101
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
102
|
Kan CM, Pei XM, Yeung MHY, Jin N, Ng SSM, Tsang HF, Cho WCS, Yim AKY, Yu ACS, Wong SCC. Exploring the Role of Circulating Cell-Free RNA in the Development of Colorectal Cancer. Int J Mol Sci 2023; 24:11026. [PMID: 37446204 PMCID: PMC10341751 DOI: 10.3390/ijms241311026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Circulating tumor RNA (ctRNA) has recently emerged as a novel and attractive liquid biomarker. CtRNA is capable of providing important information about the expression of a variety of target genes noninvasively, without the need for biopsies, through the use of circulating RNA sequencing. The overexpression of cancer-specific transcripts increases the tumor-derived RNA signal, which overcomes limitations due to low quantities of circulating tumor DNA (ctDNA). The purpose of this work is to present an up-to-date review of current knowledge regarding ctRNAs and their status as biomarkers to address the diagnosis, prognosis, prediction, and drug resistance of colorectal cancer. The final section of the article discusses the practical aspects involved in analyzing plasma ctRNA, including storage and isolation, detection technologies, and their limitations in clinical applications.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (C.-M.K.); (H.F.T.)
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (X.M.P.); (M.H.Y.Y.)
| | - Martin Ho Yin Yeung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (X.M.P.); (M.H.Y.Y.)
| | - Nana Jin
- Codex Genetics Limited, Shatin, Hong Kong SAR, China; (N.J.); (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (C.-M.K.); (H.F.T.)
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China;
| | - Aldrin Kay-Yuen Yim
- Codex Genetics Limited, Shatin, Hong Kong SAR, China; (N.J.); (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Allen Chi-Shing Yu
- Codex Genetics Limited, Shatin, Hong Kong SAR, China; (N.J.); (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (X.M.P.); (M.H.Y.Y.)
| |
Collapse
|
103
|
Petkovic M, Yalçin M, Heese O, Relógio A. Differential expression of the circadian clock network correlates with tumour progression in gliomas. BMC Med Genomics 2023; 16:154. [PMID: 37400829 DOI: 10.1186/s12920-023-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Gliomas are tumours arising mostly from astrocytic or oligodendrocytic precursor cells. These tumours are classified according to the updated WHO classification from 2021 in 4 grades depending on molecular and histopathological criteria. Despite novel multimodal therapeutic approaches, the vast majority of gliomas (WHO grade III and IV) are not curable. The circadian clock is an important regulator of numerous cellular processes and its dysregulation had been found during the progression of many cancers, including gliomas. RESULTS In this study, we explore expression patterns of clock-controlled genes in low-grade glioma (LGG) and glioblastoma multiforme (GBM) and show that a set of 45 clock-controlled genes can be used to distinguish GBM from normal tissue. Subsequent analysis identified 17 clock-controlled genes with a significant association with survival. The results point to a loss of correlation strength within elements of the circadian clock network in GBM compared to LGG. We further explored the progression patterns of mutations in LGG and GBM, and showed that tumour suppressor APC is lost late both in LGG and GBM. Moreover, HIF1A, involved in cellular response to hypoxia, exhibits subclonal losses in LGG, and TERT, involved in the formation of telomerase, is lost late in the GBM progression. By examining multi-sample LGG data, we find that the clock-controlled driver genes APC, HIF1A, TERT and TP53 experience frequent subclonal gains and losses. CONCLUSIONS Our results show a higher level of disrgulation at the gene expression level in GBM compared to LGG, and indicate an association between the differentially expressed clock-regulated genes and patient survival in both LGG and GBM. By reconstructing the patterns of progression in LGG and GBM, our data reveals the relatively late gains and losses of clock-regulated glioma drivers. Our analysis emphasizes the role of clock-regulated genes in glioma development and progression. Yet, further research is needed to asses their value in the development of new treatments.
Collapse
Affiliation(s)
- Marina Petkovic
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Oliver Heese
- Department of Neurosurgery and Spinal Surgery, HELIOS Medical Center Schwerin, University Campus of MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany.
| |
Collapse
|
104
|
Shi Q, Zhang XX, Shi XQ, Chen Y, Sun C. Identification of rs2736099 as a novel cis-regulatory variation for TERT and implications for tumorigenesis and cell proliferation. J Cancer Res Clin Oncol 2023; 149:4515-4522. [PMID: 36131156 DOI: 10.1007/s00432-022-04372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Lung cancer is a malignant tumor with obvious genetic predisposition. Association studies have proposed that rs2853677, a SNP localizing at intron region of TERT (telomerase reverse transcriptase), is significantly associated with TERT expression, telomere length and eventually lung cancer risk. However, functional genomics work indicates that rs2853677 is not with the ability to alter gene expression. All these facts make us hypothesize that some other genetic variation(s) are in linkage disequilibrium (LD) with rs2853677 and influence TERT expression. METHODS LD pattern in rs2853677 nearby region was analyzed based on 1000 genomes data for three representative populations in the world and functional genomics research was performed for this locus. RESULTS Only one SNP, rs2736099, is in strong LD with rs2853677 in East Asian. Dual-luciferase reporter assay verifies that rs2736099 can regulate gene expression and should be the causal SNP for this disease. Through chromosome conformation capture assay, it is disclosed that the enhancer surrounding rs2736099 can interact with TERT promoter. Through chromatin immunoprecipitation, the transcription factor SP1 (Sp1 transcription factor) is recognized for the chromatin segment spanning rs2736099. CONCLUSIONS Our results provide the missing piece between genetic variation at this locus and lung cancer risk, which is also applied to tumorigenesis in other tissues and cell proliferation.
Collapse
Affiliation(s)
- Qiang Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| | - Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
105
|
Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M, Karzi V, Katsikantami I, Kakridonis F, Hatzidaki E, Tolia M, Svistunov AA, Spandidos DA, Nikitovic D, Tsiaoussis J, Berdiaki A. Role of telomere length in human carcinogenesis (Review). Int J Oncol 2023; 63:78. [PMID: 37232367 PMCID: PMC10552730 DOI: 10.3892/ijo.2023.5526] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer is considered the most important clinical, social and economic issue regarding cause‑specific disability‑adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer‑specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer‑initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Tatiana Oikonomopoulou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Elisavet Renieri
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Evaggelia Iliaki
- Laboratory of Microbiology, University Hospital of Heraklion, 71500 Heraklion
| | - Maria Bachlitzanaki
- Department of Medical Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion
| | - Vasiliki Karzi
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Ioanna Katsikantami
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Fotios Kakridonis
- Department of Spine Surgery and Scoliosis, KAT General Hospital, 14561 Athens
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), University Hospital of Heraklion, 71500 Heraklion
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, 71110 Heraklion, Greece
| | - Andrey A. Svistunov
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
106
|
Fatima GN, Fatma H, Saraf SK. Vaccines in Breast Cancer: Challenges and Breakthroughs. Diagnostics (Basel) 2023; 13:2175. [PMID: 37443570 DOI: 10.3390/diagnostics13132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a problem for women's health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual's response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach. This current review briefly encompasses the diagnostics, the latest and most recent breakthrough strategies and challenges, and the limitations in fighting breast cancer, emphasising the development of breast cancer vaccines. It also includes the filed/granted patents referring to the same aspects.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Hera Fatma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
107
|
Cui H, Xin Y, Cao F, Gan Z, Tian Y, Liu W, Shi P. The correlation between CpG island methylation of hTERT promoter and human age prediction. Leg Med (Tokyo) 2023; 63:102270. [PMID: 37207612 DOI: 10.1016/j.legalmed.2023.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
DNA methylation is an epigenetic modification that occurs during the life cycle of individuals. Its degree is closely associated with the methylation status of CpG sites in its promoter region. Based on the previous screening that the hTERT methylation is both related to tumors and age, we suspected that the age inference based on hTERT methylation would be disturbed by the disease of the tested person. Herein, eight CpG sites in the hTERT promoter region were analyzed by real-time methylation-specific PCR, and we found that CpG2, CpG5, and CpG8 were closely related to the tumor (P < 0.05). The remaining five CpG sites had a large error in predicting age alone. Combining them to establish a model yielded better results, with an average age error of 4.35 years. This study provides a reliable and accurate detection method for the DNA methylation status of multiple CpG sites on the hTERT gene promoter, which can be used for the prediction of forensic age and assistant diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Hanyue Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ye Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai 200083, China
| | - Ziye Gan
- Ulink College of Shanghai, 559 Laiting South Road, Shanghai 201615, China
| | - Yuxiang Tian
- Department of Clinical Laboratory, Shanghai Xuhui District Dahua Hospital, Shanghai 200237, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Zhongshan North No 1 Road, Shanghai 200083, China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
108
|
Park S, Yun J, Choi SY, Jeong D, Gu JY, Lee JS, Seong MW, Chang YH, Yun H, Kim HK. Distinct mutational pattern of T-cell large granular lymphocyte leukemia combined with pure red cell aplasia: low mutational burden of STAT3. Sci Rep 2023; 13:7280. [PMID: 37142644 PMCID: PMC10160083 DOI: 10.1038/s41598-023-33928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
T-cell large granular lymphocyte leukemia (T-LGL) is often accompanied by pure red cell aplasia (PRCA). A high depth of next generation sequencing (NGS) was used for detection of the mutational profiles in T-LGL alone (n = 25) and T-LGL combined with PRCA (n = 16). Beside STAT3 mutation (41.5%), the frequently mutated genes included KMT2D (17.1%), TERT (12.2%), SUZ12 (9.8%), BCOR (7.3%), DNMT3A (7.3%), and RUNX1 (7.3%). Mutations of the TERT promoter showed a good response to treatment. 3 of 41 (7.3%) T-LGL patients with diverse gene mutations were revealed as T-LGL combined with myelodysplastic syndrome (MDS) after review of bone marrow slide. T-LGL combined with PRCA showed unique features (low VAF level of STAT3 mutation, low lymphocyte count, old age). Low ANC was detected in a STAT3 mutant with a low level of VAF, suggesting that even the low mutational burden of STAT3 is sufficient for reduction of ANC. In retrospective analysis of 591 patients without T-LGL, one MDS patient with STAT3 mutation was revealed to have subclinical T-LGL. T-LGL combined with PRCA may be classified as unique subtype of T-LGL. High depth NGS can enable sensitive detection of concomitant MDS in T-LGL. Mutation of the TERT promoter may indicate good response to treatment of T-LGL, thus, its addition to an NGS panel may be recommended.
Collapse
Affiliation(s)
- Sooyong Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung Yoon Choi
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
109
|
Xu X, Li H, Xie M, Zhou Z, Wang D, Mao W. LncRNAs and related molecular basis in malignant pleural mesothelioma: challenges and potential. Crit Rev Oncol Hematol 2023; 186:104012. [PMID: 37116816 DOI: 10.1016/j.critrevonc.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but invasive cancer, which mainly arises from mesothelial tissues of pleura, peritoneum and pericardium. Despite significant advances in treatments, the prognosis of MPM patients remains poor, and the 5-year survival rate is less than 10%. Therefore, it is urgent to explore novel therapeutic targets for the treatment of MPM. Growing evidence has indicated that long non-coding RNAs (lncRNAs) potentially could be promising therapeutic targets for numerous cancers. In this regard, lncRNAs might also potentially therapeutic targets for MPM. Recent advances have been made to investigate the molecular basis of MPM. This review first provides a comprehensive overview of roles of lncRNAs in MPM and then discusses the relationship between molecular basis of MPM and MPM-related lncRNAs to implement them as promising therapeutic targets for MPM.
Collapse
Affiliation(s)
- Xiaoling Xu
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huihui Li
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mingying Xie
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zichao Zhou
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ding Wang
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weimin Mao
- Key Laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Thoracic Surgery, Zhejiang Cancer Hospital (Zhejiang Cancer Research Institute), Hangzhou, Zhejiang Province, China.
| |
Collapse
|
110
|
Lee K, Kim SI, Kim EE, Shim YM, Won JK, Park CK, Choi SH, Yun H, Lee H, Park SH. Genomic profiles of IDH-mutant gliomas: MYCN-amplified IDH-mutant astrocytoma had the worst prognosis. Sci Rep 2023; 13:6761. [PMID: 37185778 PMCID: PMC10130138 DOI: 10.1038/s41598-023-32153-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to find any ambiguous genetic outlier for "oligodendroglioma, IDH-mutant and 1p/19q-codeleted (O_IDH_mut)" and "astrocytoma, IDH-mutant (A_IDH_mut)" and to redefine the genetic landscape and prognostic factors of IDH-mutant gliomas. Next-generation sequencing (NGS) using a brain tumor-targeted gene panel, methylation profiles, and clinicopathological features were analyzed for O_IDH_mut (n = 74) in 70 patients and for A_IDH_mut (n = 95) in 90 patients. 97.3% of O_IDH_mut and 98.9% of A_IDH_mut displayed a classic genomic landscape. Combined CIC (75.7%) and/or FUBP1 (45.9%) mutations were detected in 93.2% and MGMTp methylation in 95.9% of O_IDH_mut patients. In A_IDH_mut, TP53 mutations were found in 86.3% and combined ATRX (82.1%) and TERTp (6.3%) mutations in 88.4%. Although there were 3 confusing cases, NOS (not otherwise specified) category, based on genetic profiles, but they were clearly classified by combining histopathology and DKFZ methylation classifier algorithms. The patients with MYCN amplification and/or CDKN2A/2B homozygous deletion in the A_IDH_mut category had a worse prognosis than those without these gene alterations and MYCN-amplified A_IDH_mut showed the worst prognosis. However, there was no prognostic genetic marker in O_IDH_mut. In histopathologically or genetically ambiguous cases, methylation profiles can be used as an objective tool to avoid a diagnosis of NOS or NEC (not elsewhere classified), as well as for tumor classification. The authors have not encountered a case of true mixed oligoastrocytoma using an integrated diagnosis of histopathological, genetic and methylation profiles. MYCN amplification, in addition to CDKN2A/2B homozygous deletion, should be included in the genetic criteria for CNS WHO grade 4 A_IDH_mut.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Department of Pathology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seong-Ik Kim
- Department of Pathology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eric Eunshik Kim
- Department of Pathology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu-Mi Shim
- Department of Pathology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
111
|
Bailey SM. Editorial: Hallmark of cancer: replicative immortality. Front Oncol 2023; 13:1204094. [PMID: 37182148 PMCID: PMC10168124 DOI: 10.3389/fonc.2023.1204094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Affiliation(s)
- Susan M. Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
112
|
Wang M, Lin R, Li J, Suo Y, Gao J, Liu L, Zhou L, Ni Y, Yang Z, Zheng J, Lin J, Zhou H, Luo C, Lin H. Discovery of LL-K8-22: A Selective, Durable, and Small-Molecule Degrader of the CDK8-Cyclin C Complex. J Med Chem 2023; 66:4932-4951. [PMID: 36930701 DOI: 10.1021/acs.jmedchem.2c02045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The CDK8-cyclin C complex is an important anti-tumor target, but unlike CDK8, cyclin C remains undruggable. Modulators regulating cyclin C activity directly are still under development. Here, a series of hydrophobic tagging-based degraders of the CDK8-cyclin C complex were designed, synthesized, and evaluated to identify the first dual degrader, LL-K8-22, which induced selective and synchronous degradation of CDK8 and cyclin C. Proteomic and immunoblot studies exhibited that LL-K8-22 significantly degraded CDK8 without reducing CDK19 and did not degrade other cyclin proteins except cyclin C. Moreover, LL-K8-22 showed enhanced anti-proliferative effects over its parental molecule, BI-1347, with potency increased by 5-fold in MDA-MB-468 cells. LL-K8-22 exhibited more pronounced effects on CDK8-cyclin C downstream signaling than BI-1347, suppressing STAT1 phosphorylation more persistently. RNA-sequencing analysis revealed that LL-K8-22 inhibited E2F- and MYC-driven carcinogenic transcriptional programs. Overall, LL-K8-22 is the first-in-class degrader of cyclin C and would be useful for studying the unknown functions of cyclin C.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongkun Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jiacheng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Gao
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Liping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yicheng Ni
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ziqun Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
113
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
114
|
Bardelčíková A, Šoltys J, Mojžiš J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants (Basel) 2023; 12:antiox12040901. [PMID: 37107276 PMCID: PMC10135609 DOI: 10.3390/antiox12040901] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer-related deaths worldwide. The pathogenesis of CRC is a complex multistep process. Among other factors, inflammation and oxidative stress (OS) have been reported to be involved in the initiation and development of CRC. Although OS plays a vital part in the life of all organisms, its long-term effects on the human body may be involved in the development of different chronic diseases, including cancer diseases. Chronic OS can lead to the oxidation of biomolecules (nucleic acids, lipids and proteins) or the activation of inflammatory signaling pathways, resulting in the activation of several transcription factors or the dysregulation of gene and protein expression followed by tumor initiation or cancer cell survival. In addition, it is well known that chronic intestinal diseases such as inflammatory bowel disease (IBD) are associated with an increased risk of cancer, and a link between OS and IBD initiation and progression has been reported. This review focuses on the role of oxidative stress as a causative agent of inflammation in colorectal cancer.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | - Jindřich Šoltys
- Institute of Parasitology, Slovak Academy of Science, Hlinkova 3, 040 01 Košice, Slovakia
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
115
|
Palamarchuk AI, Kovalenko EI, Streltsova MA. Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 2023; 11:biomedicines11041091. [PMID: 37189709 DOI: 10.3390/biomedicines11041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
116
|
Cox DRA, Chung W, Grace J, Wong D, Kutaiba N, Ranatunga D, Khor R, Perini MV, Fink M, Jones R, Goodwin M, Dobrovic A, Testro A, Muralidharan V. Evaluating treatment response following locoregional therapy for hepatocellular carcinoma: A review of the available serological and radiological tools for assessment. JGH OPEN 2023; 7:249-260. [PMID: 37125252 PMCID: PMC10134770 DOI: 10.1002/jgh3.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary malignancy of the liver and is the third most common cause of cancer-related global mortality. There has been a steady increase in treatment options for HCC in recent years, including innovations in both curative and non-curative therapies. These advances have brought new challenges and necessary improvements in strategies of disease monitoring, to allow early detection of HCC recurrence. Current serological and radiological strategies for post-treatment monitoring and prognostication and their limitations will be discussed and evaluated in this review.
Collapse
Affiliation(s)
- Daniel R A Cox
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| | - William Chung
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Josephine Grace
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Darren Wong
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Numan Kutaiba
- Department of Radiology Austin Health Melbourne Victoria Australia
| | - Dinesh Ranatunga
- Department of Radiology Austin Health Melbourne Victoria Australia
| | - Richard Khor
- Department of Radiation Oncology Austin Health Melbourne Victoria Australia
- School of Molecular Sciences, La Trobe University Melbourne Victoria Australia
- Department of Medical Imaging and Radiation Sciences Monash University Melbourne Victoria Australia
| | - Marcos V Perini
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| | - Michael Fink
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| | - Robert Jones
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Mark Goodwin
- Department of Radiology Austin Health Melbourne Victoria Australia
| | - Alex Dobrovic
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
| | - Adam Testro
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| |
Collapse
|
117
|
Choi JE, Jeon HS, Wee HJ, Lee JY, Lee WK, Lee SY, Yoo SS, Choi SH, Kim DS, Park JY. Epigenetic and genetic inactivation of tumor suppressor miR-135a in non-small-cell lung cancer. Thorac Cancer 2023; 14:1012-1020. [PMID: 36869643 PMCID: PMC10101835 DOI: 10.1111/1759-7714.14838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Despite therapeutic advances, lung cancer prognosis remains poor. Loss of heterozygosity (LOH) in the 3p21 region is well documented in lung cancer, but the specific causative genes have not been identified. MATERIALS AND METHODS Here, we aimed to examine the clinical impact of miR-135a, located in the 3p21 region, in lung cancer. miR-135a expression was assessed using quantitative real-time polymerase chain reaction. LOH was analyzed at microsatellite loci D3S1076 and D3S1478, and promoter methylation status was determined by pyrosequencing of resected samples of primary non-small-cell lung cancer (NSCLC). The regulation of telomerase reverse transcriptase (TERT) was evaluated in lung cancer cells H1299 by luciferase report assays after treatment with miR-135a mimics. RESULTS miR-135a was significantly downregulated in squamous cell cancer (SCC) tumor tissues compared to normal tissues (p = 0.001). Low miR-135a expression was more frequent in patients with SCC (p = 2.9 × 10-4 ) and smokers (p = 0.01). LOH and hypermethylation were detected in 27.8% (37/133) and 17.3% (23/133) of the tumors, respectively. Overall, 36.8% (49/133) of the NSCLC cases harbored either miR-135a LOH or promoter hypermethylation. The frequencies of LOH and hypermethylation were significantly associated with SCCs (p = 2 × 10-4 ) and late-stage (p = 0.04), respectively. MiR-135a inhibited the relative luciferase activity of psiCHECK2-TERT-3'UTR. CONCLUSION These results suggest that miR-135a may act as a tumor suppressor to play an important role in lung cancer carcinogenesis, which will provide a new insight into the translational value of miR-135a. Further large-scale studies are required to confirm these findings.
Collapse
Affiliation(s)
- Jin Eun Choi
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Hyo Sung Jeon
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Hyun Jung Wee
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Ji Yun Lee
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Shin Yup Lee
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Seung Soo Yoo
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Sun Ha Choi
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| | - Dong Sun Kim
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Department of AnatomySchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
| | - Jae Yong Park
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Department of Internal MedicineSchool of Medicine, Kyungpook National UniversityDaeguSouth Korea
- Lung Cancer Center, Kyungpook National University Chilgok HospitalDaeguSouth Korea
| |
Collapse
|
118
|
Telomere Length Changes in Cancer: Insights on Carcinogenesis and Potential for Non-Invasive Diagnostic Strategies. Genes (Basel) 2023; 14:genes14030715. [PMID: 36980987 PMCID: PMC10047978 DOI: 10.3390/genes14030715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Telomere dynamics play a crucial role in the maintenance of chromosome integrity; changes in telomere length may thus contribute to the development of various diseases including cancer. Understanding the role of telomeric DNA in carcinogenesis and detecting the presence of cell-free telomeric DNA (cf-telDNA) in body fluids offer a potential biomarker for novel cancer screening and diagnostic strategies. Liquid biopsy is becoming increasingly popular due to its undeniable benefits over conventional invasive methods. However, the organization and function of cf-telDNA in the extracellular milieu are understudied. This paper provides a review based on 3,398,017 cancer patients, patients with other conditions, and control individuals with the aim to shed more light on the inconsistent nature of telomere lengthening/shortening in oncological contexts. To gain a better understanding of biological factors (e.g., telomerase activation, alternative lengthening of telomeres) affecting telomere homeostasis across different types of cancer, we summarize mechanisms responsible for telomere length maintenance. In conclusion, we compare tissue- and liquid biopsy-based approaches in cancer assessment and provide a brief outlook on the methodology used for telomere length evaluation, highlighting the advances of state-of-the-art approaches in the field.
Collapse
|
119
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
120
|
Magalhães MCSV, Felix FA, Guimarães LM, Dos Santos JN, de Marco LA, Gomez RS, Gomes CC, de Sousa SF. Interrogation of TERT promoter hotspot mutations in ameloblastoma and ameloblastic carcinoma. J Oral Pathol Med 2023; 52:271-275. [PMID: 36169975 DOI: 10.1111/jop.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND TERT promoter mutations increase telomerase activity, conferring cell immortality. The coexistence of TERT promoter mutations with BRAFV600E is associated with aggressiveness. Ameloblastoma and ameloblastic carcinoma are infiltrative neoplasms that harbor BRAFV600E; however, it remains unknown if these odontogenic tumors also show TERT promoter mutations. METHODS Genomic DNA of paraffin-embedded ameloblastomas (n = 6) and ameloblastic carcinomas (n = 3) were Sanger-sequenced to assess the hotspot TERT promoter mutations C228T and C250T. BRAFV600E status was screened by TaqMan allele-specific quantitative polymerase chain reaction. RESULTS None of the samples harbored TERT promoter mutations. The BRAFV600E mutation was positive in 3 of 6 of ameloblastomas and in 1 of 3 of ameloblastic carcinomas. CONCLUSION The absence of TERT promoter mutation in the samples indicates that this molecular event is not relevant to the tumors' pathogenesis. Further studies are necessary to explore undefined genetic or epigenetic mechanisms related to TERT-upregulation in ameloblastoma, and the telomerase activity in ameloblastic carcinoma.
Collapse
Affiliation(s)
| | - Fernanda Aragão Felix
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Letícia Martins Guimarães
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jean Nunes Dos Santos
- Laboratory of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Luiz Armando de Marco
- Department of Surgery, Medical School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sílvia Ferreira de Sousa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
121
|
Yeh TJ, Luo CW, Du JS, Huang CT, Wang MH, Chuang TM, Gau YC, Cho SF, Liu YC, Hsiao HH, Chen LT, Pan MR, Wang HC, Moi SH. Deciphering the Functions of Telomerase Reverse Transcriptase in Head and Neck Cancer. Biomedicines 2023; 11:691. [PMID: 36979671 PMCID: PMC10044978 DOI: 10.3390/biomedicines11030691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers (HNCs) are among the ten leading malignancies worldwide. Despite significant progress in all therapeutic modalities, predictive biomarkers, and targeted therapies for HNCs are limited and the survival rate is unsatisfactory. The importance of telomere maintenance via telomerase reactivation in carcinogenesis has been demonstrated in recent decades. Several mechanisms could activate telomerase reverse transcriptase (TERT), the most common of which is promoter alternation. Two major hotspot TERT promoter mutations (C228T and C250T) have been reported in different malignancies such as melanoma, genitourinary cancers, CNS tumors, hepatocellular carcinoma, thyroid cancers, sarcomas, and HNCs. The frequencies of TERT promoter mutations vary widely across tumors and is quite high in HNCs (11.9-64.7%). These mutations have been reported to be more enriched in oral cavity SCCs and HPV-negative tumors. The association between TERT promoter mutations and poor survival has also been demonstrated. Till now, several therapeutic strategies targeting telomerase have been developed although only a few drugs have been used in clinical trials. Here, we briefly review and summarize our current understanding and evidence of TERT promoter mutations in HNC patients.
Collapse
Affiliation(s)
- Tsung-Jang Yeh
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Tzu Huang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Hung Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuh-Ching Gau
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Chang Liu
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Tzong Chen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
122
|
Chawla NS, Sayegh N, Tripathi N, Govindarajan A, Zengin ZB, Phillip EJ, Dizman N, Meza L, Muddasani R, Chehrazi-Raffle A, Malhotra J, Hsu J, Agarwal N, Pal SK, Tripathi A. Genomic and Clinical Prognostic Factors in Patients With Advanced Urothelial Carcinoma Receiving Immune Checkpoint Inhibitors. Clin Genitourin Cancer 2023; 21:69-75. [PMID: 36509613 DOI: 10.1016/j.clgc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recently data suggest that telomerase reverse transcripatase (TERT) promoter mutations portend superior outcomes with immune checkpoint inhibitor (ICI) therapy in mUC. In our retrospective analysis from 2 tertiary cancer centers, we assessed the predictive role of TERT mutations along with other parameters. METHODS Patient registries were queried for patients treated with ICI for mUC with available genomic and clinical data. Select clinical and laboratory parameters, in addition to primary tumor site, histology, treatment modality, and setting were recorded. Tumor mutational burden (TMB), and mutational status of TERT, CDKN2A, CDKN2B, TMB, TP53, RB1, KMT2D, ARID1A, ERBB2, KDM6A, PIK3CA, FGFR3, and ATM were noted. Univariate analysis of significance concerning overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) was conducted. RESULTS In total, 113 patients were found to meet inclusion criteria. In our study, ORR was 55%, median PFS was 5.1 months (0.2-71.8), and median OS was 13.4 months (0.2-84.8). On univariate analysis, female sex, NLR>5, and ATM mutation were associated with inferior PFS and OS, whereas upper tract primary disease and ECOG score ≥ 2 were associated with worse OS. On multivariate analysis, NLR >5 was associated with worse PFS and OS whereas upper tract primary disease, albumin <3.4 g/dL, hemoglobin <10 g/dL and ATM mutation were significantly associated with worse OS on multivariate analysis. No significant differences were seen in ORR, PFS, or OS regarding TERT promoter mutations. CONCLUSION TERT promoter mutations were not significantly associated with any difference in outcome in patients treated with ICI.
Collapse
Affiliation(s)
- Neal S Chawla
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Nicolas Sayegh
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Nishita Tripathi
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Ameish Govindarajan
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Zeynep B Zengin
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Errol J Phillip
- School of Medicine, University of California San Francisco, San Francisco, CA
| | - Nazli Dizman
- Yale University School of Medicine, New Haven, CT
| | - Luis Meza
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ramya Muddasani
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Alexander Chehrazi-Raffle
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Jasnoor Malhotra
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - JoAnn Hsu
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Abhishek Tripathi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
123
|
Abstract
Sex differences play a large role in oncology. It has long been discussed that the incidence of different types of tumors varies by sex, and this holds in neuro-oncology. There are also profound survival sex differences, biologic factors, and treatment effects. This review aims to summarize some of the main sex differences observed in primary brain tumors and goes on to focus specifically on gliomas and meningiomas, as these are two commonly encountered primary brain tumors in clinical practice. Additionally, considerations unique to female individuals, including pregnancy and breastfeeding, are explored. This review sheds light on many of the unique attributes that must be considered when diagnosing and treating female patients with primary brain tumors in clinical practice.
Collapse
Affiliation(s)
- Lauren Singer
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA.
| | - Ditte Primdahl
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA
| | - Priya Kumthekar
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA
| |
Collapse
|
124
|
Tao HY, He SM, Zhao CY, Wang Y, Sheng WJ, Zhen YS. Antitumor efficacy of a recombinant EGFR-targeted fusion protein conjugate that induces telomere shortening and telomerase downregulation. Int J Biol Macromol 2023; 226:1088-1099. [PMID: 36435475 DOI: 10.1016/j.ijbiomac.2022.11.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To prepare a recombinant EGFR-targeted fusion protein drug conjugate acting on telomere and telomerase; and evaluate its antitumor efficacy. METHODS We prepared a recombinant fusion protein Fv-LDP-D3 which consists of the Fv fragment of an anti-EGFR monoclonal antibody (MAb), the apoprotein of lidamycin (LDP), and the third domain (D3) of human serum albumin (HSA); then generated the conjugate Fv-LDP-D3∼AE by integrating the active enediyne chomophore (AE) of lidamycin. Accordingly, in vitro and in vivo experiments were performed. RESULTS As shown, Fv-LDP-D3 specifically bound to EGFR highly-expressing cancer cells and intensely entered K-Ras mutant cells via enhanced macropinocytosis. By in vivo imaging, Fv-LDP-D3 displayed intense accumulation and persistent retention in tumor-site. Furthermore, the conjugate Fv-LDP-D3∼AE displayed highly potent cytotoxicity to cancer cells with IC50 at 0.1 nM level. The conjugate induced telomere shortening and downregulation of telomerase and EGFR pathway related proteins. Fv-LDP-D3∼AE exhibited prominent antitumor efficacy against human colorectal cancer xenograft accompanying with significant increase of serum IFN-β in athymic mice. CONCLUSION The recombinant fusion protein conjugate that exhibits the capability of tumor-targeting drug delivery can induce telomere shortening and telomerase downregulation. The investigation may lay the foundation for the development of MAb-HSA domain-based fusion protein drug conjugates.
Collapse
Affiliation(s)
- Hong-Yu Tao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Shi-Ming He
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Chun-Yan Zhao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ying Wang
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Wei-Jin Sheng
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Yong-Su Zhen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
125
|
Barbagallo C, Stella M, Broggi G, Russo A, Caltabiano R, Ragusa M. Genetics and RNA Regulation of Uveal Melanoma. Cancers (Basel) 2023; 15:775. [PMID: 36765733 PMCID: PMC9913768 DOI: 10.3390/cancers15030775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor and the most frequent melanoma not affecting the skin. While the rate of UM occurrence is relatively low, about 50% of patients develop metastasis, primarily to the liver, with lethal outcome despite medical treatment. Notwithstanding that UM etiopathogenesis is still under investigation, a set of known mutations and chromosomal aberrations are associated with its pathogenesis and have a relevant prognostic value. The most frequently mutated genes are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1, with mutually exclusive mutations occurring in GNAQ and GNA11, and almost mutually exclusive ones in BAP1 and SF3B1, and BAP1 and EIF1AX. Among chromosomal aberrations, monosomy of chromosome 3 is the most frequent, followed by gain of chromosome 8q, and full or partial loss of chromosomes 1 and 6. In addition, epigenetic mechanisms regulated by non-coding RNAs (ncRNA), namely microRNAs and long non-coding RNAs, have also been investigated. Several papers investigating the role of ncRNAs in UM have reported that their dysregulated expression affects cancer-related processes in both in vitro and in vivo models. This review will summarize current findings about genetic mutations, chromosomal aberrations, and ncRNA dysregulation establishing UM biology.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| |
Collapse
|
126
|
Paths of Evolution of Progressive Anaplastic Meningiomas: A Clinical and Molecular Pathology Study. J Pers Med 2023; 13:jpm13020206. [PMID: 36836440 PMCID: PMC9965923 DOI: 10.3390/jpm13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Grade 3 meningiomas are rare malignant tumors that can originate de novo or from the progression of lower grade meningiomas. The molecular bases of anaplasia and progression are poorly known. We aimed to report an institutional series of grade 3 anaplastic meningiomas and to investigate the evolution of molecular profile in progressive cases. Clinical data and pathologic samples were retrospectively collected. VEGF, EGFR, EGFRvIII, PD-L1; and Sox2 expression; MGMT methylation status; and TERT promoter mutation were assessed in paired meningioma samples collected from the same patient before and after progression using immunohistochemistry and PCR. Young age, de novo cases, origin from grade 2 in progressive cases, good clinical status, and unilateral side, were associated with more favorable outcomes. In ten progressive meningiomas, by comparing molecular profile before and after progression, we identified two subgroups of patients, one defined by Sox2 increase, suggesting a stem-like, mesenchymal phenotype, and another defined by EGFRvIII gain, suggesting a committed progenitor, epithelial phenotype. Interestingly, cases with Sox2 increase had a significantly shortened survival compared to those with EGFRvIII gain. PD-L1 increase at progression was also associated with worse prognosis, portending immune escape. We thus identified the key drivers of meningioma progression, which can be exploited for personalized treatments.
Collapse
|
127
|
Jia B, Xia P, Dong J, Feng W, Wang W, Liu E, Jiang G, Qin Y. Genetic testing and prognosis of sarcomatoid hepatocellular carcinoma patients. Front Oncol 2023; 12:1086908. [PMID: 36741696 PMCID: PMC9891294 DOI: 10.3389/fonc.2022.1086908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Background Sarcomatoid hepatocellular carcinoma (SHC) is a rare epithelial malignancy with high invasiveness and poor prognosis. However, the molecular characteristics and main driver genes for SHC have not been determined. The aim of this study is to explore the potentially actionable mutations of driver genes, which may provide more therapeutic options for SHC. Methods In this study, DNA extraction and library preparation were performed using tumor tissues from 28 SHC patients. Then we used Miseq platform (Illumina) to sequence the target-enriched library, and we aligned and processed the sequencing data. The gene groups were tested for SNVs/Indels/CNVs. Tumor mutation burden (TMB) was assessed by the 425-cancer-relevant gene panel. Multivariate analysis of COX's model was used for survival analysis (OS) of patients' clinical characteristics. Result The median overall survival (OS) of the patients was only 4.4 months. TP53, TERT, and KRAS were the top three frequently mutated genes, with frequencies of 89.3%, 64.3%, and 21.4%, respectively. A considerable number of patients carried mutations in genes involved in the TP53 pathway (96%) and DNA Damage Repair (DDR) pathway (21%). Multiple potentially actionable mutations, such as NTRK1 fusions and BRCA1/2 mutations, were identified in SHCs. Conclusions This study shows a landscape of gene mutations in SHC. SHC has high mutation rates in TP53 pathway and DDR pathway. The potentially actionable mutations of driver genes may provide more therapeutic options for SHC. Survival analysis found that age, smoking, drinking, and tumor diameter may be independent prognostic predictors of SHC.
Collapse
Affiliation(s)
- Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyi Xia
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junqiang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenhao Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjia Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Guozhong Jiang, ; Yanru Qin,
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Guozhong Jiang, ; Yanru Qin,
| |
Collapse
|
128
|
Association of the Telomerase Reverse Transcriptase rs10069690 Polymorphism with the Risk, Age at Onset and Prognosis of Triple Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24031825. [PMID: 36768147 PMCID: PMC9916321 DOI: 10.3390/ijms24031825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) plays a key role in the maintenance of telomere DNA length. The rs10069690 single nucleotide variant, located in intron 4 of TERT, was found to be associated with telomere length and the risk of estrogen receptor-negative but not-positive breast cancer. This study aimed at analysis of the association of rs10069690 genotype and TERT expression with the risk, age at onset, prognosis, and clinically and molecularly relevant subtypes of breast cancer. Accordingly, rs10069690 was genotyped in a hospital-based case-control study of 403 female breast cancer patients and 246 female controls of a Central European (Austrian) study population, and the mRNA levels of TERT were quantified in 106 primary breast tumors using qRT-PCR. We found that in triple-negative breast cancer patients, the minor rs10069690 TT genotype tended to be associated with an increased breast cancer risk (OR, 1.87; 95% CI, 0.75-4.71; p = 0.155) and was significantly associated with 11.7 years younger age at breast cancer onset (p = 0.0002), whereas the CC genotype was associated with a poor brain metastasis-free survival (p = 0.009). Overall, our data show that the rs10069690 CC genotype and a high TERT expression tended to be associated with each other and with a poor prognosis. Our findings indicate a key role of rs10069690 in triple-negative breast cancer.
Collapse
|
129
|
Liu T, Li S, Xia C, Xu D. TERT promoter mutations and methylation for telomerase activation in urothelial carcinomas: New mechanistic insights and clinical significance. Front Immunol 2023; 13:1071390. [PMID: 36713366 PMCID: PMC9877314 DOI: 10.3389/fimmu.2022.1071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase synthesizing telomeric TTAGGG sequences, is primarily silent in normal human urothelial cells (NHUCs), but widely activated in urothelial cell-derived carcinomas or urothelial carcinomas (UCs) including UC of the bladder (UCB) and upper track UC (UTUC). Telomerase activation for telomere maintenance is required for the UC development and progression, and the key underlying mechanism is the transcriptional de-repression of the telomerase reverse transcriptase (TERT), a gene encoding the rate-limiting, telomerase catalytic component. Recent mechanistic explorations have revealed important roles for TERT promoter mutations and aberrant methylation in activation of TERT transcription and telomerase in UCs. Moreover, these TERT-featured genomic and epigenetic alterations have been evaluated for their usefulness in non-invasive UC diagnostics, recurrence monitoring, outcome prediction and response to treatments such as immunotherapy. Importantly, the detection of the mutated TERT promoter and TERT mRNA as urinary biomarkers holds great promise for urine-based UC liquid biopsy. In the present article, we review recent mechanistic insights into altered TERT promoter-mediated telomerase activation in UCs and discuss potential clinical implications. Specifically, we compare differences in senescence and transformation between NHUCs and other types of epithelial cells, address the interaction between TERT promoter mutations and other factors to affect UC progression and outcomes, evaluate the impact of TERT promoter mutations and TERT-mediated activation of human endogenous retrovirus genes on UC immunotherapy including Bacillus Calmette-Guérin therapy and immune checkpoint inhibitors. Finally, we suggest the standardization of a TERT assay and evaluation system for UC clinical practice.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Li
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Chuanyou Xia
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Center for Molecular Medicine (CMM), Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| |
Collapse
|
130
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
131
|
Wang EJ, Haddad AF, Young JS, Morshed RA, Wu JPH, Salha DM, Butowski N, Aghi MK. Recent advances in the molecular prognostication of meningiomas. Front Oncol 2023; 12:910199. [PMID: 36686824 PMCID: PMC9845914 DOI: 10.3389/fonc.2022.910199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023] Open
Abstract
Meningiomas are the most common primary intracranial neoplasm. While traditionally viewed as benign, meningiomas are associated with significant patient morbidity, and certain meningioma subgroups display more aggressive and malignant behavior with higher rates of recurrence. Historically, the risk stratification of meningioma recurrence has been primarily associated with the World Health Organization histopathological grade and surgical extent of resection. However, a growing body of literature has highlighted the value of utilizing molecular characteristics to assess meningioma aggressiveness and recurrence risk. In this review, we discuss preclinical and clinical evidence surrounding the use of molecular classification schemes for meningioma prognostication. We also highlight how molecular data may inform meningioma treatment strategies and future directions.
Collapse
Affiliation(s)
- Elaina J. Wang
- Department of Neurological Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Alexander F. Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Joshua P. H. Wu
- Department of Neurological Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Diana M. Salha
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Manish K. Aghi,
| |
Collapse
|
132
|
Shaito A, Al-Mansoob M, Ahmad SM, Haider MZ, Eid AH, Posadino AM, Pintus G, Giordo R. Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications. Curr Neuropharmacol 2023; 21:1184-1201. [PMID: 36237161 PMCID: PMC10286596 DOI: 10.2174/1570159x20666221012122855] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disorders include different neurological conditions that affect nerve cells, causing the progressive loss of their functions and ultimately leading to loss of mobility, coordination, and mental functioning. The molecular mechanisms underpinning neurodegenerative disease pathogenesis are still unclear. Nonetheless, there is experimental evidence to demonstrate that the perturbation of mitochondrial function and dynamics play an essential role. In this context, mitochondrial biogenesis, the growth, and division of preexisting mitochondria, by controlling mitochondria number, plays a vital role in maintaining proper mitochondrial mass and function, thus ensuring efficient synaptic activity and brain function. Mitochondrial biogenesis is tightly associated with the control of cell division and variations in energy demand in response to extracellular stimuli; therefore, it may represent a promising therapeutic target for developing new curative approaches to prevent or counteract neurodegenerative disorders. Accordingly, several inducers of mitochondrial biogenesis have been proposed as pharmacological targets for treating diverse central nervous system conditions. The naturally occurring polyphenol resveratrol has been shown to promote mitochondrial biogenesis in various tissues, including the nervous tissue, and an ever-growing number of studies highlight its neurotherapeutic potential. Besides preventing cognitive impairment and neurodegeneration through its antioxidant and anti-inflammatory properties, resveratrol has been shown to be able to enhance mitochondria biogenesis by acting on its main effectors, including PGC-1α, SIRT1, AMPK, ERRs, TERT, TFAM, NRF-1 and NRF-2. This review aims to present and discuss the current findings concerning the impact of resveratrol on the machinery and main effectors modulating mitochondrial biogenesis in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdullah Shaito
- Biomedical Research Center, College of Medicine, Qatar University, Doha, 2713, Qatar
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, 2713, Qatar
| | - Maryam Al-Mansoob
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Salma M.S. Ahmad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | | | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| |
Collapse
|
133
|
Higa N, Akahane T, Yokoyama S, Makino R, Yonezawa H, Uchida H, Takajo T, Kirishima M, Hamada T, Noguchi N, Otsuji R, Kuga D, Nagasaka S, Yamahata H, Yamamoto J, Yoshimoto K, Tanimoto A, Hanaya R. Favorable prognostic impact of phosphatase and tensin homolog alterations in wild-type isocitrate dehydrogenase and telomerase reverse transcriptase promoter glioblastoma. Neurooncol Adv 2023; 5:vdad078. [PMID: 37528810 PMCID: PMC10390081 DOI: 10.1093/noajnl/vdad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background Telomerase reverse transcriptase promoter (TERTp) mutations are a biological marker of glioblastoma; however, the prognostic significance of TERTp mutational status is controversial. We evaluated this impact by retrospectively analyzing the outcomes of patients with isocitrate dehydrogenase (IDH)- and TERTp-wild-type glioblastomas. Methods Using custom next-generation sequencing, we analyzed 208 glioblastoma samples harboring wild-type IDH. Results TERTp mutations were detected in 143 samples (68.8%). The remaining 65 (31.2%) were TERTp-wild-type. Among the TERTp-wild-type glioblastoma samples, we observed a significant difference in median progression-free survival (18.6 and 11.4 months, respectively) and overall survival (not reached and 15.7 months, respectively) in patients with and without phosphatase and tensin homolog (PTEN) loss and/or mutation. Patients with TERTp-wild-type glioblastomas with PTEN loss and/or mutation were younger and had higher Karnofsky Performance Status scores than those without PTEN loss and/or mutation. We divided the patients with TERTp-wild-type into 3 clusters using unsupervised hierarchical clustering: Good (PTEN and TP53 alterations; lack of CDKN2A/B homozygous deletion and platelet-derived growth factor receptor alpha (PDGFRA) alterations), intermediate (PTEN alterations, CDKN2A/B homozygous deletion, lack of PDGFRA, and TP53 alterations), and poor (PDGFRA and TP53 alterations, CDKN2A/B homozygous deletion, and lack of PTEN alterations) outcomes. Kaplan-Meier survival analysis indicated that these clusters significantly correlated with the overall survival of TERTp-wild-type glioblastoma patients. Conclusions Here, we report that PTEN loss and/or mutation is the most useful marker for predicting favorable outcomes in patients with IDH- and TERTp-wild-type glioblastomas. The combination of 4 genes, PTEN, TP53, CDKN2A/B, and PDGFRA, is important for the molecular classification and individual prognosis of patients with IDH- and TERTp-wild-type glioblastomas.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryutaro Makino
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagasaka
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Yamahata
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihide Tanimoto
- Corresponding Authors: Akihide Tanimoto, MD, PhD, Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-City, Kagoshima 890-8544, Japan ()
| | - Ryosuke Hanaya
- Ryosuke Hanaya, MD, PhD, Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-City, Kagoshima 890-8520, Japan ()
| |
Collapse
|
134
|
Hasanau TN, Pisarev EP, Kisil OV, Zvereva ME. The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. BIOCHEMISTRY (MOSCOW) 2023; 88:S21-S38. [PMID: 37069112 DOI: 10.1134/s000629792314002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.
Collapse
Affiliation(s)
- Tsimur N Hasanau
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eduard P Pisarev
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Kisil
- Gause Institute of New Antibiotics, Moscow, 119021, Russia
| | - Maria E Zvereva
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
135
|
Moghadam D, Zarei R, Vakili S, Ghojoghi R, Zarezade V, Veisi A, Sabaghan M, Azadbakht O, Behrouj H. The effect of natural polyphenols Resveratrol, Gallic acid, and Kuromanin chloride on human telomerase reverse transcriptase (hTERT) expression in HepG2 hepatocellular carcinoma: role of SIRT1/Nrf2 signaling pathway and oxidative stress. Mol Biol Rep 2023; 50:77-84. [PMID: 36307623 DOI: 10.1007/s11033-022-08031-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND There is evidence that low doses or physiological concentrations of certain natural polyphenols enhance the activity of telomerase. However, the precise mechanism by which natural polyphenols regulate telomerase activity remains unclear. Recent research indicates that NF-E2 related factor 2 (Nrf2) and silent information regulator 1 (SIRT1) are involved in human telomerase reverse transcriptase (hTERT) regulation. Thus, in order to better comprehend the mechanism by which polyphenols regulate hTERT, the present study investigated the effects of the natural polyphenols Resveratrol, Gallic acid, and Kuromanin chloride on hTERT, Nrf2, and SIRT1 expression as well as oxidative stress in HepG2 hepatocellular carcinoma. METHODS The trypan blue dye exclusion assay was used to assess cell viability. The level of mRNA for hTERT, Nrf2, and SIRT1 was then determined using real-time PCR. A spectrophotometric analysis was conducted to quantify oxidative stress markers. RESULTS The results demonstrated that Resveratrol induces the expression of hTERT and the SIRT1/Nrf2 pathway in a dose-dependent manner. Gallic acid at concentrations of 10 and 20 μM also increased the expression of the hTERT and SIRT1/Nrf2 pathway. Furthermore, dose-dependent overexpression of hTERT and Nrf2 was induced by Kuromanin chloride at 10 and 20 µM. Moreover, we found that Resveratrol and Kuromanin chloride ameliorated oxidative stress, whereas Gallic acid exacerbated it. CONCLUSIONS This study demonstrates that low doses of polyphenols (Resveratrol, Gallic acid, and Kuromanin chloride) upregulate the expression of the hTERT gene in the HepG2 hepatocellular carcinoma cell line, possibly via induction of the SIRT1/Nrf2 signaling pathway. Therefore, by targeting this pathway or hTERT, the anti-cancer effect of polyphenols can be enhanced.
Collapse
Affiliation(s)
- Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rozita Ghojoghi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Zarezade
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.,Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Veisi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | | | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
136
|
In Vitro Cytotoxic Effects and Mechanisms of Action of Eleutherine Isolated from Eleutherine plicata Bulb in Rat Glioma C6 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248850. [PMID: 36557983 PMCID: PMC9785660 DOI: 10.3390/molecules27248850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Gliomas are the most common primary malignant brain tumors in adults, and have a poor prognosis, despite the different types of treatment available. There is growing demand for new therapies to treat this life-threatening tumor. Quinone derivatives from plants have received increased interest as potential anti-glioma drugs, due to their diverse pharmacologic activities, such as inhibiting cell growth, inflammation, tumor invasion, and promoting tumor regression. Previous studies have demonstrated the anti-glioma activity of Eleutherine plicata, which is related to three main naphthoquinone compounds-eleutherine, isoeleutherine, and eleutherol-but their mechanism of action remains elusive. Thus, the aim of this study was to investigate the mechanism of action of eleutherine on rat C6 glioma. In vitro cytotoxicity was evaluated by MTT assay; morphological changes were evaluated by phase-contrast microscopy. Apoptosis was determined by annexin V-FITC-propidium iodide staining, and antiproliferative effects were assessed by wound migration and colony formation assays. Protein kinase B (AKT/pAKT) expression was measured by western blot, and telomerase reverse transcriptase mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Eleutherine reduced C6 cell proliferation in a dose-dependent manner, suppressed migration and invasion, induced apoptosis, and reduced AKT phosphorylation and telomerase expression. In summary, our results suggest that eleutherine has potential clinical use in treating glioma.
Collapse
|
137
|
Verma AK, Singh P, Al-Saeed FA, Ahmed AE, Kumar S, Kumar A, Dev K, Dohare R. Unravelling the role of telomere shortening with ageing and their potential association with diabetes, cancer, and related lifestyle factors. Tissue Cell 2022; 79:101925. [DOI: 10.1016/j.tice.2022.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022]
|
138
|
Guo Y, Hu H, Xu S, Xia W, Li H. Useful genes for predicting the efficacy of transarterial chemoembolization in hepatocellular carcinoma. J Cancer Res Ther 2022; 18:1860-1866. [PMID: 36647943 DOI: 10.4103/jcrt.jcrt_1479_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transarterial chemoembolization (TACE) is generally used to treat patients with hepatocellular carcinoma (HCC), a common and deadly cancer; however, its efficacy varies according to factors such as tumor volume, stage, serum alpha-fetoprotein level, and chosen feeding artery. In addition, gene-related factors have been recently suggested to be involved in the regulation and prediction of TACE outcomes. Accordingly, genes could serve as effective biomarkers to select patients who can benefit from TACE. These gene-related factors can activate signaling pathways affecting cancer cell survival while regulating the epithelial-mesenchymal transition, angiogenesis, and the tumor microenvironment, all directly associated with tumor progression, thereby affecting TACE efficacy. Moreover, this disordered gene expression is associated with poor prognosis in patients with HCC, including TACE resistance, postoperative recurrence, and metastasis. To identify the exact relationship between various genes and TACE efficacy, this review summarizes the involvement of protein-coding and non-coding genes and single nucleotide polymorphisms in TACE efficacy for predicting the efficacy of TACE; the present findings may help improve the efficacy of TACE in clinical settings.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongtao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shijun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Weili Xia
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hailiang Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
139
|
Zia S, Tehreem K, Batool S, Ishfaq M, Mirza SB, Khan S, Almashjary MN, Hazzazi MS, Qanash H, Shaikh A, Baty RS, Jafri I, Alsubhi NH, Alrefaei GI, Sami R, Shahid R. Epithelial Cell Adhesion Molecule ( EpCAM) Expression Can Be Modulated via NFκB. Biomedicines 2022; 10:biomedicines10112985. [PMID: 36428553 PMCID: PMC9687693 DOI: 10.3390/biomedicines10112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is considered an essential proliferation signature in cancer. In the current research study, qPCR induced expression of EpCAM was noted in acute lymphoblastic leukemia (ALL) cases. Costunolide, a sesquiterpene lactone found in crepe ginger and lettuce, is a medicinal herb with anticancer properties. Expression of EpCAM and its downstream target genes (Myc and TERT) wasdownregulated upon treatment with costunolide in Jurkat cells. A significant change in the telomere length of Jurkat cells was not noted at 72 h of costunolide treatment. An in silico study revealed hydrophobic interactions between EpCAM extracellular domain and Myc bHLH with costunolide. Reduced expression of NFκB, a transcription factor of EpCAM, Myc, and TERT in costunolide-treated Jurkat cells, suggested that costunolide inhibits gene expression by targeting NFκB and its downstream targets. Overall, the study proposes that costunolide could be a promising therapeutic biomolecule for leukemia.
Collapse
Affiliation(s)
- Saadiya Zia
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Komal Tehreem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Sidra Batool
- Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia
| | - Mehreen Ishfaq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Shaher Bano Mirza
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Shahrukh Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 22254, Saudi Arabia
| | - Mohannad S. Hazzazi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 22254, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Hail 55476, Saudi Arabia
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Roua S. Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nouf H. Alsubhi
- Biological Sciences Department, College of Science and Arts, King Abdul Aziz University, Rabigh 21911, Saudi Arabia
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Correspondence:
| |
Collapse
|
140
|
Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers (Basel) 2022; 14:cancers14215245. [DOI: 10.3390/cancers14215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical cancer (ACC) typically presents in advanced stages of disease and has a dismal prognosis. One of the foremost reasons for this is the lack of available systemic therapies, with mitotane remaining the backbone of treatment since its discovery in the 1960s, despite underwhelming efficacy. Surgery remains the only potentially curative option, but about half of patients will recur post-operatively, often with metastatic disease. Other local treatment options have been attempted but are only used practically on a case-by-case basis. Over the past few decades there have been significant advances in understanding the molecular background of ACC, but this has not yet translated to better treatment options. Attempts at novel treatment strategies have not provided significant clinical benefit. This paper reviews our current treatment options and molecular understanding of ACC and the reasons why a successful treatment has remained elusive. Additionally, we discuss the knowledge gaps that need to be overcome to bring us closer to successful treatment and ways to bridge them.
Collapse
|
141
|
Tornesello ML, Cerasuolo A, Starita N, Tornesello AL, Bonelli P, Tuccillo FM, Buonaguro L, Isaguliants MG, Buonaguro FM. The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development. Cancers (Basel) 2022; 14:5257. [PMID: 36358677 PMCID: PMC9659228 DOI: 10.3390/cancers14215257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 08/29/2023] Open
Abstract
Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein-Barr virus (EBV) LMP1, Kaposi's sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus-telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | | | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| |
Collapse
|
142
|
Long E, Patel H, Byun J, Amos CI, Choi J. Functional studies of lung cancer GWAS beyond association. Hum Mol Genet 2022; 31:R22-R36. [PMID: 35776125 PMCID: PMC9585683 DOI: 10.1093/hmg/ddac140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Fourteen years after the first genome-wide association study (GWAS) of lung cancer was published, approximately 45 genomic loci have now been significantly associated with lung cancer risk. While functional characterization was performed for several of these loci, a comprehensive summary of the current molecular understanding of lung cancer risk has been lacking. Further, many novel computational and experimental tools now became available to accelerate the functional assessment of disease-associated variants, moving beyond locus-by-locus approaches. In this review, we first highlight the heterogeneity of lung cancer GWAS findings across histological subtypes, ancestries and smoking status, which poses unique challenges to follow-up studies. We then summarize the published lung cancer post-GWAS studies for each risk-associated locus to assess the current understanding of biological mechanisms beyond the initial statistical association. We further summarize strategies for GWAS functional follow-up studies considering cutting-edge functional genomics tools and providing a catalog of available resources relevant to lung cancer. Overall, we aim to highlight the importance of integrating computational and experimental approaches to draw biological insights from the lung cancer GWAS results beyond association.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
143
|
Chaudhary A, Bhardwaj SK, Khan A, Srivastava A, Sinha KK, Ali M, Haque R. Combinatorial Effect of Arsenic and Herbal Compounds in Telomerase-Mediated Apoptosis Induction in Liver Cancer. Biol Trace Elem Res 2022; 201:3300-3310. [PMID: 36192614 DOI: 10.1007/s12011-022-03430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Tumour illness and its resistance against existing anticancer therapies pose a serious health concern globally despite the progressive advancement of therapeutic options. The prevailing treatment of HCC using numerous antitumor agents has inflated long-lived complete remissions, but a percentage of individuals still die due to disease recurrence, indicating a need for further exploration of possible anti-tumour regimes. We aim to boost the effectiveness of the HCC treatment by conducting current investigations evaluating the effect of arsenic trioxide (ATO) with different herbal compounds like quercetin and aloe-emodin against liver tumour via inhibition of telomerase, a pro-cancer enzyme. The anticancer activity of ATO with herbal compounds was investigated in human control liver cell line (Wrl-68) and cancer liver cell line (HepG2) at different time intervals. Viability and cytotoxicity in response to combinatorial drugs were assessed in vitro by trypan blue dye exclusion assay and MTT and WST assay. Apoptosis was analysed by annexin V/PI assay, and the expression of telomerase and apoptosis-regulating proteins was evaluated by immunoblotting and qRT-PCR. Arsenic trioxide in combination with quercetin and aloe-emodin reduced cell viability in cancerous cells compared to normal cells by inducing apoptosis, downregulating telomerase and Bcl-2 (anti-apoptotic protein) and upregulating the expression of Bax (pro-apoptotic protein). ATO exhibited significant anticancer effects due to the synergistic effects of quercetin and aloe-emodin in liver tumour cells. The current study data collectively suggest that a successful inhibition of cancer growth by the combination of ATO and tested herbal medicines against liver tumour growth is via the inhibition of telomerase activity.
Collapse
Affiliation(s)
- Archana Chaudhary
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Sadhan Kumar Bhardwaj
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Azmi Khan
- Department of Life Sciences, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Sciences, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Kislay Kumar Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Mehboob Ali
- Toxicology Invivotek, Genesis Biotech Company Hamilton, Hamilton Township, NJ, 08691, USA
| | - Rizwanul Haque
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
144
|
Chang GA, Robinson E, Wiggins JM, Zhang Y, Tadepalli JS, Schafer CN, Darvishian F, Berman RS, Shapiro R, Shao Y, Osman I, Polsky D. Associations between TERT Promoter Mutations and Survival in Superficial Spreading and Nodular Melanomas in a Large Prospective Patient Cohort. J Invest Dermatol 2022; 142:2733-2743.e9. [PMID: 35469904 PMCID: PMC9509439 DOI: 10.1016/j.jid.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 01/19/2023]
Abstract
Survival outcomes in melanoma and their association with mutations in the telomerase reverse transcriptase gene TERT promoter remain uncertain. In addition, few studies have examined whether these associations are affected by a nearby common germline polymorphism or vary on the basis of melanoma histopathological subtype. We analyzed 408 primary tumors from a prospective melanoma cohort for somatic TERT-124[C>T] and TERT-146[C>T] mutations, the germline polymorphism rs2853669, and BRAFV600 and NRASQ61 mutations. We tested the associations between these variants and clinicopathologic factors and survival outcomes. TERT-124[C>T] was associated with thicker tumors, ulceration, mitoses (>0/mm2), nodular histotype, and CNS involvement. In a multivariable model controlling for the American Joint Committee on Cancer stage, TERT-124[C>T] was an independent predictor of shorter recurrence-free survival (hazard ratio = 2.58, P = 0.001) and overall survival (hazard ratio = 2.47, P = 0.029). Patients with the germline variant and TERT-124[C>T]-mutant melanomas had significantly shorter recurrence-free survival than those lacking either or both sequence variants (P < 0.04). The impact of the germline variant appeared to be more pronounced in superficial spreading than in nodular melanoma. No associations were found between survival and TERT-146[C>T], BRAF, or NRAS mutations. These findings strongly suggest that TERT-124[C>T] mutation is a biomarker of aggressive primary melanomas, an effect that may be modulated by rs2853669.
Collapse
Affiliation(s)
- Gregory A Chang
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Eric Robinson
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jennifer M Wiggins
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Yilong Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Merck, Kenilworth, New Jersey, USA
| | - Jyothirmayee S Tadepalli
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Christine N Schafer
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Farbod Darvishian
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Russell S Berman
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Richard Shapiro
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Yongzhao Shao
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA.
| |
Collapse
|
145
|
Agarwal N, Zhou Q, Arya D, Rinaldetti S, Duex J, LaBarbera DV, Theodorescu D. AST-487 Inhibits RET Kinase Driven TERT Expression in Bladder Cancer. Int J Mol Sci 2022; 23:ijms231810819. [PMID: 36142729 PMCID: PMC9501578 DOI: 10.3390/ijms231810819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the promoter of the human Telomerase Reverse Transcriptase (hTERT) gene are common and associated with its elevated expression in bladder cancer, melanoma, and glioblastoma. Though these mutations and TERT overexpression are associated with aggressive disease and poor outcome, an incomplete understanding of mutant TERT regulation limits treatment options directed at this gene. Herein, we unravel a signaling pathway that leads to upregulated hTERT expression resulting from the −124 bp promoter mutation, the most frequent variant across human cancer. We employed engineered bladder cancer cells that harbor a GFP insertion at the TSS region on −124 hTERT promoter for high-content screening drug discovery using a focused library of ~800 kinase inhibitors. Studies using in vitro and in vivo models prioritized AST-487, an inhibitor of the wild-type, and mutant RET (rearranged during transfection) proto-oncogene as a novel drug inhibitor of both wild-type and mutant promoter-driven hTERT expression. We also identified the RET kinase pathway, targeted by AST-487, as a novel regulator of mutant hTERT promoter-driven transcription in bladder cancer cells. Collectively, our work provides new potential precision medicine approaches for cancer patients with upregulated hTERT expression, perhaps, especially those harboring mutations in both the RET gene and the hTERT promoter, such as in thyroid cancer.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Deepak Arya
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Sébastien Rinaldetti
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Jason Duex
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
- The CU Anschutz Center for Drug Discovery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: (D.V.L.); (D.T.); Tel.: +1-310-423-8431 (D.T.)
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: (D.V.L.); (D.T.); Tel.: +1-310-423-8431 (D.T.)
| |
Collapse
|
146
|
Ambrozkiewicz F, Trailin A, Červenková L, Vaclavikova R, Hanicinec V, Allah MAO, Palek R, Třeška V, Daum O, Tonar Z, Liška V, Hemminki K. CTNNB1 mutations, TERT polymorphism and CD8+ cell densities in resected hepatocellular carcinoma are associated with longer time to recurrence. BMC Cancer 2022; 22:884. [PMID: 35962322 PMCID: PMC9375422 DOI: 10.1186/s12885-022-09989-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal disease characterized by early genetic alterations in telomerase reverse transcriptase promoter (TERTp) and β-catenin (CTNNB1) genes and immune cell activation in the tumor microenvironment. As a novel approach, we wanted to assess patient survival influenced by combined presence of mutations and densities of CD8+ cytotoxic T cells. Methods Tissue samples were obtained from 67 HCC patients who had undergone resection. We analysed CD8+ T cells density, TERTp mutations, rs2853669 polymorphism, and CTNNB1 mutations. These variables were evaluated for time to recurrence (TTR) and disease free survival (DFS). Results TERTp mutations were found in 75.8% and CTNNB1 mutations in 35.6% of the patients. TERTp mutations were not associated with survival but polymorphism rs2853669 in TERTp was associated with improved TTR and DFS. CTNNB1 mutations were associated with improving TTR. High density of CD8+ T-lymphocytes in tumor center and invasive margin correlated with longer TTR and DFS. Combined genetic and immune factors further improved survival showing higher predictive values. E.g., combining CTNNB1 mutations and high density of CD8+ T-lymphocytes in tumor center yielded HRs of 0.12 (0.03–0.52), p = 0.005 for TTR and 0.25 (0.09–0.74), p = 0.01 for DFS. Conclusion The results outline a novel integrative approach for prognostication through combining independent predictive factors from genetic and immune cell profiles. However, larger studies are needed to explore multiple cell types in the tumor microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09989-0.
Collapse
Affiliation(s)
- Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic.
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Lenka Červenková
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague, 10, Czech Republic
| | - Radka Vaclavikova
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health in Prague, Prague, Czech Republic
| | - Vojtech Hanicinec
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Mohammad Al Obeed Allah
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Richard Palek
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej 16 Svobody 80, 323 00, Pilsen, Czech Republic
| | - Vladislav Třeška
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej 16 Svobody 80, 323 00, Pilsen, Czech Republic
| | - Ondrej Daum
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University, Plzen, Czech Republic.,Bioptická laboratoř s.r.o., Mikulášské nám, 4, 326 00, Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Pilsen, Czech Republic.,Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej 16 Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center,Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic.,Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
147
|
Miller J, Dakic A, Spurgeon M, Saenz F, Kallakury B, Zhao B, Zhang J, Zhu J, Ma Q, Xu Y, Lambert P, Schlegel R, Riegel AT, Liu X. AIB1 is a novel target of the high-risk HPV E6 protein and a biomarker of cervical cancer progression. J Med Virol 2022; 94:3962-3977. [PMID: 35437795 PMCID: PMC9199254 DOI: 10.1002/jmv.27795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/10/2022]
Abstract
The high-risk human papillomaviruses (HPV-16, -18) are critical etiologic agents in human malignancy, most importantly in cervical cancer. These oncogenic viruses encode the E6 and E7 proteins that are uniformly retained and expressed in cervical cancers and required for maintenance of the tumorigenic phenotype. The E6 and E7 proteins were first identified as targeting the p53 and pRB tumor suppressor pathways, respectively, in host cells, thereby leading to disruption of cell cycle controls. In addition to p53 degradation, a number of other functions and critical targets for E6 have been described, including telomerase, Myc, PDZ-containing proteins, Akt, Wnt, mTORC1, as well as others. In this study, we identified Amplified in Breast Cancer 1 (AIB1) as a new E6 target. We first found that E6 and hTERT altered similar profiling of gene expression in human foreskin keratinocytes (HFK), independent of telomerase activity. Importantly, AIB1 was a common transcriptional target of both E6 and hTERT. We then verified that high-risk E6 but not low-risk E6 expression led to increases in AIB1 transcript levels by real-time RT-PCR, suggesting that AIB1 upregulation may play an important role in cancer development. Western blots demonstrated that AIB1 expression increased in HPV-16 E6 and E7 expressing (E6E7) immortalized foreskin and cervical keratinocytes, and in three of four common cervical cancer cell lines as well. Then, we evaluated the expression of AIB1 in human cervical lesions and invasive carcinoma using immunohistochemical staining. Strikingly, AIB1 showed positivity in the nucleus of cells in the immediate suprabasal epithelium, while nuclei of the basal epithelium were negative, as evident in the Cervical Intraepithelial Neoplasia 1 (CIN1) samples. As the pathological grading of cervical lesions increased from CIN1, CIN2, CIN3 carcinoma in situ and invasive carcinoma, AIB1 staining increased progressively, suggesting that AIB1 may serve as a novel histological biomarker for cervical cancer development. For cases of invasive cervical carcinoma, AIB1 staining was specific to cancerous lesions. Increased expression of AIB1 was also observed in transgenic mouse cervical neoplasia and cancer models induced by E6E7 and estrogen. Knockdown of AIB1 expression in E6E7 immortalized human cervical cells significantly abolished cell proliferation. Taken together, these data support AIB1 as a novel target of HPV E6 and a biomarker of cervical cancer progression.
Collapse
Affiliation(s)
- Jonathan Miller
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Aleksandra Dakic
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Megan Spurgeon
- McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
| | - Francisco Saenz
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Bhaskar Kallakury
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Junran Zhang
- Department of Radiation Oncology, Wexner Medical CenterThe Ohio State UniversityColumbusOhioUSA
- The James Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Jian Zhu
- Department of Pathology, Wexner Medical CenterThe Ohio State UniversityColumbusOhioUSA
| | - Qin Ma
- The James Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
- Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of BioinformaticsThe University of GeorgiaAthensGeorgiaUSA
| | - Paul Lambert
- McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard Schlegel
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
- The James Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
- Department of Pathology, Wexner Medical CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
148
|
do Canto LM, da Silva JM, Castelo-Branco PV, da Silva IM, Nogueira L, Fonseca-Alves CE, Khayat A, Birbrair A, Pereira SR. Mutational Signature and Integrative Genomic Analysis of Human Papillomavirus-Associated Penile Squamous Cell Carcinomas from Latin American Patients. Cancers (Basel) 2022; 14:cancers14143514. [PMID: 35884575 PMCID: PMC9316960 DOI: 10.3390/cancers14143514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary DNA sequencing has been crucial to comprehending cancer mutational patterns, leading to the identification of driver genes and altered signaling pathways. Thus, identifying new pathogenic variants and their impact on tumor onset, progression, and treatment response has fueled tumor biology research. Here, we present novel findings addressing the first whole-exome sequencing (WES) of human papillomavirus (HPV)-associated penile squamous cell carcinoma (PSCC) from Latin Americans and its association with pathogenesis. We also compared the molecular profile of the tumors to that of three previous studies from populations with different genetic and socioeconomic backgrounds, the majority of which was HPV-negative. We describe the most altered genes and the main pathogenic variants found in the Latin Americans, ten of which are exclusive to our study sample. The data allowed us to identify molecular pathways and druggable targets with potential treatment value for this still-neglected HPV-associated carcinoma. Abstract High-throughput DNA sequencing has allowed for the identification of genomic alterations and their impact on tumor development, progression, and therapeutic responses. In PSCC, for which the incidence has progressively increased worldwide, there are still limited data on the molecular mechanisms involved in the disease pathogenesis. In this study, we characterized the mutational signature of 30 human papillomavirus (HPV)-associated PSCC cases from Latin Americans, using whole-exome sequencing. Copy number variations (CNVs) were also identified and compared to previous array-generated data. Enrichment analyses were performed to reveal disrupted pathways and to identify alterations mapped to HPV integration sites (HPVis) and miRNA–mRNA hybridization regions. Among the most frequently mutated genes were NOTCH1, TERT, TTN, FAT1, TP53, CDKN2A, RYR2, CASP8, FBXW7, HMCN2, and ITGA8. Of note, 92% of these altered genes were localized at HPVis. We also found mutations in ten novel genes (KMT2C, SMARCA4, PTPRB, AJUBA, CR1, KMT2D, NBEA, FAM135B, GTF2I, and CIC), thus increasing our understanding of the potential HPV-disrupted pathways. Therefore, our study reveals innovative targets with potential therapeutic benefits for HPV-associated PSCCs. The CNV analysis by sequencing (CNV-seq) revealed five cancer-associated genes as the most frequent with gains (NOTCH1, MYC, NUMA1, PLAG1, and RAD21), while 30% of the tumors showed SMARCA4 with loss. Additionally, four cancer-associated genes (CARD11, CSMD3, KDR, and TLX3) carried untranslated regions (UTRs) variants, which may impact gene regulation by affecting the miRNAs hybridization regions. Altogether, these data contribute to the characterization of the mutational spectrum and its impact on cellular signaling pathways in PSCC, thus reinforcing the pivotal role of HPV infection in the molecular pathogenesis of these tumors.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- Clinical Genetics Department, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Jenilson Mota da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | - Patrícia Valèria Castelo-Branco
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | - Ingrid Monteiro da Silva
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
| | | | | | - André Khayat
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil;
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Silma Regina Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil; (P.V.C.-B.); (I.M.d.S.)
- Correspondence: ; Tel.: +55-98-32728543
| |
Collapse
|
149
|
Sung JY, Kim SG, Kang YJ, Choi HC. Metformin mitigates stress-induced premature senescence by upregulating AMPKα at Ser485 phosphorylation induced SIRT3 expression and inactivating mitochondrial oxidants. Mech Ageing Dev 2022; 206:111708. [PMID: 35863470 DOI: 10.1016/j.mad.2022.111708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
The senescence of vascular smooth muscle cells (VSMCs) is an important cause of cardiovascular disease such as atherosclerosis and hypertension. These senescence may be triggered by many factors, such as oxidative stress, inflammation, DNA damage, and senescence-associated secretory phenotypes (SASPs). Mitochondrial oxidative stress induces cellular senescence, but the mechanisms by which mitochondrial reactive oxygen species (mtROS) regulates cellular senescence are still largely unknown. Here, we investigated the mechanism responsible for the anti-aging effect of metformin by examining links between VSMC senescence and mtROS in in vitro and in vivo. Metformin was found to increase p-AMPK (Ser485), but to decrease senescence-associated phenotypes and protein levels of senescence markers during ADR-induced VSMC senescence. Importantly, metformin decreased mtROS by inducing the deacetylation of superoxide dismutase 2 (SOD2) by increasing SIRT3 expression. Moreover, AMPK depletion reduced the expression of SIRT3 and increased the expression of acetylated SOD2 despite metformin treatment, suggesting AMPK activation by metformin is required to protect against mitochondrial oxidative stress by SIRT3. This study provides mechanistic evidence that metformin acts as an anti-aging agent and alleviates VSMC senescence by upregulating mitochondrial antioxidant induced p-AMPK (Ser485)-dependent SIRT3 expression, which suggests metformin has therapeutic potential for the treatment of age-associated vascular disease.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
150
|
Maloberti T, De Leo A, Sanza V, Gruppioni E, Altimari A, Riefolo M, Visani M, Malvi D, D’Errico A, Tallini G, Vasuri F, de Biase D. Correlation of molecular alterations with pathological features in hepatocellular carcinoma: Literature review and experience of an Italian center. World J Gastroenterol 2022; 28:2854-2866. [PMID: 35978866 PMCID: PMC9280731 DOI: 10.3748/wjg.v28.i25.2854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/23/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the primary carcinoma of the liver and the fourth leading cause of cancer-related deaths. The World Health Organization estimates an increase in cases in the coming years. The risk factors of HCC are multiple, and the incidence in different countries is closely related to the different risk factors to which the population is exposed. The molecular mechanisms that drive HCC tumorigenesis are extremely complex, but understanding this multistep process is essential for the identification of diagnostic, prognostic, and therapeutic markers. The development of multigenic next-generation sequencing panels through the parallel analysis of multiple markers can provide a landscape of the genomic status of the tumor. Considering the literature and our preliminary data based on 36 HCCs, the most frequently altered genes in HCCs are TERT, CTNNB1, and TP53. Over the years, many groups have attempted to classify HCCs on a molecular basis, but a univocal classification has never been achieved. Nevertheless, statistically significant correlations have been found in HCCs between the molecular signature and morphologic features, and this leads us to think that it would be desirable to integrate the approach between anatomic pathology and molecular laboratories.
Collapse
Affiliation(s)
- Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Antonio De Leo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Viviana Sanza
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Mattia Riefolo
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Michela Visani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
| | - Deborah Malvi
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Antonia D’Errico
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Francesco Vasuri
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Dario de Biase
- Department of Pharmacy and biotechnology (FaBiT), University of Bologna, Bologna 40138, Italy
| |
Collapse
|