101
|
Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2009; 223:86-101. [PMID: 19769967 DOI: 10.1016/j.expneurol.2009.09.009] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/27/2022]
Abstract
Artificial nerve guide conduits have the advantage over autografts in terms of their availability and ease of fabrication. However, clinical outcomes associated with the use of artificial nerve conduits are often inferior to that of autografts, particularly over long lesion gaps. There have been significant advances in the designs of artificial nerve conduits over the years. In terms of materials selection and design, a wide variety of new synthetic polymers and biopolymers have been evaluated. The inclusion of nerve conduit lumen fillers has also been demonstrated as essential to enable nerve regeneration across large defect gaps. These lumen filler designs have involved the integration of physical cues for contact guidance and biochemical signals to control cellular function and differentiation. Novel conduit architectural designs using porous and fibrous substrates have also been developed. This review highlights the recent advances in synthetic nerve guide designs for peripheral nerve regeneration, and the in vivo applicability and future prospects of these nerve guide conduits.
Collapse
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Block N1.2-B2-20, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
102
|
Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. J Clin Neurosci 2009; 16:1211-7. [PMID: 19596581 DOI: 10.1016/j.jocn.2009.01.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 01/05/2009] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived stem cells enhance the rate of regeneration and clinical improvement in nerve injury, spinal cord injury and brain infarction. Recent experiments in rat spinal cord demyelination showed that remyelination was specific to intravenous delivery of the bone marrow-derived mononuclear cell (BM-MNC) fraction, although the specific role of this fraction in peripheral nerve regeneration has not been examined. Therefore we evaluated the role of BM-MNCs in peripheral nerve regeneration in the rat sciatic nerve transection model. After anesthesia, the right sciatic nerve of 20 adult-male Wistar rats was transected under an operating microscope. In the test group, the cut ends of the nerve were approximated with two epineural microsutures, the gap was filled with rat BM-MNCs and the approximated nerve ends were covered with fibrin glue. In the control group, the transected nerve ends were repaired with two epineural microsutures and fibrin sealant only. Histological assessment of the nerve was performed 30 days and 60 days after the operation and regenerative changes were compared between the two groups. The recovery after nerve anastamosis was far better in the test group at both 30 days and 60 days. There was a statistically significant difference in axonal regeneration, remyelination and myelin thickness at sites 5mm and 10mm from the site of repair of the nerve. Schwann cell proliferation and degenerative changes were more prevalent in the controls. This study demonstrates that local delivery of BM-MNCs (which can be isolated easily from bone marrow aspirates) into injured peripheral nerve increases the rate and degree of nerve regeneration. The present study highlights the role of BM-MNCs in peripheral nerve regeneration.
Collapse
|
103
|
de Ruiter GCW, Spinner RJ, Yaszemski MJ, Windebank AJ, Malessy MJA. Nerve tubes for peripheral nerve repair. Neurosurg Clin N Am 2009; 20:91-105, vii. [PMID: 19064182 DOI: 10.1016/j.nec.2008.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of the nerve tube has been a major topic of research in the field of peripheral nerve regeneration for more than 25 years. The first nerve tubes are currently available for clinical use. This article gives an overview of the experimental and clinical data on nerve tubes for peripheral nerve repair and critically analyzes the data on which the step from laboratory to clinical use is based. In addition, it briefly discusses the different modifications to the common single lumen nerve tubes that may improve the results of generation.
Collapse
Affiliation(s)
- Godard C W de Ruiter
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
104
|
|
105
|
Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 2009; 1262:7-15. [DOI: 10.1016/j.brainres.2009.01.056] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/15/2009] [Accepted: 01/17/2009] [Indexed: 12/17/2022]
|
106
|
de Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 2009; 26:E5. [PMID: 19435445 PMCID: PMC2978041 DOI: 10.3171/foc.2009.26.2.e5] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nerve tubes, guides, or conduits are a promising alternative for autologous nerve graft repair. The first biodegradable empty single lumen or hollow nerve tubes are currently available for clinical use and are being used mostly in the repair of small-diameter nerves with nerve defects of < 3 cm. These nerve tubes are made of different biomaterials using various fabrication techniques. As a result these tubes also differ in physical properties. In addition, several modifications to the common hollow nerve tube (for example, the addition of Schwann cells, growth factors, and internal frameworks) are being investigated that may increase the gap that can be bridged. This combination of chemical, physical, and biological factors has made the design of a nerve conduit into a complex process that demands close collaboration of bioengineers, neuroscientists, and peripheral nerve surgeons. In this article the authors discuss the different steps that are involved in the process of the design of an ideal nerve conduit for peripheral nerve repair.
Collapse
Affiliation(s)
| | | | - Michael J. Yaszemski
- Department of Orthopedic Surgery and Laboratory for Biomedical Engineering, Mayo Clinic Rochester, Minnesota
| | - Anthony J. Windebank
- Department of Neurology and Laboratory for Neuroscience, Mayo Clinic Rochester, Minnesota
| | - Robert J. Spinner
- Department of Orthopedic Surgery and Laboratory for Biomedical Engineering, Mayo Clinic Rochester, Minnesota
- Department of Neurosurgery, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
107
|
Kempton LB, Gonzalez MH, Leven RM, Hughes WF, Beddow S, Santhiraj Y, Archibald SJ, El Hassan B, Shott S, Kerns JM. Assessment of Axonal Growth into Collagen Nerve Guides Containing VEGF-Transfected Stem Cells in Matrigel. Anat Rec (Hoboken) 2009; 292:214-24. [DOI: 10.1002/ar.20844] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
108
|
Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience 2009; 159:540-9. [PMID: 19174184 DOI: 10.1016/j.neuroscience.2008.12.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/11/2008] [Accepted: 12/23/2008] [Indexed: 12/23/2022]
Abstract
A rat model of complete sciatic nerve transection was used to evaluate the effect of bone marrow mononuclear cells (BMMC) transplanted to the injury site immediately after lesion. Rats treated with BMMC had both sensory and motor axons reaching the distal stump earlier compared to untreated animals. In addition, BMMC transplantation reduced cell death in dorsal root ganglia (DRG) compared to control animals. Transplanted BMMC remained in the lesion site for several days but there is no evidence of BMMC differentiation into Schwann cells. However, an increase in the number of Schwann cells, satellite cells and astrocytes was observed in the treated group. Moreover, neutralizing antibodies for nerve growth factor (NGF) (but not for brain-derived neurotrophic factor and ciliary-derived neurotrophic factor) added to the BMMC-conditioned medium reduced neurite growth of sensory and sympathetic neurons in vitro, suggesting that BMMC release NGF, improve regeneration of the sciatic nerve in the adult rat and stimulate Schwann and satellite cell proliferation or a combination of both.
Collapse
|
109
|
Hsu SH, Su CH, Chiu IM. A Novel Approach to Align Adult Neural Stem Cells on Micropatterned Conduits for Peripheral Nerve Regeneration: A Feasibility Study. Artif Organs 2009; 33:26-35. [DOI: 10.1111/j.1525-1594.2008.00671.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
110
|
Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, Nishio Y, Kadota R, Mannoji C, Miyashita T, Okawa A, Yoshinaga K, Yamazaki M. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell–derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine 2008; 9:600-10. [DOI: 10.3171/spi.2008.9.08135] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Object
The authors previously reported that Schwann cells (SCs) could be derived from bone marrow stromal cells (BMSCs) in vitro and that they promoted axonal regeneration of completely transected rat spinal cords in vivo. The aim of the present study is to evaluate the efficacy of transplanted BMSC-derived SCs (BMSC-SCs) in a rat model of spinal cord contusion, which is relevant to clinical spinal cord injury.
Methods
Bone marrow stromal cells were cultured as plastic-adherent cells from the bone marrow of GFPtransgenic rats. The BMSC-SCs were derived from BMSCs in vitro with sequential treatment using beta-mercaptoethanol, all-trans-retinoic acid, forskolin, basic fibroblast growth factor, platelet derived–growth factor, and heregulin. Schwann cells were cultured from the sciatic nerve of neonatal, GFP-transgenic rats. Immunocytochemical analysis and the reverse transcriptase–polymerase chain reaction were performed to characterize the BMSC-SCs. For transplantation, contusions with the New York University impactor were delivered at T-9 in 10- to 11-week-old male Wistar rats. Four groups of rats received injections at the injury site 7 days postinjury: the first received BMSCSCs and matrigel, a second received peripheral SCs and matrigel, a third group received BMSCs and matrigel, and a fourth group received matrigel alone. Histological and immunohistochemical studies, electron microscopy, and functional assessments were performed to evaluate the therapeutic effects of BMSC-SC transplantation.
Results
Immunohistochemical analysis and reverse transcriptase–polymerase chain reaction revealed that BMSC-SCs have characteristics similar to SCs not only in their morphological characteristics but also in their immunocytochemical phenotype and genotype. Histological examination revealed that the area of the cystic cavity was significantly reduced in the BMSC-SC and SC groups compared with the control rats. Immunohistochemical analysis showed that transplanted BMSCs, BMSC-SCs, and SCs all maintained their original phenotypes. The BMSC-SC and SC groups had a larger number of tyrosine hydroxilase–positive fibers than the control group, and the BMSC-SC group had more serotonin-positive fibers than the BMSC or control group. The BMSC-SC group showed significantly better hindlimb functional recovery than in the BMSC and control group. Electron microscopy revealed that transplanted BMSC-SCs existed in association with the host axons.
Conclusions
Based on their findings, the authors concluded that BMSC-SC transplantation reduces the size of the cystic cavity, promotes axonal regeneration and sparing, results in hindlimb functional recovery, and can be a useful tool for spinal cord injury as a substitute for SCs.
Collapse
Affiliation(s)
| | - Masao Koda
- 3Department of Orthopaedic Surgery, Prefectural Togane Hospital, Chiba
| | - Mari Dezawa
- 4Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto; and
| | - Tomoko Kadota
- 2Bioenvironmental Medicine, Chiba University Graduate School of Medicine, Chiba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
In this study, we explored the competence of adipose-derived stem cells to differentiate into Schwann cells in vitro. Rat adipose-derived stem cells were sequentially treated with various factors beta-mercaptoethanol, all-trans-retinoic acid, followed by a mixture of forskolin, basic fibroblast growth factor, platelet-derived growth factor and heregulin. We found that differentiated adipose-derived stem cells displayed the morphology of Schwann cells. Western blotting and dual immunofluorescence staining confirmed that they produced proteins characteristic for Schwann cells, including S100 and glial fibrillary acidic protein. Furthermore, differentiated adipose-derived stem cells could enhance neurite outgrowth in coculture with sensory neurons. These results demonstrate that adipose-derived stem cells can differentiate into Schwann-like cells with morphological, phenotypic, and functional characteristics of Schwann cells.
Collapse
|
112
|
Papathanasopoulos A, Giannoudis PV. Biological considerations of mesenchymal stem cells and endothelial progenitor cells. Injury 2008; 39 Suppl 2:S21-32. [PMID: 18804570 DOI: 10.1016/s0020-1383(08)70012-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) have been demonstrated as an attractive cell source for tissue engineering applications because of their ability to be isolated and expanded. Even though MSCs and EPCs constitute a powerful candidate cell type for regenerative medicine, more knowledge in terms of their biological properties is required before using these cells as a routinely applied therapy in the clinical setting. The nature of their mobilizing, migratory and homing signals and the mechanisms of differentiation and incorporation into the target tissues need to be clarified and further characterized. This paper examines the biological properties of these cells, the animal trials that have been performed so far and highlights their therapeutic potential in the treatment of musculoskeletal and cardiovascular diseases.
Collapse
|
113
|
Grosheva M, Guntinas-Lichius O, Arnhold S, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats. Biol Chem 2008; 389:873-88. [DOI: 10.1515/bc.2008.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractRecently, we devised and validated a novel strategy in rats to improve the outcome of facial nerve reconstruction by daily manual stimulation of the target muscles. The treatment resulted in full recovery of facial movements (whisking), which was achieved by reducing the proportion of pathologically polyinnervated motor endplates. Here, we posed whether manual stimulation could also be beneficial after a surgical procedure potentially useful for treatment of large peripheral nerve defects, i.e., entubulation of the transected facial nerve in a conduit filled with suspension of isogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) in collagen. Compared to control treatment with collagen only, entubulation with BM-MSCs failed to decrease the extent of collateral axonal branching at the lesion site and did not improve functional recovery. Post-operative manual stimulation of vibrissal muscles also failed to promote a better recovery following entubulation with BM-MSCs. We suggest that BM-MSCs promote excessive trophic support for regenerating axons which, in turn, results in excessive collateral branching at the lesion site and extensive polyinnervation of the motor endplates. Furthermore, such deleterious effects cannot be overridden by manual stimulation. We conclude that entubulation with BM-MSCs is not beneficial for facial nerve repair.
Collapse
|
114
|
Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases. Med Mol Morphol 2008; 41:14-9. [PMID: 18470676 DOI: 10.1007/s00795-007-0389-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 12/21/2022]
Abstract
Because bone marrow stromal cells (MSCs) are easily accessible from both healthy donors and patients and can be expanded on a therapeutic scale, they have attracted attention for cell-based therapy. Benefits of MSCs have been discussed mainly from two aspects: one is their tissue protective and immunomodulatory effects, and the other is their capability under specific manipulations to differentiate into various cell types. In this review, their differentiation into functional neural and muscle cell lineages is the focus, and their potential to the application for tissue reconstruction in neurodegenerative and muscle degenerative diseases is discussed.
Collapse
|
115
|
Kalbermatten DF, Kingham PJ, Mahay D, Mantovani C, Pettersson J, Raffoul W, Balcin H, Pierer G, Terenghi G. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg 2008; 61:669-75. [PMID: 18218346 DOI: 10.1016/j.bjps.2007.12.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/27/2007] [Accepted: 12/10/2007] [Indexed: 11/27/2022]
Abstract
Peripheral nerve injury presents with specific problems of neuronal reconstructions, and from a clinical viewpoint a tissue engineering approach would facilitate the process of repair and regeneration. We have previously used artificial nerve conduits made from bioresorbable poly-3-hydroxybutyrate (PHB) in order to refine the ways in which peripheral nerves are repaired and reconnected to the target muscles and skin. The addition of Schwann cells (SC) or differentiated mesenchymal stem cells (dMSC) to the conduits enhances regeneration. In this study, we have used a matrix based on fibrin (Tisseel) to fill optimally the nerve-conduits with cells. In vitro analysis showed that both SC and MSC adhered significantly better to PHB in the presence of fibrin and cells continued to maintain their differentiated state. Cells were more optimally distributed throughout the conduit when seeded in fibrin than by delivery in growth medium alone. Transplantation of the nerve conduits in vivo showed that cells in combination with fibrin matrix significantly increased nerve regeneration distance (using PGP9.5 and S100 distal and proximal immunohistochemistry) when compared with empty PHB conduits. This study shows the beneficial combinatory effect of an optimised matrix, cells and conduit material as a step towards bridging nerve gaps which should ultimately lead to improved functional recovery following nerve injury.
Collapse
Affiliation(s)
- D F Kalbermatten
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Basel, CH-4031 Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Pan HC, Cheng FC, Chen CJ, Lai SZ, Lee CW, Yang DY, Chang MH, Ho SP. Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci 2007; 14:1089-1098. [PMID: 17954375 DOI: 10.1016/j.jocn.2006.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/18/2006] [Accepted: 08/26/2006] [Indexed: 12/11/2022]
Abstract
Amniotic fluid mesenchymal stem cells have the ability to secrete neurotrophic factors that are able to promote neuron survival in vitro. The purpose of this study was to evaluate the effects of neurotrophic factors secreted by rat amniotic fluid mesenchymal stem cells on regeneration of sciatic nerve after crush injury. Fifty Sprague-Dawley rats weighing 250-300 g were used. The left sciatic nerve was crushed with a vessel clamp. Rat amniotic fluid mesenchymal stem cells embedded in fibrin glue were delivered to the injured nerve. Enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry were used to detect neurotrophic factors secreted by the amniotic fluid mesenchymal stem cells. Nerve regeneration was assessed by motor function, electrophysiology, histology, and immunocytochemistry studies. Positive CD29/44, and negative CD11b/45, as well as high levels of expression of brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor, ciliary neurotrophic factor (CNTF), nerve growth factor, and neurotrophin-3 (NT-3) were demonstrated in amniotic fluid mesenchymal stem cells. Motor function recovery, the compound muscle action potential, and nerve conduction latency showed significant improvement in rats treated with amniotic fluid mesenchymal stem cells. ELISA measurement in retrieved nerves displayed statistically significant elevation of CNTF and NT-3. The immunocytochemical studies demonstrated positive staining for NT-3 and CNTF in transplanted cells. The histology and immunocytochemistry studies revealed less fibrosis and a high level of expression of S-100 and glial fibrillary acid protein at the crush site. Rat amniotic fluid mesenchymal stem cells may facilitate regeneration in the sciatic nerve after crush injury. The increased nerve regeneration found in this study may be due to the neurotrophic factors secreted by amniotic fluid mesenchymal stem cells.
Collapse
Affiliation(s)
- Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007; 8:755-65. [PMID: 17882253 DOI: 10.1038/nrn2212] [Citation(s) in RCA: 642] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA) is involved in the induction of neural differentiation, motor axon outgrowth and neural patterning. Like other developmental molecules, RA continues to play a role after development has been completed. Elevated RA signalling in the adult triggers axon outgrowth and, consequently, nerve regeneration. RA is also involved in the maintenance of the differentiated state of adult neurons, and disruption of RA signalling in the adult leads to the degeneration of motor neurons (motor neuron disease), the development of Alzheimer's disease and, possibly, the development of Parkinson's disease. The data described here strongly suggest that RA could be used as a therapeutic molecule for the induction of axon regeneration and the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Malcolm Maden
- MRC Centre for Developmental Neurobiology, fourth floor New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
118
|
Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 2007; 359:915-20. [PMID: 17573041 DOI: 10.1016/j.bbrc.2007.05.212] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 05/30/2007] [Indexed: 12/16/2022]
Abstract
We examined the availability of human bone marrow stromal cells (MSCs) as a source of transplantation therapy in nerve injury. Human MSCs were subjected to a series of treatments with a reducing agent, retinoic acid and a combination of trophic factors. Morphologically and immunocytochemically, such treated cells differentiated into Schwann cell characteristics in vitro. Cells were filled into a transpermeable tube, transplanted into the gap made in the rat sciatic nerve of a rat and followed up to 3weeks under the control of immunosuppressant. In contrast to untreated human MSCs, differentiated human MSCs expressed Schwann cell markers in vivo and supported regenerating axons. These results suggest that human MSCs can be induced to be a substitute for Schwann cells that may be applied for nerve regeneration.
Collapse
Affiliation(s)
- Satoshi Shimizu
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
119
|
Pfister LA, Papaloïzos M, Merkle HP, Gander B. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst 2007; 12:65-82. [PMID: 17565531 DOI: 10.1111/j.1529-8027.2007.00125.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peripheral nerves possess the capacity of self-regeneration after traumatic injury. Transected peripheral nerves can be bridged by direct surgical coaptation of the two nerve stumps or by interposing autografts or biological (veins) or synthetic nerve conduits (NC). NC are tubular structures that guide the regenerating axons to the distal nerve stump. Early synthetic NC have primarily been made of silicone because of the relative flexibility and biocompatibility of this material and because medical-grade silicone tubes were readily available in various dimensions. Nowadays, NC are preferably made of biodegradable materials such as collagen, aliphatic polyesters, or polyurethanes. Although NC assist in guiding regenerating nerves, satisfactory functional restoration of severed nerves may further require exogenous growth factors. Therefore, authors have proposed NC with integrated delivery systems for growth factors or growth factor-producing cells. This article reviews the most important designs of NC with integrated delivery systems for localized release of growth factors. The various systems discussed comprise NC with growth factors being released from various types of matrices, from transplanted cells (Schwann cells or mesenchymal stem cells), or through genetic modification of cells naturally present at the site of injured tissue. Acellular delivery systems for growth factors include the NC wall itself, biodegradable microspheres seeded onto the internal surface of the NC wall, or matrices that are filled into the lumen of the NC and immobilize the growth factors through physical-chemical interactions or specific ligand-receptor interactions. A very promising and elegant system appears to be longitudinally aligned fibers inserted in the lumen of a NC that deliver the growth factors and provide additional guidance for Schwann cells and axons. This review also attempts to appreciate the most promising approaches and emphasize the importance of growth factor delivery kinetics.
Collapse
Affiliation(s)
- Lukas A Pfister
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
120
|
Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, Wang CC, Wang WY, Huang YS, Hsu SH. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 2007; 204:443-453. [PMID: 17222827 DOI: 10.1016/j.expneurol.2006.12.004] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 12/17/2022]
Abstract
Cell transplantation using bone marrow stromal cells (BMSCs) to alleviate neurological deficits has recently become the focus of research in regenerative medicine. Evidence suggests that secretion of various growth-promoting substances likely plays an important role in functional recovery against neurological diseases. In an attempt to identify a possible mechanism underlying the regenerative potential of BMSCs, this study investigated the production and possible contribution of neurotrophic factors by transected sciatic nerve defect in a rat model with a 15 mm gap. Cultured BMSCs became morphologically homogeneous with fibroblast-like shape after ex vivo expansion. We provided several pieces of evidence for the beneficial effects of implanted fibroblast-like BMSCs on sciatic nerve regeneration. When compared to silicone tube control animals, this treatment led to (i) improved walking behavior as measured by footprint analysis, (ii) reduced loss of gastrocnemius muscle weight and EMG magnitude, and (iii) greater number of regenerating axons within the tube. Cultured fibroblast-like BMSCs constitutively expressed trophic factors and supporting substances, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), collagen, fibronectin, and laminin. The progression of the regenerative process after BMSC implantation was accompanied by elevated expression of neurotrophic factors at both early and later phases. These results taken together, in addition to documented Schwann cell-like differentiation, provide evidence indicating the strong association of neurotrophic factor production and the regenerative potential of implanted BMSCs.
Collapse
Affiliation(s)
- Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Marchesi C, Pluderi M, Colleoni F, Belicchi M, Meregalli M, Farini A, Parolini D, Draghi L, Fruguglietti ME, Gavina M, Porretti L, Cattaneo A, Battistelli M, Prelle A, Moggio M, Borsa S, Bello L, Spagnoli D, Gaini SM, Tanzi MC, Bresolin N, Grimoldi N, Torrente Y. Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia 2007; 55:425-38. [PMID: 17203471 DOI: 10.1002/glia.20470] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regeneration in the peripheral nervous system is often incomplete and the treatment of severe lesions with nerve tissue loss is primarily aimed at recreating nerve continuity. Guide tubes of various types, filled with Schwann cells, stem cells, or nerve growth factors are attractive as an alternative therapy to nerve grafts. In this study, we evaluated whether skin-derived stem cells (SDSCs) can improve peripheral nerve regeneration after transplantation into nerve guides. We compared peripheral nerve regeneration in adult rats with sciatic nerve gaps of 16 mm after autologous transplantation of GFP-labeled SDSCs into two different types of guides: a synthetic guide, obtained by dip coating with a L-lactide and trimethylene carbonate (PLA-TMC) copolymer and a collagen-based guide. The sciatic function index and the recovery rates of the compound muscle action potential were significantly higher in the animals that received SDSCs transplantation, in particular, into the collagen guide, compared to the control guides filled only with PBS. For these guides the morphological and immunohistochemical analysis demonstrated an increased number of myelinated axons expressing S100 and Neurofilament 70, suggesting the presence of regenerating nerve fibers along the gap. GFP positive cells were found around regenerating nerve fibers and few of them were positive for the expression of glial markers as S-100 and glial fibrillary acidic protein. RT-PCR analysis confirmed the expression of S100 and myelin basic protein in the animals treated with the collagen guide filled with SDSCs. These data support the hypothesis that SDSCs could represent a tool for future cell therapy applications in peripheral nerve regeneration.
Collapse
Affiliation(s)
- C Marchesi
- Fondazione IRCCS Ospedale Maggiore Policlinico-Mangiagalli e Regina Elena of Milan, Stem Cell Laboratory, Department of Neurological Sciences, Centro Dino Ferrari, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Nie X, Zhang YJ, Tian WD, Jiang M, Dong R, Chen JW, Jin Y. Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Int J Oral Maxillofac Surg 2007; 36:32-8. [PMID: 17169530 DOI: 10.1016/j.ijom.2006.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 02/27/2006] [Accepted: 06/20/2006] [Indexed: 11/28/2022]
Abstract
Ectomesenchymal stem cells (EMSCs) originate from the cranial neural crest. They are a potential source of neuronal and Schwann cells (SCs) of the peripheral nervous system (PNS) during embryonic development. The third passage of EMSCs enzymatically isolated from the mandibular processes of Sprague-Dawley rats were cultured in forskolin and bovine pituitary extract for 6 days to generate functional Schwann cell phenotypes. Next, 10-mm defects in the sciatic nerves were bridged with an autograft, tissue-engineered nerve filled with differentiated cells in collagen, or a PLGA conduit alone in 18 rats, and the nerve defects of another four rats were left untreated. The regenerated nerves were evaluated by the sciatic functional index (SFI) monthly and by histological analysis 4 months after grafting. The recovery index of the sciatic nerve improved significantly in the autograft and tissue-engineered nerve groups, both of which were superior to the PLGA group. In animals transplanted with the EMSCs, there was greater regeneration than with conduit alone during the same period of implantation. These results show that when EMSCs are transplanted to a peripheral nerve defect they differentiate into supportive cells that contribute to the promotion of axonal regeneration.
Collapse
Affiliation(s)
- X Nie
- Department of Oral Histology and Pathology, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | |
Collapse
|
123
|
Dezawa M. Induction system of neuronal and muscle cells from bone marrow stromal cells and applications for degenerative diseases. Inflamm Regen 2007. [DOI: 10.2492/inflammregen.27.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
124
|
Al-Hayani A. Ultrastructural Changes of Schwann Cells during Nerve Regeneration Following a Crush Injury of the Sural Nerve in Rats. J Taibah Univ Med Sci 2007. [DOI: 10.1016/s1658-3612(07)70024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
125
|
Chew SY, Mi R, Hoke A, Leong KW. Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. ADVANCED FUNCTIONAL MATERIALS 2007; 17:1288-1296. [PMID: 18618021 PMCID: PMC2447933 DOI: 10.1002/adfm.200600441] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sustained release of proteins from aligned polymeric fibers holds great potential in tissue-engineering applications. These protein-polymer composite fibers possess high surface-area-to-volume ratios for cell attachment, and can provide biochemical and topographic cues to enhance tissue regeneration. Aligned biodegradable polymeric fibers that encapsulate human glial cell-derived neurotrophic factor (GDNF, 0.13 wt%) were fabricated via electrospinning a copolymer of caprolactone and ethyl ethylene phosphate (PCLEEP) with GDNF. The protein was randomly dispersed throughout the polymer matrix in aggregate form, and released in a sustained manner for up to two months. The efficacy of these composite fibers was tested in a rat model for peripheral nerve-injury treatment. Rats were divided into four groups, receiving either empty PCLEEP tubes (control); tubes with plain PCLEEP electrospun fibers aligned longitudinally (EF-L) or circumferentially (EF-C); or tubes with aligned GDNF-PCLEEP fibers (EF-L-GDNF). After three months, bridging of a 15 mm critical defect gap by the regenerated nerve was observed in all the rats that received nerve conduits with electrospun fibers, as opposed to 50% in the control group. Electrophysiological recovery was seen in 20%, 33%, and 44% of the rats in the EF-C, EF-L, and EF-L-GDNF groups respectively, whilst none was observed in the controls. This study has demonstrated that, without further modification, plain electrospun fibers can help in peripheral nerve regeneration; however, the synergistic effect of an encapsulated growth factor facilitated a more significant recovery. This study also demonstrated the novel use of electrospinning to incorporate biochemical and topographical cues into a single implant for in vivo tissue-engineering applications.
Collapse
Affiliation(s)
- Sing Yian Chew
- Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD 21205 (USA)
| | - Ruifa Mi
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205 (USA)
| | - Ahmet Hoke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205 (USA). Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205 (USA)
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 (USA), E-mail:
| |
Collapse
|
126
|
Amr SM, Moharram AN, Abdel-Meguid KMS. Augmentation of partially regenerated nerves by end-to-side side-to-side grafting neurotization: experience based on eight late obstetric brachial plexus cases. J Brachial Plex Peripher Nerve Inj 2006; 1:6. [PMID: 17147803 PMCID: PMC1764873 DOI: 10.1186/1749-7221-1-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/05/2006] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The effect of end-to-side neurotization of partially regenerated recipient nerves on improving motor power in late obstetric brachial plexus lesions, so-called nerve augmentation, was investigated. METHODS Eight cases aged 3-7 years were operated upon and followed up for 4 years (C5,6 rupture C7,8 T1 avulsion: 5; C5,6,7,8 rupture T1 avulsion: 1; C5,6,8 T1 rupture C7 avulsion: 1; C5,6,7 rupture C8 T1 compression: one 3 year presentation after former neurotization at 3 months). Grade 1-3 muscles were neurotized. Grade 0 muscles were neurotized, if the electromyogram showed scattered motor unit action potentials on voluntary contraction without interference pattern. Donor nerves included: the phrenic, accessory, descending and ascending loops of the ansa cervicalis, 3rd and 4th intercostals and contralateral C7. RESULTS Superior proximal to distal regeneration was observed firstly. Differential regeneration of muscles supplied by the same nerve was observed secondly (superior supraspinatus to infraspinatus regeneration). Differential regeneration of antagonistic muscles was observed thirdly (superior biceps to triceps and pronator teres to supinator recovery). Differential regeneration of fibres within the same muscle was observed fourthly (superior anterior and middle to posterior deltoid regeneration). Differential regeneration of muscles having different preoperative motor powers was noted fifthly; improvement to Grade 3 or more occurred more in Grade 2 than in Grade 0 or Grade 1 muscles. Improvements of cocontractions and of shoulder, forearm and wrist deformities were noted sixthly. The shoulder, elbow and hand scores improved in 4 cases. LIMITATIONS The sample size is small. Controls are necessary to rule out any natural improvement of the lesion. There is intra- and interobserver variability in testing muscle power and cocontractions. CONCLUSION Nerve augmentation improves cocontractions and muscle power in the biceps, pectoral muscles, supraspinatus, anterior and lateral deltoids, triceps and in Grade 2 or more forearm muscles. As it is less expected to improve infraspinatus power, it should be associated with a humeral derotation osteotomy and tendon transfer. Function to non improving Grade 0 or 1 forearm muscles should be restored by muscle transplantation. LEVEL OF EVIDENCE Level IV, prospective case series.
Collapse
Affiliation(s)
- Sherif M Amr
- From the Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | - Ashraf N Moharram
- From the Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | - Kamal MS Abdel-Meguid
- From the Department of Orthopaedics and Traumatology, Fayoum University, Fayoum, Egypt
| |
Collapse
|
127
|
Setton-Avruj CP, Musolino PL, Salis C, Alló M, Bizzozero O, Villar MJ, Soto EF, Pasquini JM. Presence of alpha-globin mRNA and migration of bone marrow cells after sciatic nerve injury suggests their participation in the degeneration/regeneration process. Exp Neurol 2006; 203:568-78. [PMID: 17126834 DOI: 10.1016/j.expneurol.2006.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/29/2006] [Accepted: 09/18/2006] [Indexed: 11/18/2022]
Abstract
We have previously reported that in the distal stump of ligated sciatic nerves, there is a change in the distribution of myelin basic protein (MBP) and P0 protein immunoreactivities. These results agreed with the studies of myelin isolated from the distal stump of animals submitted to ligation of the sciatic nerve, showing a gradual increase in a 14 kDa band with an electrophoretic mobility similar to that of an MBP isoform, among other changes. This band, which was resolved into two bands of 14 and 15 kDa using a 16% gel, was found to contain a mixture of MBP fragments and peptides with great homology with alpha- and beta-globins. In agreement with these results, we have demonstrated that the mRNA of alpha-globin is present in the proximal and distal stumps of the ligated nerve. It is also detected at very low levels in Schwann cells isolated from normal nerves. These results could be due to the presence of alpha- and/or beta-globin arising from immature cells of the erythroid series. Also, they could be present in macrophages, which spontaneously migrate to the injured nerve to promote the degradation of myelin proteins. Cells isolated from normal adult rat bone marrow which were injected intraortically were found to migrate to the injured area. These cells could contribute to the remyelination of the damaged area participating in the removal of myelin debris, through their transdifferentiation into Schwann cells or through their fusion with preexisting Schwann cells in the distal stump of the injured sciatic nerve.
Collapse
Affiliation(s)
- C P Setton-Avruj
- Department of Biological Chemistry and Institute of Biological and Physical Chemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Junin 956, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Pan HC, Yang DY, Chiu YT, Lai SZ, Wang YC, Chang MH, Cheng FC. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci 2006; 13:570-5. [PMID: 16769515 DOI: 10.1016/j.jocn.2005.06.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/07/2005] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Amniotic fluid mesenchymal stem cells (MSCs) have the potential to differentiate into neuronal stem cells in vitro. We evaluated using amniotic fluid MSCs to support or enhance the ability of the injured sciatic nerve to cross a nerve gap. MATERIALS AND METHODS We created a 5 mm nerve defect in Sprague Dawley rats. One group received therapy with MSCs embedded into woven oxidised regenerated cellulose gauze (Surgical; Ethicon, Somerville, NJ) and fibrin glue, while a control group received woven Surgicel and fibrin glue only. Evaluation methods included behavioural, electrophysiological and immunohistochemical studies. RESULTS In gait analysis, the angle of the ankles in the treatment and control group were 46.4 degrees (standard deviation [SD]=15 degrees) and 36 degrees (SD=8.2 degrees), respectively, which was statistically significant (p=0.045). Five of 10 treated rats (50%) demonstrated partial foot movement, while none of the control group had any movement. The percentage amplitude of muscle compound action potential in the experimental group was 43% (SD=12.5%) compared to 29% (SD=8.8%) in the control group (p=0.038). The conduction latencies in the control and experimental groups was 2.5 ms (SD=0.45) and 1.7 ms (SD=0.47), respectively (p=0.005). Histological examination demonstrated that 70% of the treatment group achieved a maximum axon diameter percentage across the nerve gap of greater than 50%, compared with 0% in the control group. There were no differences in direction of fibre growth and fibrotic reaction between the two groups. CONCLUSION Amniotic fluid MSC can augment growth of injured nerve across a nerve gap. This effect may be due to neurotrophic or induction effects of the MSC interacting with Schwann cells. Further study is required to determine the underlying mechanism of this effect.
Collapse
Affiliation(s)
- Hung-Chuan Pan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, (40705), Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
129
|
Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol 2006; 26:1235-52. [PMID: 16779672 PMCID: PMC11881818 DOI: 10.1007/s10571-006-9029-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/14/2005] [Indexed: 12/17/2022]
Abstract
AIMS Demyelination plays a crucial role in neurodegenerative processes and traumatic disorders. One possibility to achieve remyelination and subsequent restoration of neuronal function is to provide an exogenous source of myelinating cells via transplantation. In this context, mesenchymal stem cells (MSCs) have attracted interest. They are multipotent stem cells that differentiate into cells of the mesodermal lineage like bone, cartilage, fat, and muscle. Although adult, their differentiation potential is remarkable, and they are able to transdifferentiate. METHODS We transformed cultivated rat MSCs into myelinating cells by using a cytokine cocktail. Transdifferentiated MSCs were characterized by an enhanced expression of LNGF-receptor, Krox20, and CD104, and a decreased expression of BMP receptor-1A as compared to untreated MSCs. The myelinating capacity was evaluated in vitro and in vivo. Therefore, PC12 cells, normally unmyelinated, were cocultivated with MSCs, transdifferentiated MSCs, and Schwann cells, or the respective cells were grafted into an autologous muscle conduit bridging a 2-cm gap in the rat sciatic nerve. Myelination of PC12 cells was demonstrated by electron microscopy. In vivo, after 3 and 6 weeks regeneration including myelination was monitored histologically and morphometrically. Autologous nerves and cell-free muscle grafts were used as control. RESULTS Schwann cells and transdifferentiated MSCs were able to myelinate PC12 cells after 14 days in vitro. In vivo, autologous nerve grafts demonstrated the best results in all regenerative parameters. An appropriate myelination was noted in the Schwann cell groups and, albeit with restrictions, in the transdifferentiated MSC groups, while regeneration in the MSC groups and in the cell-free groups was impaired. CONCLUSION Our findings demonstrate that it may be possible to differentiate MSCs into therapeutically useful cells for clinical applications in myelin defects.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Medical Neurobiology, Otto-von-Guericke University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
130
|
Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. ACTA ACUST UNITED AC 2006; 12:1451-65. [PMID: 16846343 DOI: 10.1089/ten.2006.12.1451] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) were evaluated as an alternative source for tissue engineering of peripheral nerves. MSCs, transdifferentiated MSCs, or Schwann cells cultured from male rats were grafted into devitalized autologous muscle conduits bridging a 2-cm sciatic nerve gap in female rats. The differentiation potential of MSCs and transformed cultivated MSCs into Schwann cell-like cells was exploited using a cocktail of cytokines. Polymerase chain reaction of the SRY gene confirmed the presence of the implanted cells in the grafts. After 6 weeks, regeneration was monitored clinically, histologically, and morphometrically. Autologous nerves and cell-free muscle grafts were used as control. Revascularization studies suggested that transdifferentiated MSCs, in contrast to undifferentiated MSCs, facilitated neo-angiogenesis and did not influence macrophage recruitment. Autologous nerve grafts demonstrated the best results in all regenerative parameters. An appropriate regeneration was noted in the Schwann cell-groups and, albeit with restrictions, in the transdifferentiated MSC groups, whereas regeneration in the MSC group and in the cell-free group was impaired. The results indicate that transdifferentiated MSCs implanted into devitalized muscle grafts are able to support peripheral nerve regeneration to some extent, and offer a potential for new therapeutic strategies.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Medical Neurobiology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
131
|
Coronel MF, Musolino PL, Villar MJ. Selective migration and engraftment of bone marrow mesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction. Neurosci Lett 2006; 405:5-9. [PMID: 16806704 DOI: 10.1016/j.neulet.2006.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/22/2006] [Accepted: 06/07/2006] [Indexed: 01/19/2023]
Abstract
Bone marrow mesenchymal stem cells (MSCs) preferentially migrate to the injured hemisphere when administered intravenously to rats with traumatic or ischemic brain injuries. In this study, we have investigated the localization of MSCs injected into the lumbar-4 dorsal root ganglion (L4-DRG) of rats with a sciatic nerve single ligature nerve constriction (SLNC). MSCs were isolated by their adherence to plastic, cultured until confluence and labelled with Hoechst. Animals with a unilateral injection of MSCs were subjected to an ipsilateral, bilateral or contralateral SLNC. After 9 days, they were perfused and the lumbar DRGs were dissected out, cut in a cryostat and observed with a fluorescence microscope. Large numbers of Hoechst-positive cells were observed in the injected L4-DRG, distributed around primary afferent neurons, resembling the anatomical localization of glial cells. In animals with an ipsilateral SLNC, some cells were detected in the ipsilateral L3, L5 or L6-DRGs but not in the contralateral ganglia. In animals with a bilateral lesion, MSCs migrated to both the ipsilateral and contralateral DRGs whereas in animals with a contralateral ligature, MSCs migrated to the contralateral DRGs. These results suggest that MSCs preferentially engraft in DRGs hosting primary sensory neurons affected by a lesion of their peripheral branches. Further studies should be carried out in order to elucidate the molecular mechanisms involved in this migration and homing, in order to evaluate the possible use of MSCs as a new therapeutic strategy for the treatment of peripheral nerve neuropathies.
Collapse
Affiliation(s)
- María Florencia Coronel
- School of Biomedical Sciences, Austral University, Av. Pte. Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | | | | |
Collapse
|
132
|
Dezawa M, Hoshino M, Ide C. Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons. Expert Opin Biol Ther 2006; 5:427-35. [PMID: 15934822 DOI: 10.1517/14712598.5.4.427] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many neurodegenerative diseases are attributed to the degeneration of neurons with subsequent functional loss. Cell transplantation is a strategy with potential for treating such diseases, and many kinds of cells are considered candidates for transplantation therapy. Bone marrow stromal cells (MSCs) have great potential as therapeutic agents, as they are easy to isolate and expand from patients without serious ethical and technical problems. The authors have found a method for the highly efficient, exclusive and specific induction of functional postmitotic neuronal cells from both rat and human MSCs. Gene transfer of Notch intracellular domain (NICD) followed by the administration of certain trophic factors induced mature neurons expressing neuronal markers, some of which showed action potentials. Induced neurons were transplanted to animal models of neurodegenerative disorders, including Parkinson's disease and ischaemic brain injury, resulting in the successful integration of transplanted cells and improvement in function of the transplanted animals. This review summarises the respective potentials, benefits and drawbacks of MSC-derived neurons, and discusses the possibility of their clinical application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | |
Collapse
|
133
|
Aquino JB, Hjerling-Leffler J, Koltzenburg M, Edlund T, Villar MJ, Ernfors P. In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 2006; 198:438-49. [PMID: 16442526 DOI: 10.1016/j.expneurol.2005.12.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 12/25/2022]
Abstract
Boundary cap cells can generate neurons as well as peripheral glia during embryonic development (Maro, G.S., Vermeren, M., Voiculescu, O., Melton, L., Cohen, J., Charnay, P., Topilko, P., 2004. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci. 7 (9), 930-938), and, recently, the boundary cap was shown to contain multipotent stem cells (Hjerling-Leffler, J., Marmigère, F., Heglind, M., Cederberg, A., Koltzenburg, M., Enerbäck, S., Ernfors, P., 2005. The boundary cap, a source of neural crest stem cells generating multiple sensory neuron subtypes. Development. 132 (11), 2623-2632). The ability of stem cells to generate mature functional glial phenotypes has not been addressed. In this study, we have explored the competence of boundary neural crest stem cells (bNCSCs) to differentiate into mature functional Schwann cells (SCs) in vitro and in vivo. bNCSCs failed to differentiate into SCs in vitro when cultured in a defined media and in vivo when grafted into adult rat sciatic nerves. However, in the presence of neuregulins, during long-term cultures, the majority of bNCSCs differentiated into SCs. After analysis of the in vivo expression of Sox2, Sox10, S100, GFAP, fibronectin and Krox20 in the glial lineages, we used these markers to characterize differentiation of the bNCSCs. Gliogenesis of bNCSCs proceeded similar to that in vivo by sequentially adopting a SC precursor and immature Schwann cell before maturing into myelinating and non-myelinating SCs. In co-culture with explanted dorsal root ganglia (DRG) as well as in vivo in transplants to the axotomized sciatic nerve, these bNCSC-derived SCs myelinated axons as shown by ensheathing of neuronal processes and expression of myelin basic proteins (MBP). These results show that, under appropriate conditions, bNCSCs can generate mature SCs that are functional and can myelinate axons in regenerating nerves.
Collapse
Affiliation(s)
- Jorge B Aquino
- Unit of Molecular Neurobiology-MBB, Karolinska Institutet, Scheeles vag 1 A1:2, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
134
|
Pereira Lopes FR, Camargo de Moura Campos L, Dias Corrêa J, Balduino A, Lora S, Langone F, Borojevic R, Blanco Martinez AM. Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol 2006; 198:457-68. [PMID: 16487971 DOI: 10.1016/j.expneurol.2005.12.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 11/23/2005] [Accepted: 12/14/2005] [Indexed: 12/12/2022]
Abstract
We evaluated peripheral nerve regeneration using a tubular nerve guide of resorbable collagen filled with either bone marrow-derived cells (BMDCs) in Dulbecco's cell culture medium (DMEM) or with DMEM alone (control). The control group received just the culture medium (vehicle). The left sciatic nerves of ten isogenic mice were transected and the tubular nerve guides were sutured to the end of the proximal and distal nerve stumps. Motor function was tested at 2, 4 and 6 weeks after surgery using the walking track test. The pawprints were analyzed and the print lengths (PL) were measured to evaluate functional recovery. After 6 weeks, mice were anesthetized, perfused transcardially with fixative containing aldehydes, and the sciatic nerves and tubes were dissected and processed for scanning and transmission electron microscopy. Scanning electron microscopy of the collagen tube revealed that the tube wall became progressively thinner after surgery, proving that the tube can be resorbed in vivo. Quantitative analysis of the regenerating nerves showed that the number of myelinated fibers and the myelin area were significantly increased in the experimental group. Also, motor function recovery was faster in animals that received the cell grafts. These results indicate that the collagen tube filled with BMDCs provided an adequate and favorable environment for the growth and myelination of regenerating axons compared to the collagen tube alone.
Collapse
Affiliation(s)
- Fátima Rosalina Pereira Lopes
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Braga-Silva J, Gehlen D, Roman JA, Menta C, Atkinson EDA, Machado DC, Viezzer C, Barbosa GL, Baes CVW, Silva VD, Costa JCD. Efeitos das células tronco adultas de medula óssea e do plasma rico em plaquetas na regeneração e recuperação funcional nervosa em um modelo de defeito agudo em nervo perfiférico em rato. ACTA ORTOPEDICA BRASILEIRA 2006. [DOI: 10.1590/s1413-78522006000500009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJETIVOS: Foram avaliados os efeitos do uso de células tronco da medula óssea (CTM) e do plasma rico em plaquetas (PRP) na regeneração de nervos periféricos, utilizando um modelo estabelecido de regeneração de nervo ciático em ratos. MÉTODOS: Um defeito nervoso de 10 mm foi reconstruído com a utilização de um tubo de silicone preenchido com CTM, PRP ou ambos. O grupo controle recebeu somente o tubo de silicone. Foi realizado ainda um quinto grupo no qual o intervalo foi reconstruído utilizando o segmento ressecado do nervo. A função motora foi testada seis semanas após a cirurgia utilizando teste de marcha. Após o teste motor, os ratos foram anestesiados, o nervo ciático e o tubo foram ressecados e foi realizada microscopia eletrônica de transmissão. RESULTADOS: A análise quantitativa demonstra uma melhora na recuperação funcional no grupo CTM em comparação com os demais grupos. Regeneração nervosa foi demonstrada no grupo CTM por microscopia eletrônica de trasmissão com uma recuperação praticamente completa da anatomia neural. CONCLUSÃO: Nossos resultados sugerem que o uso de CTM associado com a técnica de tubulização promove uma satisfatória recuperação da função motora e regeneração nervosa.
Collapse
|
136
|
Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A 2006; 77:242-52. [PMID: 16392134 DOI: 10.1002/jbm.a.30603] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of biosynthetic conduits carrying extracellular matrix molecules and cell lines expressing neurotrophic growth factors represents a novel and promising strategy for spinal cord and peripheral nerve repair. In the present in vitro study, the compatibility and growth-promoting effects of (i) alginate hydrogel, (ii) alginate hydrogel complemented with fibronectin, and (iii) matrigel were compared between olfactory ensheathing cells (OECs), Schwann cells (SCs), and bone marrow stromal cells (BMSCs). Neurite outgrowth from embryonic dorsal root ganglia (DRG) neurons was used to assess the efficacy of the hydrogels alone or in combination with cultured cells to promote axonal regeneration. The result showed that alginate hydrogel transformed OECs, SCs, and BMSCs into atypical cells with spherical shape and inhibited their metabolic activity. Combination of alginate hydrogel with fibronectin promoted only OECs proliferation. Alginate hydrogel also inhibited outgrowth of DRG neurites, although this effect was attenuated by addition of fibronectin, SCs, or BMSCs. In contrast, matrigel stimulated cell proliferation, preserved the typical morphological features of the cultured cells and induced massive sprouting of DRG neurites. Addition of cultured cells to matrigel did not further improve DRG neurite outgrowth. The present findings suggest that addition of extracellular matrix should be considered when engineering biosynthetic scaffolds on the basis of alginate hydrogels.
Collapse
Affiliation(s)
- Liudmila N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
137
|
Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 2005; 102:17734-8. [PMID: 16314569 PMCID: PMC1308908 DOI: 10.1073/pnas.0508440102] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but negative for keratinocyte marker keratin 15, suggesting their relatively undifferentiated state. These cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In vivo studies show the nestin-driven GFP hair follicle stem cells can differentiate into blood vessels and neural tissue after transplantation to the subcutis of nude mice. Equivalent hair follicle stem cells derived from transgenic mice with beta-actin-driven GFP implanted into the gap region of a severed sciatic nerve greatly enhance the rate of nerve regeneration and the restoration of nerve function. The follicle cells transdifferentiate largely into Schwann cells, which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair follicle stem cells, walking print length and intermediate toe spread significantly recovered, indicating that the transplanted mice recovered the ability to walk normally. These results suggest that hair follicle stem cells provide an important, accessible, autologous source of adult stem cells for regenerative medicine.
Collapse
Affiliation(s)
- Yasuyuki Amoh
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Keilhoff G, Goihl A, Langnäse K, Fansa H, Wolf G. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 2005; 85:11-24. [PMID: 16373171 DOI: 10.1016/j.ejcb.2005.09.021] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/05/2005] [Accepted: 09/21/2005] [Indexed: 02/08/2023] Open
Abstract
Bone marrow stromal cells (MSC) are multipotent stem cells that differentiate into cells of the mesodermal lineage. Although adult, their differentiation potential is remarkable, and they are able to transdifferentiate. Transdifferentiated cultivated rat MSC (tMSC) changed morphologically into cells resembling typical spindle-shaped Schwann cells (SC) with enhanced expression of LNGF receptor, Krox-20, CD104 and S100beta protein and decreased expression of bone morphogenetic protein receptor-1A compared to untreated rat MSC (rMSC). Transdifferentiation was reversible and repeatable. To evaluate the myelinating capacity, rMSC, tMSC, or SC cultured from male rats were grafted into an autologous muscle conduit bridging a 2-cm gap in the female rat sciatic nerve. The presence of the male-specific SRY gene (as revealed by PCR analysis) and S100 immunoreactivity of pre-labeled tMSC confirmed the presence of the implanted cells in the grafts. Three weeks after grafting, an appropriate regeneration was noted in the SC and in the tMSC groups, while regeneration in the rMSC group and in the control group without any cells was impaired. In contrast to SC, in some cases, single tMSC were able to myelinate more than one axon. Our findings demonstrate that it may be possible to differentiate MSC into therapeutically useful cells for clinical applications.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Medical Neurobiology, University of Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
139
|
Abstract
Mesenchymal stem cells are present in many human tissues and serve as a readily available source of undifferentiated cells being capable to form specific tissues like bone, cartilage, fat, muscle and tendon. They represent an attractive and promising field in tissue regeneration and engineering for treatment applications in a wide range of trauma and orthopaedic conditions. This article covers the most important aspects of recent research data demonstrating the combination of physiological properties of mesenchymal stem cells (MSCs) and applications in the clinical setting.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Department of Trauma and Orthopaedics, St. James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | |
Collapse
|