101
|
Abbas Q, Hussain A, Baig AR. CAD-ALZ: A Blockwise Fine-Tuning Strategy on Convolutional Model and Random Forest Classifier for Recognition of Multistage Alzheimer's Disease. Diagnostics (Basel) 2023; 13:167. [PMID: 36611459 PMCID: PMC9818479 DOI: 10.3390/diagnostics13010167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Mental deterioration or Alzheimer's (ALZ) disease is progressive and causes both physical and mental dependency. There is a need for a computer-aided diagnosis (CAD) system that can help doctors make an immediate decision. (1) Background: Currently, CAD systems are developed based on hand-crafted features, machine learning (ML), and deep learning (DL) techniques. Those CAD systems frequently require domain-expert knowledge and massive datasets to extract deep features or model training, which causes problems with class imbalance and overfitting. Additionally, there are still manual approaches used by radiologists due to the lack of dataset availability and to train the model with cost-effective computation. Existing works rely on performance improvement by neglecting the problems of the limited dataset, high computational complexity, and unavailability of lightweight and efficient feature descriptors. (2) Methods: To address these issues, a new approach, CAD-ALZ, is developed by extracting deep features through a ConvMixer layer with a blockwise fine-tuning strategy on a very small original dataset. At first, we apply the data augmentation method to images to increase the size of datasets. In this study, a blockwise fine-tuning strategy is employed on the ConvMixer model to detect robust features. Afterwards, a random forest (RF) is used to classify ALZ disease stages. (3) Results: The proposed CAD-ALZ model obtained significant results by using six evaluation metrics such as the F1-score, Kappa, accuracy, precision, sensitivity, and specificity. The CAD-ALZ model performed with a sensitivity of 99.69% and an F1-score of 99.61%. (4) Conclusions: The suggested CAD-ALZ approach is a potential technique for clinical use and computational efficiency compared to state-of-the-art approaches. The CAD-ALZ model code is freely available on GitHub for the scientific community.
Collapse
Affiliation(s)
- Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Ayyaz Hussain
- Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Abdul Rauf Baig
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| |
Collapse
|
102
|
Srivishagan S, Kumaralingam L, Thanikasalam K, Pinidiyaarachchi UAJ, Ratnarajah N. Discriminative patterns of white matter changes in Alzheimer's. Psychiatry Res Neuroimaging 2023; 328:111576. [PMID: 36495726 DOI: 10.1016/j.pscychresns.2022.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
Changes in structural connectivity of the Alzheimer's brain have not been widely studied utilizing cutting-edge methodologies. This study develops an efficient structural connectome-based convolutional neural network (CNN) to classify the AD and uses explanations of CNNs' choices in classification to pinpoint the discriminative changes in white matter connectivity in AD. A CNN architecture has been developed to classify normal control (NC) and AD subjects from the weighted structural connectome. Then, the CNN classification decision is visually analyzed using gradient-based localization techniques to identify the discriminative changes in white matter connectivity in Alzheimer's. The cortical regions involved in the identified discriminative structural connectivity changes in AD are highly covered in the temporal/subcortical regions. A specific pattern is identified in the discriminative changes in structural connectivity of AD, where the white matter changes are revealed within the temporal/subcortical regions and from the temporal/subcortical regions to the frontal and parietal regions in both left and right hemispheres. The proposed approach has the potential to comprehensively analyze the discriminative structural connectivity differences in AD, change the way of detecting biomarkers, and help clinicians better understand the structural changes in AD and provide them with more confidence in automated diagnostic systems.
Collapse
Affiliation(s)
- Subaramya Srivishagan
- Department of Physical Science, Faculty of Applied Science, University of Vavuniya, Vavuniya, Sri Lanka; PGIS, University of Peradeniya, Peradeniya, Sri Lanka
| | - Logiraj Kumaralingam
- Department of Computer Science, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka
| | - Kokul Thanikasalam
- Department of Computer Science, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka
| | - U A J Pinidiyaarachchi
- Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Nagulan Ratnarajah
- Department of Physical Science, Faculty of Applied Science, University of Vavuniya, Vavuniya, Sri Lanka.
| |
Collapse
|
103
|
Ziyad SR, Alharbi M, Altulyan M. Artificial Intelligence Model for Alzheimer's Disease Detection with Convolution Neural Network for Magnetic Resonance Images. J Alzheimers Dis 2023; 93:235-245. [PMID: 36970908 DOI: 10.3233/jad-221250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that drastically affects brain cells. Early detection of this disease can reduce the brain cell damage rate and improve the prognosis of the patient to a great extent. The patients affected with AD tend to depend on their children and relatives for their daily chores. OBJECTIVE This research study utilizes the latest technologies of artificial intelligence and computation power to aid the medical industry. The study aims at early detection of AD to enable doctors to treat patients with the appropriate medication in the early stages of the disease condition. METHODS In this research study, convolutional neural networks, an advanced deep learning technique, are adopted to classify AD patients with their MRI images. Deep learning models with customized architecture are precise in the early detection of diseases with images retrieved by neuroimaging techniques. RESULTS The convolution neural network model classifies the patients as diagnosed with AD or cognitively normal. Standard metrics evaluate the model performance to compare with the state-of-the-art methodologies. The experimental study of the proposed model shows promising results with an accuracy of 97%, precision of 94%, recall rate of 94%, and f1-score of 94%. CONCLUSION This study leverages powerful technologies like deep learning to aid medical practitioners in diagnosing AD. It is crucial to detect AD early to control and slow down the rate at which the disease progresses.
Collapse
Affiliation(s)
- Shabana R Ziyad
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Meshal Alharbi
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - May Altulyan
- Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
104
|
Shah J, Siddiquee MMR, Krell-Roesch J, Syrjanen JA, Kremers WK, Vassilaki M, Forzani E, Wu T, Geda YE. Neuropsychiatric Symptoms and Commonly Used Biomarkers of Alzheimer's Disease: A Literature Review from a Machine Learning Perspective. J Alzheimers Dis 2023; 92:1131-1146. [PMID: 36872783 PMCID: PMC11102734 DOI: 10.3233/jad-221261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
There is a growing interest in the application of machine learning (ML) in Alzheimer's disease (AD) research. However, neuropsychiatric symptoms (NPS), frequent in subjects with AD, mild cognitive impairment (MCI), and other related dementias have not been analyzed sufficiently using ML methods. To portray the landscape and potential of ML research in AD and NPS studies, we present a comprehensive literature review of existing ML approaches and commonly studied AD biomarkers. We conducted PubMed searches with keywords related to NPS, AD biomarkers, machine learning, and cognition. We included a total of 38 articles in this review after excluding some irrelevant studies from the search results and including 6 articles based on a snowball search from the bibliography of the relevant studies. We found a limited number of studies focused on NPS with or without AD biomarkers. In contrast, multiple statistical machine learning and deep learning methods have been used to build predictive diagnostic models using commonly known AD biomarkers. These mainly included multiple imaging biomarkers, cognitive scores, and various omics biomarkers. Deep learning approaches that combine these biomarkers or multi-modality datasets typically outperform single-modality datasets. We conclude ML may be leveraged to untangle the complex relationships of NPS and AD biomarkers with cognition. This may potentially help to predict the progression of MCI or dementia and develop more targeted early intervention approaches based on NPS.
Collapse
Affiliation(s)
- Jay Shah
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Md Mahfuzur Rahman Siddiquee
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Janina Krell-Roesch
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jeremy A. Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Walter K. Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Erica Forzani
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Teresa Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Yonas E. Geda
- Department of Neurology and the Franke Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
105
|
Mortazavi SAR, Tahmasebi S, Parsaei H, Taleie A, Faraz M, Rezaianzadeh A, Zamani A, Zamani A, Mortazavi SMJ. Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens. J Biomed Phys Eng 2022; 12:637-644. [PMID: 36569561 PMCID: PMC9759638 DOI: 10.31661/jbpe.v0i0.2105-1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/02/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nowadays, there is a growing global concern over rapidly increasing screen time (smartphones, tablets, and computers). An accumulating body of evidence indicates that prolonged exposure to short-wavelength visible light (blue component) emitted from digital screens may cause cancer. The application of machine learning (ML) methods has significantly improved the accuracy of predictions in fields such as cancer susceptibility, recurrence, and survival. OBJECTIVE To develop an ML model for predicting the risk of breast cancer in women via several parameters related to exposure to ionizing and non-ionizing radiation. MATERIAL AND METHODS In this analytical study, three ML models Random Forest (RF), Support Vector Machine (SVM), and Multi-Layer Perceptron Neural Network (MLPNN) were used to analyze data collected from 603 cases, including 309 breast cancer cases and 294 gender and age-matched controls. Standard face-to-face interviews were performed using a standard questionnaire for data collection. RESULTS The examined models RF, SVM, and MLPNN performed well for correctly classifying cases with breast cancer and the healthy ones (mean sensitivity> 97.2%, mean specificity >96.4%, and average accuracy >97.1%). CONCLUSION Machine learning models can be used to effectively predict the risk of breast cancer via the history of exposure to ionizing and non-ionizing radiation (including blue light and screen time issues) parameters. The performance of the developed methods is encouraging; nevertheless, further investigation is required to confirm that machine learning techniques can diagnose breast cancer with relatively high accuracies automatically.
Collapse
Affiliation(s)
| | - Sedigheh Tahmasebi
- MD, Breast Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Parsaei
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdorasoul Taleie
- MD, Breast Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Faraz
- MSc, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rezaianzadeh
- PhD, Department of Epidemiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Zamani
- PhD, Department of Statistics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zamani
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Javad Mortazavi
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
106
|
Brain Microstructural Changes in Patients with Amnestic mild Cognitive Impairment. Clin Neuroradiol 2022; 33:445-453. [DOI: 10.1007/s00062-022-01226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
|
107
|
Zhu JD, Huang CW, Chang HI, Tsai SJ, Huang SH, Hsu SW, Lee CC, Chen HJ, Chang CC, Yang AC. Functional MRI and ApoE4 genotype for predicting cognitive decline in amyloid-positive individuals. Ther Adv Neurol Disord 2022; 15:17562864221138154. [PMID: 36419870 PMCID: PMC9677312 DOI: 10.1177/17562864221138154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In light of advancements in machine learning techniques, many studies have implemented machine learning approaches combined with data measures to predict and classify Alzheimer's disease. Studies that predicted cognitive status with longitudinal follow-up of amyloid-positive individuals remain scarce, however. OBJECTIVE We developed models based on voxel-wise functional connectivity (FC) density mapping and the presence of the ApoE4 genotype to predict whether amyloid-positive individuals would experience cognitive decline after 1 year. METHODS We divided 122 participants into cognitive decline and stable cognition groups based on the participants' change rates in Mini-Mental State Examination scores. In addition, we included 68 participants from Alzheimer's Disease Neuroimaging Initiative (ADNI) database as an external validation data set. Subsequently, we developed two classification models: the first model included 99 voxels, and the second model included 99 voxels and the ApoE4 genotype as features to train the models by Wide Neural Network algorithm with fivefold cross-validation and to predict the classes in the hold-out test and ADNI data sets. RESULTS The results revealed that both models demonstrated high accuracy in classifying the two groups in the hold-out test data set. The model for FC demonstrated good performance, with a mean F 1-score of 0.86. The model for FC combined with the ApoE4 genotype achieved superior performance, with a mean F 1-score of 0.90. In the ADNI data set, the two models demonstrated stable performances, with mean F 1-scores of 0.77 in the first and second models. CONCLUSION Our findings suggest that the proposed models exhibited promising accuracy for predicting cognitive status after 1 year in amyloid-positive individuals. Notably, the combination of FC and the ApoE4 genotype increased prediction accuracy. These findings can assist clinicians in predicting changes in cognitive status in individuals with a high risk of Alzheimer's disease and can assist future studies in developing precise treatment and prevention strategies.
Collapse
Affiliation(s)
- Jun-Ding Zhu
- Institute of Brain Science, National Yang Ming
Chiao Tung University, Taipei, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging
Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Hsin-I Chang
- Department of Neurology, Cognition and Aging
Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming
Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans
General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine,
National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of NeuroRadiology, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of NeuroRadiology, Kaohsiung Chang
Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Hong-Jie Chen
- Department of Nuclear Medicine, Kaohsiung
Chang Gung Memorial Hospital, Chang Gung University College of Medicine,
Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Cognition and Aging Center, Institute for
Translational Research in Biomedicine, Department of Neurology, Kaohsiung
Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No.
123 Ta-Pei Road, Niau-Sung District, Kaohsiung 833, Taiwan
| | - Albert C. Yang
- Institute of Brain Science/Digital Medicine
and Smart Healthcare Research Center, National Yang Ming Chiao Tung
University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112,
Taiwan
- Department of Medical Research, Taipei
Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
108
|
Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji JS, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J Clin Med 2022; 11:6844. [PMID: 36431321 PMCID: PMC9693632 DOI: 10.3390/jcm11226844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | | | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Egkomi 2408, Cyprus
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
109
|
Khaliq F, Oberhauser J, Wakhloo D, Mahajani S. Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders. Neural Regen Res 2022; 18:1235-1242. [PMID: 36453399 PMCID: PMC9838151 DOI: 10.4103/1673-5374.355982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Machine learning represents a growing subfield of artificial intelligence with much promise in the diagnosis, treatment, and tracking of complex conditions, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. While no definitive methods of diagnosis or treatment exist for either disease, researchers have implemented machine learning algorithms with neuroimaging and motion-tracking technology to analyze pathologically relevant symptoms and biomarkers. Deep learning algorithms such as neural networks and complex combined architectures have proven capable of tracking disease-linked changes in brain structure and physiology as well as patient motor and cognitive symptoms and responses to treatment. However, such techniques require further development aimed at improving transparency, adaptability, and reproducibility. In this review, we provide an overview of existing neuroimaging technologies and supervised and unsupervised machine learning techniques with their current applications in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Fariha Khaliq
- Department of Biomedical Engineering and Sciences (BMES), National University of Science and Technology, Islamabad, Pakistan,Correspondence to: Fariha Khaliq, ; Sameehan Mahajani, .
| | - Jane Oberhauser
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Debia Wakhloo
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sameehan Mahajani
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA,Correspondence to: Fariha Khaliq, ; Sameehan Mahajani, .
| |
Collapse
|
110
|
Sun J, Tu Z, Meng D, Gong Y, Zhang M, Xu J. Interpretation for Individual Brain Age Prediction Based on Gray Matter Volume. Brain Sci 2022; 12:1517. [PMID: 36358443 PMCID: PMC9688302 DOI: 10.3390/brainsci12111517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2023] Open
Abstract
The relationship between age and the central nervous system (CNS) in humans has been a classical issue that has aroused extensive attention. Especially for individuals, it is of far greater importance to clarify the mechanisms between CNS and age. The primary goal of existing methods is to use MR images to derive high-accuracy predictions for age or degenerative diseases. However, the associated mechanisms between the images and the age have rarely been investigated. In this paper, we address the correlation between gray matter volume (GMV) and age, both in terms of gray matter themselves and their interaction network, using interpretable machine learning models for individuals. Our goal is not only to predict age accurately but more importantly, to explore the relationship between GMV and age. In addition to targeting each individual, we also investigate the dynamic properties of gray matter and their interaction network with individual age. The results show that the mean absolute error (MAE) of age prediction is 7.95 years. More notably, specific locations of gray matter and their interactions play different roles in age, and these roles change dynamically with age. The proposed method is a data-driven approach, which provides a new way to study aging mechanisms and even to diagnose degenerative brain diseases.
Collapse
Affiliation(s)
- Jiancheng Sun
- School of Software and Internet of Things Engineering, Jiangxi University of Finance and Economics, Nanchang 330013, China
| | | | | | | | | | | |
Collapse
|
111
|
Liu S, Masurkar AV, Rusinek H, Chen J, Zhang B, Zhu W, Fernandez-Granda C, Razavian N. Generalizable deep learning model for early Alzheimer's disease detection from structural MRIs. Sci Rep 2022; 12:17106. [PMID: 36253382 PMCID: PMC9576679 DOI: 10.1038/s41598-022-20674-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023] Open
Abstract
Early diagnosis of Alzheimer's disease plays a pivotal role in patient care and clinical trials. In this study, we have developed a new approach based on 3D deep convolutional neural networks to accurately differentiate mild Alzheimer's disease dementia from mild cognitive impairment and cognitively normal individuals using structural MRIs. For comparison, we have built a reference model based on the volumes and thickness of previously reported brain regions that are known to be implicated in disease progression. We validate both models on an internal held-out cohort from The Alzheimer's Disease Neuroimaging Initiative (ADNI) and on an external independent cohort from The National Alzheimer's Coordinating Center (NACC). The deep-learning model is accurate, achieved an area-under-the-curve (AUC) of 85.12 when distinguishing between cognitive normal subjects and subjects with either MCI or mild Alzheimer's dementia. In the more challenging task of detecting MCI, it achieves an AUC of 62.45. It is also significantly faster than the volume/thickness model in which the volumes and thickness need to be extracted beforehand. The model can also be used to forecast progression: subjects with mild cognitive impairment misclassified as having mild Alzheimer's disease dementia by the model were faster to progress to dementia over time. An analysis of the features learned by the proposed model shows that it relies on a wide range of regions associated with Alzheimer's disease. These findings suggest that deep neural networks can automatically learn to identify imaging biomarkers that are predictive of Alzheimer's disease, and leverage them to achieve accurate early detection of the disease.
Collapse
Affiliation(s)
- Sheng Liu
- Center for Data Science, NYU, 60 Fifth Avenue, 5th Floor, New York, NY, 10011, USA
| | - Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, 60 Fifth Avenue, 5th Floor, New York, NY, 10011, USA
- Neuroscience Institute, NYU Grossman School of Medicine, 145 E 32nd St #2, New York, NY, 10016, USA
| | - Henry Rusinek
- Department of Radiology, NYU Grossman School of Medicine, 660 First Avenue, New York, NY, 10016, USA
- Department of Psychiatry, NYU Grossman School of Medicine, 227 East 30th St, 6th Floor, New York, NY, 10016, USA
| | - Jingyun Chen
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, 60 Fifth Avenue, 5th Floor, New York, NY, 10011, USA
- Department of Radiology, NYU Grossman School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| | - Ben Zhang
- Department of Radiology, NYU Grossman School of Medicine, 660 First Avenue, New York, NY, 10016, USA
| | - Weicheng Zhu
- Center for Data Science, NYU, 60 Fifth Avenue, 5th Floor, New York, NY, 10011, USA
| | - Carlos Fernandez-Granda
- Center for Data Science, NYU, 60 Fifth Avenue, 5th Floor, New York, NY, 10011, USA.
- Courant Institute of Mathematical Sciences, NYU, 251 Mercer St # 801, New York, NY, 10012, USA.
| | - Narges Razavian
- Center for Data Science, NYU, 60 Fifth Avenue, 5th Floor, New York, NY, 10011, USA.
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, 60 Fifth Avenue, 5th Floor, New York, NY, 10011, USA.
- Department of Radiology, NYU Grossman School of Medicine, 660 First Avenue, New York, NY, 10016, USA.
- Department of Population Health, NYU Grossman School of Medicine, 227 East 30th street 639, New York, NY, 10016, USA.
| |
Collapse
|
112
|
Alzheimer’s Disease Prediction Algorithm Based on Group Convolution and a Joint Loss Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1854718. [PMID: 36277022 PMCID: PMC9581650 DOI: 10.1155/2022/1854718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) can effectively predict by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) of the brain, but current PET images still suffer from indistinct lesion features, low signal-to-noise ratios, and severe artefacts, resulting in poor prediction accuracy for patients with mild cognitive impairment (MCI) and unclear lesion features. In this paper, an AD prediction algorithm based on group convolution and a joint loss function is proposed. First, a group convolutional backbone network based on ResNet18 is designed to extract lesion features from multiple channels, which makes the expression ability of the network improved to a great extent. Then, a hybrid attention mechanism is presented, which enables the network to focus on target regions and learn feature weights, so as to enhance the network's learning ability of the lesion regions that are relevant to disease diagnosis. Finally, a joint loss function, that avoids the overfitting phenomenon, increases the generalization of the model, and improves prediction accuracy by adding a regularization loss function to the conventional cross-entropy function, is proposed. Experiments conducted on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset show that the algorithm we proposed gives a prediction accuracy improvement of 2.4% over that of the current AD prediction algorithm, thus proving the effectiveness and availability of the new algorithm.
Collapse
|
113
|
Deatsch A, Perovnik M, Namías M, Trošt M, Jeraj R. Development of a deep learning network for Alzheimer’s disease classification with evaluation of imaging modality and longitudinal data. Phys Med Biol 2022; 67. [PMID: 36055243 DOI: 10.1088/1361-6560/ac8f10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Neuroimaging uncovers important information about disease in the brain. Yet in Alzheimer’s disease (AD), there remains a clear clinical need for reliable tools to extract diagnoses from neuroimages. Significant work has been done to develop deep learning (DL) networks using neuroimaging for AD diagnosis. However, no particular model has emerged as optimal. Due to a lack of direct comparisons and evaluations on independent data, there is no consensus on which modality is best for diagnostic models or whether longitudinal information enhances performance. The purpose of this work was (1) to develop a generalizable DL model to distinguish neuroimaging scans of AD patients from controls and (2) to evaluate the influence of imaging modality and longitudinal data on performance. Approach. We trained a 2-class convolutional neural network (CNN) with and without a cascaded recurrent neural network (RNN). We used datasets of 772 (N
AD = 364, N
control = 408) 3D 18F-FDG PET scans and 780 (N
AD = 280, N
control = 500) T1-weighted volumetric-3D MR images (containing 131 and 144 patients with multiple timepoints) from the Alzheimer’s Disease Neuroimaging Initiative, plus an independent set of 104 (N
AD = 63, N
NC = 41) 18F-FDG PET scans (one per patient) for validation. Main Results. ROC analysis showed that PET-trained models outperformed MRI-trained, achieving maximum AUC with the CNN + RNN model of 0.93 ± 0.08, with accuracy 82.5 ± 8.9%. Adding longitudinal information offered significant improvement to performance on 18F-FDG PET, but not on T1-MRI. CNN model validation with an independent 18F-FDG PET dataset achieved AUC of 0.99. Layer-wise relevance propagation heatmaps added CNN interpretability. Significance. The development of a high-performing tool for AD diagnosis, with the direct evaluation of key influences, reveals the advantage of using 18F-FDG PET and longitudinal data over MRI and single timepoint analysis. This has significant implications for the potential of neuroimaging for future research on AD diagnosis and clinical management of suspected AD patients.
Collapse
|
114
|
Shastry KA, Vijayakumar V, V MKM, B A M, B N C. Deep Learning Techniques for the Effective Prediction of Alzheimer's Disease: A Comprehensive Review. Healthcare (Basel) 2022; 10:1842. [PMID: 36292289 PMCID: PMC9601959 DOI: 10.3390/healthcare10101842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
"Alzheimer's disease" (AD) is a neurodegenerative disorder in which the memory shrinks and neurons die. "Dementia" is described as a gradual decline in mental, psychological, and interpersonal qualities that hinders a person's ability to function autonomously. AD is the most common degenerative brain disease. Among the first signs of AD are missing recent incidents or conversations. "Deep learning" (DL) is a type of "machine learning" (ML) that allows computers to learn by doing, much like people do. DL techniques can attain cutting-edge precision, beating individuals in certain cases. A large quantity of tagged information with multi-layered "neural network" architectures is used to perform analysis. Because significant advancements in computed tomography have resulted in sizable heterogeneous brain signals, the use of DL for the timely identification as well as automatic classification of AD has piqued attention lately. With these considerations in mind, this paper provides an in-depth examination of the various DL approaches and their implementations for the identification and diagnosis of AD. Diverse research challenges are also explored, as well as current methods in the field.
Collapse
Affiliation(s)
- K Aditya Shastry
- Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - V Vijayakumar
- School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- School of NUOVOS, Ajeenkya D Y Patil University, Pune 412105, India
- Swiss School of Business and Management, 1213 Geneva, Switzerland
| | - Manoj Kumar M V
- Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Manjunatha B A
- Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Chandrashekhar B N
- Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| |
Collapse
|
115
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
116
|
Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowl Inf Syst 2022. [DOI: 10.1007/s10115-022-01756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
117
|
Gao W, Wang C, Li Q, Zhang X, Yuan J, Li D, Sun Y, Chen Z, Gu Z. Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip. Front Bioeng Biotechnol 2022; 10:985692. [PMID: 36172022 PMCID: PMC9511994 DOI: 10.3389/fbioe.2022.985692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Organ-on-a-chip (OOC) is a new type of biochip technology. Various types of OOC systems have been developed rapidly in the past decade and found important applications in drug screening and precision medicine. However, due to the complexity in the structure of both the chip-body itself and the engineered-tissue inside, the imaging and analysis of OOC have still been a big challenge for biomedical researchers. Considering that medical imaging is moving towards higher spatial and temporal resolution and has more applications in tissue engineering, this paper aims to review medical imaging methods, including CT, micro-CT, MRI, small animal MRI, and OCT, and introduces the application of 3D printing in tissue engineering and OOC in which medical imaging plays an important role. The achievements of medical imaging assisted tissue engineering are reviewed, and the potential applications of medical imaging in organoids and OOC are discussed. Moreover, artificial intelligence - especially deep learning - has demonstrated its excellence in the analysis of medical imaging; we will also present the application of artificial intelligence in the image analysis of 3D tissues, especially for organoids developed in novel OOC systems.
Collapse
Affiliation(s)
- Wanying Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xijing Zhang
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Dianfu Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Children’s Medical Imaging Research Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
118
|
Jang JW, Kim J, Park SW, Kasani PH, Kim Y, Kim S, Kim SJ, Na DL, Moon SH, Seo SW, Seong JK. Machine learning-based automatic estimation of cortical atrophy using brain computed tomography images. Sci Rep 2022; 12:14740. [PMID: 36042322 PMCID: PMC9427760 DOI: 10.1038/s41598-022-18696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Cortical atrophy is measured clinically according to established visual rating scales based on magnetic resonance imaging (MRI). Although brain MRI is the primary imaging marker for neurodegeneration, computed tomography (CT) is also widely used for the early detection and diagnosis of dementia. However, they are seldom investigated. Therefore, we developed a machine learning algorithm for the automatic estimation of cortical atrophy on brain CT. Brain CT images (259 Alzheimer's dementia and 55 cognitively normal subjects) were visually rated by three neurologists and used for training. We constructed an algorithm by combining the convolutional neural network and regularized logistic regression (RLR). Model performance was then compared with that of neurologists, and feature importance was measured. RLR provided fast and reliable automatic estimations of frontal atrophy (75.2% accuracy, 93.6% sensitivity, 67.2% specificity, and 0.87 area under the curve [AUC]), posterior atrophy (79.6% accuracy, 87.2% sensitivity, 75.9% specificity, and 0.88 AUC), right medial temporal atrophy (81.2% accuracy, 84.7% sensitivity, 79.6% specificity, and 0.88 AUC), and left medial temporal atrophy (77.7% accuracy, 91.1% sensitivity, 72.3% specificity, and 0.90 AUC). We concluded that RLR-based automatic estimation of brain CT provided a comprehensive rating of atrophy that can potentially support physicians in real clinical settings.
Collapse
Affiliation(s)
- Jae-Won Jang
- Department of Neurology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeonghun Kim
- Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Sang-Won Park
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Payam Hosseinzadeh Kasani
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeshin Kim
- Department of Neurology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Seongheon Kim
- Department of Neurology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Soo-Jong Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Joon-Kyung Seong
- Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
119
|
Wang H, Sheng L, Xu S, Jin Y, Jin X, Qiao S, Chen Q, Xing W, Zhao Z, Yan J, Mao G, Xu X. Develop a diagnostic tool for dementia using machine learning and non-imaging features. Front Aging Neurosci 2022; 14:945274. [PMID: 36092811 PMCID: PMC9461143 DOI: 10.3389/fnagi.2022.945274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Early identification of Alzheimer's disease or mild cognitive impairment can help guide direct prevention and supportive treatments, improve outcomes, and reduce medical costs. Existing advanced diagnostic tools are mostly based on neuroimaging and suffer from certain problems in cost, reliability, repeatability, accessibility, ease of use, and clinical integration. To address these problems, we developed, evaluated, and implemented an early diagnostic tool using machine learning and non-imaging factors. Methods and results A total of 654 participants aged 65 or older from the Nursing Home in Hangzhou, China were identified. Information collected from these patients includes dementia status and 70 demographic, cognitive, socioeconomic, and clinical features. Logistic regression, support vector machine (SVM), neural network, random forest, extreme gradient boosting (XGBoost), least absolute shrinkage and selection operator (LASSO), and best subset models were trained, tuned, and internally validated using a novel double cross validation algorithm and multiple evaluation metrics. The trained models were also compared and externally validated using a separate dataset with 1,100 participants from four communities in Zhejiang Province, China. The model with the best performance was then identified and implemented online with a friendly user interface. For the nursing dataset, the top three models are the neural network (AUROC = 0.9435), XGBoost (AUROC = 0.9398), and SVM with the polynomial kernel (AUROC = 0.9213). With the community dataset, the best three models are the random forest (AUROC = 0.9259), SVM with linear kernel (AUROC = 0.9282), and SVM with polynomial kernel (AUROC = 0.9213). The F1 scores and area under the precision-recall curve showed that the SVMs, neural network, and random forest were robust on the unbalanced community dataset. Overall the SVM with the polynomial kernel was found to be the best model. The LASSO and best subset models identified 17 features most relevant to dementia prediction, mostly from cognitive test results and socioeconomic characteristics. Conclusion Our non-imaging-based diagnostic tool can effectively predict dementia outcomes. The tool can be conveniently incorporated into clinical practice. Its online implementation allows zero barriers to its use, which enhances the disease's diagnosis, improves the quality of care, and reduces costs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Biostatistics, The George Washington University, Washington, DC, United States
| | - Li Sheng
- Department of Mathematics, Drexel University, Philadelphia, PA, United States
| | - Shanhu Xu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Jin
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoqing Jin
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Qiao
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingqing Chen
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yan
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
120
|
Cobbinah BM, Sorg C, Yang Q, Ternblom A, Zheng C, Han W, Che L, Shao J. Reducing variations in multi-center Alzheimer's disease classification with convolutional adversarial autoencoder. Med Image Anal 2022; 82:102585. [PMID: 36057187 DOI: 10.1016/j.media.2022.102585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Based on brain magnetic resonance imaging (MRI), multiple variations ranging from MRI scanners to center-specific parameter settings, imaging protocols, and brain region-of-interest (ROI) definitions pose a big challenge for multi-center Alzheimer's disease characterization and classification. Existing approaches to reduce such variations require intricate multi-step, often manual preprocessing pipelines, including skull stripping, segmentation, registration, cortical reconstruction, and ROI outlining. Such procedures are time-consuming, and more importantly, tend to be user biased. Contrasting costly and biased preprocessing pipelines, the question arises whether we can design a deep learning model to automatically reduce these variations from multiple centers for Alzheimer's disease classification? In this study, we used T1 and T2-weighted structural MRI from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset based on three groups with 375 subjects, respectively: patients with Alzheimer's disease (AD) dementia, with mild cognitive impairment (MCI), and healthy controls (HC); to test our approach, we defined AD classification as classifying an individual's structural image to one of the three group labels. We first introduced a convolutional adversarial autoencoder (CAAE) to reduce the variations existing in multi-center raw MRI scans by automatically registering them into a common aligned space. Afterward, a convolutional residual soft attention network (CRAT) was further proposed for AD classification. Canonical classification procedures demonstrated that our model achieved classification accuracies of 91.8%, 90.05%, and 88.10% for the 2-way classification tasks using the RAW aligned MRI scans, including AD vs. HC, AD vs. MCI, and MCI vs. HC, respectively. Thus, our automated approach achieves comparable or even better classification performance by comparing it with many baselines with dedicated conventional preprocessing pipelines. Furthermore, the uncovered brain hotpots, i.e., hippocampus, amygdala, and temporal pole, are consistent with previous studies.
Collapse
Affiliation(s)
- Bernard M Cobbinah
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Christian Sorg
- Department of Neuroradiology, TUM-NIC Neuroimaging Center of Technical University Munich, Germany
| | - Qinli Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Arvid Ternblom
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Changgang Zheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Wei Han
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Liwei Che
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Junming Shao
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731 Chengdu, China; Center for Information in BioMedicine, University of Electronic Science and Technology of China, 611731 Chengdu, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| |
Collapse
|
121
|
A Deep Learning Model Incorporating Knowledge Representation Vectors and Its Application in Diabetes Prediction. DISEASE MARKERS 2022; 2022:7593750. [PMID: 35990251 PMCID: PMC9391170 DOI: 10.1155/2022/7593750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 01/09/2023]
Abstract
The deep learning methods for various disease prediction tasks have become very effective and even surpass human experts. However, the lack of interpretability and medical expertise limits its clinical application. This paper combines knowledge representation learning and deep learning methods, and a disease prediction model is constructed. The model initially constructs the relationship graph between the physical indicator and the test value based on the normal range of human physical examination index. And the human physical examination index for testing value by knowledge representation learning model is encoded. Then, the patient physical examination data is represented as a vector and input into a deep learning model built with self-attention mechanism and convolutional neural network to implement disease prediction. The experimental results show that the model which is used in diabetes prediction yields an accuracy of 97.18% and the recall of 87.55%, which outperforms other machine learning methods (e.g., lasso, ridge, support vector machine, random forest, and XGBoost). Compared with the best performing random forest method, the recall is increased by 5.34%, respectively. Therefore, it can be concluded that the application of medical knowledge into deep learning through knowledge representation learning can be used in diabetes prediction for the purpose of early detection and assisting diagnosis.
Collapse
|
122
|
Alzheimer’s Disease Prediction Using Attention Mechanism with Dual-Phase 18F-Florbetaben Images. Nucl Med Mol Imaging 2022; 57:61-72. [PMID: 36998590 PMCID: PMC10043070 DOI: 10.1007/s13139-022-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022] Open
Abstract
Abstract
Introduction
Amyloid-beta (Aβ) imaging test plays an important role in the early diagnosis and research of biomarkers of Alzheimer’s disease (AD) but a single test may produce Aβ-negative AD or Aβ-positive cognitively normal (CN). In this study, we aimed to distinguish AD from CN with dual-phase 18F-Florbetaben (FBB) via a deep learning–based attention method and evaluate the AD positivity scores compared to late-phase FBB which is currently adopted for AD diagnosis.
Materials and Methods
A total of 264 patients (74 CN and 190 AD), who underwent FBB imaging test and neuropsychological tests, were retrospectively analyzed. Early- and delay-phase FBB images were spatially normalized with an in-house FBB template. The regional standard uptake value ratios were calculated with the cerebellar region as a reference region and used as independent variables that predict the diagnostic label assigned to the raw image.
Results
AD positivity scores estimated from dual-phase FBB showed better accuracy (ACC) and area under the receiver operating characteristic curve (AUROC) for AD detection (ACC: 0.858, AUROC: 0.831) than those from delay phase FBB imaging (ACC: 0.821, AUROC: 0.794). AD positivity score estimated by dual-phase FBB (R: −0.5412) shows a higher correlation with psychological test compared to only dFBB (R: −0.2975). In the relevance analysis, we observed that LSTM uses different time and regions of early-phase FBB for each disease group for AD detection.
Conclusions
These results show that the aggregated model with dual-phase FBB with long short-term memory and attention mechanism can be used to provide a more accurate AD positivity score, which shows a closer association with AD, than the prediction with only a single phase FBB.
Collapse
|
123
|
Sethi M, Rani S, Singh A, Mazón JLV. A CAD System for Alzheimer's Disease Classification Using Neuroimaging MRI 2D Slices. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8680737. [PMID: 35983528 PMCID: PMC9381208 DOI: 10.1155/2022/8680737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
Developments in medical care have inspired wide interest in the current decade, especially to their services to individuals living prolonged and healthier lives. Alzheimer's disease (AD) is the most chronic neurodegeneration and dementia-causing disorder. Economic expense of treating AD patients is expected to grow. The requirement of developing a computer-aided technique for early AD categorization becomes even more essential. Deep learning (DL) models offer numerous benefits against machine learning tools. Several latest experiments that exploited brain magnetic resonance imaging (MRI) scans and convolutional neural networks (CNN) for AD classification showed promising conclusions. CNN's receptive field aids in the extraction of main recognizable features from these MRI scans. In order to increase classification accuracy, a new adaptive model based on CNN and support vector machines (SVM) is presented in the research, combining both the CNN's capabilities in feature extraction and SVM in classification. The objective of this research is to build a hybrid CNN-SVM model for classifying AD using the MRI ADNI dataset. Experimental results reveal that the hybrid CNN-SVM model outperforms the CNN model alone, with relative improvements of 3.4%, 1.09%, 0.85%, and 2.82% on the testing dataset for AD vs. cognitive normal (CN), CN vs. mild cognitive impairment (MCI), AD vs. MCI, and CN vs. MCI vs. AD, respectively. Finally, the proposed approach has been further experimented on OASIS dataset leading to accuracy of 86.2%.
Collapse
Affiliation(s)
- Monika Sethi
- Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Shalli Rani
- Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Aman Singh
- Faculty of Engineering, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito-Bié, Angola
- Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
| | - Juan Luis Vidal Mazón
- Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| |
Collapse
|
124
|
Khojaste-Sarakhsi M, Haghighi SS, Ghomi SF, Marchiori E. Deep learning for Alzheimer's disease diagnosis: A survey. Artif Intell Med 2022; 130:102332. [PMID: 35809971 DOI: 10.1016/j.artmed.2022.102332] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
|
125
|
Classification of Alzheimer’s Disease Using Dual-Phase 18F-Florbetaben Image with Rank-Based Feature Selection and Machine Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
18F-florbetaben (FBB) positron emission tomography is a representative imaging test that observes amyloid deposition in the brain. Compared to delay-phase FBB (dFBB), early-phase FBB shows patterns related to glucose metabolism in 18F-fluorodeoxyglucose perfusion images. The purpose of this study is to prove that classification accuracy is higher when using dual-phase FBB (dual FBB) versus dFBB quantitative analysis by using machine learning and to find an optimal machine learning model suitable for dual FBB quantitative analysis data. The key features of our method are (1) a feature ranking method for each phase of FBB with a cross-validated F1 score and (2) a quantitative diagnostic model based on machine learning methods. We compared four classification models: support vector machine, naïve Bayes, logistic regression, and random forest (RF). In composite standardized uptake value ratio, RF achieved the best performance (F1: 78.06%) with dual FBB, which was 4.83% higher than the result with dFBB. In conclusion, regardless of the two quantitative analysis methods, using the dual FBB has a higher classification accuracy than using the dFBB. The RF model is the machine learning model that best classifies a dual FBB. The regions that have the greatest influence on the classification of dual FBB are the frontal and temporal lobes.
Collapse
|
126
|
Fathi S, Ahmadi M, Dehnad A. Early diagnosis of Alzheimer's disease based on deep learning: A systematic review. Comput Biol Med 2022; 146:105634. [DOI: 10.1016/j.compbiomed.2022.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
|
127
|
A Practical Multiclass Classification Network for the Diagnosis of Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients who have Alzheimer’s disease (AD) pass through several irreversible stages, which ultimately result in the patient’s death. It is crucial to understand and detect AD at an early stage to slow down its progression due to the non-curable nature of the disease. Diagnostic techniques are primarily based on magnetic resonance imaging (MRI) and expensive high-dimensional 3D imaging data. Classic methods can hardly discriminate among the almost similar pixels of the brain patterns of various age groups. The recent deep learning-based methods can contribute to the detection of the various stages of AD but require large-scale datasets and face several challenges while using the 3D volumes directly. The extant deep learning-based work is mainly focused on binary classification, but it is challenging to detect multiple stages with these methods. In this work, we propose a deep learning-based multiclass classification method to distinguish amongst various stages for the early diagnosis of Alzheimer’s. The proposed method significantly handles data shortage challenges by augmentation and manages to classify the 2D images obtained after the efficient pre-processing of the publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our method achieves an accuracy of 98.9% with an F1 score of 96.3. Extensive experiments are performed, and overall results demonstrate that the proposed method outperforms the state-of-the-art methods in terms of overall performance.
Collapse
|
128
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
129
|
A novelty detection approach to effectively predict conversion from mild cognitive impairment to Alzheimer’s disease. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-022-01570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractAccurately recognising patients with progressive mild cognitive impairment (pMCI) who will develop Alzheimer’s disease (AD) in subsequent years is very important, as early identification of those patients will enable interventions to potentially reduce the number of those transitioning from MCI to AD. Most studies in this area have concentrated on high-dimensional neuroimaging data with supervised binary/multi-class classification algorithms. However, neuroimaging data is more costly to obtain than non-imaging, and healthcare datasets are normally imbalanced which may reduce classification performance and reliability. To address these challenges, we proposed a new strategy that employs unsupervised novelty detection (ND) techniques to predict pMCI from the AD neuroimaging initiative non-imaging data. ND algorithms, including the k-nearest neighbours (kNN), k-means, Gaussian mixture model (GMM), isolation forest (IF) and extreme learning machine (ELM), were employed and compared with supervised binary support vector machine (SVM) and random forest (RF). We introduced optimisation with nested cross-validation and focused on maximising the adjusted F measure to ensure maximum generalisation of the proposed system by minimising false negative rates. Our extensive experimental results show that ND algorithms (0.727 ± 0.029 kNN, 0.7179 ± 0.0523 GMM, 0.7276 ± 0.0281 ELM) obtained comparable performance to supervised binary SVM (0.7359 ± 0.0451) with 20% stable MCI misclassification tolerance and were significantly better than RF (0.4771 ± 0.0167). Moreover, we found that the non-invasive, readily obtainable, and cost-effective cognitive and functional assessment was the most efficient predictor for predicting the pMCI within 2 years with ND techniques. Importantly, we presented an accessible and cost-effective approach to pMCI prediction, which does not require labelled data.
Collapse
|
130
|
Kivisäkk P, Magdamo C, Trombetta BA, Noori A, Kuo YKE, Chibnik LB, Carlyle BC, Serrano-Pozo A, Scherzer CR, Hyman BT, Das S, Arnold SE. Plasma biomarkers for prognosis of cognitive decline in patients with mild cognitive impairment. Brain Commun 2022; 4:fcac155. [PMID: 35800899 PMCID: PMC9257670 DOI: 10.1093/braincomms/fcac155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022] Open
Abstract
Plasma-based biomarkers present a promising approach in the research and clinical practice of Alzheimer's disease as they are inexpensive, accessible and minimally invasive. In particular, prognostic biomarkers of cognitive decline may aid in planning and management of clinical care. Although recent studies have demonstrated the prognostic utility of plasma biomarkers of Alzheimer pathology or neurodegeneration, such as pTau-181 and NF-L, whether other plasma biomarkers can further improve prediction of cognitive decline is undetermined. We conducted an observational cohort study to determine the prognostic utility of plasma biomarkers in predicting progression to dementia for individuals presenting with mild cognitive impairment due to probable Alzheimer's disease. We used the Olink™ Proximity Extension Assay technology to measure the level of 460 circulating proteins in banked plasma samples of all participants. We used a discovery data set comprised 60 individuals with mild cognitive impairment (30 progressors and 30 stable) and a validation data set consisting of 21 stable and 21 progressors. We developed a machine learning model to distinguish progressors from stable and used 44 proteins with significantly different plasma levels in progressors versus stable along with age, sex, education and baseline cognition as candidate features. A model with age, education, APOE genotype, baseline cognition, plasma pTau-181 and 12 plasma Olink protein biomarker levels was able to distinguish progressors from stable with 86.7% accuracy (mean area under the curve = 0.88). In the validation data set, the model accuracy was 78.6%. The Olink proteins selected by the model included those associated with vascular injury and neuroinflammation (e.g. IL-8, IL-17A, TIMP-4, MMP7). In addition, to compare these prognostic biomarkers to those that are altered in Alzheimer's disease or other types of dementia relative to controls, we analyzed samples from 20 individuals with Alzheimer, 30 with non-Alzheimer dementias and 34 with normal cognition. The proteins NF-L and PTP-1B were significantly higher in both Alzheimer and non-Alzheimer dementias compared with cognitively normal individuals. Interestingly, the prognostic markers of decline at the mild cognitive impairment stage did not overlap with those that differed between dementia and control cases. In summary, our findings suggest that plasma biomarkers of inflammation and vascular injury are associated with cognitive decline. Developing a plasma biomarker profile could aid in prognostic deliberations and identify individuals at higher risk of dementia in clinical practice.
Collapse
Affiliation(s)
- Pia Kivisäkk
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Colin Magdamo
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bianca A Trombetta
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Ayush Noori
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yi kai E Kuo
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Lori B Chibnik
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Becky C Carlyle
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Alberto Serrano-Pozo
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Clemens R Scherzer
- Center for Advanced Parkinson Research and Precision Neurology Program, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Bradley T Hyman
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sudeshna Das
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Steven E Arnold
- Alzheimer’s Clinical & Translational Research Unit and Massachusetts Alzheimer’s Disease Research Center, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
131
|
Bahado-Singh RO, Radhakrishna U, Gordevičius J, Aydas B, Yilmaz A, Jafar F, Imam K, Maddens M, Challapalli K, Metpally RP, Berrettini WH, Crist RC, Graham SF, Vishweswaraiah S. Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer's Disease. Cells 2022; 11:1744. [PMID: 35681440 PMCID: PMC9179874 DOI: 10.3390/cells11111744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Despite extensive efforts, significant gaps remain in our understanding of Alzheimer’s disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA (cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders. Methods: We performed DNA methylation profiling of cfDNA from AD patients and compared them to cognitively normal controls. Six Artificial Intelligence (AI) platforms were utilized for the diagnosis of AD while enrichment analysis was used to elucidate the pathogenesis of AD. Results: A total of 3684 CpGs were significantly (adj. p-value < 0.05) differentially methylated in AD versus controls. All six AI algorithms achieved high predictive accuracy (AUC = 0.949−0.998) in an independent test group. As an example, Deep Learning (DL) achieved an AUC (95% CI) = 0.99 (0.95−1.0), with 94.5% sensitivity and specificity. Conclusion: We describe numerous epigenetically altered genes which were previously reported to be differentially expressed in the brain of AD sufferers. Genes identified by AI to be the best predictors of AD were either known to be expressed in the brain or have been previously linked to AD. We highlight enrichment in the Calcium signaling pathway, Glutamatergic synapse, Hedgehog signaling pathway, Axon guidance and Olfactory transduction in AD sufferers. To the best of our knowledge, this is the first reported genome-wide DNA methylation study using cfDNA to detect AD.
Collapse
Affiliation(s)
- Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Juozas Gordevičius
- Vugene, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA;
| | - Buket Aydas
- Department of Care Management Analytics, Blue Cross Blue Shield of Michigan, Detroit, MI 48226, USA;
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Faryal Jafar
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Khaled Imam
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Michael Maddens
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Kshetra Challapalli
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
| | - Wade H. Berrettini
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| |
Collapse
|
132
|
Ranasinghe JC, Jain A, Wu W, Zhang K, Wang Z, Huang S. Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. JOURNAL OF MATERIALS RESEARCH 2022; 37:1689-1713. [PMID: 35615304 PMCID: PMC9122553 DOI: 10.1557/s43578-022-00591-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) layered materials as a new class of nanomaterial are characterized by a list of exotic properties. These layered materials are investigated widely in several biomedical applications. A comprehensive understanding of the state-of-the-art developments of 2D materials designed for multiple nanoplatforms will aid researchers in various fields to broaden the scope of biomedical applications. Here, we review the advances in 2D material-based biomedical applications. First, we introduce the classification and properties of 2D materials. Next, we summarize surface and structural engineering methods of 2D materials where we discuss surface functionalization, defect, and strain engineering, and creating heterostructures based on layered materials for biomedical applications. After that, we discuss different biomedical applications. Then, we briefly introduced the emerging role of machine learning (ML) as a technological advancement to boost biomedical platforms. Finally, the current challenges, opportunities, and prospects on 2D materials in biomedical applications are discussed. Graphical abstract
Collapse
Affiliation(s)
- Jeewan C. Ranasinghe
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Arpit Jain
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Wenjing Wu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Kunyan Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Ziyang Wang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
133
|
Tabarestani S, Eslami M, Cabrerizo M, Curiel RE, Barreto A, Rishe N, Vaillancourt D, DeKosky ST, Loewenstein DA, Duara R, Adjouadi M. A Tensorized Multitask Deep Learning Network for Progression Prediction of Alzheimer's Disease. Front Aging Neurosci 2022; 14:810873. [PMID: 35601611 PMCID: PMC9120529 DOI: 10.3389/fnagi.2022.810873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
With the advances in machine learning for the diagnosis of Alzheimer's disease (AD), most studies have focused on either identifying the subject's status through classification algorithms or on predicting their cognitive scores through regression methods, neglecting the potential association between these two tasks. Motivated by the need to enhance the prospects for early diagnosis along with the ability to predict future disease states, this study proposes a deep neural network based on modality fusion, kernelization, and tensorization that perform multiclass classification and longitudinal regression simultaneously within a unified multitask framework. This relationship between multiclass classification and longitudinal regression is found to boost the efficacy of the final model in dealing with both tasks. Different multimodality scenarios are investigated, and complementary aspects of the multimodal features are exploited to simultaneously delineate the subject's label and predict related cognitive scores at future timepoints using baseline data. The main intent in this multitask framework is to consolidate the highest accuracy possible in terms of precision, sensitivity, F1 score, and area under the curve (AUC) in the multiclass classification task while maintaining the highest similarity in the MMSE score as measured through the correlation coefficient and the RMSE for all time points under the prediction task, with both tasks, run simultaneously under the same set of hyperparameters. The overall accuracy for multiclass classification of the proposed KTMnet method is 66.85 ± 3.77. The prediction results show an average RMSE of 2.32 ± 0.52 and a correlation of 0.71 ± 5.98 for predicting MMSE throughout the time points. These results are compared to state-of-the-art techniques reported in the literature. A discovery from the multitasking of this consolidated machine learning framework is that a set of hyperparameters that optimize the prediction results may not necessarily be the same as those that would optimize the multiclass classification. In other words, there is a breakpoint beyond which enhancing further the results of one process could lead to the downgrading in accuracy for the other.
Collapse
Affiliation(s)
- Solale Tabarestani
- Center for Advanced Technology and Education, Florida International University, Miami, FL, United States
| | - Mohammad Eslami
- Harvard Ophthalmology AI Lab and Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, United States
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education, Florida International University, Miami, FL, United States
| | - Rosie E. Curiel
- Center for Cognitive Neuroscience and Aging, Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, FL, United States
- Florida Alzheimer’s Disease Research Center, University of Florida, Gainesville, FL, United States
| | - Armando Barreto
- Center for Advanced Technology and Education, Florida International University, Miami, FL, United States
| | - Naphtali Rishe
- Center for Advanced Technology and Education, Florida International University, Miami, FL, United States
| | - David Vaillancourt
- Florida Alzheimer’s Disease Research Center, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Steven T. DeKosky
- Florida Alzheimer’s Disease Research Center, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - David A. Loewenstein
- Center for Cognitive Neuroscience and Aging, Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, FL, United States
- Florida Alzheimer’s Disease Research Center, University of Florida, Gainesville, FL, United States
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Ranjan Duara
- Florida Alzheimer’s Disease Research Center, University of Florida, Gainesville, FL, United States
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Malek Adjouadi
- Center for Advanced Technology and Education, Florida International University, Miami, FL, United States
- Florida Alzheimer’s Disease Research Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
134
|
Dong N, Fu C, Li R, Zhang W, Liu M, Xiao W, Taylor HM, Nicholas PJ, Tanglay O, Young IM, Osipowicz KZ, Sughrue ME, Doyen SP, Li Y. Machine Learning Decomposition of the Anatomy of Neuropsychological Deficit in Alzheimer’s Disease and Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:854733. [PMID: 35592700 PMCID: PMC9110794 DOI: 10.3389/fnagi.2022.854733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Alzheimer’s Disease (AD) is a progressive condition characterized by cognitive decline. AD is often preceded by mild cognitive impairment (MCI), though the diagnosis of both conditions remains a challenge. Early diagnosis of AD, and prediction of MCI progression require data-driven approaches to improve patient selection for treatment. We used a machine learning tool to predict performance in neuropsychological tests in AD and MCI based on functional connectivity using a whole-brain connectome, in an attempt to identify network substrates of cognitive deficits in AD. Methods Neuropsychological tests, baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI, and diffusion weighted imaging scans were obtained from 149 MCI, and 85 AD patients; and 140 cognitively unimpaired geriatric participants. A novel machine learning tool, Hollow Tree Super (HoTS) was utilized to extract feature importance from each machine learning model to identify brain regions that were associated with deficit and absence of deficit for 11 neuropsychological tests. Results 11 models attained an area under the receiver operating curve (AUC-ROC) greater than 0.65, while five models had an AUC-ROC ≥ 0.7. 20 parcels of the Human Connectome Project Multimodal Parcelation Atlas matched to poor performance in at least two neuropsychological tests, while 14 parcels were associated with good performance in at least two tests. At a network level, most parcels predictive of both presence and absence of deficit were affiliated with the Central Executive Network, Default Mode Network, and the Sensorimotor Networks. Segregating predictors by the cognitive domain associated with each test revealed areas of coherent overlap between cognitive domains, with the parcels providing possible markers to screen for cognitive impairment. Conclusion Approaches such as ours which incorporate whole-brain functional connectivity and harness feature importance in machine learning models may aid in identifying diagnostic and therapeutic targets in AD.
Collapse
Affiliation(s)
- Ningxin Dong
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changyong Fu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weixin Xiao
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | | | | - Michael E. Sughrue
- Omniscient Neurotechnology, Sydney, NSW, Australia
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi’an, China
| | | | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yunxia Li,
| |
Collapse
|
135
|
Coupé P, Manjón JV, Mansencal B, Tourdias T, Catheline G, Planche V. Hippocampal-amygdalo-ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models. Hum Brain Mapp 2022; 43:3270-3282. [PMID: 35388950 PMCID: PMC9188974 DOI: 10.1002/hbm.25850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023] Open
Abstract
In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.
Collapse
Affiliation(s)
| | | | | | - Thomas Tourdias
- Inserm U1215 ‐ Neurocentre MagendieBordeauxFrance,Service de neuroimagerie, CHU de BordeauxBordeauxFrance
| | | | - Vincent Planche
- Univ. Bordeaux, CNRS, UMR 5293Institut des Maladies Neurodégénératives, and Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de BordeauxBordeauxFrance
| |
Collapse
|
136
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, DeCarli C, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Okonkwo O, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Trojanowski JQ. Using the Alzheimer's Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer's disease. Alzheimers Dement 2022; 18:824-857. [PMID: 34581485 PMCID: PMC9158456 DOI: 10.1002/alz.12422] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has accumulated 15 years of clinical, neuroimaging, cognitive, biofluid biomarker and genetic data, and biofluid samples available to researchers, resulting in more than 3500 publications. This review covers studies from 2018 to 2020. METHODS We identified 1442 publications using ADNI data by conventional search methods and selected impactful studies for inclusion. RESULTS Disease progression studies supported pivotal roles for regional amyloid beta (Aβ) and tau deposition, and identified underlying genetic contributions to Alzheimer's disease (AD). Vascular disease, immune response, inflammation, resilience, and sex modulated disease course. Biologically coherent subgroups were identified at all clinical stages. Practical algorithms and methodological changes improved determination of Aβ status. Plasma Aβ, phosphorylated tau181, and neurofilament light were promising noninvasive biomarkers. Prognostic and diagnostic models were externally validated in ADNI but studies are limited by lack of ethnocultural cohort diversity. DISCUSSION ADNI has had a profound impact in improving clinical trials for AD.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Laurel A. Beckett
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Charles DeCarli
- Department of Neurology and Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute, Ariadne Labsand Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuroimaging, USC Stevens Institute of Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
137
|
Designing a clinical decision support system for Alzheimer’s diagnosis on OASIS-3 data set. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
138
|
Zhang F, Pan B, Shao P, Liu P, Shen S, Yao P, Xu RX. A single model deep learning approach for alzheimer’s disease diagnosis. Neuroscience 2022; 491:200-214. [DOI: 10.1016/j.neuroscience.2022.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 01/17/2023]
|
139
|
Rashid J, Batool S, Kim J, Wasif Nisar M, Hussain A, Juneja S, Kushwaha R. An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction. Front Public Health 2022; 10:860396. [PMID: 35433587 PMCID: PMC9008324 DOI: 10.3389/fpubh.2022.860396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic diseases are increasing in prevalence and mortality worldwide. Early diagnosis has therefore become an important research area to enhance patient survival rates. Several research studies have reported classification approaches for specific disease prediction. In this paper, we propose a novel augmented artificial intelligence approach using an artificial neural network (ANN) with particle swarm optimization (PSO) to predict five prevalent chronic diseases including breast cancer, diabetes, heart attack, hepatitis, and kidney disease. Seven classification algorithms are compared to evaluate the proposed model's prediction performance. The ANN prediction model constructed with a PSO based feature extraction approach outperforms other state-of-the-art classification approaches when evaluated with accuracy. Our proposed approach gave the highest accuracy of 99.67%, with the PSO. However, the classification model's performance is found to depend on the attributes of data used for classification. Our results are compared with various chronic disease datasets and shown to outperform other benchmark approaches. In addition, our optimized ANN processing is shown to require less time compared to random forest (RF), deep learning and support vector machine (SVM) based methods. Our study could play a role for early diagnosis of chronic diseases in hospitals, including through development of online diagnosis systems.
Collapse
Affiliation(s)
- Junaid Rashid
- Department of Computer Science and Engineering, Kongju National University, Cheonan, South Korea
| | - Saba Batool
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Jungeun Kim
- Department of Computer Science and Engineering, Kongju National University, Cheonan, South Korea
- *Correspondence: Jungeun Kim
| | - Muhammad Wasif Nisar
- Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Amir Hussain
- Data Science and Cyber Analytics Research Group, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Sapna Juneja
- Department of Computer Science, KIET Group of Institutions, Ghaziabad, India
| | - Riti Kushwaha
- Department of Computer Science, Bennett University, Greater Noida, India
| |
Collapse
|
140
|
Machine Learning and Image Processing Enabled Evolutionary Framework for Brain MRI Analysis for Alzheimer’s Disease Detection. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5261942. [PMID: 35419043 PMCID: PMC8995544 DOI: 10.1155/2022/5261942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is characterized by the presence of abnormal protein bundles in the brain tissue, but experts are not yet sure what is causing the condition. To find a cure or aversion, researchers need to know more than just that there are protein differences from the usual; they also need to know how these brain nerves form so that a remedy may be discovered. Machine learning is the study of computational approaches for enhancing performance on a specific task through the process of learning. This article presents an Alzheimer's disease detection framework consisting of image denoising of an MRI input data set using an adaptive mean filter, preprocessing using histogram equalization, and feature extraction by Haar wavelet transform. Classification is performed using LS-SVM-RBF, SVM, KNN, and random forest classifier. An adaptive mean filter removes noise from the existing MRI images. Image quality is enhanced by histogram equalization. Experimental results are compared using parameters such as accuracy, sensitivity, specificity, precision, and recall.
Collapse
|
141
|
Jo T, Nho K, Bice P, Saykin AJ. Deep learning-based identification of genetic variants: application to Alzheimer's disease classification. Brief Bioinform 2022; 23:bbac022. [PMID: 35183061 PMCID: PMC8921609 DOI: 10.1093/bib/bbac022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Deep learning is a promising tool that uses nonlinear transformations to extract features from high-dimensional data. Deep learning is challenging in genome-wide association studies (GWAS) with high-dimensional genomic data. Here we propose a novel three-step approach (SWAT-CNN) for identification of genetic variants using deep learning to identify phenotype-related single nucleotide polymorphisms (SNPs) that can be applied to develop accurate disease classification models. In the first step, we divided the whole genome into nonoverlapping fragments of an optimal size and then ran convolutional neural network (CNN) on each fragment to select phenotype-associated fragments. In the second step, using a Sliding Window Association Test (SWAT), we ran CNN on the selected fragments to calculate phenotype influence scores (PIS) and identify phenotype-associated SNPs based on PIS. In the third step, we ran CNN on all identified SNPs to develop a classification model. We tested our approach using GWAS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) including (N = 981; cognitively normal older adults (CN) = 650 and AD = 331). Our approach identified the well-known APOE region as the most significant genetic locus for AD. Our classification model achieved an area under the curve (AUC) of 0.82, which was compatible with traditional machine learning approaches, random forest and XGBoost. SWAT-CNN, a novel deep learning-based genome-wide approach, identified AD-associated SNPs and a classification model for AD and may hold promise for a range of biomedical applications.
Collapse
Affiliation(s)
- Taeho Jo
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
142
|
Jiang M, Yan B, Li Y, Zhang J, Li T, Ke W. Image Classification of Alzheimer's Disease Based on External-Attention Mechanism and Fully Convolutional Network. Brain Sci 2022; 12:319. [PMID: 35326275 PMCID: PMC8946519 DOI: 10.3390/brainsci12030319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Automatic and accurate classification of Alzheimer's disease is a challenging and promising task. Fully Convolutional Network (FCN) can classify images at the pixel level. Adding an attention mechanism to the Fully Convolutional Network can effectively improve the classification performance of the model. However, the self-attention mechanism ignores the potential correlation between different samples. Aiming at this problem, we propose a new method for image classification of Alzheimer's disease based on the external-attention mechanism. The external-attention module is added after the fourth convolutional block of the fully convolutional network model. At the same time, the double normalization method of Softmax and L1 norm is introduced to obtain a better classification performance and richer feature information of the disease probability map. The activation function Softmax can increase the degree of fitting of the neural network to the training set, which transforms linearity into nonlinearity, thereby increasing the flexibility of the neural network. The L1 norm can avoid the attention map being affected by especially large (especially small) eigenvalues. The experiments in this paper use 550 three-dimensional MRI images and use five-fold cross-validation. The experimental results show that the proposed image classification method for Alzheimer's disease, combining the external-attention mechanism with double normalization, can effectively improve the classification performance of the model. With this method, the accuracy of the MLP-A model is 92.36%, the accuracy of the MLP-B model is 98.55%, and the accuracy of the fusion model MLP-C is 98.73%. The classification performance of the model is higher than similar models without adding any attention mechanism, and it is better than other comparison methods.
Collapse
Affiliation(s)
- Mingfeng Jiang
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.J.); (B.Y.)
| | - Bin Yan
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.J.); (B.Y.)
| | - Yang Li
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.J.); (B.Y.)
| | - Jucheng Zhang
- Department of Clinical Engineering, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310019, China;
| | - Tieqiang Li
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Wei Ke
- School of Applied Sciences, Macao Polytechnic Institute, Macao SAR 999078, China;
| |
Collapse
|
143
|
Inglese F, Kim M, Steup-Beekman GM, Huizinga TWJ, van Buchem MA, de Bresser J, Kim DS, Ronen I. MRI-Based Classification of Neuropsychiatric Systemic Lupus Erythematosus Patients With Self-Supervised Contrastive Learning. Front Neurosci 2022; 16:695888. [PMID: 35250439 PMCID: PMC8889016 DOI: 10.3389/fnins.2022.695888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction/PurposeSystemic lupus erythematosus (SLE) is a chronic auto-immune disease with a broad spectrum of clinical presentations, including heterogeneous neuropsychiatric (NP) syndromes. Structural brain abnormalities are commonly found in SLE and NPSLE, but their role in diagnosis is limited, and their usefulness in distinguishing between NPSLE patients and patients in which the NP symptoms are not primarily attributed to SLE (non-NPSLE) is non-existent. Self-supervised contrastive learning algorithms proved to be useful in classification tasks in rare diseases with limited number of datasets. Our aim was to apply self-supervised contrastive learning on T1-weighted images acquired from a well-defined cohort of SLE patients, aiming to distinguish between NPSLE and non-NPSLE patients.Subjects and MethodsWe used 3T MRI T1-weighted images of 163 patients. The training set comprised 68 non-NPSLE and 34 NPSLE patients. We applied random geometric transformations between iterations to augment our data sets. The ML pipeline consisted of convolutional base encoder and linear projector. To test the classification task, the projector was removed and one linear layer was measured. Validation of the method consisted of 6 repeated random sub-samplings, each using a random selection of a small group of patients of both subtypes.ResultsIn the 6 trials, between 79% and 83% of the patients were correctly classified as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the common features found in both groups, Gradient-weighted Class Activation Maps (Grad-CAM) were examined. Thresholded Grad-CAM maps show areas of common features identified for the NPSLE cohort, while no such communality was found for the non-NPSLE group.Discussion/ConclusionThe self-supervised contrastive learning model was effective in capturing common brain MRI features from a limited but well-defined cohort of SLE patients with NP symptoms. The interpretation of the Grad-CAM results is not straightforward, but indicates involvement of the lateral and third ventricles, periventricular white matter and basal cisterns. We believe that the common features found in the NPSLE population in this study indicate a combination of tissue loss, local atrophy and to some extent that of periventricular white matter lesions, which are commonly found in NPSLE patients and appear hypointense on T1-weighted images.
Collapse
Affiliation(s)
- Francesca Inglese
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Minseon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | - Tom W. J. Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A. van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dae-Shik Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Itamar Ronen
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Itamar Ronen,
| |
Collapse
|
144
|
Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
145
|
Jayakumar S, Sounderajah V, Normahani P, Harling L, Markar SR, Ashrafian H, Darzi A. Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study. NPJ Digit Med 2022; 5:11. [PMID: 35087178 PMCID: PMC8795185 DOI: 10.1038/s41746-021-00544-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/28/2021] [Indexed: 01/05/2023] Open
Abstract
Artificial intelligence (AI) centred diagnostic systems are increasingly recognised as robust solutions in healthcare delivery pathways. In turn, there has been a concurrent rise in secondary research studies regarding these technologies in order to influence key clinical and policymaking decisions. It is therefore essential that these studies accurately appraise methodological quality and risk of bias within shortlisted trials and reports. In order to assess whether this critical step is performed, we undertook a meta-research study evaluating adherence to the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool within AI diagnostic accuracy systematic reviews. A literature search was conducted on all studies published from 2000 to December 2020. Of 50 included reviews, 36 performed the quality assessment, of which 27 utilised the QUADAS-2 tool. Bias was reported across all four domains of QUADAS-2. Two hundred forty-three of 423 studies (57.5%) across all systematic reviews utilising QUADAS-2 reported a high or unclear risk of bias in the patient selection domain, 110 (26%) reported a high or unclear risk of bias in the index test domain, 121 (28.6%) in the reference standard domain and 157 (37.1%) in the flow and timing domain. This study demonstrates the incomplete uptake of quality assessment tools in reviews of AI-based diagnostic accuracy studies and highlights inconsistent reporting across all domains of quality assessment. Poor standards of reporting act as barriers to clinical implementation. The creation of an AI-specific extension for quality assessment tools of diagnostic accuracy AI studies may facilitate the safe translation of AI tools into clinical practice.
Collapse
Affiliation(s)
- Shruti Jayakumar
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Viknesh Sounderajah
- Department of Surgery and Cancer, Imperial College London, London, UK
- Institute of Global Health Innovation, Imperial College London, London, UK
| | - Pasha Normahani
- Department of Surgery and Cancer, Imperial College London, London, UK
- Institute of Global Health Innovation, Imperial College London, London, UK
| | - Leanne Harling
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Thoracic Surgery, Guy's Hospital, London, UK
| | - Sheraz R Markar
- Department of Surgery and Cancer, Imperial College London, London, UK
- Institute of Global Health Innovation, Imperial College London, London, UK
| | - Hutan Ashrafian
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London, UK
- Institute of Global Health Innovation, Imperial College London, London, UK
| |
Collapse
|
146
|
Sadiq MU, Kwak K, Dayan E. Model-based stratification of progression along the Alzheimer disease continuum highlights the centrality of biomarker synergies. Alzheimers Res Ther 2022; 14:16. [PMID: 35073974 PMCID: PMC8787915 DOI: 10.1186/s13195-021-00941-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The progression rates of Alzheimer's disease (AD) are variable and dynamic, yet the mechanisms that contribute to heterogeneity in progression rates remain ill-understood. Particularly, the role of synergies in pathological processes reflected by biomarkers for amyloid-beta ('A'), tau ('T'), and neurodegeneration ('N') in progression along the AD continuum is not fully understood. METHODS Here, we used a combination of model and data-driven approaches to address this question. Working with a large dataset (N = 321 across the training and testing cohorts), we first applied unsupervised clustering on longitudinal cognitive assessments to divide individuals on the AD continuum into those showing fast vs. moderate decline. Next, we developed a deep learning model that differentiated fast vs. moderate decline using baseline AT(N) biomarkers. RESULTS Training the model with AT(N) biomarker combination revealed more prognostic utility than any individual biomarkers alone. We additionally found little overlap between the model-driven progression phenotypes and established atrophy-based AD subtypes. Our model showed that the combination of all AT(N) biomarkers had the most prognostic utility in predicting progression along the AD continuum. A comprehensive AT(N) model showed better predictive performance than biomarker pairs (A(N) and T(N)) and individual biomarkers (A, T, or N). CONCLUSIONS This study combined data and model-driven methods to uncover the role of AT(N) biomarker synergies in the progression of cognitive decline along the AD continuum. The results suggest a synergistic relationship between AT(N) biomarkers in determining this progression, extending previous evidence of A-T synergistic mechanisms.
Collapse
Affiliation(s)
- Muhammad Usman Sadiq
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kichang Kwak
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eran Dayan
- Biomedical Research Imaging Center (BRIC), UNC-Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiology, UNC-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
147
|
Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022; 14:8459-8486. [PMID: 35039756 PMCID: PMC8754556 DOI: 10.1007/s12652-021-03612-z] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Artificial intelligence can assist providers in a variety of patient care and intelligent health systems. Artificial intelligence techniques ranging from machine learning to deep learning are prevalent in healthcare for disease diagnosis, drug discovery, and patient risk identification. Numerous medical data sources are required to perfectly diagnose diseases using artificial intelligence techniques, such as ultrasound, magnetic resonance imaging, mammography, genomics, computed tomography scan, etc. Furthermore, artificial intelligence primarily enhanced the infirmary experience and sped up preparing patients to continue their rehabilitation at home. This article covers the comprehensive survey based on artificial intelligence techniques to diagnose numerous diseases such as Alzheimer, cancer, diabetes, chronic heart disease, tuberculosis, stroke and cerebrovascular, hypertension, skin, and liver disease. We conducted an extensive survey including the used medical imaging dataset and their feature extraction and classification process for predictions. Preferred reporting items for systematic reviews and Meta-Analysis guidelines are used to select the articles published up to October 2020 on the Web of Science, Scopus, Google Scholar, PubMed, Excerpta Medical Database, and Psychology Information for early prediction of distinct kinds of diseases using artificial intelligence-based techniques. Based on the study of different articles on disease diagnosis, the results are also compared using various quality parameters such as prediction rate, accuracy, sensitivity, specificity, the area under curve precision, recall, and F1-score.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Computer Engineering, Indus Institute of Technology and Engineering, Indus University, Ahmedabad, 382115 India
| | | | - Ruchi Singla
- Department of Research, Innovations, Sponsored Projects and Entrepreneurship, CGC Landran, Mohali, India
| | - Muhammad Fazal Ijaz
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006 South Korea
| |
Collapse
|
148
|
Paul S, Maindarkar M, Saxena S, Saba L, Turk M, Kalra M, Krishnan PR, Suri JS. Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson's Disease: A Narrative Review. Diagnostics (Basel) 2022; 12:166. [PMID: 35054333 PMCID: PMC8774851 DOI: 10.3390/diagnostics12010166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Motivation: Diagnosis of Parkinson's disease (PD) is often based on medical attention and clinical signs. It is subjective and does not have a good prognosis. Artificial Intelligence (AI) has played a promising role in the diagnosis of PD. However, it introduces bias due to lack of sample size, poor validation, clinical evaluation, and lack of big data configuration. The purpose of this study is to compute the risk of bias (RoB) automatically. METHOD The PRISMA search strategy was adopted to select the best 39 AI studies out of 85 PD studies closely associated with early diagnosis PD. The studies were used to compute 30 AI attributes (based on 6 AI clusters), using AP(ai)Bias 1.0 (AtheroPointTM, Roseville, CA, USA), and the mean aggregate score was computed. The studies were ranked and two cutoffs (Moderate-Low (ML) and High-Moderate (MH)) were determined to segregate the studies into three bins: low-, moderate-, and high-bias. RESULT The ML and HM cutoffs were 3.50 and 2.33, respectively, which constituted 7, 13, and 6 for low-, moderate-, and high-bias studies. The best and worst architectures were "deep learning with sketches as outcomes" and "machine learning with Electroencephalography," respectively. We recommend (i) the usage of power analysis in big data framework, (ii) that it must undergo scientific validation using unseen AI models, and (iii) that it should be taken towards clinical evaluation for reliability and stability tests. CONCLUSION The AI is a vital component for the diagnosis of early PD and the recommendations must be followed to lower the RoB.
Collapse
Affiliation(s)
- Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Maheshrao Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia
| | - Manudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
149
|
Review of Machine Learning Applications Using Retinal Fundus Images. Diagnostics (Basel) 2022; 12:diagnostics12010134. [PMID: 35054301 PMCID: PMC8774893 DOI: 10.3390/diagnostics12010134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Automating screening and diagnosis in the medical field saves time and reduces the chances of misdiagnosis while saving on labor and cost for physicians. With the feasibility and development of deep learning methods, machines are now able to interpret complex features in medical data, which leads to rapid advancements in automation. Such efforts have been made in ophthalmology to analyze retinal images and build frameworks based on analysis for the identification of retinopathy and the assessment of its severity. This paper reviews recent state-of-the-art works utilizing the color fundus image taken from one of the imaging modalities used in ophthalmology. Specifically, the deep learning methods of automated screening and diagnosis for diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma are investigated. In addition, the machine learning techniques applied to the retinal vasculature extraction from the fundus image are covered. The challenges in developing these systems are also discussed.
Collapse
|
150
|
Shakir MN, Dugger BN. Advances in Deep Neuropathological Phenotyping of Alzheimer Disease: Past, Present, and Future. J Neuropathol Exp Neurol 2022; 81:2-15. [PMID: 34981115 PMCID: PMC8825756 DOI: 10.1093/jnen/nlab122] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by the presence of neurofibrillary tangles and amyloid beta (Aβ) plaques in the brain. The disease was first described in 1906 by Alois Alzheimer, and since then, there have been many advancements in technologies that have aided in unlocking the secrets of this devastating disease. Such advancements include improving microscopy and staining techniques, refining diagnostic criteria for the disease, and increased appreciation for disease heterogeneity both in neuroanatomic location of abnormalities as well as overlap with other brain diseases; for example, Lewy body disease and vascular dementia. Despite numerous advancements, there is still much to achieve as there is not a cure for AD and postmortem histological analyses is still the gold standard for appreciating AD neuropathologic changes. Recent technological advances such as in-vivo biomarkers and machine learning algorithms permit great strides in disease understanding, and pave the way for potential new therapies and precision medicine approaches. Here, we review the history of human AD neuropathology research to include the notable advancements in understanding common co-pathologies in the setting of AD, and microscopy and staining methods. We also discuss future approaches with a specific focus on deep phenotyping using machine learning.
Collapse
Affiliation(s)
- Mustafa N Shakir
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| | - Brittany N Dugger
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| |
Collapse
|