101
|
Bathini P, Dupanloup I, Zenaro E, Terrabuio E, Fischer A, Ballabani E, Doucey MA, Alberi L. Systemic Inflammation Causes Microglial Dysfunction With a Vascular AD phenotype. Brain Behav Immun Health 2022; 28:100568. [PMID: 36704658 PMCID: PMC9871075 DOI: 10.1016/j.bbih.2022.100568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Studies in rodents and humans have indicated that inflammation outside CNS (systemic inflammation) affects brain homeostasis contributing to neurodevelopmental disorders. Itis becoming increasingly evident that such early insults may also belinked to neurodegenerative diseases like late-onset Alzheimer's disease (AD). Importantly, lifestyle and stress, such as viral or bacterial infection causing chronic inflammation, may contribute to neurodegenerative dementia. Systemic inflammatory response triggers a cascade of neuroinflammatory responses, altering brain transcriptome, cell death characteristic of AD, and vascular dementia. Our study aimed to assess the temporal evolution of the pathological impact of systemic inflammation evoked by prenatal and early postnatal peripheral exposure of viral mimetic Polyinosinic:polycytidylic acid (PolyI:C) and compare the hippocampal transcriptomic changes with the profiles of human post-mortem AD and vascular dementia brain specimens. Methods We have engineered the PolyI:C sterile infection model in wildtype C57BL6 mice to achieve chronic low-grade systemic inflammation. We have conducted a cross-sectional analysis of aging PolyI:C and Saline control mice (3 months, 6 months, 9 months, and 16 months), taking the hippocampus as a reference brain region, and compared the brain aging phenotype to AD progression in humans with mild AD, severe AD, and Controls (CTL), in parallel to Vascular dementia (VaD) patients' specimens. Results We found that PolyI:C mice display both peripheral and central inflammation with a peak at 6 months, associated with memory deficits. The hippocampus is characterized by a pronounced and progressive tauopathy. In PolyI:C brains, microglia undergo aging-dependent morphological shifts progressively adopting a phagocytic phenotype. Transcriptomic analysis reveals a profound change in gene expression throughout aging, with a peak in differential expression at 9 months. We show that the proinflammatory marker Lcn2 is one of the genes with the strongest upregulation in PolyI:C mice upon aging. Validation in brains from patients with increasing severity of AD and VaD shows the reproducibility of some gene targets in vascular dementia specimens as compared to AD ones. Conclusions The PolyI:C model of sterile infection demonstrates that peripheral chronic inflammation causes progressive tau hyperphosphorylation, changes in microglia morphology, astrogliosis and gene reprogramming reflecting increased neuroinflammation, vascular remodeling, and the loss of neuronal functionality seen to some extent in human AD and Vascular dementia suggesting early immune insults could be crucial in neurodegenerative diseases.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Corresponding author.
| | | | - Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Amrei Fischer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Edona Ballabani
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Lavinia Alberi
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Swiss Integrative Center for Human Health, Fribourg, Switzerland,Corresponding author. Swiss Integrative Centre of Human Health, Passage du Cardinal 13B, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
102
|
Burns S, Selman A, Sehar U, Rawat P, Reddy AP, Reddy PH. Therapeutics of Alzheimer's Disease: Recent Developments. Antioxidants (Basel) 2022; 11:2402. [PMID: 36552610 PMCID: PMC9774459 DOI: 10.3390/antiox11122402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
With increasing aging, dementia is a growing public health concern globally. Patients with dementia have multiple psychological and behavioral changes, including depression, anxiety, inappropriate behavior, paranoia, agitation, and hallucinations. The major types of dementia are Alzheimer's disease (AD), vascular dementia (VCID), Lewy body dementia (LBD), frontotemporal dementia (FTD), and mixed dementia (MiAD). Among these, AD is the most common form of dementia in the elderly population. In the last three decades, tremendous progress has been made in understanding AD's biology and disease progression, particularly its molecular basis, biomarker development, and drug discovery. Multiple cellular changes have been implicated in the progression of AD, including amyloid beta, phosphorylated tau, synaptic damage, mitochondrial dysfunction, deregulated microRNAs, inflammatory changes, hormonal deregulation, and others; based on these changes, therapeutic strategies have been developed, which are currently being tested in animal models and human clinical trials. The purpose of our article is to highlight recent therapeutic strategies' developments, critically discuss current strategies' failures, and propose new strategies to combat this devasting mental illness.
Collapse
Affiliation(s)
- Scott Burns
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
103
|
Xu C, Zhang J, Zhou Q, Wang J, Liu C, Tian Y, Huang D, Ye H, Jin Y. Exposure to a real traffic environment impairs brain cognition in aged mice. ENVIRONMENTAL RESEARCH 2022; 215:114181. [PMID: 36113572 DOI: 10.1016/j.envres.2022.114181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollution (TRAP) has been a common public health problem, which is associated with central nervous system dysfunction according to large-scale epidemiological studies. Current studies are mostly limited to artificial laboratory exposure environments and specific genetic mechanisms remain unclear. Therefore, we chose a real-world transportation environment to expose aged mice, transporting them from the laboratory to a 1-m-high dry platform inside the campus and tunnel, and the mice were exposed daily from 7 a.m. to 7 p.m. for 2, 4 and 12 weeks respectively. Compared with the control group (in campus), the memory function of mice in the experimental group (in tunnel) was significantly impaired in the Morris water maze test. TRAP exposure increased the number of activated microglia in the hippocampal DG, CA1, CA3 regions and dorsolateral prefrontal cortex (dPFC). And neuroinflammation and oxidative stress levels were up-regulated in both hippocampus and dPFC of aged mice. By screening the risk genes of Alzheimer's disease, we found the mRNA and protein levels of ABCA7 were down-regulated and those of PYK2 were up-regulated. The DNA methylation ratios increased in four CpG sites of abca7 promoter region and decreased in one CpG site of pyk2 promoter region, which were consistent with the altered expression of ABCA7 and PYK2. In conclusion, exposure to the real traffic environment impaired memory function and enhanced neuroinflammation and oxidative stress responses, which could be relevant to the altered expression and DNA methylation levels of ABCA7 and PYK2. Our work provides a new and promising understanding of the pathological mechanisms of cognitive impairment caused by traffic-related air pollution.
Collapse
Affiliation(s)
- Chenlu Xu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhang
- Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinfeng Zhou
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juling Wang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenyang Liu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Tian
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Huang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaizhuang Ye
- Teaching and Research Center, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongtang Jin
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
104
|
Liu S, Li S, Xia Y, Zhang H, Tian J, Shan C, Pang F, Wang Y, Shang Y, Chen N. Effects of multi-mode physical stimulation on APP/PS1 Alzheimer's disease model mice. Heliyon 2022; 8:e12366. [PMID: 36590474 PMCID: PMC9800530 DOI: 10.1016/j.heliyon.2022.e12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/17/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Some researchers and clinics have reported that non-drug treatments for Alzheimer disease (AD) such as electrical stimulation, light stimulation, music stimulation, laser stimulation, and transcranial magnetic stimulation may have beneficial treatment effects. Following these findings, in this study, we performed multimodel physical stimulation on APP/PS1 mice using visible light, music with a γ rhythm, and an infrared laser. And the effects of physical stimulation on APP/PS1 mice were evaluated by behavioral analysis, the content of amyloid (Aβ40 and Aβ42), and NISSL staining of hippocampal tissue slices. The results of subsequent behavioral and tissue analyses showed that the multi-model physical stimulations could relieve APP/PS1 mice's dementia symptoms, such as the behavior ability, the content of Aβ40 and Aβ42 in the hippocampal tissue suspension, and Nissl staining for hippocampal tissue analyses.
Collapse
Affiliation(s)
- Shupeng Liu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Shuyang Li
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Yudan Xia
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Heng Zhang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Jing Tian
- School of Electron and Computer, Southeast University Chengxian College, Nanjing, 210088, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fufei Pang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Ying Wang
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yana Shang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| | - Na Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
105
|
Li N, Deng M, Hu G, Li N, Yuan H, Zhou Y. New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer's Disease. Biomolecules 2022; 12:1722. [PMID: 36421736 PMCID: PMC9687453 DOI: 10.3390/biom12111722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive and irreversible neurodegeneration characterized by the impairment of memory and cognition. Despite years of studies, no effective treatment and prevention strategies are available yet. Identifying new AD therapeutic targets is crucial for better elucidating the pathogenesis and establishing a valid treatment of AD. Growing evidence suggests that microglia play a critical role in AD. Microglia are resident macrophages in the central nervous system (CNS), and their core properties supporting main biological functions include surveillance, phagocytosis, and the release of soluble factors. Activated microglia not only directly mediate the central immune response, but also participate in the pathological changes of AD, including amyloid-beta (Aβ) aggregation, tau protein phosphorylation, synaptic dissection, neuron loss, memory function decline, etc. Based on these recent findings, we provide a new framework to summarize the role of microglia in AD memory impairment. This evidence suggests that microglia have the potential to become new targets for AD therapy.
Collapse
Affiliation(s)
- Na Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Medicine, Qingdao Binhai University, Qingdao 266555, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| |
Collapse
|
106
|
Liang Y, Wang L. Carthamus tinctorius L.: A natural neuroprotective source for anti-Alzheimer's disease drugs. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115656. [PMID: 36041691 DOI: 10.1016/j.jep.2022.115656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a multicausal neurodegenerative disease clinically characterized by generalized dementia. The pathogenic process of AD not only is progressive and complex but also involves multiple factors and mechanisms, including β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. As the first-line treatment for AD, cholinesterase inhibitors can, to a certain extent, relieve AD symptoms and delay AD progression. Nonetheless, the current treatment strategies for AD are far from meeting clinical expectations, and more options for AD treatment should be applied in clinical practice. AIM OF THE REVIEW The aim of this review was to investigate published reports of C. tinctorius L. and its active constituents in AD treatment through a literature review. MATERIALS AND METHODS Information was retrieved from scientific databases including Web of Science, ScienceDirect, Scopus, Google Scholar, Chemical Abstracts Services and books, PubMed, dissertations and technical reports. Keywords used for the search engines were "Honghua" or "Carthamus tinctorius L." or "safflower" in conjunction with "(native weeds OR alien invasive)"AND "Chinese herbal medicine". RESULTS A total of 47 literatures about C. tinctorius L. and its active constituents in AD treatment through signaling pathways, immune cells, and disease-related mediators and systematically elucidates potential mechanisms from the point of anti-Aβ aggregation, suppressing tau protein hyperphosphorylation, increasing cholinergic neurotransmitters levels, inhibiting oxidative stress, anti-neuroinflammation, ameliorating synaptic plasticity, and anti-apoptosis. CONCLUSIONS Chinese herbal medicine (CHM) is a treasure endowed by nature to mankind. Emerging studies have confirmed that CHM and its active constituents play a positive role in AD treatment. Carthamus tinctorius L., the most commonly used CHM, can be used with medicine and food, with the effect of activating blood circulation and eliminating blood stasis. In the paper, we have concluded that the existing therapeutic mechanisms of C. tinctorius L. and summarized the potential mechanisms of C. tinctorius L. and its active constituents in AD treatment through a literature review.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
107
|
Feasibility of Precision Medicine in Hypertension Management-Scope and Technological Aspects. J Pers Med 2022; 12:jpm12111861. [PMID: 36573720 PMCID: PMC9698650 DOI: 10.3390/jpm12111861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Personalized management of diseases by considering relevant patient features enables optimal treatment, instead of management according to an average patient. Precision management of hypertension is important, because both susceptibility to complications and response to treatment vary between individuals. While the use of genomic and proteomic personal features for widespread precision hypertension management is not practical, other features, such as age, ethnicity, and cardiovascular diseases, have been utilized in guidelines for hypertension management. In precision medicine, more blood-pressure-related clinical and physiological characteristics in the patient's profile can be utilized for the determination of the threshold of hypertension and optimal treatment. Several non-invasive and simple-to-use techniques for the measurement of hypertension-related physiological features are suggested for use in precision management of hypertension. In order to provide precise management of hypertension, accurate measurement of blood pressure is required, but the available non-invasive blood pressure measurement techniques, auscultatory sphygmomanometry and oscillometry, have inherent significant inaccuracy-either functional or technological-limiting the precision of personalized management of hypertension. A novel photoplethysmography-based technique for the measurement of systolic blood pressure that was recently found to be more accurate than the two available techniques can be utilized for more precise and personalized hypertension management.
Collapse
|
108
|
Jiao Y, Sun YT, Chen NF, Zhou LN, Guan X, Wang JY, Wei WJ, Han C, Jiang XL, Wang YC, Zou W, Liu J. Human umbilical cord-derived mesenchymal stem cells promote repair of neonatal brain injury caused by hypoxia/ischemia in rats. Neural Regen Res 2022; 17:2518-2525. [PMID: 35535905 PMCID: PMC9120712 DOI: 10.4103/1673-5374.339002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is believed to be an effective method for treating neurodevelopmental disorders. In this study, we investigated the possibility of hUC-MSCs treatment of neonatal hypoxic/ischemic brain injury associated with maternal immune activation and the underlying mechanism. We established neonatal rat models of hypoxic/ischemic brain injury by exposing pregnant rats to lipopolysaccharide on day 16 or 17 of pregnancy. Rat offspring were intranasally administered hUC-MSCs on postnatal day 14. We found that polypyrimidine tract-binding protein-1 (PTBP-1) participated in the regulation of lipopolysaccharide-induced maternal immune activation, which led to neonatal hypoxic/ischemic brain injury. Intranasal delivery of hUC-MSCs inhibited PTBP-1 expression, alleviated neonatal brain injury-related inflammation, and regulated the number and function of glial fibrillary acidic protein-positive astrocytes, thereby promoting plastic regeneration of neurons and improving brain function. These findings suggest that hUC-MSCs can effectively promote the repair of neonatal hypoxic/ischemic brain injury related to maternal immune activation through inhibition of PTBP-1 expression and astrocyte activation.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue-Tong Sun
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Nai-Fei Chen
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Li-Na Zhou
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jia-Yi Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wen-Juan Wei
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Xiao-Lei Jiang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cells and Precision Medicine; College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
109
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
110
|
Princiotta Cariddi L, Mauri M, Cosentino M, Versino M, Marino F. Alzheimer's Disease: From Immune Homeostasis to Neuroinflammatory Condition. Int J Mol Sci 2022; 23:13008. [PMID: 36361799 PMCID: PMC9658357 DOI: 10.3390/ijms232113008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's Disease is the most common cause in the world of progressive cognitive decline. Although many modifiable and non-modifiable risk factors have been proposed, in recent years, neuroinflammation has been hypothesized to be an important contributing factor of Alzheimer's Disease pathogenesis. Neuroinflammation can occur through the combined action of the Central Nervous System resident immune cells and adaptive peripheral immune system. In the past years, immunotherapies for neurodegenerative diseases have focused wrongly on targeting protein aggregates Aβ plaques and NFT treatment. The role of both innate and adaptive immune cells has not been fully clarified, but several data suggest that immune system dysregulation plays a key role in neuroinflammation. Recent studies have focused especially on the role of the adaptive immune system and have shown that inflammatory markers are characterized by increased CD4+ Teff cells' activities and reduced circulating CD4+ Treg cells. In this review, we discuss the key role of both innate and adaptive immune systems in the degeneration and regeneration mechanisms in the pathogenesis of Alzheimer's Disease, with a focus on how the crosstalk between these two systems is able to sustain brain homeostasis or shift it to a neurodegenerative condition.
Collapse
Affiliation(s)
- Lucia Princiotta Cariddi
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
| | - Marco Mauri
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | - Maurizio Versino
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
111
|
Łuc M, Woźniak M, Rymaszewska J. Neuroinflammation in Dementia—Therapeutic Directions in a COVID-19 Pandemic Setting. Cells 2022; 11:cells11192959. [PMID: 36230921 PMCID: PMC9562181 DOI: 10.3390/cells11192959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although dementia is a heterogenous group of diseases, inflammation has been shown to play a central role in all of them and provides a common link in their pathology. This review aims to highlight the importance of immune response in the most common types of dementia. We describe molecular aspects of pro-inflammatory signaling and sources of inflammatory activation in the human organism, including a novel infectious agent, SARS-CoV-2. The role of glial cells in neuroinflammation, as well as potential therapeutic approaches, are then discussed. Peripheral immune response and increased cytokine production, including an early surge in TNF and IL-1β concentrations activate glia, leading to aggravation of neuroinflammation and dysfunction of neurons during COVID-19. Lifestyle factors, such as diet, have a large impact on future cognitive outcomes and should be included as a crucial intervention in dementia prevention. While the use of NSAIDs is not recommended due to inconclusive results on their efficacy and risk of side effects, the studies focused on the use of TNF antagonists as the more specific target in neuroinflammation are still very limited. It is still unknown, to what degree neuroinflammation resulting from COVID-19 may affect neurodegenerative process and cognitive functioning in the long term with ongoing reports of chronic post-COVID complications.
Collapse
Affiliation(s)
- Mateusz Łuc
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence:
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
112
|
Pinus halepensis Essential Oil Ameliorates Aβ1-42-Induced Brain Injury by Diminishing Anxiety, Oxidative Stress, and Neuroinflammation in Rats. Biomedicines 2022; 10:biomedicines10092300. [PMID: 36140401 PMCID: PMC9496595 DOI: 10.3390/biomedicines10092300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023] Open
Abstract
The Pinus L. genus comprises around 250 species, being popular worldwide for their medicinal and aromatic properties. The present study aimed to evaluate the P. halepensis Mill. essential oil (PNO) in an Alzheimer’s disease (AD) environment as an anxiolytic and antidepressant agent. The AD-like symptoms were induced in Wistar male rats by intracerebroventricular administration of amyloid beta1-42 (Aβ1-42), and PNO (1% and 3%) was delivered to Aβ1-42 pre-treated rats via inhalation route for 21 consecutive days, 30 min before behavioral assessments. The obtained results indicate PNO’s potential to relieve anxious–depressive features and to restore redox imbalance in the rats exhibiting AD-like neuropsychiatric impairments. Moreover, PNO presented beneficial effects against neuroinflammation and neuroapoptosis in the Aβ1-42 rat AD model.
Collapse
|
113
|
Herman D, Andrea V, Pablo L, Simone L, Andrea B, Nicholas A, Enrica C, Henrik Z, Kaj B, Eugeen V, Harald H. Menopause hormone therapy significantly alters pathophysiological biomarkers of Alzheimer's disease. Alzheimers Dement 2022; 19:1320-1330. [PMID: 36218064 DOI: 10.1002/alz.12759] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION This increasing body of literature indicates that menopause hormonal replacement therapy (MHT) may substantially mitigate the risk of developing late-life cognitive decline due to progressive Alzheimer's disease (AD) pathophysiology. For the first time, we investigated the question whether MHT impacts AD biomarker-informed pathophysiological dynamics in de-novo diagnosed menopausal women. METHODS We analyzed baseline and longitudinal differences between MHT-taking and -not women in terms of concentrations of core pathophysiological AD plasma biomarkers, validated in symptomatic and cognitively healthy individuals, including biomarkers of (1) the amyloid-β (Aβ) pathway, (2) tau pathophysiology, (3) neuronal loss, and (4) axonal damage and neurodegeneration. RESULTS We report a prominent and significant treatment response at the Aβ pathway biomarker level. Women at genetic risk for AD (APOE e4 allele carriers) have particularly shown favorable results from treatment. DISCUSSION To our knowledge, we present first prospective clinical evidence on effects of MHT on AD pathophysiology during menopause.
Collapse
Affiliation(s)
- Depypere Herman
- Department of Gynecology, Breast and Menopause Clinic University Hospital, Coupure Menopause Centre Ghent Belgium
| | - Vergallo Andrea
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Lemercier Pablo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Lista Simone
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Benedet Andrea
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - Ashton Nicholas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience Maurice Wohl Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation London UK
| | - Cavedo Enrica
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Zetterberg Henrik
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square London UK
- UK Dementia Research Institute at UCL London UK
- Hong Kong Center for Neurodegenerative Diseases Hong Kong China
| | - Blennow Kaj
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | | | - Hampel Harald
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | | |
Collapse
|
114
|
Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s Disease and Inflammaging. Brain Sci 2022; 12:brainsci12091237. [PMID: 36138973 PMCID: PMC9496782 DOI: 10.3390/brainsci12091237] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease is one of the most common age-related neurodegenerative disorders. The main theory of Alzheimer’s disease progress is the amyloid-β cascade hypothesis. However, the initial mechanisms of insoluble forms of amyloid-β formation and hyperphosphorylated tau protein in neurons remain unclear. One of the factors, which might play a key role in senile plaques and tau fibrils generation due to Alzheimer’s disease, is inflammaging, i.e., systemic chronic low-grade age-related inflammation. The activation of the proinflammatory cell phenotype is observed during aging, which might be one of the pivotal mechanisms for the development of chronic inflammatory diseases, e.g., atherosclerosis, metabolic syndrome, type 2 diabetes mellitus, and Alzheimer’s disease. This review discusses the role of the inflammatory processes in developing neurodegeneration, activated during physiological aging and due to various diseases such as atherosclerosis, obesity, type 2 diabetes mellitus, and depressive disorders.
Collapse
|
115
|
Versele R, Sevin E, Gosselet F, Fenart L, Candela P. TNF-α and IL-1β Modulate Blood-Brain Barrier Permeability and Decrease Amyloid-β Peptide Efflux in a Human Blood-Brain Barrier Model. Int J Mol Sci 2022; 23:ijms231810235. [PMID: 36142143 PMCID: PMC9499506 DOI: 10.3390/ijms231810235] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The blood-brain barrier (BBB) is a selective barrier and a functional gatekeeper for the central nervous system (CNS), essential for maintaining brain homeostasis. The BBB is composed of specialized brain endothelial cells (BECs) lining the brain capillaries. The tight junctions formed by BECs regulate paracellular transport, whereas transcellular transport is regulated by specialized transporters, pumps and receptors. Cytokine-induced neuroinflammation, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), appear to play a role in BBB dysfunction and contribute to the progression of Alzheimer’s disease (AD) by contributing to amyloid-β (Aβ) peptide accumulation. Here, we investigated whether TNF-α and IL-1β modulate the permeability of the BBB and alter Aβ peptide transport across BECs. We used a human BBB in vitro model based on the use of brain-like endothelial cells (BLECs) obtained from endothelial cells derived from CD34+ stem cells cocultivated with brain pericytes. We demonstrated that TNF-α and IL-1β differentially induced changes in BLECs’ permeability by inducing alterations in the organization of junctional complexes as well as in transcelluar trafficking. Further, TNF-α and IL-1β act directly on BLECs by decreasing LRP1 and BCRP protein expression as well as the specific efflux of Aβ peptide. These results provide mechanisms by which CNS inflammation might modulate BBB permeability and promote Aβ peptide accumulation. A future therapeutic intervention targeting vascular inflammation at the BBB may have the therapeutic potential to slow down the progression of AD.
Collapse
Affiliation(s)
- Romain Versele
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
| | - Laurence Fenart
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d’Artois, F-62300 Lens, France
- Correspondence:
| |
Collapse
|
116
|
Role of Microglia and Astrocytes in Alzheimer’s Disease: From Neuroinflammation to Ca2+ Homeostasis Dysregulation. Cells 2022; 11:cells11172728. [PMID: 36078138 PMCID: PMC9454513 DOI: 10.3390/cells11172728] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a complex, poorly understood pathogenesis. Cerebral atrophy, amyloid-β (Aβ) plaques, and neurofibrillary tangles represent the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as a prominent feature of the AD brain and substantial evidence suggests that the inflammatory response modulates disease progression. Additionally, dysregulation of calcium (Ca2+) homeostasis represents another early factor involved in the AD pathogenesis, as intracellular Ca2+ concentration is essential to ensure proper cellular and neuronal functions. Although growing evidence supports the involvement of Ca2+ in the mechanisms of neurodegeneration-related inflammatory processes, scant data are available on its contribution in microglia and astrocytes functioning, both in health and throughout the AD continuum. Nevertheless, AD-related aberrant Ca2+ signalling in astrocytes and microglia is crucially involved in the mechanisms underpinning neuroinflammatory processes that, in turn, impact neuronal Ca2+ homeostasis and brain function. In this light, we attempted to provide an overview of the current understanding of the interactions between the glia cells-mediated inflammatory responses and the molecular mechanisms involved in Ca2+ homeostasis dysregulation in AD.
Collapse
|
117
|
Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:57-100. [PMID: 36008002 DOI: 10.1016/bs.pmbts.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integration of artificial intelligence in precision medicine has revolutionized healthcare delivery. Precision medicine identifies the phenotype of particular patients with less-common responses to treatment. Recent studies have demonstrated that translational research exploring the convergence between artificial intelligence and precision medicine will help solve the most difficult challenges facing precision medicine. Here, we discuss different aspects of artificial intelligence in precision medicine that improve healthcare delivery. First, we discuss how artificial intelligence changes the landscape of precision medicine and the evolution of artificial intelligence in precision medicine. Second, we highlight the synergies between artificial intelligence and precision medicine and promises of artificial intelligence and precision medicine in healthcare delivery. Third, we briefly explain the promise of big data analytics and the integration of nanomaterials in precision medicine. Last, we highlight the challenges and opportunities of artificial intelligence in precision medicine.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India.
| |
Collapse
|
118
|
Watroba M, Szukiewicz D. Sirtuins promote brain homeostasis, preventing Alzheimer’s disease through targeting neuroinflammation. Front Physiol 2022; 13:962769. [PMID: 36045741 PMCID: PMC9420839 DOI: 10.3389/fphys.2022.962769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Both basic pathomechanisms underlying Alzheimer’s disease and some premises for stipulating a possible preventive role of some sirtuins, especially SIRT1 and SIRT3, protective against Alzheimer’s disease-related pathology, are discussed in this article. Sirtuins can inhibit some processes that underlie Alzheimer’s disease-related molecular pathology (e.g., neuroinflammation, neuroinflammation-related oxidative stress, Aβ aggregate deposition, and neurofibrillary tangle formation), thus preventing many of those pathologic alterations at relatively early stages of their development. Subsequently, the authors discuss in details which mechanisms of sirtuin action may prevent the development of Alzheimer’s disease, thus promoting brain homeostasis in the course of aging. In addition, a rationale for boosting sirtuin activity, both with allosteric activators and with NAD+ precursors, has been presented.
Collapse
|
119
|
Barczuk J, Siwecka N, Lusa W, Rozpędek-Kamińska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23168979. [PMID: 36012243 PMCID: PMC9409081 DOI: 10.3390/ijms23168979] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the general population and, to date, constitutes a major therapeutic challenge. In the pathogenesis of AD, aggregates of amyloid β (Aβ) and neurofibrillary tangles (NFTs) containing Tau-microtubule-associated protein (tau) are known to trigger a neuroinflammatory response with subsequent formation of an inflammasome. In particular, the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is thought to play a crucial role in AD-related pathology. While the mechanisms for NLRP3 activation are not fully understood, it has been demonstrated that, after detection of protein aggregates, NLRP3 induces pro-inflammatory cytokines, such as interleukin 18 (IL-18) or interleukin 1β (IL-1β), that further potentiate AD progression. Specific inhibitors of NLRP3 that exhibit various mechanisms to attenuate the activity of NLRP3 have been tested in in vivo studies and have yielded promising results, as shown by the reduced level of tau and Aβ aggregates and diminished cognitive impairment. Herein, we would like to summarize the current state of knowledge on NLRP3 inflammasome priming, activation, and its actual role in AD pathogenesis, and to characterize the NLRP3 inhibitors that have been studied most and their impact on AD-related pathology.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Weronika Lusa
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
120
|
Galgani A, Vergallo A, Campese N, Lombardo F, Pavese N, Petrozzi L, LoGerfo A, Franzini M, Cecchetti D, Puglisi-Allegra S, Busceti CL, Siciliano G, Tognoni G, Baldacci F, Lista S, Hampel H, Fornai F, Giorgi FS. Biological determinants of blood-based cytokines in the Alzheimer's Disease clinical continuum. J Neurochem 2022; 163:40-52. [PMID: 35950445 DOI: 10.1111/jnc.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/31/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Converging translational and clinical research strongly indicates that altered immune and inflammatory homeostasis (neuroinflammation) plays a critical pathophysiological role in Alzheimer's disease (AD), across the clinical continuum. A dualistic role of neuroinflammation may account for a complex biological phenomenon, representing a potential pharmacological target. Emerging blood-based pathophysiological biomarkers, such as cytokines (Cyt) and interleukins (ILs) have been studied as indicators of neuroinflammation in AD. However, inconsistent results have been reported, probably due to lack of standardization of assays with methodological and analytical differences. We used machine-learning and a cross-validation-based statical workflow to explore and analyze the potential impact of key biological factors, such as age, sex, apolipoproteinE (APOE) genotype (the major genetic risk factor for late-onset AD) on Cyt. A set of Cyt was selected based on previous literature, and we investigated any potential association in a pooled cohort of cognitively healthy, mild cognitive impairment (MCI), and AD-like dementia patients. We also performed explorative analyses to extrapolate preliminary clinical insights. We found a robust sex effect on IL12 and an APOE-related difference in IL10, with the latter being also related to the presence of advanced cognitive decline. IL1β was the variable most significantly associated with MCI-to-dementia conversion over a 2.5 year-clinical follow-up. Albeit preliminary, our data support further clinical research to understand whether plasma Cyt may represent reliable and non-invasive tools serving the investigation of neuroimmune and inflammatory dynamics in AD and to foster biomarker-guided pathway-based therapeutic approaches, within the precision medicine development framework.
Collapse
Affiliation(s)
- A Galgani
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - A Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - N Campese
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - F Lombardo
- U.O.C. "Risonanza Magnetica Specialistica e Neuroradiologia", Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - N Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK.,Institute of clinical Medicine, PET Centre, Aarhus University
| | - L Petrozzi
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - A LoGerfo
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - M Franzini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - D Cecchetti
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | - G Siciliano
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - G Tognoni
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - F Baldacci
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - S Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - H Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - F Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - F S Giorgi
- Neurology Unit, Pisa University Hospital, Pisa, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
121
|
Functional Medicine Approaches to Neurodegeneration. Phys Med Rehabil Clin N Am 2022; 33:733-743. [PMID: 35989061 DOI: 10.1016/j.pmr.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurodegenerative diseases impact more than 6 million Americans, and current predictions estimate the rates of neurodegenerative diseases will double in the next 30 years. These diseases are progressive with increasing loss of brain function throughout their course. Overtime, those suffering from neurodegenerative diseases will lose their ability to work and function efficiently in society. Families and society are burdened with skyrocketing costs to provide care for those who are unable to perform activities of daily living. There is an urgent need to develop treatment strategies to both reduce the incidence of neurodegenerative diseases and to delay the progression of the disease.
Collapse
|
122
|
Hok-A-Hin YS, Hoozemans JJM, Hu WT, Wouters D, Howell JC, Rábano A, van der Flier WM, Pijnenburg YAL, Teunissen CE, Del Campo M. YKL-40 changes are not detected in post-mortem brain of patients with Alzheimer's disease and frontotemporal lobar degeneration. Alzheimers Res Ther 2022; 14:100. [PMID: 35879733 PMCID: PMC9310415 DOI: 10.1186/s13195-022-01039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022]
Abstract
Background YKL-40 (Chitinase 3-like I) is increased in CSF of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) patients and is therefore considered a potential neuroinflammatory biomarker. Whether changed YKL-40 levels in the CSF reflect dysregulation of YKL-40 in the brain is not completely understood yet. We aimed to extensively analyze YKL-40 levels in the brain of AD and different FTLD pathological subtypes. The direct relationship between YKL-40 levels in post-mortem brain and ante-mortem CSF was examined in a small set of paired brain-CSF samples. Method YKL-40 was analyzed in post-mortem temporal and frontal cortex of non-demented controls and patients with AD and FTLD (including FTLD-Tau and FTLD-TDP) pathology by immunohistochemistry (temporal cortex: 51 controls and 56 AD and frontal cortex: 7 controls and 24 FTLD patients), western blot (frontal cortex: 14 controls, 5 AD and 67 FTLD patients), or ELISA (temporal cortex: 11 controls and 7 AD and frontal cortex: 14 controls, 5 AD and 67 FTLD patients). YKL-40 levels were also measured in paired post-mortem brain and ante-mortem CSF samples from dementia patients (n = 9, time-interval collection: 1.4 years) by ELISA. Results We observed that YKL-40 post-mortem brain levels were similar between AD, FTLD, and controls as shown by immunohistochemistry, western blot, and ELISA. Interestingly, strong YKL-40 immunoreactivity was observed in AD cases with cerebral amyloid angiopathy (CAA; n = 6). In paired CSF-brain samples, YKL-40 concentration was 8-times higher in CSF compared to brain. Conclusion Our data suggest that CSF YKL-40 changes may not reflect YKL-40 changes within AD and FTLD pathological brain areas. The YKL-40 reactivity associated with classical CAA hallmarks indicates a possible relationship between YKL-40, neuroinflammation, and vascular pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01039-y.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - William T Hu
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Dorine Wouters
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jennifer C Howell
- Department of Neurology, Center for Neurodegenerative Diseases Research, Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, USA
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Wiesje M van der Flier
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
123
|
Patil SP, DiFlumeri J, Wellington J, Fattakhova E, Oravic M. Alzheimer’s neuroinflammation: A crosstalk between immune checkpoint PD1-PDL1 and ApoE-Heparin interactions? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
124
|
Zhang L, Liu Y, Wang X, Wang D, Wu H, Chen H, Chen J, Liu Y. Treadmill exercise improve recognition memory by TREM2 pathway to inhibit hippocampal microglial activation and neuroinflammation in Alzheimer's disease model. Physiol Behav 2022; 251:113820. [PMID: 35452628 DOI: 10.1016/j.physbeh.2022.113820] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/16/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease-related cognition impairment is correlated with increased neuroinflammation. Studies show that physical exercises improve cognitive function and regulate neuroinflammation. However, no sufficient studies have been performed to directly observe the mechanism of exercise-related effects on microglia and neuroinflammation, in association with memory function under Alzheimer's disease. This study aims to explore the relationship of TREM2, microglia activation and neuroinflammation in the development of Alzheimer's disease, followed by investigating why physical exercises improve cognition in the Alzheimer's disease model by means of the adeno-associated virus (AAV) injection. We found that: 1) Recognition memory impairment in Aβ-induced Alzheimer's disease model was associated with the reduction in TREM2 which induced microglial activation and neuroinflammation; 2) Exercise activated the TREM2 pathway, which was necessary for inhibiting microglial activation and neuroinflammation, leading to improved recognition memory in the Alzheimer's disease model. Together, the improvement of AD-associated recognition memory by exercises is associated with up-regulation of the TREM2 pathway which promotes the phenotypic conversion of microglia and decreases the level of neuroinflammation.
Collapse
Affiliation(s)
- Linlin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China; Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Yanzhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xin Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hao Wu
- Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Haichun Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Jiaxin Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yiping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
125
|
Behl T, Kaur I, Sehgal A, Singh S, Albarrati A, Albratty M, Najmi A, Meraya AM, Bungau S. The road to precision medicine: Eliminating the "One Size Fits All" approach in Alzheimer's disease. Biomed Pharmacother 2022; 153:113337. [PMID: 35780617 DOI: 10.1016/j.biopha.2022.113337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
The expeditious advancement of Alzheimer's Disease (AD) is a threat to the global healthcare system, that is further supplemented by therapeutic failure. The prevalence of this disorder has been expected to quadrupole by 2050, thereby exerting a tremendous economic pressure on medical sector, worldwide. Thus, there is a dire need of a change in conventional approaches and adopt a novel methodology of disease prevention, treatment and diagnosis. Precision medicine offers a personalized approach to disease management, It is dependent upon genetic, environmental and lifestyle factors associated with the individual, aiding to develop tailored therapeutics. Precision Medicine Initiatives are launched, worldwide, to facilitate the integration of personalized models and clinical medicine. The review aims to provide a comprehensive understanding of the neuroinflammatory processes causing AD, giving a brief overview of the disease interventions. This is further followed by the role of precision medicine in AD, constituting the genetic perspectives, operation of personalized form of medicine and optimization of clinical trials with the 3 R's, showcasing an in-depth understanding of this novel approach in varying aspects of the healthcare industry, to provide an opportunity to the global AD researchers to elucidate suitable therapeutic regimens in clinically and pathologically complex diseases, like AD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
126
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
127
|
Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3777021. [PMID: 35746960 PMCID: PMC9213169 DOI: 10.1155/2022/3777021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Aging is associated with the occurrence of diverse degenerative changes in various tissues and organs and with an increased incidence of neurological disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD). In recent years, the search for effective components derived from medicinal plants in delaying aging and preventing and treating neurodegenerative diseases has been increasing and the number of related publications shows a rising trend. Here, we present a concise, updated review on the preclinical and clinical research progress in the assessment of the therapeutic potential of different traditional Chinese medicines and derived active ingredients and their effect on the signaling pathways involved in AD neuroprotection. Recognized by their multitargeting ability, these natural compounds hold great potential in developing novel drugs for AD.
Collapse
|
128
|
Mohamed Yusof NIS, Abdullah ZL, Othman N, Mohd Fauzi F. Structure–Activity Relationship Analysis of Flavonoids and Its Inhibitory Activity Against BACE1 Enzyme Toward a Better Therapy for Alzheimer’s Disease. Front Chem 2022; 10:874615. [PMID: 35832462 PMCID: PMC9271896 DOI: 10.3389/fchem.2022.874615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Drug development in Alzheimer’s disease (AD) suffers from a high attrition rate. In 2021, 117 agents tested in phases I and II and 36 agents tested in phase III were discontinued. Natural product compounds may be good lead compounds for AD as they contain functional groups that are important for binding against key AD targets such as β-secretase enzyme (BACE1). Hence, in this study, 64 flavonoids collected from rigorous literature search and screening that have been tested from 2010 to 2022 against BACE1, which interferes in the formation of amyloid plaque, were analyzed. The 64 unique flavonoids can be further classified into five core fragments. The flavonoids were subjected to clustering analysis based on its structure, and each representative of the clusters was subjected to molecular docking. There were 12 clusters formed, where only 1 cluster contained compounds from two different core fragments. Several observations can be made where 1) flavanones with sugar moieties showed higher inhibitory activity compared to flavanones without sugar moieties. The number of sugar moieties and position of glycosidic linkage may also affect the inhibitory activity. 2) Non-piperazine-substituted chalcones when substituted with functional groups with decreasing electronegativity at the para position of both rings result in a decrease in inhibitory activity. Molecular docking indicates that ring A is involved in hydrogen bond, whereas ring B is involved in van der Waals interaction with BACE1. 3) Hydrogen bond is an important interaction with the catalytic sites of BACE1, which are Asp32 and Asp228. As flavonoids contain favorable structures and properties, this makes them an interesting lead compound for BACE1. However, to date, no flavonoids have made it through clinical trials. Hence, these findings may aid in the design of highly potent and specific BACE1 inhibitors, which could delay the progression of AD.
Collapse
Affiliation(s)
| | | | - Norodiyah Othman
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Selangor, Malaysia
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Complex, Selangor, Malaysia
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Selangor, Malaysia
- Collaborative Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Selangor, Malaysia
- *Correspondence: Fazlin Mohd Fauzi,
| |
Collapse
|
129
|
Lozupone M, Berardino G, Mollica A, Sardone R, Dibello V, Zupo R, Lampignano L, Castellana F, Bortone I, Stallone R, Daniele A, Altamura M, Bellomo A, Solfrizzi V, Panza F. ALZT-OP1: An experimental combination regimen for the treatment of Alzheimer's Disease. Expert Opin Investig Drugs 2022; 31:759-771. [PMID: 35758153 DOI: 10.1080/13543784.2022.2095261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION For Alzheimer's disease (AD) treatment, US FDA granted accelerated approval for aducanumab due to its amyloid-β (Aβ)-lowering effects, notwithstanding the reported poor correlation between amyloid plaque reduction and clinical change for this drug. The diversification of drug targets appears to be the future of the AD field and from this perspective, drugs modulating microglia dysfunction and combination treatment regimens offer some promise. AREAS COVERED The aim of the present article was to provide a comprehensive review of ALZT-OP1 (cromolyn sodium plus ibuprofen), an experimental combination treatment regimen for AD, discussing their mechanisms of action targeting Aβ and neuroinflammation, examining the role of microglia in AD and offering our own insights on the role of present and alternative approaches directed toward neuroinflammation. EXPERT OPINION Enrolling high-risk participants with elevated brain amyloid could help to slow cognitive decline in secondary prevention trials during AD preclinical stages. Long-term follow-up indicated that non-steroidal anti-inflammatory drugs use begun when the brain was still normal may benefit these patients, suggesting that the timing of therapy could be crucial. However, previous clinical failures and the present incomplete understanding of the Aβ pathophysiological role in AD put this novel experimental combination regimen at substantial risk of failure.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Berardino
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Anita Mollica
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Zupo
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| |
Collapse
|
130
|
Ávila-Villanueva M, Marcos Dolado A, Gómez-Ramírez J, Fernández-Blázquez M. Brain Structural and Functional Changes in Cognitive Impairment Due to Alzheimer’s Disease. Front Psychol 2022; 13:886619. [PMID: 35800946 PMCID: PMC9253821 DOI: 10.3389/fpsyg.2022.886619] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Cognitive neuropsychology seeks a potential alignment between structural and functional brain features to explain physiological or pathological processes, such as Alzheimer’s disease (AD). Several structural and functional brain changes occurring during the disease, including cognitive impairment, are found at the end of the patient’s life, but we need to know more about what happens before its onset. In order to do that, we need earlier biomarkers at preclinical stages, defined by those biomarkers, to prevent the cognitive impairment. In this minireview, we have tried to describe the structural and functional changes found at different stages during AD, focusing on those features taking place before clinical diagnosis.
Collapse
Affiliation(s)
- Marina Ávila-Villanueva
- Research in Alzheimer’s Disease, Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia Universidad Complutense de Madrid (UCM), Madrid, Spain
- *Correspondence: Marina Ávila-Villanueva,
| | - Alberto Marcos Dolado
- Servicio de Neurología, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Jaime Gómez-Ramírez
- Instituto de Investigación e Innovación Biomédica de Cádiz, Universidad de Cádiz, Cádiz, Spain
| | - Miguel Fernández-Blázquez
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
131
|
Toppi E, Sireno L, Lembo M, Banaj N, Messina B, Golesorkhtafti S, Spalletta G, Bossù P. IL-33 and IL-10 Serum Levels Increase in MCI Patients Following Homotaurine Treatment. Front Immunol 2022; 13:813951. [PMID: 35515001 PMCID: PMC9061963 DOI: 10.3389/fimmu.2022.813951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/22/2022] [Indexed: 11/14/2022] Open
Abstract
Homotaurine is a potential therapeutic compound for treatment of Alzheimer’s disease (AD), but its efficacy is still under investigation. Emerging data have shown that other than neuroprotective, homotaurine is endowed with anti-inflammatory activities, though with still unclear underlying mechanisms. Inflammation plays a critical role in the pathogenesis of AD and we previously suggested that homotaurine supplementation in patients with amnestic mild cognitive impairment (MCI) plays beneficial effects associated to a decrease in the circulating levels of the pro-inflammatory cytokine IL-18. Here we report that MCI patients supplemented with homotaurine for 12 months show elevated serum levels of IL-10 and IL-33, as compared to baseline, in addition to the described IL-18 decrease. Furthermore, we observed a significant positive correlation between IL-10 and IL-33 levels after treatment but not at the baseline, underlining the effectiveness of the compound in modulating both cytokines in an inter-related fashion and in regulating the pro/anti-inflammation balance. Furthermore, the elevation of both IL-10 and IL-33 is significantly associated with an improvement of episodic memory of treated patients, as measured by the Delayed Verbal Ray Test. In conclusion, our results confirm that homotaurine treatment exerts an overall anti-inflammatory action in MCI patients, based not only on the down-regulation of pro-inflammatory IL-18, but also on up-regulation of the anti-inflammatory IL-33 and IL-10 cytokines, which in turn are associated with an amelioration of patient’s cognitive functions. Future studies should be addressed to investigate the molecular mechanisms of homotaurine anti-inflammatory activity and its therapeutic exploitation in early AD.
Collapse
Affiliation(s)
- Elisa Toppi
- Experimental Neuropsicobiology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Laura Sireno
- Experimental Neuropsicobiology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Micaela Lembo
- Experimental Neuropsicobiology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Beatrice Messina
- Experimental Neuropsicobiology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Sedigheh Golesorkhtafti
- Experimental Neuropsicobiology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Paola Bossù
- Experimental Neuropsicobiology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
132
|
Yuste-Checa P, Bracher A, Hartl FU. The chaperone Clusterin in neurodegeneration-friend or foe? Bioessays 2022; 44:e2100287. [PMID: 35521968 DOI: 10.1002/bies.202100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Fibrillar protein aggregates are the pathological hallmark of a group of age-dependent neurodegenerative conditions, including Alzheimer's and Parkinson's disease. Aggregates of the microtubule-associated protein Tau are observed in Alzheimer's disease and primary tauopathies. Tau pathology propagates from cell to cell in a prion-like process that is likely subject to modulation by extracellular chaperones such as Clusterin. We recently reported that Clusterin delayed Tau fibril formation but enhanced the activity of Tau oligomers to seed aggregation of endogenous Tau in a cellular model. In contrast, Clusterin inhibited the propagation of α-Synuclein aggregates associated with Parkinson's disease. These findings raise the possibility of a mechanistic link between Clusterin upregulation observed in Alzheimer's disease and the progression of Tau pathology. Here we review the diverse functions of Clusterin in the pathogenesis of neurodegenerative diseases, focusing on evidence that Clusterin may act either as a suppressor or enhancer of pathology.
Collapse
Affiliation(s)
- Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
133
|
Hao Y, Su C, Liu X, Sui H, Shi Y, Zhao L. Bioengineered microglia-targeted exosomes facilitate Aβ clearance via enhancing activity of microglial lysosome for promoting cognitive recovery in Alzheimer's disease. BIOMATERIALS ADVANCES 2022; 136:212770. [PMID: 35929330 DOI: 10.1016/j.bioadv.2022.212770] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Aggregation of amyloid in the form of senile plaques is currently considered to be one of the main mechanisms driving the development of Alzheimer's disease (AD). Therefore, targeting amyloid homeostasis is an important treatment strategy for AD. Microglia, as the main immune cells, contribute to endocytosis and clearance of amyloid beta (Aβ) via lysosome mediated degradation. As abnormal lysosomal function in microglia is associated with inefficient clearance of Aβ in AD, we designed bioengineered microglia-targeting exosomes to promote the targeted delivery of gemfibrozil (Gem) and restore the lysosomal activity of microglia in clearing Aβ aggregation. Our results suggested that mannose-modified exosomes laden with Gem (MExo-Gem) can not only bind with Aβ but also specifically target microglia through the interaction between Exo-delivered mannose and mannose receptors expressed in microglia, thus promoting Aβ entry into microglia. Exosomal Gem activated lysosomal activity and accelerated lysosome-mediated clearance of Aβ in microglia. Finally, MExo-Gem improved the learning and memory ability of AD model mice.
Collapse
Affiliation(s)
- Yunni Hao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xintong Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Haijuan Sui
- Department of Pharmacology, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|
134
|
Nicotinic Acetylcholine Receptors and Microglia as Therapeutic and Imaging Targets in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092780. [PMID: 35566132 PMCID: PMC9102429 DOI: 10.3390/molecules27092780] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Amyloid-β (Aβ) accumulation and tauopathy are considered the pathological hallmarks of Alzheimer’s disease (AD), but attenuation in choline signaling, including decreased nicotinic acetylcholine receptors (nAChRs), is evident in the early phase of AD. Currently, there are no drugs that can suppress the progression of AD due to a limited understanding of AD pathophysiology. For this, diagnostic methods that can assess disease progression non-invasively before the onset of AD symptoms are essential, and it would be valuable to incorporate the concept of neurotheranostics, which simultaneously enables diagnosis and treatment. The neuroprotective pathways activated by nAChRs are attractive targets as these receptors may regulate microglial-mediated neuroinflammation. Microglia exhibit both pro- and anti-inflammatory functions that could be modulated to mitigate AD pathogenesis. Currently, single-cell analysis is identifying microglial subpopulations that may have specific functions in different stages of AD pathologies. Thus, the ability to image nAChRs and microglia in AD according to the stage of the disease in the living brain may lead to the development of new diagnostic and therapeutic methods. In this review, we summarize and discuss the recent findings on the nAChRs and microglia, as well as their methods for live imaging in the context of diagnosis, prophylaxis, and therapy for AD.
Collapse
|
135
|
Alzheimer Disease Occurs More Frequently In Patients With Inflammatory Bowel Disease: Insight From a Nationwide Study. J Clin Gastroenterol 2022; 57:501-507. [PMID: 35470286 DOI: 10.1097/mcg.0000000000001714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD) affects 5 million Americans and early recognition improves cognitive function. Chronic inflammation and gut microbiome alteration are linked to cognitive decline which are common in inflammatory bowel disease (IBD). We investigated the association of IBD with development of AD. A commercial database (Explorys Inc., Cleveland, OH), an aggregate of electronic health records from 26 major US health care systems, was surveyed. Cohorts of patients with Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) diagnoses of Crohn's disease (CD), ulcerative colitis (UC), and AD were identified. IBD patients with new diagnosis of AD were characterized based on demographic and traditional AD risk factors and IBD-related features. Among 342,740 IBD patients in the database, AD developed in 5750 IBD patients (1.55%). After adjusting for traditional AD risk factors, IBD was identified as an independent risk factor for development of AD [odds ratio (OR)=2.30, 95% confidence interval (CI)=2.10-2.51]. IBD patients with AD were younger in comparison to AD patients without IBD. On sub-group analysis, patients with CD had higher odds of developing AD (adjusted OR=3.34, 95% CI=3.25-3.42) than UC (adjusted OR=1.09, 95% CI=1.06-1.14). Use of tumor necrosis factor (TNF-α) inhibitors in IBD was associated with significantly lower odds of developing AD in both CD and UC. In this population based study, IBD was independently associated with development of AD. Among IBD; the association was stronger in patients with CD in comparison with UC. Use of TNF-α inhibitors was associated with lower odds of developing AD.
Collapse
|
136
|
Meiman EJ, Kick GR, Jensen CA, Coates JR, Katz ML. Characterization of neurological disease progression in a canine model of CLN5 neuronal ceroid lipofuscinosis. Dev Neurobiol 2022; 82:326-344. [PMID: 35427439 PMCID: PMC9119968 DOI: 10.1002/dneu.22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Golden Retriever dogs with a frameshift variant in CLN5 (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane‐like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.
Collapse
Affiliation(s)
- Elizabeth J. Meiman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| |
Collapse
|
137
|
Zhang L, Wang X, Yu W, Ying J, Fang P, Zheng Q, Feng X, Hu J, Xiao F, Chen S, Wei G, Lin Y, Liu X, Yang D, Fang Y, Xu G, Hua F. CB2R Activation Regulates TFEB-Mediated Autophagy and Affects Lipid Metabolism and Inflammation of Astrocytes in POCD. Front Immunol 2022; 13:836494. [PMID: 35392078 PMCID: PMC8981088 DOI: 10.3389/fimmu.2022.836494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that the accumulation of lipid drots (LDs) accelerates damage to mitochondria and increases the release of inflammatory factors. These have been implicated as a mechanism underlying neurodegenerative diseases or tumors and aging-related diseases such as postoperative cognitive dysfunction (POCD), nevertheless, accumulation of lipid droplets has not been extensively studied in the central nervous system (CNS). Here, we found that after surgery, there was activation of astrocytes and lipid accumulation in the hippocampus. However, cannabinoid receptor type II (CB2R) activation significantly reduced lipid accumulation in astrocytes and change the expression of genes related to lipid metabolism. CB2R reduces the release of the inflammatory factors interleukin-1 beta (IL-1β) and interleukin 6 (IL-6) in peripheral serum and simultaneously improves cognitive ability in mice with POCD. Further research on mechanisms indicates that CB2R activation promotes the nuclear entry of the bHLH-leucine zipper transcription factor, the transcription factor EB (TFEB), and which is a master transcription factor of the autophagy–lysosomal pathway, also reduces TFEB-S211 phosphorylation. When CB2R promotes TFEB into the nucleus, TFEB binds at two sites within promoter region of PGC1α, promoting PGC1α transcription and accelerating downstream lipid metabolism. The aforementioned process leads to autophagy activation and decreases cellular lipid content. This study uncovers a new mechanism allowing CB2R to regulate lipid metabolism and inflammation in POCD.
Collapse
Affiliation(s)
- Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
138
|
Liu P, Wang Y, Sun Y, Peng G. Neuroinflammation as a Potential Therapeutic Target in Alzheimer’s Disease. Clin Interv Aging 2022; 17:665-674. [PMID: 35520949 PMCID: PMC9064449 DOI: 10.2147/cia.s357558] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Although amyloid-β (Aβ) peptide accumulation is considered as a key early event in the pathogenesis of Alzheimer’s disease (AD), the precise pathophysiology of this deadly illness remains unclear and no effective remedies capable of inhibiting disease progression have been discovered. In addition to deposition of extracellular Aβ plaques and intracellular neurofibrillary tangles, neuroinflammation has been identified as the third core characteristic crucial in the pathogenesis of AD. More and more evidence from laboratory and clinical studies have suggested that anti-inflammatory treatments could defer or prevent the occurrence of AD. In this review, we will discuss multifaceted evidence of neuroinflammation presented in AD and the newly emerged anti-inflammatory targets both in pre-clinical and clinical AD.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yunyun Wang
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Department of Neurology, Shengzhou People’s Hospital, Shaoxing, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Guoping Peng, Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, People’s Republic of China, Tel +86 13588150613, Email
| |
Collapse
|
139
|
Fluid Biomarkers in Alzheimer’s Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics (Basel) 2022; 12:diagnostics12040796. [PMID: 35453843 PMCID: PMC9029739 DOI: 10.3390/diagnostics12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer′s Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.
Collapse
|
140
|
O'Day DH, Huber RJ. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci 2022; 23:10. [PMID: 35246032 PMCID: PMC8896083 DOI: 10.1186/s12868-022-00695-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Calcium dysregulation (“Calcium Hypothesis”) is an early and critical event in Alzheimer’s and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer’s disease, thus establishing the “Calmodulin Hypothesis”. To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer’s, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aβ, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington’s and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.
Collapse
Affiliation(s)
- Danton H O'Day
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
141
|
Nathan PJ, Millais SB, Godwood A, Dewit O, Cross DM, Liptrot J, Ruparelia B, Jones SP, Bakker G, Maruff PT, Light GA, Brown AJ, Weir MP, Congreve M, Tasker T. A phase 1b/2a multicenter study of the safety and preliminary pharmacodynamic effects of selective muscarinic M 1 receptor agonist HTL0018318 in patients with mild-to-moderate Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12273. [PMID: 35229025 PMCID: PMC8864442 DOI: 10.1002/trc2.12273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION This study examined the safety and pharmacodynamic effects of selective muscarinic M1 receptor orthosteric agonist HTL0018318 in 60 patients with mild-to-moderate Alzheimer's disease (AD) on background donepezil 10 mg/day. METHODS A randomized, double-blind, placebo-controlled 4-week safety study of HTL0018318 with up-titration and maintenance phases, observing exploratory effects on electrophysiological biomarkers and cognition. RESULTS Treatment-emergent adverse events (TEAEs) were mild and less frequently reported during maintenance versus titration. Headache was most commonly reported (7-21%); 0 to 13% reported cholinergic TEAEs (abdominal pain, diarrhea, fatigue, nausea) and two patients discontinued due to TEAEs. At 1 to 2 hours post-dose, HTL0018318-related mean maximum elevations in systolic and diastolic blood pressure of 5 to 10 mmHg above placebo were observed during up-titration but not maintenance. Postive effects of HTL0018318 were found on specific attention and memory endpoints. DISCUSSION HTL0018318 was well tolerated in mild-to-moderate AD patients and showed positive effects on attention and episodic memory on top of therapeutic doses of donepezil.
Collapse
Affiliation(s)
- Pradeep J. Nathan
- Heptares Therapeutics LtdCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | | | | | | | | | - Gregory A. Light
- Departmentof PsychiatryUniversity of San DiegoSan DiegoCaliforniaUSA
| | | | | | | | | |
Collapse
|
142
|
Liang T, Zhang Y, Wu S, Chen Q, Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 2022; 13:845185. [PMID: 35250595 PMCID: PMC8889079 DOI: 10.3389/fphar.2022.845185] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Wang,
| |
Collapse
|
143
|
CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020405. [PMID: 35204286 PMCID: PMC8869494 DOI: 10.3390/antiox11020405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Collapse
|
144
|
Neuroprotective Effect of HIIT against GFAP Hypertrophy through Mitochondrial Dynamics in APP/PS1 Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1764589. [PMID: 35154563 PMCID: PMC8828355 DOI: 10.1155/2022/1764589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid (Aβ) plaques and tau neurofibrillary tangles in the brain. Although the exact details of the neuronal protective effect of high-intensity interval training (HIIT) on AD remain unclear, the preclinical phase of AD appears to be the important time point for such intervention. The described experiment investigates the neuroprotective effect of HIIT on AD in APP/PS1 mice. In total, 14 C57BL6 healthy control (C) mice and 14 APP/PS1 AD mice were each randomly assigned into two groups, one that did not participate in HIIT (C and AD groups, respectively) and the other subject to HIIT intervention (control HIIT (CE) and AD HIIT (ADE) groups, respectively). Visualization of hippocampal neuronal cells via HE and Congo red staining showed significant improvement in cell status and a significant reduction in amyloidosis in ADE compared with AD. The results of behavioral analysis show that the HIIT intervention significantly improved cognitive decline and reduced spatial exploration in both the C and AD groups. Immunofluorescence showed that the overall brain and the hippocampus of aged rats in the C and AD groups had different degrees of neuroglial responses and astrocyte GFAP proliferation and hypertrophy, with obvious improvement in the CE and ADE groups after 10 weeks of HIIT intervention. These results show that HIIT significantly improves the status of mitochondrial kinetic proteins and related proteins, with the mechanism differing between the normal aging C and the AD groups. 10 weeks of HIIT improved the imbalance in mitochondrial dynamics present in normal control mice and in AD mice. We conclude that preclinical training intervention has a significant positive effect on the exploratory behavior and cognitive functioning of mice.
Collapse
|
145
|
Lee HS, Schwarz SW, Schubert EK, Chen DL, Doot RK, Makvandi M, Lin LL, McDonald ES, Mankoff DA, Mach RH. The Development of 18F Fluorthanatrace: A PET Radiotracer for Imaging Poly (ADP-Ribose) Polymerase-1. Radiol Imaging Cancer 2022; 4:e210070. [PMID: 35089089 PMCID: PMC8830434 DOI: 10.1148/rycan.210070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorine 18 (18F) fluorthanatrace (18F-FTT) is a PET radiotracer for imaging poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1), an important target for a class of drugs known as PARP inhibitors, or PARPi. This article describes the stepwise development of this radiotracer from its design and preclinical evaluation to the first-in-human imaging studies and the initial validation of 18F-FTT as an imaging-based biomarker for measuring PARP-1 expression levels in patients with breast and ovarian cancer. A detailed discussion on the preparation and submission of an exploratory investigational new drug application to the Food and Drug Administration is also provided. Additionally, this review highlights the need and future plans for identifying a commercialization strategy to overcome the major financial barriers that exist when conducting the multicenter clinical trials needed for approval in the new drug application process. The goal of this article is to provide a road map that scientists and clinicians can follow for the successful clinical translation of a PET radiotracer developed in an academic setting. Keywords: Molecular Imaging-Cancer, PET, Breast, Genital/Reproductive, Chemistry, Radiotracer Development, PARPi, 18F-FTT, Investigational New Drug © RSNA, 2022.
Collapse
|
146
|
Romero-Sevilla R, López-Espuela F, Fuentes JM, de San Juan BD, Portilla-Cuenca JC, Hijon CC, Casado-Naranjo I. Role of Inflammatory Cytokines in the Conversion of Mild Cognitive Im- pairment to Dementia: A Prospective Study. Curr Alzheimer Res 2022; 19:68-75. [PMID: 35086447 DOI: 10.2174/1567205019666220127102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effect that cytokines can exert on the progression from mild cognitive impairment (MCI) to ongoing dementia is a matter of debate and the results obtained so far are controversial. OBJECTIVE The aim of the study is to analyze the influence of markers of subclinical inflammation on the progression of MCI to dementia. METHODS A prospective study involving a cohort of patients ≥ 65 years of age diagnosed with MCI and followed for 3 years was conducted. 105 patients were enrolled, and serum concentrations of several subclinical inflammatory markers were determined. RESULTS After 3.09 (2 - 3.79) years of follow-up, 47 (44.76%) patients progressed to dementia. Alpha 1-antichymotrypsin (ACT) was found to be significantly higher in patients who progressed to dementia (486.45 ± 169.18 vs. 400.91 ± 163.03; p = 0.012), and observed to significantly increase the risk of developing dementia in patients with mild cognitive impairment (1.004, 1.001-1.007; p= 0.007). IL-10 levels were significantly higher in those who remained stable (6.69 ± 18.1 vs. 32.54 ± 89.6; p = 0.04). Regarding the type of dementia to which our patients progressed, we found that patients who developed mixed dementia had higher IL-4 levels than those who converted to AD (31.54 ± 63.6 vs. 4.43 ± 12.9; p = 0.03). No significant differences were observed between the groups with regard to the ESR and LPa, CRP, IL-1 and TNF-α levels. CONCLUSION ACT levels have a significant predictive value in the conversion of MCI to dementia. IL-10 levels could be a protective factor. It is necessary to conduct studies with serial determinations of these and other inflammatory markers in order to determine their effect on the progression of MCI to dementia.
Collapse
Affiliation(s)
| | - Fidel López-Espuela
- Nursing Department. Nursing and Occupational Therapy College, University of Extremadura. Cáceres, Spain
| | - José Manuel Fuentes
- Department of Biochemistry and Molecular Biology and Genetics. Nursing and Occupational Therapy College, University of Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Caceres, Spain
| | | | | | | | - Ignacio Casado-Naranjo
- Department of Neurology, Hospital Universitario de Caceres, Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Caceres, Spain
| |
Collapse
|
147
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
148
|
Jain M, Singh MK, Shyam H, Mishra A, Kumar S, Kumar A, Kushwaha J. Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders. Ann Neurosci 2022; 28:191-200. [PMID: 35341232 PMCID: PMC8948319 DOI: 10.1177/09727531211070532] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Innate immunity is mediated by a variety of cell types, including microglia,
macrophages, and neutrophils, and serves as the immune system's first line of defense.
There are numerous pathways involved in innate immunity, including the interferon (IFN)
pathway, TRK pathway, mitogen-activated protein kinase (MAPK) pathway, Janus
kinase/signal transducer and activator of transcription (JAK/STAT) pathway, interleukin
(IL) pathways, chemokine pathways (CCR5), GSK signaling, and Fas signaling. Summary: JAK/STAT is one of these important signaling pathways and this review focused on
JAK/STAT signaling pathway only. The overactivation of microglia and astrocytes
influences JAK/STAT's role in neuroinflammatory disease by initiating innate immunity,
orchestrating adaptive immune mechanisms, and ultimately constraining inflammatory and
immunological responses. The JAK/STAT signaling pathway is one of the critical factors
that promotes neuroinflammation in neurodegenerative diseases. Key message: Given the importance of the JAK/STAT pathway in neurodegenerative disease, this review
discussed the feasibility of targeting the JAK/STAT pathway as a neuroprotective therapy
for neurodegenerative diseases in near future.
Collapse
Affiliation(s)
- Mayank Jain
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mukul Kumar Singh
- Department of Urology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Hari Shyam
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Archana Mishra
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shailendra Kumar
- Department of Thoracic Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Ambrish Kumar
- Department of Vascular Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Jitendra Kushwaha
- Department of General Surgery, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
149
|
Rudnitskaya EA, Burnyasheva AO, Kozlova TA, Peunov DA, Kolosova NG, Stefanova NA. Changes in Glial Support of the Hippocampus during the Development of an Alzheimer's Disease-like Pathology and Their Correction by Mitochondria-Targeted Antioxidant SkQ1. Int J Mol Sci 2022; 23:ijms23031134. [PMID: 35163053 PMCID: PMC8834695 DOI: 10.3390/ijms23031134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes and microglia are the first cells to react to neurodegeneration, e.g., in Alzheimer's disease (AD); however, the data on changes in glial support during the most common (sporadic) type of the disease are sparse. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, and Wistar rats (parental normal strain, control), we investigated hippocampal neurogenesis and glial changes during AD-like pathology. Using immunohistochemistry, we showed that the early stage of the pathology is accompanied by a lower intensity of neurogenesis and decreased astrocyte density in the dentate gyrus. The progressive stage is concurrent with reactive astrogliosis and microglia activation, as confirmed by increased cell densities and by the acquisition of cell-specific gene expression profiles, according to transcriptome sequencing data. Besides, here, we continued to analyze the anti-AD effects of prolonged supplementation with mitochondria-targeted antioxidant SkQ1. The antioxidant did not affect neurogenesis, partly normalized the gene expression profile of astrocytes and microglia, and shifted the resting/activated microglia ratio toward a decrease in the activated-cell density. In summary, both astrocytes and microglia are more vulnerable to AD-associated neurodegeneration in the CA3 area than in other hippocampal areas; SkQ1 had an anti-inflammatory effect and is a promising modality for AD prevention and treatment.
Collapse
Affiliation(s)
- Ekaterina A. Rudnitskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
- Correspondence:
| | - Alena O. Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| | - Tatiana A. Kozlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| | - Daniil A. Peunov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| | - Natalia A. Stefanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia; (A.O.B.); (T.A.K.); (D.A.P.); (N.G.K.); (N.A.S.)
| |
Collapse
|
150
|
Knorr U, Simonsen AH, Jensen CS, Zetterberg H, Blennow K, Akhøj M, Forman J, Hasselbalch SG, Kessing LV. Alzheimer's disease related biomarkers in bipolar disorder - A longitudinal one-year case-control study. J Affect Disord 2022; 297:623-633. [PMID: 34728295 DOI: 10.1016/j.jad.2021.10.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a heterogeneous mental disorder characterized by recurrent relapses of affective episodes: Subgroups of patients with BD have cognitive deficits, and an increased risk of dementia. METHODS This prospective, longitudinal, one-year follow-up, case-control study investigated biomarkers for AD and neurodegenerative diseases, namely: cerebrospinal fluid (CSF) amyloid beta (Aβ) isoforms and ratios (Aβ42, Aβ40, Aβ38), CSF soluble amyloid precursor protein (sAPP) α and β, CSF total (t-tau) and phosphorylated tau (p-tau), CSF neurofilament-light (NF-L), CSF neurogranin (NG), plasma-isoforms Aβ42 and Aβ40, plasma-tau, plasma-NF-L, and serum S100B, in patients with BD (N = 62, aged 18-60) and gender-and-age-matched healthy control individuals (N = 40). CSF and plasma/serum samples were collected at baseline, during and after an affective episode, if it occurred, and after a year. Data were analyzed in mixed models. RESULTS Levels of CSF Aβ42 decreased in patients with BD who had an episode during follow-up (BD-E) (N = 22) compared to patients without an episode (BD-NE) (N = 25) during follow-up (P = 0.002). Stable levels were seen for all other markers in BD-E compared to BD-NE during the one-year follow-up. We found no statistically significant differences between patients with BD and HC at T0 and T3 for Aβ42, Aβ40, Aβ38, Aβ42/38, Aβ42/40, sAPPα, sAPPβ, t-tau, p-tau, p-tau /t-tau, NF-L, NG in CSF and further Aβ40, Aβ42, Aβ42/40, t-tau, NF-L in plasma, S100B in serum, and APOE-status. Furthermore, all 18 biomarkers were stable in HC during the one-year follow-up from T0 to T3. CONCLUSION A panel of biomarkers of Alzheimer's and neurodegeneration show no differences between patients with BD and HC. There were abnormalities of amyloid production/clearance during an acute BD episode. The abnormalities mimic the pattern seen in AD namely decreasing CSF Aβ42 and may suggest an association with brain amyloidosis.
Collapse
Affiliation(s)
- Ulla Knorr
- Psychiatric Center Copenhagen, Department Rigshospitalet, Copenhagen Affective Disorder Research Center (CADIC), Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, University College London, Queen Square, London, United Kingdom; UK Dementia Research Institute University College London, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Morten Akhøj
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Julie Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Department Rigshospitalet, Copenhagen Affective Disorder Research Center (CADIC), Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|