101
|
Lyoumi S, Abitbol M, Rainteau D, Karim Z, Bernex F, Oustric V, Millot S, Lettéron P, Heming N, Guillmot L, Montagutelli X, Berdeaux G, Gouya L, Poupon R, Deybach JC, Beaumont C, Puy H. Protoporphyrin retention in hepatocytes and Kupffer cells prevents sclerosing cholangitis in erythropoietic protoporphyria mouse model. Gastroenterology 2011; 141:1509-19, 1519.e1-3. [PMID: 21762662 DOI: 10.1053/j.gastro.2011.06.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/14/2011] [Accepted: 06/28/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Chronic, progressive hepatobiliary disease is the most severe complication of erythropoietic protoporphyria (EPP) and can require liver transplantation, although the mechanisms that lead to liver failure are unknown. We characterized protoporphyrin-IX (PPIX)-linked hepatobiliary disease in BALB/c and C57BL/6 (Fechm1Pas) mice with mutations in ferrochelatase as models for EPP. METHODS Fechm1Pas and wild-type (control) mice were studied at 12-14 weeks of age. PPIX was quantified; its distribution in the liver, serum levels of lipoprotein-X, liver histology, contents of bile salt and cholesterol phospholipids, and expression of genes were compared in mice of the BALB/c and C57BL/6 backgrounds. The in vitro binding affinity of PPIX for bile components was determined. RESULTS Compared with mice of the C57BL/6 background, BALB/c Fechm1Pas mice had a more severe pattern of cholestasis, fibrosis with portoportal bridging, bile acid regurgitation, sclerosing cholangitis, and hepatolithiasis. In C57BL/6 Fechm1Pas mice, PPIX was sequestrated mainly in the cytosol of hepatocytes and Kupffer cells, whereas, in BALB/c Fechm1Pas mice, PPIX was localized within enlarged bile canaliculi. Livers of C57BL/6 Fechm1Pas mice were protected through a combination of lower efflux of PPIX and reduced synthesis and export of bile acid. CONCLUSIONS PPIX binds to bile components and disrupts the physiologic equilibrium of phospholipids, bile acids, and cholesterol in bile. This process might be involved in pathogenesis of sclerosing cholangitis from EPP; a better understanding might improve diagnosis and development of reagents to treat or prevent liver failure in patients with EPP.
Collapse
Affiliation(s)
- Saïd Lyoumi
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Université Paris Diderot, site Bichat, Centre de reference des maladies inflammatoires des voies biliaires, service d’Hépatologie-Gastroentérologie, Hôpital Saint Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Penz-Österreicher M, Österreicher CH, Trauner M. Fibrosis in autoimmune and cholestatic liver disease. Best Pract Res Clin Gastroenterol 2011; 25:245-58. [PMID: 21497742 PMCID: PMC3134112 DOI: 10.1016/j.bpg.2011.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 01/31/2023]
Abstract
Autoimmune and cholestatic liver disease account for a significant part of end-stage liver disease and are leading indications for liver transplantation. Especially cholestatic liver diseases (primary biliary cirrhosis and primary sclerosing cholangitis) appear to be different from other chronic liver diseases with regards to pathogenesis. Portal fibroblasts located in the connective tissue surrounding bile ducts appear to be different from hepatic stellate cells with regards to expression of marker proteins and response the profibrogenic and mitogenic stimuli. In addition there is increasing evidence for a cross talk between activated cholangiocytes and portal myofibroblasts. Several animal models have improved our understanding of the mechanisms underlying these chronic liver diseases. In the present review, we discuss the current concepts and ideas with regards to myofibroblastic cell populations, mechanisms of fibrosis, summarize characteristic histological findings and currently employed animal models of autoimmune and cholestatic liver disease.
Collapse
Affiliation(s)
- Melitta Penz-Österreicher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Christoph H. Österreicher
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria,Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 43 18-20, A-1090 Vienna, Austria. Tel.: +43 140 400 4741; fax: +43 140 400 4735.
| |
Collapse
|
103
|
Tan KP, Wood GA, Yang M, Ito S. Participation of nuclear factor (erythroid 2-related), factor 2 in ameliorating lithocholic acid-induced cholestatic liver injury in mice. Br J Pharmacol 2011; 161:1111-21. [PMID: 20977460 DOI: 10.1111/j.1476-5381.2010.00953.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Lithocholic acid (LCA), the most toxic bile acid, induces cholestatic liver injury in rodents. We previously showed that LCA activates the oxidative stress-responsive nuclear factor (erythroid-2 like), factor 2 (Nrf2) in cultured liver cells, triggering adaptive responses that reduce cell injury. In this study, we determined whether Nrf2 protects the liver against LCA-induced toxicity in vivo. EXPERIMENTAL APPROACH Nrf2 disrupted (Nrf2(-/-) ) and wild-type mice were treated with LCA (125 mg·kg(-1) body weight) to induce liver injury. Levels of mRNA, protein and function of important Nrf2 target genes coupled with liver histology and injury biomarkers of mice were examined. KEY RESULTS In 4 day LCA treatments, we observed a significantly higher hepatic induction of Nrf2 target, cytoprotective genes including thioredoxin reductase 1, glutamate cysteine ligase subunits, glutathione S-transferases, haeme oxygenase-1 and multidrug resistance-associated proteins 3 and 4 in the wild type as compared with the Nrf2(-/-) mice. Moreover, basal and LCA-induced hepatic glutathione and activities of glutathione S-transferases and thioredoxin reductases were higher in wild-type than in Nrf2(-/-) mice. This reduced production of cytoprotective genes against LCA toxicity rendered Nrf2(-/-) mice more susceptible to severe liver damage with the presence of multifocal liver necrosis, inflamed bile ducts and elevation of lipid peroxidation and liver injury biomarkers, such as alanine aminotransferase and alkaline phosphatase. CONCLUSIONS AND IMPLICATIONS Nrf2 plays a crucial cytoprotective role against LCA-induced liver injury by orchestrating adaptive responses. The pharmacological potential of targeting liver Nrf2 in the management of cholestatic liver diseases is proposed.
Collapse
Affiliation(s)
- K P Tan
- Division of Clinical Pharmacology & Toxicology, Physiology and Experimental Medicine Program, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
104
|
Faraj W, Ajouz H, Mukherji D, Kealy G, Shamseddine A, Khalife M. Inflammatory pseudo-tumor of the liver: a rare pathological entity. World J Surg Oncol 2011; 9:5. [PMID: 21255461 PMCID: PMC3036641 DOI: 10.1186/1477-7819-9-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 01/23/2011] [Indexed: 02/07/2023] Open
Abstract
Inflammatory pseudo-tumor (IPT) of the liver is a rare benign neoplasm and is often mistaken as a malignant entity. Few cases have been reported in the literature and the precise etiology of inflammatory pseudotumor remains unknown. Patients usually present with fever, abdominal pain and jaundice. The proliferation of spindled myofibroblast cells mixed with variable amounts of reactive inflammatory cells is characteristics of IPT. We reviewed the literature regarding possible etiology for IPT with a possible suggested etiology.
Collapse
Affiliation(s)
- Walid Faraj
- Department of Surgery, HPB and liver transplantation unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hana Ajouz
- Department of Surgery, HPB and liver transplantation unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Surgery, HPB and liver transplantation unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Gerald Kealy
- Department of Surgery, HPB and liver transplantation unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Surgery, HPB and liver transplantation unit, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Khalife
- Department of Surgery, HPB and liver transplantation unit, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
105
|
Denk GU, Maitz S, Wimmer R, Rust C, Invernizzi P, Ferdinandusse S, Kulik W, Fuchsbichler A, Fickert P, Trauner M, Hofmann AF, Beuers U. Conjugation is essential for the anticholestatic effect of NorUrsodeoxycholic acid in taurolithocholic acid-induced cholestasis in rat liver. Hepatology 2010; 52:1758-68. [PMID: 21038414 DOI: 10.1002/hep.23911] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED NorUDCA (24-norursodeoxycholic acid), the C₂₃-homolog of ursodeoxycholic acid (UDCA), showed remarkable therapeutic effects in cholestatic Mdr2 (Abcb4) (multidrug resistance protein 2/ATP-binding cassette b4) knockout mice with sclerosing/fibrosing cholangitis. In contrast to UDCA, norUDCA is inefficiently conjugated in human and rodent liver, and conjugation has been discussed as a key step for the anticholestatic action of UDCA in cholestasis. We compared the choleretic, anticholestatic, and antiapoptotic properties of unconjugated and taurine-conjugated UDCA (C₂₄) and norUDCA (C₂₃) in isolated perfused rat liver (IPRL) and in natrium/taurocholate cotransporting polypeptide (Ntcp)-transfected human hepatoma (HepG2) cells. Taurolithocholic acid (TLCA) was used to induce a predominantly hepatocellular cholestasis in IPRL. Bile flow was determined gravimetrically; bile acids determined by gas chromatography and liquid chromatography/tandem mass spectrometry; the Mrp2 model substrate, 2,4-dinitrophenyl-S-glutathione (GS-DNP) was determined spectrophotometrically; and apoptosis was determined immunocytochemically. The choleretic effect of C₂₃-bile acids was comparable to their C₂₄-homologs in IPRL. In contrast, TnorUDCA, but not norUDCA antagonized the cholestatic effect of TLCA. Bile flow (percent of controls) was 8% with TLCA-induced cholestasis, and unchanged by coinfusion of norUDCA (14%). However, it was increased by TnorUDCA (83%), UDCA (73%) and TUDCA (136%). Secretion of GS-DNP was markedly reduced by TLCA (5%), unimproved by norUDCA (4%) or UDCA (17%), but was improved modestly by TnorUDCA (26%) or TUDCA (58%). No apoptosis was observed in IPRL exposed to low micromolar TLCA, but equivalent antiapoptotic effects of TUDCA and TnorUDCA were observed in Ntcp-HepG2 cells exposed to TLCA. CONCLUSION Conjugation is essential for the anticholestatic effect of norUDCA in a model of hepatocellular cholestasis. Combined therapy with UDCA and norUDCA may be superior to UDCA or norUDCA monotherapy in biliary disorders in which hepatocyte as well as cholangiocyte dysfunction contribute to disease progression.
Collapse
Affiliation(s)
- Gerald U Denk
- Department of Medicine II, Klinikum Großhadern, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Sinakos E, Marschall HU, Kowdley KV, Befeler A, Keach J, Lindor K. Bile acid changes after high-dose ursodeoxycholic acid treatment in primary sclerosing cholangitis: Relation to disease progression. Hepatology 2010; 52:197-203. [PMID: 20564380 PMCID: PMC2928060 DOI: 10.1002/hep.23631] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED High-dose (28-30 mg/kg/day) ursodeoxycholic acid (UDCA) treatment improves serum liver tests in patients with primary sclerosing cholangitis (PSC) but does not improve survival and is associated with increased rates of serious adverse events. The mechanism for the latter undesired effect remains unclear. High-dose UDCA could result in the production of hepatotoxic bile acids, such as lithocholic acid (LCA), because of limited small bowel absorption of UDCA and conversion of UDCA by bacteria in the colon. We determined the serum bile acid composition in 56 patients with PSC previously enrolled in a randomized, double-blind controlled trial of high-dose UDCA versus placebo. Samples for analysis were obtained at the baseline and at the end of treatment. The mean changes in the UDCA level (16.86 versus 0.05 micromol/L) and total bile acid level (17.21 versus -0.55 micromol/L) were significantly higher in the UDCA group (n = 29) versus the placebo group (n = 27) when pretreatment levels were compared (P < 0.0001). LCA was also markedly increased (0.22 versus 0.01 micromol/L) in the UDCA group compared to the placebo group (P = 0.001). No significant changes were detected for cholic acid, deoxycholic acid, or chenodeoxycholic acid. Patients (n = 9) in the UDCA group who reached clinical endpoints of disease progression (the development of cirrhosis, varices, liver transplantation, or death) tended to have greater increases in their posttreatment total bile acid levels (34.99 versus 9.21 micromol/L, P < 0.08) in comparison with those who did not. CONCLUSION High-dose UDCA treatment in PSC patients results in marked UDCA enrichment and significant expansion of the total serum bile acid pool, including LCA.
Collapse
Affiliation(s)
| | | | | | | | - Jill Keach
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Keith Lindor
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
107
|
Possible protective role of pregnenolone-16α-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis. Eur J Pharmacol 2010; 636:145-54. [DOI: 10.1016/j.ejphar.2010.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/25/2010] [Accepted: 03/12/2010] [Indexed: 01/04/2023]
|
108
|
Sinakos E, Lindor KD. Bile acid profiles in intrahepatic cholestasis of pregnancy: is this the solution to the enigma of intrahepatic cholestasis of pregnancy? Am J Gastroenterol 2010; 105:596-598. [PMID: 20203641 DOI: 10.1038/ajg.2009.639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a rare pregnancy-related liver disease characterized by pruritus, abnormal liver function tests, and an increased risk of fetal complications. An increase in the levels of bile acids is considered to be the diagnostic hallmark of the disease. Ursodeoxycholic acid (UDCA) is currently the most effective therapy. Tribe et al. (this issue) hypothesized that measuring the longitudinal profiles of individual bile acids would provide further insight into the mechanisms of disease. They used a novel chromatography method, which allowed the simultaneous measurement of 15 serum bile acids between 16 weeks of pregnancy and 4 weeks post-partum. ICP was associated with a predominant rise in cholic acid conjugated with taurine and glycine from 24 weeks of pregnancy. UDCA treatment significantly reduced serum taurocholic and taurodeoxycholic acid concentrations. Finally, bile acid profiles were similar in normal pregnancy and pregnancy associated with pruritus gravidarum. The study by Tribe et al. (this issue) presents a significant contribution to the solution of this enigmatic disease by expanding our knowledge on the pathophysiology of ICP and proposing a convenient method for diagnosis and monitoring of this disorder.
Collapse
|
109
|
Huang J, Bathena SP, Tong J, Roth M, Hagenbuch B, Alnouti Y. Kinetic analysis of bile acid sulfation by stably expressed human sulfotransferase 2A1 (SULT2A1). Xenobiotica 2010; 40:184-94. [DOI: 10.3109/00498250903514607] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
110
|
Owen BM, Milona A, van Mil S, Clements P, Holder J, Boudjelal M, Cairns W, Parker M, White R, Williamson C. Intestinal detoxification limits the activation of hepatic pregnane X receptor by lithocholic acid. Drug Metab Dispos 2010; 38:143-9. [PMID: 19797606 PMCID: PMC2802420 DOI: 10.1124/dmd.109.029306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023] Open
Abstract
The intestinal-derived secondary bile acid (BA) lithocholic acid (LCA) is hepatotoxic and is implicated in the pathogenesis of cholestatic diseases. LCA is an endogenous ligand of the xenobiotic nuclear receptor pregnane X receptor (PXR), but there is currently no consensus on the respective roles of hepatic and intestinal PXR in mediating protection against LCA in vivo. Under the conditions reported here, we show that mice lacking Pxr are resistant to LCA-mediated hepatotoxicity. This unexpected phenotype is found in association with enhanced urinary BA excretion and elevated basal expression of drug metabolism enzymes and the hepatic sulfate donor synthesis enzyme Papss2 in Pxr(-/-) mice. By subsequently comparing molecular responses to dietary and intraperitoneal administration of LCA, we made two other significant observations: 1) LCA feeding induces intestinal, but not hepatic, drug-metabolizing enzymes in a largely Pxr-independent manner; and 2) in contrast to LCA feeding, bypassing first-pass gut transit by intraperitoneal administration of LCA did induce hepatic detoxification machinery and in a Pxr-dependent manner. These data reconcile important discrepancies in the reported molecular responses to this BA and suggest that Pxr plays only a limited role in mediating responses to gut-derived LCA. Furthermore, the route of administration must be considered in the future planning and interpretation of experiments designed to assess hepatic responses to BAs, orally administered pharmaceuticals, and dietary toxins.
Collapse
Affiliation(s)
- Bryn M. Owen
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Alexandra Milona
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Saskia van Mil
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Peter Clements
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Julie Holder
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Mohamed Boudjelal
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - William Cairns
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Malcolm Parker
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Roger White
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| | - Catherine Williamson
- Institute of Reproductive and Developmental Biology, Imperial College
London, London, United Kingdom (B.M.O., A.M., M.P., R.W., C.W.); Department of
Metabolic and Endocrine Diseases and Netherlands Metabolomics Center, University
Medical Center Utrecht, Utrecht, The Netherlands (S.v.M.); and GlaxoSmithKline, New
Frontiers Science Park, Harlow, Essex, United Kingdom (P.C., J.H., M.B., W.C.)
| |
Collapse
|
111
|
Soroka CJ, Mennone A, Hagey LR, Ballatori N, Boyer JL. Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis. Hepatology 2010; 51:181-90. [PMID: 19902485 PMCID: PMC2819820 DOI: 10.1002/hep.23265] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Organic solute transporter alpha-beta (Ostalpha-Ostbeta) is a heteromeric bile acid and sterol transporter that facilitates the enterohepatic and renal-hepatic circulation of bile acids. Hepatic expression of this basolateral membrane protein is increased in cholestasis, presumably to facilitate removal of toxic bile acids from the liver. In this study, we show that the cholestatic phenotype induced by common bile duct ligation (BDL) is reduced in mice genetically deficient in Ostalpha. Although Ostalpha(-/-) mice have a smaller bile acid pool size, which could explain lower serum and hepatic levels of bile acids after BDL, gallbladder bilirubin and urinary bile acid concentrations were significantly greater in Ostalpha(-/-) BDL mice, suggesting additional alternative adaptive responses. Livers of Ostalpha(-/-) mice had higher messenger RNA levels of constitutive androstane receptor (Car) than wild-type BDL mice and increased expression of Phase I enzymes (Cyp7a1, Cyp2b10, Cyp3a11), Phase II enzymes (Sult2a1, Ugt1a1), and Phase III transporters (Mrp2, Mrp3). Following BDL, the bile acid pool size increased in Ostalpha(-/-) mice and protein levels for the hepatic basolateral membrane export transporters, multidrug resistance-associated protein 3 (Mrp3) and Mrp4, and for the apical bilirubin transporter, Mrp2, were all increased. In the kidney of Ostalpha(-/-) mice after BDL, the apical bile acid uptake transporter Asbt is further reduced, whereas the apical export transporters Mrp2 and Mrp4 are increased, resulting in a significant increase in urinary bile acid excretion. CONCLUSION These findings indicate that loss of Ostalpha provides protection from liver injury in obstructive cholestasis through adaptive responses in both the kidney and liver that enhance clearance of bile acids into urine and through detoxification pathways most likely mediated by the nuclear receptor Car.
Collapse
Affiliation(s)
- Carol J. Soroka
- Yale Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Albert Mennone
- Yale Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Lee R. Hagey
- Department of Medicine, University of California at San Diego, San Diego, CA 92103
| | - Nazzareno Ballatori
- Dept of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642
| | - James L. Boyer
- Yale Liver Center, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
112
|
Cho JY, Matsubara T, Kang DW, Ahn SH, Krausz KW, Idle JR, Luecke H, Gonzalez FJ. Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge. J Lipid Res 2009; 51:1063-74. [PMID: 19965603 DOI: 10.1194/jlr.m002923] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in synthesis, metabolism, and transport of bile acids and thus plays a major role in maintaining bile acid homeostasis. In this study, metabolomic responses were investigated in urine of wild-type and Fxr-null mice fed cholic acid, an FXR ligand, using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS). Multivariate data analysis between wild-type and Fxr-null mice on a cholic acid diet revealed that the most increased ions were metabolites of p-cresol (4-methylphenol), corticosterone, and cholic acid in Fxr-null mice. The structural identities of the above metabolites were confirmed by chemical synthesis and by comparing retention time (RT) and/or tandem mass fragmentation patterns of the urinary metabolites with the authentic standards. Tauro-3alpha,6,7alpha,12alpha-tetrol (3alpha,6,7alpha,12alpha-tetrahydroxy-5beta-cholestan-26-oyltaurine), one of the most increased metabolites in Fxr-null mice on a CA diet, is a marker for efficient hydroxylation of toxic bile acids possibly through induction of Cyp3a11. A cholestatic model induced by lithocholic acid revealed that enhanced expression of Cyp3a11 is the major defense mechanism to detoxify cholestatic bile acids in Fxr-null mice. These results will be useful for identification of biomarkers for cholestasis and for determination of adaptive molecular mechanisms in cholestasis.
Collapse
Affiliation(s)
- Joo-Youn Cho
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Kotb MA. Ursodeoxycholic acid in neonatal hepatitis and infantile paucity of intrahepatic bile ducts: review of a historical cohort. Dig Dis Sci 2009; 54:2231-41. [PMID: 19082720 DOI: 10.1007/s10620-008-0600-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 10/17/2008] [Indexed: 12/26/2022]
Abstract
We retrospectively reviewed the role of ursodeoxycholic acid in infants having nonsurgical cholestasis attending the Hepatology Clinic, New Children Hospital, Cairo University, Egypt, from 1985 until 2005. Files of 496 infants with neonatal hepatitis and 97 with intrahepatic bile duct paucity were included; of them 241 (48.6%) and 52 (46.4%) received 20-40 mg/kg/day ursodeoxycholic acid for 319.2 +/- 506.9 days and 480.3 +/- 583.3 days, respectively. The outcome of infants with neonatal hepatitis with intake of ursodeoxycholic acid and those without was: 108 (44.8%) and 179 (70.2%) successful (P = 0.000), 11 (4.6%) and 13 (5.1%) improved (P = 0. 474), 112 (46.5%) and 61 (23.9%) suffered failed outcome (P = 0.000), and 10 (4.1%) and 2 (0.78%) died (P = 0.014), respectively. Likelihood of successful outcome with ursodeoxycholic acid intake was 0.345 (P = 0.000), and that of deterioration was 2.76 (P = 0.000). For those having intrahepatic bile duct paucity likelihood of successful outcome with ursodeoxycholic acid intake was 0.418 (P = 0.040) and that of deterioration was 2.64 (P = 0.028). Ursodeoxycholic acid failed in management of this cohort of infants with nonsurgical cholestasis.
Collapse
Affiliation(s)
- M A Kotb
- Department of Pediatrics, Cairo University, El Mokatam, 11571 Cairo, Egypt.
| |
Collapse
|
114
|
Deo AK, Bandiera SM. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid. Drug Metab Dispos 2009; 37:1938-47. [PMID: 19487251 DOI: 10.1124/dmd.109.027763] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
3alpha-Hydroxy-5 beta-cholan-24-oic (lithocholic) acid is a relatively minor component of hepatic bile acids in humans but is highly cytotoxic. Hepatic microsomal oxidation offers a potential mechanism for effective detoxification and elimination of bile acids. The aim of the present study was to investigate the biotransformation of lithocholic acid by human hepatic microsomes and to assess the contribution of cytochrome P450 (P450) enzymes in human hepatic microsomes using human recombinant P450 enzymes and chemical inhibitors. Metabolites were identified, and metabolite formation was quantified using a liquid chromatography/mass spectrometry-based assay. Incubation of lithocholic acid with human liver microsomes resulted in the formation of five metabolites, which are listed in order of their rates of formation: 3-oxo-5 beta-cholan-24-oic (3-ketocholanoic) acid, 3 alpha,6 alpha-dihydroxy-5 beta-cholan-24-oic (hyodeoxycholic) acid, 3 alpha,7 beta-dihydroxy-5 beta-cholan-24-oic (ursodeoxycholic) acid, 3 alpha,6 beta-dihydroxy-5 beta-cholan-24-oic (murideoxycholic) acid, and 3 alpha-hydroxy-6-oxo-5 beta-cholan-24-oic (6-ketolithocholic) acid. 3-Ketocholanoic acid was the major metabolite, exhibiting apparent K(m) and V(max) values of 22 muM and 336 pmol/min/mg protein, respectively. Incubation of lithocholic acid with a of human recombinant P450 enzymes revealed that all five metabolites were formed by recombinant CYP3A4. Chemical inhibition studies with human liver microsomes and recombinant P450 enzymes confirmed that CYP3A4 was the predominant enzyme involved in hepatic microsomal biotransformation of lithocholic acid. In summary, the results indicate that oxidation of the third carbon of the cholestane ring is the preferred position of oxidation by P450 enzymes for lithocholic acid biotransformation in humans and suggest that formation of lithocholic acid metabolites leads to enhanced hepatic detoxification and elimination.
Collapse
Affiliation(s)
- Anand K Deo
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada
| | | |
Collapse
|
115
|
Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 2009; 51:226-46. [PMID: 19638645 DOI: 10.1194/jlr.r000042] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biliary bile salt composition of 677 vertebrate species (103 fish, 130 reptiles, 271 birds, 173 mammals) was determined. Bile salts were of three types: C(27) bile alcohols, C(27) bile acids, or C(24) bile acids, with default hydroxylation at C-3 and C-7. C(27) bile alcohols dominated in early evolving fish and amphibians; C(27) bile acids, in reptiles and early evolving birds. C(24) bile acids were present in all vertebrate classes, often with C(27) alcohols or with C(27) acids, indicating two evolutionary pathways from C(27) bile alcohols to C(24) bile acids: a) a 'direct' pathway and b) an 'indirect' pathway with C(27) bile acids as intermediates. Hydroxylation at C-12 occurred in all orders and at C-16 in snakes and birds. Minor hydroxylation sites were C-1, C-2, C-5, C-6, and C-15. Side chain hydroxylation in C(27) bile salts occurred at C-22, C-24, C-25, and C-26, and in C(24) bile acids, at C-23 (snakes, birds, and pinnipeds). Unexpected was the presence of C(27) bile alcohols in four early evolving mammals. Bile salt composition showed significant variation between orders but not between families, genera, or species. Bile salt composition is a biochemical trait providing clues to evolutionary relationships, complementing anatomical and genetic analyses.
Collapse
Affiliation(s)
- Alan F Hofmann
- Department of Medicine, University of California, San Diego, San Diego, CA 92093-0063, USA.
| | | | | |
Collapse
|
116
|
Beilke LD, Aleksunes LM, Holland RD, Besselsen DG, Beger RD, Klaassen CD, Cherrington NJ. Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab Dispos 2009; 37:1035-45. [PMID: 19196849 PMCID: PMC2683394 DOI: 10.1124/dmd.108.023317] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 01/30/2009] [Indexed: 01/14/2023] Open
Abstract
Pharmacological activation of the constitutive androstane receptor (CAR) protects the liver during cholestasis. The current study evaluates how activation of CAR influences genes involved in bile acid biosynthesis as a mechanism of hepatoprotection during bile acid-induced liver injury. CAR activators phenobarbital (PB) and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or corn oil (CO) were administered to C57BL/6 wild-type (WT) and CAR knockout (CAR-null) mice before and during induction of intrahepatic cholestasis using the secondary bile acid, lithocholic acid (LCA). In LCA-treated WT and all the CAR-null groups (excluding controls), histology revealed severe multifocal necrosis. This pathology was absent in WT mice pretreated with PB and TCPOBOP, indicating CAR-dependent hepatoprotection. Decreases in total hepatic bile acids and hepatic monohydroxy, dihydroxy, and trihydroxy bile acids in PB- and TCPOBOP-pretreated WT mice correlated with hepatoprotection. In comparison, concentrations of monohydroxylated and dihydroxylated bile acids were increased in all the treated CAR-null mice compared with CO controls. Along with several other enzymes (Cyp7b1, Cyp27a1, Cyp39a1), Cyp8b1 expression was increased in hepatoprotected mice, which could be suggestive of a shift in the bile acid biosynthesis pathway toward the formation of less toxic bile acids. In CAR-null mice, these changes in gene expression were not different among treatment groups. These results suggest CAR mediates a shift in bile acid biosynthesis toward the formation of less toxic bile acids, as well as a decrease in hepatic bile acid concentrations. We propose that these combined CAR-mediated effects may contribute to the hepatoprotection observed during LCA-induced liver injury.
Collapse
Affiliation(s)
- Lisa D Beilke
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Yang H, Li TWH, Ko KS, Xia M, Lu SC. Switch from Mnt-Max to Myc-Max induces p53 and cyclin D1 expression and apoptosis during cholestasis in mouse and human hepatocytes. Hepatology 2009; 49:860-70. [PMID: 19086036 PMCID: PMC4427513 DOI: 10.1002/hep.22720] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Toxic bile acids induce hepatocyte apoptosis, for which p53 and cyclin D1 have been implicated as underlying mediators. Both p53 and cyclin D1 are targets of c-Myc, which is also up-regulated in cholestasis. Myc and Mnt use Max as a cofactor for DNA binding. Myc-Max typically activates transcription via E-box binding. Mnt-Max also binds the E-box sequence but serves as a repressor and inhibits the enhancer activity of Myc-Max. The current work tested the hypothesis that the switch from Mnt-Max to Myc-Max is responsible for p53 and cyclin D1 up-regulation and apoptosis during cholestasis. Following common bile duct ligation or left hepatic bile duct ligation, the expression of p53, c-Myc, and cyclin D1 increased markedly, whereas Mnt expression decreased. Nuclear binding activity of Myc to the E-box element of p53 and cyclin D1 increased, whereas that of Mnt decreased in a time-dependent fashion. Lithocholic acid (LCA) treatment of primary human hepatocytes and HuH-7 cells induced a similar switch from Mnt to Myc and increased p53 and cyclin D1 promoter activity and endogenous p53 and cyclin D1 expression and apoptosis. Blocking c-Myc induction in HuH-7 cells prevented the LCA-mediated increase in p53 and cyclin D1 expression and reduced apoptosis. Lowering Mnt expression further enhanced LCA's inductive effect on p53 and cyclin D1. Bile duct-ligated mice treated with a lentivirus harboring c-myc small interfering RNA were protected from hepatic induction of p53 and cyclin D1, a switch from Mnt to Myc nuclear binding to E-box, and hepatocyte apoptosis. CONCLUSION The switch from Mnt to Myc during bile duct ligation and in hepatocytes treated with LCA is responsible for the induction in p53 and cyclin D1 expression and contributes to apoptosis.
Collapse
Affiliation(s)
- Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
118
|
Alnouti Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 2009; 108:225-46. [PMID: 19131563 DOI: 10.1093/toxsci/kfn268] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfotransferase-2A1 catalyzes the formation of bile acid-sulfates (BA-sulfates). Sulfation of BAs increases their solubility, decreases their intestinal absorption, and enhances their fecal and urinary excretion. BA-sulfates are also less toxic than their unsulfated counterparts. Therefore, sulfation is an important detoxification pathway of BAs. Major species differences in BA sulfation exist. In humans, only a small proportion of BAs in bile and serum are sulfated, whereas more than 70% of BAs in urine are sulfated, indicating their efficient elimination in urine. The formation of BA-sulfates increases during cholestatic diseases. Therefore, sulfation may play an important role in maintaining BA homeostasis under pathologic conditions. Farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor are potential nuclear receptors that may be involved in the regulation of BA sulfation. This review highlights current knowledge about the enzymes and transporters involved in the formation and elimination of BA-sulfates, the effect of sulfation on the pharmacologic and toxicologic properties of BAs, the role of BA sulfation in cholestatic diseases, and the regulation of BA sulfation.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
119
|
Toda T, Ohi K, Kudo T, Yoshida T, Ikarashi N, Ito K, Sugiyama K. Ciprofloxacin Suppresses Cyp3a in Mouse Liver by Reducing Lithocholic Acid-producing Intestinal Flora. Drug Metab Pharmacokinet 2009; 24:201-8. [DOI: 10.2133/dmpk.24.201] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
120
|
Ikegawa S, Yamamoto T, Miyashita T, Okihara R, Ishiwata S, Sakai T, Chong RH, Maeda M, Hofmann AF, Mitamura K. Production and characterization of a monoclonal antibody to capture proteins tagged with lithocholic acid. ANAL SCI 2008; 24:1475-80. [PMID: 18997378 DOI: 10.2116/analsci.24.1475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reactive metabolic-modified proteins have been proposed to play an important role in the mechanism(s) of the hepatotoxicity and colon cancer of lithocholic acid (LCA). To identify cellular proteins chemically modified with LCA, we have generated a monoclonal antibody that recognizes the 3alpha-hydroxy-5beta-steroid moiety of LCA. The spleen cells from a BALB/c mouse, which was immunized with an immunogen in which the side chain of LCA was coupled to bovine serum albumin (BSA) via a succinic acid spacer, was fused with SP2/0 myeloma cells to generate antibody-secreting hybridoma clones. The resulting monoclonal antibody (gamma2b, kappa) was specific to LCA-N(alpha)-BOC-lysine as well as the amidated and nonamidated forms of LCA. The immunoblot enabled the detection of LCA residues anchored on BSA and lysozyme. The antibody will be useful for monitoring the generation, localization, and capture of proteins tagged with LCA, which may be the cause of LCA-induced toxicity.
Collapse
Affiliation(s)
- Shigeo Ikegawa
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Hagey LR, Kakiyama G, Muto A, Iida T, Mushiake K, Goto T, Mano N, Goto J, Oliveira CA, Hofmann AF. A new, major C27 biliary bile acid in the red-winged tinamou (Rhynchotus rufescens):25R-1beta, 3alpha,7alpha-trihydroxy-5beta-cholestan-27-oic acid. J Lipid Res 2008; 50:651-7. [PMID: 19011113 DOI: 10.1194/jlr.m800521-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemical structures of the three major bile acids present in the gallbladder bile of the Red-winged tinamou (Rhynchotus rufescens), an early evolving, ground-living bird related to ratites, were determined. Bile acids were isolated by preparative reversed-phase HPLC. Two of the compounds were identified as the taurine N-acylamidates of 25R-3alpha,7alpha-dihydroxy-5beta-cholestan-27-oic acid (constituting 22% of biliary bile acids) and 25R-3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-27-oic acid (constituting 51%). The remaining compound, constituting 21% of biliary bile acids, was an unknown C27 bile acid. Its structure was elucidated by LC/ESI-MS/MS and NMR and shown to be the taurine conjugate of 25R-1beta, 3alpha, 7alpha-trihydroxy-5beta-cholestan-27-oic acid, a C27 trihydroxy bile acid not previously reported. Although C27 bile acids with a 1beta-hydroxyl group have been identified as trace bile acids in the alligator, this is the first report of a major biliary C27 bile acid possessing a 1beta-hydroxyl group.
Collapse
Affiliation(s)
- Lee R Hagey
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0063, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Ikegawa S, Yamamoto T, Ito H, Ishiwata S, Sakai T, Mitamura K, Maeda M. Immunoprecipitation and MALDI-MS identification of lithocholic acid-tagged proteins in liver of bile duct-ligated rats. J Lipid Res 2008; 49:2463-2473. [DOI: 10.1194/jlr.m800350-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
123
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
124
|
Kotb MA. Review of historical cohort: ursodeoxycholic acid in extrahepatic biliary atresia. J Pediatr Surg 2008; 43:1321-7. [PMID: 18639689 DOI: 10.1016/j.jpedsurg.2007.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ursodeoxycholic acid is a bile acid that was found to increase bile flow, protect hepatocytes, and dissolve gallstones. PURPOSE The objective of this study is to review ursodeoxycholic acid in infants and children with extrahepatic biliary atresia. METHODS We used a statistical analysis of data of records of infants and children having extrahepatic biliary atresia who underwent Kasai portoenterostomy and attended Hepatology Clinic, New Children's Hospital, Cairo University, Egypt, from May 1985 until June 2005. RESULTS Of 141 infants with extrahepatic biliary atresia, 108 received ursodeoxycholic acid for mean duration +/- SD of 252.6 +/- 544.9 days in a dosage of 20 mg/kg per day. The outcome of infants who did not receive ursodeoxycholic acid and those who did was the following: 8 (24.2%) and 11 (10.18%) had a successful outcome (P = .043), 0 (0%) and 7 (6.4%) improved (P = .148), 25 (75.7%) and 84 (77.7%) had a failed outcome (P = .489), and none vs 5 died (4.6%) (P = .135), respectively. The predictors of successful outcomes were age less than 65 days at portoenterostomy (P = .008) and absence of ursodeoxycholic acid intake (P = .04) with a likelihood of a successful outcome that was 2.8, that associated with ursodeoxycholic acid intake. CONCLUSION In this cohort of infants with extrahepatic biliary atresia, ursodeoxycholic acid was not shown to be effective, and its use was associated with a plethora of hepatic and extrahepatic complications.
Collapse
Affiliation(s)
- Magd A Kotb
- Department of Pediatrics, Cairo University, PO Box, 85 El Mokatam, Cairo 11571, Egypt.
| |
Collapse
|
125
|
Trauner M, Fickert P, Halilbasic E, Moustafa T. Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wien Med Wochenschr 2008; 158:542-8. [PMID: 18998069 DOI: 10.1007/s10354-008-0592-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/07/2008] [Indexed: 01/03/2023]
Abstract
Alterations in bile secretion at the hepatocellular and cholangiocellular levels may cause cholestasis. Formation of 'toxic bile' may be the consequence of abnormal bile composition and can result in hepatocellular and/or bile duct injury. The canalicular phospholipid flippase (Mdr2/MDR3) normally mediates biliary excretion of phospholipids, which normally form mixed micelles with bile acids and cholesterol to protect the bile duct epithelium from the detergent properties of bile acids. Mdr2 knockout mice are not capable of excreting phospholipids into bile and spontaneously develop bile duct injury with macroscopic and microscopic features closely resembling human sclerosing cholangitis. MDR3 mutations have been linked to a broad spectrum of hepatobiliary disorders in humans ranging from progressive familial intrahepatic cholestasis in neonates to intrahepatic cholestasis of pregnancy, drug-induced cholestasis, intrahepatic cholelithiasis, sclerosing cholangitis and biliary cirrhosis in adults. Other examples for bile injury due to the formation of toxic bile include the cholangiopathy seen in cystic fibrosis, after lithocholate feeding (in mice) and vanishing bile duct syndromes induced by drugs and xenobiotics. Therapeutic strategies for cholangiopathies may target bile composition/toxicity and the affected bile duct epithelium itself, and ideally should also have anti-cholestatic, anti-fibrotic and anti-neoplastic properties. Ursodeoxycholic acid (UDCA) shows some of these properties, but is of limited efficacy in the treatment of human cholangiopathies. By contrast to UDCA, its side chain-shortened homologue norUDCA undergoes cholehepatic shunting leading to a bicarbonate-rich hypercholeresis. Moreover, norUDCA has anti-inflammatory, anti-fibrotic and anti-proliferative effects, and stimulates bile acid detoxification. Upcoming clinical trials will have to demonstrate whether norUDCA or other side chain-modified bile acids are also clinically effective in humans. Finally, drugs for the treatment of cholangiopathies may target bile toxicity via nuclear receptors (FXR, PPARalpha) regulating biliary phospholipid and bile acid excretion.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Bile/physiology
- Bile Acids and Salts/toxicity
- Bile Canaliculi/physiopathology
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/physiopathology
- Bile Ducts, Intrahepatic/physiopathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/physiopathology
- Cell Transformation, Neoplastic/genetics
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/physiopathology
- Cholangitis, Sclerosing/genetics
- Cholangitis, Sclerosing/physiopathology
- Cholestasis, Intrahepatic/genetics
- Cholestasis, Intrahepatic/physiopathology
- Cholic Acids
- Disease Models, Animal
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/physiopathology
- Mice
- Mice, Knockout
- Mutation/genetics
- Norsteroids
- Ursodeoxycholic Acid/physiology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Michael Trauner
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | | | | | | |
Collapse
|
126
|
Beilke LD, Besselsen DG, Cheng Q, Kulkarni S, Slitt AL, Cherrington NJ. Minimal role of hepatic transporters in the hepatoprotection against LCA-induced intrahepatic cholestasis. Toxicol Sci 2007; 102:196-204. [PMID: 18032408 DOI: 10.1093/toxsci/kfm287] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The multidrug resistance-associated proteins (Mrps) are a family of adenosine triphosphate-dependent transporters that facilitate the movement of various compounds, including bile acids, out of hepatocytes. The current study was conducted to determine whether induction of these transporters alters bile acid disposition as a means of hepatoprotection during bile acid-induced cholestasis. Lithocholic acid (LCA) was used to induce intrahepatic cholestasis. C57BL/6 mice were pretreated with corn oil (CO) or known transporter inducers, phenobarbital (PB), oltipraz (OPZ), or TCPOBOP (TC) for 3 days prior to cotreatment with LCA and inducer for 4 days. Histopathology revealed that PB and TC pretreatments provide a protective effect from LCA-induced toxicity, whereas OPZ pretreatment did not. Both PB/LCA and TC/LCA cotreatment groups also had significantly lower alanine aminotransferase values than the LCA-only group. In TC/LCA cotreated mice compared with LCA only, messenger RNA (mRNA) expression of uptake transporters Ntcp and Oatp4 was significantly increased, as were sinusoidal efflux transporters Mrp3 and Mrp4. Although in PB/LCA cotreated mice, the only significant change compared with LCA-only treatment was an increase in uptake transporter Oatp4. Oatp1 was reduced in all groups compared with CO controls. No significant changes in mRNA expression were observed in Oatp2, Bsep, Mrp2, Bcrp, Mrp1, Mrp5, or Mrp6. Mrp4 protein expression was induced in the OPZ/LCA and TC/LCA cotreated groups, whereas Mrp3 protein levels remained unchanged between groups. Protein expression of Mrp1 and Mrp5 was increased in the unprotected LCA-only and OPZ/LCA mice. Thus, transporter expression did not correlate with histologic hepatoprotection, however, there was a correlation between hepatoprotection and significantly reduced total liver bile acids in the PB/LCA and TC/LCA cotreated mice compared with LCA only. In conclusion, changes in transporter expression did not correlate with hepatoprotection, and therefore, transport may not play a critical role in the observed hepatoprotection from LCA-induced cholestasis in the C57BL/6 mouse.
Collapse
Affiliation(s)
- Lisa D Beilke
- Department of Pharmacology and Toxicology, College of Pharmacy, University Animal Care, University of Arizona, Tucson 85721, USA
| | | | | | | | | | | |
Collapse
|
127
|
Nomoto M, Miyata M, Shimada M, Yoshinari K, Gonzalez FJ, Shibasaki S, Kurosawa T, Shindo Y, Yamazoe Y. ME3738 protects against lithocholic acid-induced hepatotoxicity, which is associated with enhancement of biliary bile acid and cholesterol output. Eur J Pharmacol 2007; 574:192-200. [PMID: 17651726 DOI: 10.1016/j.ejphar.2007.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/22/2007] [Accepted: 07/04/2007] [Indexed: 01/05/2023]
Abstract
ME3738 (22beta-methoxyolean-12-ene-3beta, 24(4beta)-diol), a derivative of soyasapogenol, attenuates liver disease in several models of chronic liver inflammation. In the present study, we have investigated a protective effect of ME3738 in a typical bile acid-induced cholestatic liver model, lithocholate (LCA) feeding mouse. Co-administration of ME3738 resulted in decreases in plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities and hepatic bile acid level, and increases in biliary outputs of bile acid and cholesterol, as compared with the results in mice treated with LCA alone. LCA sulfation by hydroxysteroid sulfotransferase 2a and hydroxylation have been reported to be involved in protection against LCA-induced hepatotoxicity. ME3738-treatment, however, had no clear influence on the hydroxysteroid sulfotransferase 2a protein level and LCA 6alpha-, 6beta- and 7alpha-hydroxylase activities, but increased biliary cholesterol output. Cholate (CA)-treatment has been shown to induce hepatotoxicity in farnesoid X receptor-null mice, which is scarcely dependent on bile acid sulfation and hydroxylation but associated with decreased biliary bile acid output. Co-administration of ME3738 decreased the ALT and ALP activities and hepatic bile acid level, and increased biliary outputs of bile acid and cholesterol in farnesoid X receptor-null mice, as compared with the results in the mice treated with CA. Moreover, a clear correlation between biliary outputs of cholesterol and bile acid was observed in these two bile acid-induced hepatotoxicity mouse models. These results suggest that ME3738 protects against bile acid-induced hepatotoxicity through increased biliary bile acid output that is not related to bile acid metabolism but associated with cholesterol output.
Collapse
Affiliation(s)
- Masahiro Nomoto
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Kakiyama G, Tamegai H, Iida T, Mitamura K, Ikegawa S, Goto T, Mano N, Goto J, Holz P, Hagey LR, Hofmann AF. Isolation and chemical synthesis of a major, novel biliary bile acid in the common wombat (Vombatus ursinus): 15alpha-hydroxylithocholic acid. J Lipid Res 2007; 48:2682-92. [PMID: 17785716 DOI: 10.1194/jlr.m700340-jlr200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major bile acids present in the gallbladder bile of the common Australian wombat (Vombatus ursinus) were isolated by preparative HPLC and identified by NMR as the taurine N-acylamidates of chenodeoxycholic acid (CDCA) and 15alpha-hydroxylithocholic acid (3alpha,15alpha-dihydroxy-5beta-cholan-24-oic acid). Taurine-conjugated CDCA constituted 78% of biliary bile acids, and (taurine-conjugated) 15alpha-hydroxylithocholic acid constituted 11%. Proof of structure of the latter compound was obtained by its synthesis from CDCA via a Delta14 intermediate. The synthesis of its C-15 epimer, 15beta-hydroxylithocholic acid (3alpha,15beta-dihydroxy-5beta-cholan-24-oic acid), is also reported. The taurine conjugate of 15alpha-hydroxylithocholic acid was synthesized and shown to have chromatographic and spectroscopic properties identical to those of the compound isolated from bile. It is likely that 15alpha-hydroxylithocholic acid is synthesized in the wombat hepatocyte by 15alpha-hydroxylation of lithocholic acid that was formed by bacterial 7alpha-dehydroxylation of CDCA in the distal intestine. Thus, the wombat appears to use 15alpha-hydroxylation as a novel detoxification mechanism for lithocholic acid.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Fickert P, Stöger U, Fuchsbichler A, Moustafa T, Marschall HU, Weiglein AH, Tsybrovskyy O, Jaeschke H, Zatloukal K, Denk H, Trauner M. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:525-36. [PMID: 17600122 PMCID: PMC1934539 DOI: 10.2353/ajpath.2007.061133] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Xenobiotics and drugs may lead to cholangiopathies and biliary fibrosis, but the underlying mechanisms are largely unknown. Therefore, we aimed to characterize the cause and consequences of hepatobiliary injury and biliary fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice as a novel model of xenobiotic-induced cholangiopathy. Liver morphology, markers of inflammation, cell proliferation, fibrosis, bile formation, biliary porphyrin secretion, and hepatobiliary transporter expression were studied longitudinally in DDC- and control diet-fed Swiss albino mice. DDC feeding led to increased biliary porphyrin secretion and induction of vascular cell adhesion molecule, osteopontin, and tumor necrosis factor-alpha expression in bile duct epithelial cells. This was associated with a pronounced pericholangitis with a significantly increased number of CD11b-positive cells, ductular reaction, and activation of periductal myofibroblasts, leading to large duct disease and a biliary type of liver fibrosis. After 4 weeks, we constantly observed intraductal porphyrin pigment plugs. Glutathione and phospholipid excretion significantly decreased over time. Expression of Ntcp, Oatp4, and Mrp2 was significantly reduced, whereas Bsep expression remained unchanged and adaptive Mrp3 and Mrp4 expression was significantly induced. We demonstrate that DDC feeding in mice leads to i) a reactive phenotype of cholangiocytes and bile duct injury, ii) pericholangitis, periductal fibrosis, ductular reaction, and consequently portal-portal bridging, iii) down-regulation of Mrp2 and impaired glutathione excretion, and iv) segmental bile duct obstruction. This model may be valuable to investigate the mechanisms of xenobiotic-induced chronic cholangiopathies and its sequels including biliary fibrosis.
Collapse
Affiliation(s)
- Peter Fickert
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine, Medical University Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Treinen-Moslen M, Kanz MF. Intestinal tract injury by drugs: Importance of metabolite delivery by yellow bile road. Pharmacol Ther 2006; 112:649-67. [PMID: 16842856 DOI: 10.1016/j.pharmthera.2006.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 02/07/2023]
Abstract
Drug secretion into bile is typically considered a safe route of clearance. However, biliary delivery of some drugs or their reactive metabolites to the intestinal tract evokes adverse consequences due to direct toxic actions or indirect disruption of intestinal homeostasis. Biliary concentration of the chemotherapy agent 5-fluorodeoxyuridine (FUDR) and other compounds is associated with bile duct damage while enterohepatic cycling of antibiotics contributes to the disruptions of gut flora that produce diarrhea. The goal of this review is to describe key evidence that biliary delivery is an important factor in the intestinal injury caused by representative drugs. Emphasis will be given to 3 widely used drugs whose reactive metabolites are plausible causes of small intestinal injury, namely the nonsteroidal anti-inflammatory drug (NSAID) diclofenac, the immunosuppressant mycophenolic acid (MPA), and the chemotherapy agent irinotecan. Capsule endoscopy and other sensitive diagnostic techniques have documented a previously unappreciated, high prevalence of small intestinal injury among NSAID users. Clinical use of MPA and irinotecan is frequently associated such severe intestinal injury that dosage must be reduced. Observations from clinical and experimental studies have defined key events in the pathogenesis of these drugs, including roles for multidrug resistance-associated protein 2 (MRP2) and other transporters in biliary secretion and adduction of enterocyte proteins by reactive acyl glucuronide metabolites as a likely mechanism for intestinal injury. New strategies for minimizing the adverse intestinal consequences of irinotecan chemotherapy illustrate how basic information about key events in the biliary secretion of drugs and the nature of their proximate toxicants can lead to safer protocols for drugs.
Collapse
Affiliation(s)
- Mary Treinen-Moslen
- Departments of Pathology and Internal Medicine, University of Texas Medical Branch, 1108 Strand St Building, Room 105, 300 University Boulevard, Galveston, TX 77555-0632, USA.
| | | |
Collapse
|
131
|
Abstract
Hepatic infiltration of polymorphonuclear leukocytes (neutrophils) is an early response to tissue injury, cellular stress or systemic inflammation. Neutrophil activation is vital for host-defense and the removal of cell debris but can also cause additional tissue damage or even liver failure. In order to prevent the detrimental effects of neutrophils without compromising host-defense reactions, it is important to understand the mechanisms of neutrophil hepatotoxicity. The first step in the pathophysiology is the priming and recruitment of neutrophils into the liver vasculature by inflammatory mediators, e.g. cytokines, chemokines, or complement factors. Most critical for parenchymal cell damage is the accumulation in sinusoids, which does not depend on cellular adhesion molecules. The next step is the extravasation into the parenchyma. This process requires a chemotactic signal from hepatocytes or already extravasated neutrophils and depends on cellular adhesion molecules on neutrophils (beta(2) or beta(1) integrins) and on endothelial cells (intercellular or vascular cell adhesion molecules). The third step is the direct contact with target cells (hepatocytes), which involves beta(2) integrins and triggers the full activation of the neutrophil with a long-lasting adherence-dependent oxidant stress and degranulation. The oxidants diffuse into hepatocytes and trigger an intracellular oxidant stress, mitochondrial dysfunction and eventually cause oncotic necrotic cell death. Neutrophil-derived proteases facilitate extravasation and are involved in the regulation of inflammatory mediator production. Based on these mechanisms, it appears that strengthening of the intracellular defense mechanisms in hepatocytes may be the most promising therapeutic approach to selectively prevent neutrophil-mediated tissue damage without compromising their host-defense function.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Liver Research Institute, University of Arizona, College of Medicine, Tucson, AZ 85737, USA.
| | | |
Collapse
|