xenograft and primary patient tumours. Enforced expression of miR-141 in CD44+ and bulk PCa cells inhibits cancer stem cell properties including holoclone and sphere formation, as well as invasion, and suppresses tumour regeneration and metastasis. Moreover, miR-141 expression enforces a strong epithelial phenotype with a partial loss of mesenchymal phenotype. Whole-genome RNA sequencing uncovers novel miR-141-regulated molecular targets in PCa cells including the Rho GTPase family members (for example, CDC42, CDC42EP3, RAC1 and ARPC5) and stem cell molecules CD44 and EZH2, all of which are validated as direct and functionally relevant targets of miR-141. Our results suggest that miR-141 employs multiple mechanisms to obstruct tumour growth and metastasis. MicroRNAs have important roles in regulating tumor development, progression and metastasis. Here, the authors demonstrate the tumor-suppressive functions of miRNA141 in prostate cancer stem cells mediated by directly targeting CD44, Rho GTPase protein family members, and EZH2.
Collapse
Affiliation(s)
- Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ruifang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| | - Dingxiao Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| | - Qu Deng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA.,Department of Epigenetics and Molecular Carcinogenesis, Program in Molecular Carcinogenesis, University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, Texas 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Epigenetics and Molecular Carcinogenesis, Program in Molecular Carcinogenesis, University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, Texas 77030, USA
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - John Krolewski
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| |
Collapse
|
120
|
Sulaiman A, Yao ZM, Wang LS. Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression. J Biomed Res 2016; 32:81-90. [PMID: 28546516 PMCID: PMC5895572 DOI: 10.7555/jbr.31.20160124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are essential for embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer cells transit to mesenchymal-like tumor cells with great motility via EMT transcription factors; these mesenchymal-like cells migrate through the circulation system, relocate to a suitable site and then convert back to an epithelial-like phenotype to regenerate the tumor. However, recent findings challenge this conventional model and support the existence of a stable hybrid epithelial/mesenchymal (E/M) tumor population. Hybrid E/M tumor cells exhibit both epithelial and mesenchymal properties, possess great metastatic and tumorigenic capacity and are associated with poorer patient prognosis. The hybrid E/M model and associated regulatory networks represent a conceptual change regarding tumor metastasis and organ colonization. It may lead to the development of novel treatment strategies to ultimately stop cancer progression and improve disease-free survival.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada.,China-Canada Centre of Research for Digestive Diseases.,Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Ze-Min Yao
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada.,China-Canada Centre of Research for Digestive Diseases.,Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Li-Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada.,China-Canada Centre of Research for Digestive Diseases.,Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| |
Collapse
|
121
|
Lu Z, Guo H, Lin Y, Shen L, Yin C, Xie S. Effects of PTEN gene silencing on invasion and EMT in oral squamous carcinoma Tca8113 cells. J Oral Pathol Med 2016; 46:31-38. [PMID: 27591748 DOI: 10.1111/jop.12461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiyuan Lu
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
- Department of Oral and Maxillofacial Surgery; The First Affiliated Hospital; Sun Yat-Sen University; Guangzhou China
| | - Hui Guo
- Clinical Medicine Postdoctoral Mobile Station; Jinan University; Guangzhou China
| | - Yanzhu Lin
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
| | - Lijia Shen
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
| | - Cao Yin
- Department Of Oral Medicine; Guangdong Provincial Stomatological Hospital & the Affiliated Stomatological Hospital of Southern Medical University; Guangzhou China
| | - Siming Xie
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering; Jinan University; Guangzhou China
| |
Collapse
|
122
|
Ta CH, Nie Q, Hong T. Controlling Stochasticity in Epithelial-Mesenchymal Transition Through Multiple Intermediate Cellular States. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B 2016; 21:2275-2291. [PMID: 29497351 PMCID: PMC5828240 DOI: 10.3934/dcdsb.2016047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an instance of cellular plasticity that plays critical roles in development, regeneration and cancer progression. Recent studies indicate that the transition between epithelial and mesenchymal states is a multi-step and reversible process in which several intermediate phenotypes might coexist. These intermediate states correspond to various forms of stem-like cells in the EMT system, but the function of the multi-step transition or the multiple stem cell phenotypes is unclear. Here, we use mathematical models to show that multiple intermediate phenotypes in the EMT system help to attenuate the overall fluctuations of the cell population in terms of phenotypic compositions, thereby stabilizing a heterogeneous cell population in the EMT spectrum. We found that the ability of the system to attenuate noise on the intermediate states depends on the number of intermediate states, indicating the stem-cell population is more stable when it has more sub-states. Our study reveals a novel advantage of multiple intermediate EMT phenotypes in terms of systems design, and it sheds light on the general design principle of heterogeneous stem cell population.
Collapse
Affiliation(s)
- Catherine Ha Ta
- Department of Mathematics, Univ. of California Irvine Irvine, CA 92697-3875, USA
| | - Qing Nie
- Department of Mathematics, Univ. of California Irvine Irvine, CA 92697-3875, USA
| | - Tian Hong
- Department of Mathematics, Univ. of California Irvine Irvine, CA 92697-3875, USA
| |
Collapse
|
123
|
Li C, Hong T, Nie Q. Quantifying the landscape and kinetic paths for epithelial-mesenchymal transition from a core circuit. Phys Chem Chem Phys 2016; 18:17949-56. [PMID: 27328302 DOI: 10.1039/c6cp03174a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial-mesenchymal transition (EMT), as a crucial process in embryonic development and cancer metastasis, has been investigated extensively. However, how to quantify the global stability and transition dynamics for EMT under fluctuations remains to be elucidated. Starting from a core EMT genetic circuit composed of three key proteins or microRNAs (microRNA-200, ZEB and SNAIL), we uncovered the potential landscape for the EMT process. Three attractors emerge from the landscape, which correspond to epithelial, mesenchymal and partial EMT states respectively. Based on the landscape, we analyzed two important quantities of the EMT system: the barrier heights between different basins of attraction that describe the degree of difficulty for EMT or backward transition, and the mean first passage time (MFPT) that characterizes the kinetic transition rate. These quantities can be harnessed as measurements for the stability of cell types and the degree of difficulty of transitions between different cell types. We also calculated the minimum action paths (MAPs) by path integral approaches. The MAP delineates the transition processes between different cell types quantitatively. We propose two different EMT processes: a direct EMT from E to P, and a step-wise EMT going through an intermediate state, depending on different extracellular environments. The landscape and kinetic paths we acquired offer a new physical and quantitative way for understanding the mechanisms of EMT processes, and indicate the possible roles for the intermediate states.
Collapse
Affiliation(s)
- Chunhe Li
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
| | | | | |
Collapse
|
124
|
Grigore AD, Jolly MK, Jia D, Farach-Carson MC, Levine H. Tumor Budding: The Name is EMT. Partial EMT. J Clin Med 2016; 5:jcm5050051. [PMID: 27136592 PMCID: PMC4882480 DOI: 10.3390/jcm5050051] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor budding is a histological phenomenon encountered in various cancers, whereby individual malignant cells and/or small clusters of malignant cells are seen in the tumor stroma. Postulated to be mirror epithelial-mesenchymal transition, tumor budding has been associated with poor cancer outcomes. However, the vast heterogeneity in its exact definition, methodology of assessment, and patient stratification need to be resolved before it can be routinely used as a standardized prognostic feature. Here, we discuss the heterogeneity in defining and assessing tumor budding, its clinical significance across multiple cancer types, and its prospective implementation in clinical practice. Next, we review the emerging evidence about partial, rather than complete, epithelial-mesenchymal phenotype at the tumor bud level, and its connection with tumor proliferation, quiescence, and stemness. Finally, based on recent literature, indicating a co-expression of epithelial and mesenchymal markers in many tumor buds, we posit tumor budding to be a manifestation of this hybrid epithelial/mesenchymal phenotype displaying collective cell migration.
Collapse
Affiliation(s)
- Alexandru Dan Grigore
- Departments of BioSciences, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| | - Mohit Kumar Jolly
- Departments of Bioengineering, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005-1827, USA.
| | - Mary C Farach-Carson
- Departments of BioSciences, Rice University, Houston, TX 77005-1827, USA.
- Departments of Bioengineering, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| | - Herbert Levine
- Departments of BioSciences, Rice University, Houston, TX 77005-1827, USA.
- Departments of Bioengineering, Rice University, Houston, TX 77005-1827, USA.
- Departments of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.
| |
Collapse
|
125
|
Abstract
Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
126
|
New Insights into the Crossroads between EMT and Stemness in the Context of Cancer. J Clin Med 2016; 5:jcm5030037. [PMID: 26985909 PMCID: PMC4810108 DOI: 10.3390/jcm5030037] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an example of cellular plasticity, where an epithelial cell acquires a mesenchymal-like phenotype that increases its migratory and invasive properties. Stemness is the ability of stem cells to proliferate in an asymmetric way that allows them to maintain the reservoir of undifferentiated cells with stem cell identity, but also to produce new differentiated cells. Initial works revealed that activation of the EMT program in epithelial cells induces the acquisition of stem cell properties, which in the context of cancer may contribute to the appearance of tumor initiating cells (TIC). However, a number of groups have recently reported that mesenchymal-epithelial transition (MET) is required for efficient metastatic colonization and that EMT may be not necessarily associated with stemness. In this review, we summarize recent findings that extend our knowledge about the crossroads between EMT and stemness and their relevance under physiological or pathological conditions.
Collapse
|
127
|
Wang H, Zhao Q, Deng K, Guo X, Xia J. Lin28: an emerging important oncogene connecting several aspects of cancer. Tumour Biol 2016; 37:2841-8. [PMID: 26762415 DOI: 10.1007/s13277-015-4759-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
RNA-binding protein Lin28 was originally found as a heterochronic gene which played a significant role in the development of Caenorhabditis elegans. The tumor suppressor let-7 is a downstream target of Lin28, which has a wide variety of target genes which are involved in many aspects of cellular activities. By inhibition of let-7 and directly binding the target RNAs, Lin28 plays an important role in different biological and pathological processes including differentiation, metabolism, proliferation, pluripotency, and tumorigenesis. Overexpression of Lin28 has been reported in several kinds of cancers and is correlated with poor outcomes. It has been shown that Lin28 could affect the progression of cancers in several ways, such as promoting proliferation, increasing glucose metabolism, and inducing epithelial-mesenchymal transition (EMT) and cancer stem cells. Decrease of Lin28 expression or reactivation of let-7 in cancer cells could induce a reverse effect, indicating their therapeutic values in developing novel strategies for cancer treatment. Here, we will overview the regulatory mechanisms and functions of Lin28 in cancers.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Qin Zhao
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Xiaoqiang Guo
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
128
|
Pattabiraman DR, Weinberg RA. Targeting the Epithelial-to-Mesenchymal Transition: The Case for Differentiation-Based Therapy. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:11-19. [PMID: 28057845 PMCID: PMC5722631 DOI: 10.1101/sqb.2016.81.030957] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Although important strides have been made in targeted therapy for certain leukemias and subtypes of breast cancer, the standard of care for most carcinomas still involves chemotherapy, radiotherapy, surgery, or a combination of these. Two processes serve as obstacles to the successful treatment of carcinomas. First, a majority of deaths from these types of cancers occurs as a result of distant metastases and not the primary tumors themselves. Second, subsets of cells that are able to survive conventional therapy drive the aggressive relapse of the tumors, often in forms that are resistant to treatment. A frequently observed feature of malignant carcinomas is the loss of epithelial traits and the gain of certain mesenchymal ones that are programmed by the cell-biological program termed the epithelial-to-mesenchymal transition (EMT). The EMT program can confer (i) an ability to disseminate, (ii) an ability to become stem-like tumor-initiating cells, (iii) an ability to found new tumor colonies at distant anatomical sites, and (iv) an elevated resistance to therapy. These multiple powers of the EMT program explain why it has become an attractive target for therapeutic intervention. Recent work has revealed the variable nature of the EMT, with multiple versions of the program being observed depending on the tissue context and the stage of tumor progression. In this review, we attempt to crystallize emerging concepts in the research on EMT and stemness and discuss the benefits of using a differentiation-based therapeutic strategy for the eradication of stem-like populations that have adopted various versions of the EMT program.
Collapse
Affiliation(s)
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
- Ludwig/MIT Center for Molecular Oncology, Cambridge, Massachusetts 02139
| |
Collapse
|
129
|
Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis. Sci Rep 2015; 5:17379. [PMID: 26627083 PMCID: PMC4667179 DOI: 10.1038/srep17379] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).
Collapse
|