101
|
Hopp MT, Domingo-Fernández D, Gadiya Y, Detzel MS, Graf R, Schmalohr BF, Kodamullil AT, Imhof D, Hofmann-Apitius M. Linking COVID-19 and Heme-Driven Pathophysiologies: A Combined Computational-Experimental Approach. Biomolecules 2021; 11:biom11050644. [PMID: 33925394 PMCID: PMC8147026 DOI: 10.3390/biom11050644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 outbreak was declared a worldwide pandemic in 2020. Infection triggers the respiratory tract disease COVID-19, which is accompanied by serious changes in clinical biomarkers such as hemoglobin and interleukins. The same parameters are altered during hemolysis, which is characterized by an increase in labile heme. We present two computational–experimental approaches aimed at analyzing a potential link between heme-related and COVID-19 pathophysiologies. Herein, we performed a detailed analysis of the common pathways induced by heme and SARS-CoV-2 by superimposition of knowledge graphs covering heme biology and COVID-19 pathophysiology. Focus was laid on inflammatory pathways and distinct biomarkers as the linking elements. In a second approach, four COVID-19-related proteins, the host cell proteins ACE2 and TMPRSS2 as well as the viral proteins 7a and S protein were computationally analyzed as potential heme-binding proteins with an experimental validation. The results contribute to the understanding of the progression of COVID-19 infections in patients with different clinical backgrounds and may allow for a more individual diagnosis and therapy in the future.
Collapse
Affiliation(s)
- Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
- Enveda Biosciences, Inc., San Francisco, CA 94080, USA
| | - Yojana Gadiya
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
| | - Milena S. Detzel
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Regina Graf
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Benjamin F. Schmalohr
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
| | - Alpha T. Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
- Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Kerala 683503, India
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (M.-T.H.); (M.S.D.); (R.G.); (B.F.S.)
- Correspondence: (D.I.); (M.H.-A.)
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany; (D.D.-F.); (Y.G.); (A.T.K.)
- Correspondence: (D.I.); (M.H.-A.)
| |
Collapse
|
102
|
Vasconcellos LRC, Martimiano L, Dantas DP, Fonseca FM, Mata-Santos H, Travassos L, Mendez-Otero R, Bozza MT, Pimentel-Coelho PM. Intracerebral Injection of Heme Induces Lipid Peroxidation, Neuroinflammation, and Sensorimotor Deficits. Stroke 2021; 52:1788-1797. [PMID: 33827248 DOI: 10.1161/strokeaha.120.031911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Luiz Ricardo C Vasconcellos
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom (L.R.C.V.)
| | - Letícia Martimiano
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Danillo Pereira Dantas
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Filipe Mota Fonseca
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Hilton Mata-Santos
- Faculdade de Farmácia (H.M.-S.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Leonardo Travassos
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil (R.M.-O., P.M.P.-C.)
| | - Marcelo Torres Bozza
- Instituto de Microbiologia Paulo de Góes (L.R.C.V., L.M., F.M.F., M.T.B.), Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho (L.R.C.V., D.P.D., L.T., R.M.-O., P.M.P.-C.), Universidade Federal do Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil (R.M.-O., P.M.P.-C.)
| |
Collapse
|
103
|
Chen L, Ozato K. Innate Immune Memory in Hematopoietic Stem/Progenitor Cells: Myeloid-Biased Differentiation and the Role of Interferon. Front Immunol 2021; 12:621333. [PMID: 33854500 PMCID: PMC8039377 DOI: 10.3389/fimmu.2021.621333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Innate immune memory was first described for monocytes and other myeloid cells. This memory is designated Immune Training, in which the host animals that had experienced pathogen infection earlier acquire improved resistance to a second infection. Innate immune memory is mediated by an epigenetic mechanism traced to transcriptional memory that is conserved throughout evolution and has been selected for the ability to mount an adaptive response to shifting environments. Accumulating evidence shows that not only peripheral myeloid cells but hematopoietic stem/progenitor cells (HSCs/HSPCs) can acquire epigenetic memory upon pathogen exposure. Systemic pathogen infection causes HSCs to exit from quiescence and facilitate myeloid-biased differentiation that leads to efficient host defense. This sequence of events is common in HSC memory generation, which is triggered by different stimuli. Recent studies show that not only pathogens but other stimuli such as metabolic stress can generate memory in HSCs. This review summarizes recent publications relevant to HSC memory. We discuss the current understanding of initial sensors, soluble mediators/cytokines involved in memory formation, including Type I and Type II interferons along with future implications.
Collapse
Affiliation(s)
- Lili Chen
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
104
|
Vinchi F, Sparla R, Passos ST, Sharma R, Vance SZ, Zreid HS, Juaidi H, Manwani D, Yazdanbakhsh K, Nandi V, Silva AMN, Agarvas AR, Fibach E, Belcher JD, Vercellotti GM, Ghoti H, Muckenthaler MU. Vasculo-toxic and pro-inflammatory action of unbound haemoglobin, haem and iron in transfusion-dependent patients with haemolytic anaemias. Br J Haematol 2021; 193:637-658. [PMID: 33723861 PMCID: PMC8252605 DOI: 10.1111/bjh.17361] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that free haem and iron exert vasculo‐toxic and pro‐inflammatory effects by activating endothelial and immune cells. In the present retrospective study, we compared serum samples from transfusion‐dependent patients with β‐thalassaemia major and intermedia, hereditary spherocytosis and sickle cell disease (SCD). Haemolysis, transfusions and ineffective erythropoiesis contribute to haem and iron overload in haemolytic patients. In all cohorts we observed increased systemic haem and iron levels associated with scavenger depletion and toxic ‘free’ species formation. Endothelial dysfunction, oxidative stress and inflammation markers were significantly increased compared to healthy donors. In multivariable logistic regression analysis, oxidative stress markers remained significantly associated with both haem‐ and iron‐related parameters, while soluble vascular cell adhesion molecule 1 (sVCAM‐1), soluble endothelial selectin (sE‐selectin) and tumour necrosis factor α (TNFα) showed the strongest association with haem‐related parameters and soluble intercellular adhesion molecule 1 (sICAM‐1), sVCAM‐1, interleukin 6 (IL‐6) and vascular endothelial growth factor (VEGF) with iron‐related parameters. While hereditary spherocytosis was associated with the highest IL‐6 and TNFα levels, β‐thalassaemia major showed limited inflammation compared to SCD. The sVCAM1 increase was significantly lower in patients with SCD receiving exchange compared to simple transfusions. The present results support the involvement of free haem/iron species in the pathogenesis of vascular dysfunction and sterile inflammation in haemolytic diseases, irrespective of the underlying haemolytic mechanism, and highlight the potential therapeutic benefit of iron/haem scavenging therapies in these conditions.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, New York Blood Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg University, Heidelberg, Germany
| | - Richard Sparla
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Sara T Passos
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - Richa Sharma
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - S Zebulon Vance
- Iron Research Program, New York Blood Center, New York, NY, USA
| | - Hala S Zreid
- Department of Internal Medicine, Al Shifa Hospital, Gaza, Palestine
| | - Hesham Juaidi
- Department of Internal Medicine, Al Shifa Hospital, Gaza, Palestine
| | - Deepa Manwani
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.,Pediatric Hematology, The Children's Hospital at Montefiore, New York, NY, USA
| | | | - Vijay Nandi
- Laboratory of Data Analytic Services, New York Blood Center, New York, NY, USA
| | - André M N Silva
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, University of Porto, Porto, Portugal
| | - Anand R Agarvas
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Eitan Fibach
- Department of Hematology, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Husam Ghoti
- European Center for Cancer and Cell Therapy (ECCT), Nicosia, Cyprus
| | - Martina U Muckenthaler
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg University, Heidelberg, Germany.,Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
105
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
106
|
Sesti-Costa R, Borges MD, Lanaro C, de Albuquerque DM, Saad STO, Costa FF. Inflammatory Dendritic Cells Contribute to Regulate the Immune Response in Sickle Cell Disease. Front Immunol 2021; 11:617962. [PMID: 33613546 PMCID: PMC7890087 DOI: 10.3389/fimmu.2020.617962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sickle cell disease (SCD), one of the most common hemoglobinopathies worldwide, is characterized by a chronic inflammatory component, with systemic release of inflammatory cytokines, due to hemolysis and vaso-occlusive processes. Patients with SCD demonstrate dysfunctional T and B lymphocyte responses, and they are more susceptible to infection. Although dendritic cells (DCs) are the main component responsible for activating and polarizing lymphocytic function, and are able to produce pro-inflammatory cytokines found in the serum of patients with SCD, minimal studies have thus far been devoted to these cells. In the present study, we identified the subpopulations of circulating DCs in patients with SCD, and found that the bloodstream of the patients showed higher numbers and percentages of DCs than that of healthy individuals. Among all the main DCs subsets, inflammatory DCs (CD14+ DCs) were responsible for this rise and correlated with higher reticulocyte count. The patients had more activated monocyte-derived DCs (mo-DCs), which produced MCP-1, IL-6, and IL-8 in culture. We found that a CD14+ mo-DC subset present in culture from some of the patients was the more activated subset and was mainly responsible for cytokine production, and this subset was also responsible for IL-17 production in co-culture with T lymphocytes. Finally, we suggest an involvement of heme oxygenase in the upregulation of CD14 in mo-DCs from the patients, indicating a potential mechanism for inducing inflammatory DC differentiation from circulating monocytes in the patients, which correlated with inflammatory cytokine production, T lymphocyte response skewing, and reticulocyte count.
Collapse
Affiliation(s)
- Renata Sesti-Costa
- Hematology and Hemotherapy Center, University of Campinas, UNICAMP, Campinas, Brazil
| | | | - Carolina Lanaro
- Hematology and Hemotherapy Center, University of Campinas, UNICAMP, Campinas, Brazil
| | | | | | | |
Collapse
|
107
|
Chiabrando D, Fiorito V, Petrillo S, Bertino F, Tolosano E. HEME: a neglected player in nociception? Neurosci Biobehav Rev 2021; 124:124-136. [PMID: 33545213 DOI: 10.1016/j.neubiorev.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Despite increasing progress in the understanding of the pathophysiology of pain, current management of pain syndromes is still unsatisfactory. The recent discovery of novel pathways associated with pain insensitivity in humans represents a unique opportunity to improve our knowledge on the pathophysiology of pain. Heme metabolism recently emerged as a crucial regulator of nociception. Of note, alteration of heme metabolism has been associated with pain insensitivity as well as with acute and chronic pain in porphyric neuropathy and hemolytic diseases. However, the molecular mechanisms linking heme to the pain pathways still remain unclear. The review focuses on the major heme-regulated processes relevant for sensory neurons' maintenance, peripheral and central sensitization as well as for pain comorbidities, like anxiety and depression. By discussing the body of knowledge on the topic, we provide a novel perspective on the molecular mechanisms linking heme to nociception.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy.
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
108
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
109
|
Hopp MT, Imhof D. Linking Labile Heme with Thrombosis. J Clin Med 2021; 10:427. [PMID: 33499296 PMCID: PMC7865584 DOI: 10.3390/jcm10030427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Thrombosis is one of the leading causes of death worldwide. As such, it also occurs as one of the major complications in hemolytic diseases, like hemolytic uremic syndrome, hemorrhage and sickle cell disease. Under these conditions, red blood cell lysis finally leads to the release of large amounts of labile heme into the vascular compartment. This, in turn, can trigger oxidative stress and proinflammatory reactions. Moreover, the heme-induced activation of the blood coagulation system was suggested as a mechanism for the initiation of thrombotic events under hemolytic conditions. Studies of heme infusion and subsequent thrombotic reactions support this assumption. Furthermore, several direct effects of heme on different cellular and protein components of the blood coagulation system were reported. However, these effects are controversially discussed or not yet fully understood. This review summarizes the existing reports on heme and its interference in coagulation processes, emphasizing the relevance of considering heme in the context of the treatment of thrombosis in patients with hemolytic disorders.
Collapse
Affiliation(s)
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| |
Collapse
|
110
|
Pal M, Bao W, Wang R, Liu Y, An X, Mitchell WB, Lobo CA, Minniti C, Shi PA, Manwani D, Yazdanbakhsh K, Zhong H. Hemolysis inhibits humoral B-cell responses and modulates alloimmunization risk in patients with sickle cell disease. Blood 2021; 137:269-280. [PMID: 33152749 PMCID: PMC7820872 DOI: 10.1182/blood.2020008511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Red blood cell alloimmunization remains a barrier for safe and effective transfusions in sickle cell disease (SCD), but the associated risk factors remain largely unknown. Intravascular hemolysis, a hallmark of SCD, results in the release of heme with potent immunomodulatory activity, although its effect on SCD humoral response, specifically alloimmunization, remains unclear. Here, we found that cell-free heme suppresses human B-cell plasmablast and plasma cell differentiation by inhibiting the DOCK8/STAT3 signaling pathway, which is critical for B-cell activation, as well as by upregulating heme oxygenase 1 (HO-1) through its enzymatic byproducts, carbon monoxide and biliverdin. Whereas nonalloimmunized SCD B cells were inhibited by exogenous heme, B cells from the alloimmunized group were nonresponsive to heme inhibition and readily differentiated into plasma cells. Consistent with a differential B-cell response to hemolysis, we found elevated B-cell basal levels of DOCK8 and higher HO-1-mediated inhibition of activated B cells in nonalloimmunized compared with alloimmunized SCD patients. To overcome the alloimmunized B-cell heme insensitivity, we screened several heme-binding molecules and identified quinine as a potent inhibitor of B-cell activity, reversing the resistance to heme suppression in alloimmunized patients. B-cell inhibition by quinine occurred only in the presence of heme and through HO-1 induction. Altogether, these data suggest that hemolysis can dampen the humoral B-cell response and that B-cell heme responsiveness maybe a determinant of alloimmunization risk in SCD. By restoring B-cell heme sensitivity, quinine may have therapeutic potential to prevent and inhibit alloimmunization in SCD patients.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - William B Mitchell
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | - Cheryl A Lobo
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY
| | - Caterina Minniti
- Department of Medicine, Division of Hematology, Montefiore Health Center, Albert Einstein College of Medicine, Bronx, NY; and
| | - Patricia A Shi
- Sickle Cell Clinical Research Program, New York Blood Center, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | | | - Hui Zhong
- Laboratory of Immune Regulation, and
| |
Collapse
|
111
|
Revel M, Dimitrov JD. Methods for Assessment of Interactions of Proteins with Heme: Application for Complement Proteins and Immunoglobulins. Methods Mol Biol 2021; 2227:227-236. [PMID: 33847945 DOI: 10.1007/978-1-0716-1016-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heme (Fe protoporphyrin IX) serves as a prosthetic group of numerous proteins implicated in oxidative metabolism. This molecule is abundantly present in the red blood cells where it serves as a cofactor of hemoglobin. As consequence of various pathological conditions, the membrane of red blood cells can be damaged and therefore large quantities of hemoglobin and subsequently heme released in the extracellular space. Since heme is a highly reactive compound, when released extracelluarly it can influence the functional activity of different plasma components. Thus, previous investigations have demonstrated that heme can interact with components of complement system and immunoglobulins, profoundly affecting their functions. Here we propose two basic protocols that can be used for characterization of interaction of free heme with complement proteins and immunoglobulins. The first technique is based on UV-Vis absorbance spectroscopy. It allows general characterization of the heme binding to the protein and estimation of the number of heme binding sites. The second protocol consists in the use of biosensor assay based on surface plasmon resonance. This protocol would be useful for evaluation of heme binding kinetics and equilibrium affinity. Besides for complement components and immunoglobulins, the presented protocols can be utilized for characterization of the interaction of heme with other proteins.
Collapse
Affiliation(s)
- Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France.
| |
Collapse
|
112
|
Smith DJ, Ellis PR, Turner AM. Exacerbations of Lung Disease in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2021; 8:162-176. [PMID: 33238089 PMCID: PMC8047608 DOI: 10.15326/jcopdf.2020.0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/13/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is an important risk factor for development of chronic obstructive pulmonary disease (COPD). Patients with AATD classically develop a different pattern of lung disease from those with usual COPD, decline faster and exhibit a range of differences in pathogenesis, all of which may be relevant to phenotype and/or impact of exacerbations. There are a number of definitions of exacerbation, with the main features being worsening of symptoms over at least 2 days, which may be associated with a change in treatment. In this article we review the literature surrounding exacerbations in AATD, focusing, in particular, on ways in which they may differ from such events in usual COPD, and the potential impact on clinical management.
Collapse
Affiliation(s)
- Daniel J. Smith
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Ellis
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham, United Kingdom
| |
Collapse
|
113
|
Santaterra VAG, Fiusa MML, Hounkpe BW, Chenou F, Tonasse WV, da Costa LNG, Garcia-Weber D, Domingos IDF, de Lima F, Borba-Junior IT, Araújo ADS, Lucena-Araújo AR, Bezerra MAC, Dos Santos MNN, Costa FF, Millán J, De Paula EV. Endothelial Barrier Integrity Is Disrupted In Vitro by Heme and by Serum From Sickle Cell Disease Patients. Front Immunol 2020; 11:535147. [PMID: 33381108 PMCID: PMC7767881 DOI: 10.3389/fimmu.2020.535147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Free extracellular heme has been shown to activate several compartments of innate immunity, acting as a danger-associated molecular pattern (DAMP) in hemolytic diseases. Although localized endothelial barrier (EB) disruption is an important part of inflammation that allows circulating leukocytes to reach inflamed tissues, non-localized/deregulated disruption of the EB can lead to widespread microvascular hyperpermeability and secondary tissue damage. In mouse models of sickle cell disease (SCD), EB disruption has been associated with the development of a form of acute lung injury that closely resembles acute chest syndrome (ACS), and that can be elicited by acute heme infusion. Here we explored the effect of heme on EB integrity using human endothelial cell monolayers, in experimental conditions that include elements that more closely resemble in vivo conditions. EB integrity was assessed by electric cell-substrate impedance sensing in the presence of varying concentrations of heme and sera from SCD patients or healthy volunteers. Heme caused a dose-dependent decrease of the electrical resistance of cell monolayers, consistent with EB disruption, which was confirmed by staining of junction protein VE-cadherin. In addition, sera from SCD patients, but not from healthy volunteers, were also capable to induce EB disruption. Interestingly, these effects were not associated with total heme levels in serum. However, when heme was added to sera from SCD patients, but not from healthy volunteers, EB disruption could be elicited, and this effect was associated with hemopexin serum levels. Together our in vitro studies provide additional support to the concept of heme as a DAMP in hemolytic conditions.
Collapse
Affiliation(s)
| | | | | | - Francine Chenou
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Loredana Nilkenes Gomes da Costa
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Department of Biomedicine, Federal University of Piaui, Parnaiba, Brazil
| | - Diego Garcia-Weber
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Madrid, Spain
| | - Igor de Farias Domingos
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Franciele de Lima
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Aderson da Silva Araújo
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco (HEMOPE), Recife, Brazil
| | | | | | | | - Fernando Ferreira Costa
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Jaime Millán
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Madrid, Spain
| | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
114
|
Puentes-Pardo JD, Moreno-SanJuan S, Carazo Á, León J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants (Basel) 2020; 9:antiox9121214. [PMID: 33276470 PMCID: PMC7760122 DOI: 10.3390/antiox9121214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Heme oxygenase 1 (HO-1) is the rate-limiting enzyme of heme oxidative degradation, generating carbon monoxide (CO), free iron, and biliverdin. HO-1, a stress inducible enzyme, is considered as an anti-oxidative and cytoprotective agent. As many studies suggest, HO-1 is highly expressed in the gastrointestinal tract where it is involved in the response to inflammatory processes, which may lead to several diseases such as pancreatitis, diabetes, fatty liver disease, inflammatory bowel disease, and cancer. In this review, we highlight the pivotal role of HO-1 and its downstream effectors in the development of disorders and their beneficial effects on the maintenance of the gastrointestinal tract health. We also examine clinical trials involving the therapeutic targets derived from HO-1 system for the most common diseases of the digestive system.
Collapse
Affiliation(s)
- Jose D. Puentes-Pardo
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| | - Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Ángel Carazo
- Genomic Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Josefa León
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, 18016 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| |
Collapse
|
115
|
Jennifer B, Berg V, Modak M, Puck A, Seyerl-Jiresch M, Künig S, Zlabinger GJ, Steinberger P, Chou J, Geha RS, Öhler L, Yachie A, Choe H, Kraller M, Stockinger H, Stöckl J. Transferrin receptor 1 is a cellular receptor for human heme-albumin. Commun Biol 2020; 3:621. [PMID: 33110194 PMCID: PMC7591885 DOI: 10.1038/s42003-020-01294-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is essential for living cells. Uptake of iron-loaded transferrin by the transferrin receptor 1 (CD71, TFR) is a major but not sufficient mechanism and an alternative iron-loaded ligand for CD71 has been assumed. Here, we demonstrate that CD71 utilizes heme-albumin as cargo to transport iron into human cells. Binding and endocytosis of heme-albumin via CD71 was sufficient to promote proliferation of various cell types in the absence of transferrin. Growth and differentiation of cells induced by heme-albumin was dependent on heme-oxygenase 1 (HO-1) function and was accompanied with an increase of the intracellular labile iron pool (LIP). Import of heme-albumin via CD71 was further found to contribute to the efficacy of albumin-based drugs such as the chemotherapeutic Abraxane. Thus, heme-albumin/CD71 interaction is a novel route to transport nutrients or drugs into cells and adds to the emerging function of CD71 as a scavenger receptor. Brell, Berg et al find that iron enters cells not only through iron-transferrin uptake by the transferrin receptor (CD71) but also through uptake of heme-albumin by this receptor and that heme-albumin stimulates proliferation in a manner dependent on heme oxygenase 1. This study presents a new route for iron uptake in mammalian cells.
Collapse
Affiliation(s)
- Brell Jennifer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Verena Berg
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Madhura Modak
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexander Puck
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Maria Seyerl-Jiresch
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Sarojinidevi Künig
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Janet Chou
- Division of Immunology, Boston Children´s Hospital, Boston, MA, 02115, USA
| | - Raif S Geha
- Division of Immunology, Boston Children´s Hospital, Boston, MA, 02115, USA
| | - Leopold Öhler
- Department of Internal Medicine, St. Josef Hospital, 1130, Vienna, Austria
| | - Akihiro Yachie
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Florida, CA, 92037, USA
| | - Markus Kraller
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Stockinger
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
116
|
Pham TT, Lamb TJ, Deroost K, Opdenakker G, Van den Steen PE. Hemozoin in Malarial Complications: More Questions Than Answers. Trends Parasitol 2020; 37:226-239. [PMID: 33223096 DOI: 10.1016/j.pt.2020.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Plasmodium parasites contain various virulence factors that modulate the host immune response. Malarial pigment, or hemozoin (Hz), is an undegradable crystalline product of the hemoglobin degradation pathway in the parasite and possesses immunomodulatory properties. An association has been found between Hz accumulation and severe malaria, suggesting that the effects of Hz on the host immune response may contribute to the development of malarial complications. Although the immunomodulatory roles of Hz have been widely investigated, many conflicting data exist, likely due to the variability between experimental set-ups and technical limitations of Hz generation and isolation methods. Here, we critically assess the potential immunomodulatory effects of Hz, its role in malarial complications, and its potential effects after parasite clearance.
Collapse
Affiliation(s)
- Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Tracey J Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katrien Deroost
- Malaria Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
117
|
McCormick R, Sim M, Dawson B, Peeling P. Refining Treatment Strategies for Iron Deficient Athletes. Sports Med 2020; 50:2111-2123. [PMID: 33057935 DOI: 10.1007/s40279-020-01360-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron deficiency (ID) is a prevailing nutritional concern amongst the athletic population due to the increased iron demands of this group. Athletes' ability to replenish taxed iron stores is challenging due to the low bioavailability of dietary sources, and the interaction between exercise and hepcidin, the primary iron-regulatory hormone. To date, copious research has explored the link between exercise and iron regulation, with a more recent focus on optimising iron treatment applications. Currently, oral iron supplementation is typically the first avenue of iron replacement therapy beyond nutritional intervention, for treatment of ID athletes. However, many athletes encounter associated gastrointestinal side-effects which can deter them from fulfilling a full-term oral iron treatment plan, generally resulting in sub-optimal treatment efficacy. Consequently, various strategies (e.g. dosage, composition, timing) of oral iron supplementation have been investigated with the goal of increasing fractional iron absorption, reducing gastric irritation, and ultimately improving the efficacy of oral iron therapy. This review explores the various treatment strategies pertinent to athletes and concludes a contemporary strategy of oral iron therapy entailing morning supplementation, ideally within the 30 min following morning exercise, and in athletes experiencing gut sensitivity, consumed on alternate days or at lower doses.
Collapse
Affiliation(s)
- Rachel McCormick
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia. .,The Western Australian Institute of Sport, Mt Claremont, WA, Australia.
| | - Marc Sim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Brian Dawson
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia.,The Western Australian Institute of Sport, Mt Claremont, WA, Australia
| |
Collapse
|
118
|
Prestes EB, Alves LS, Rodrigues DAS, Dutra FF, Fernandez PL, Paiva CN, Kagan JC, Bozza MT. Mitochondrial Reactive Oxygen Species Participate in Signaling Triggered by Heme in Macrophages and upon Hemolysis. THE JOURNAL OF IMMUNOLOGY 2020; 205:2795-2805. [PMID: 33037139 DOI: 10.4049/jimmunol.1900886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Hemolysis causes an increase of intravascular heme, oxidative damage, and inflammation in which macrophages play a critical role. In these cells, heme can act as a prototypical damage-associated molecular pattern, inducing TLR4-dependent cytokine production through the MyD88 pathway, independently of TRIF. Heme promotes reactive oxygen species (ROS) generation independently of TLR4. ROS and TNF production contribute to heme-induced necroptosis and inflammasome activation; however, the role of ROS in proinflammatory signaling and cytokine production remains unknown. In this study, we demonstrate that heme activates at least three signaling pathways that contribute to a robust MAPK phosphorylation and cytokine expression in mouse macrophages. Although heme did not induce a detectable Myddosome formation, the TLR4/MyD88 axis was important for phosphorylation of p38 and secretion of cytokines. ROS generation and spleen tyrosine kinase (Syk) activation induced by heme were critical for most proinflammatory signaling pathways, as the antioxidant N-acetyl-l-cysteine and a Syk inhibitor differentially blocked heme-induced ROS, MAPK phosphorylation, and cytokine production in macrophages. Early generated mitochondrial ROS induced by heme was Syk dependent, selectively promoted the phosphorylation of ERK1/2 without affecting JNK or p38, and contributed to CXCL1 and TNF production. Finally, lethality caused by sterile hemolysis in mice required TLR4, TNFR1, and mitochondrial ROS, supporting the rationale to target these pathways to mitigate tissue damage of hemolytic disorders.
Collapse
Affiliation(s)
- Elisa B Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Letícia S Alves
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Danielle A S Rodrigues
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Fabianno F Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Patricia L Fernandez
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, 0843-01103 Panama City, Panama; and
| | - Claudia N Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| |
Collapse
|
119
|
Bosseboeuf E, Raimondi C. Signalling, Metabolic Pathways and Iron Homeostasis in Endothelial Cells in Health, Atherosclerosis and Alzheimer's Disease. Cells 2020; 9:cells9092055. [PMID: 32911833 PMCID: PMC7564205 DOI: 10.3390/cells9092055] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells drive the formation of new blood vessels in physiological and pathological contexts such as embryonic development, wound healing, cancer and ocular diseases. Once formed, all vessels of the vasculature system present an endothelial monolayer (the endothelium), lining the luminal wall of the vessels, that regulates gas and nutrient exchange between the circulating blood and tissues, contributing to maintaining tissue and vascular homeostasis. To perform their functions, endothelial cells integrate signalling pathways promoted by growth factors, cytokines, extracellular matrix components and signals from mechanosensory complexes sensing the blood flow. New evidence shows that endothelial cells rely on specific metabolic pathways for distinct cellular functions and that the integration of signalling and metabolic pathways regulates endothelial-dependent processes such as angiogenesis and vascular homeostasis. In this review, we provide an overview of endothelial functions and the recent advances in understanding the role of endothelial signalling and metabolism in physiological processes such as angiogenesis and vascular homeostasis and vascular diseases. Also, we focus on the signalling pathways promoted by the transmembrane protein Neuropilin-1 (NRP1) in endothelial cells, its recently discovered role in regulating mitochondrial function and iron homeostasis and the role of mitochondrial dysfunction and iron in atherosclerosis and neurodegenerative diseases.
Collapse
|
120
|
Gupta R, Liu L, Zhang X, Fan X, Krishnamurthy P, Verma S, Tongers J, Misener S, Ashcherkin N, Sun H, Tian J, Kishore R. IL-10 provides cardioprotection in diabetic myocardial infarction via upregulation of Heme clearance pathways. JCI Insight 2020; 5:133050. [PMID: 32879134 PMCID: PMC7526458 DOI: 10.1172/jci.insight.133050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
Diabetes is a risk factor for myocardial infarction, and outcomes after myocardial infarction are worse among diabetics compared with nondiabetics. Diabetes is associated with impaired Heme clearance. Here, we determined whether heme toxicity and impaired heme clearance contribute to diabetic myocardial infarction injury and assessed IL-10 as a therapeutic agent for diabetic myocardial infarction. Plasma-free hemoglobin was significantly elevated in diabetic mice compared with nondiabetic mice after myocardial infarction. Infarct size had strong correlation to the level of plasma-free hemoglobin. Hemoglobin and reactive iron deposition within the infarct zone were also demonstrated in diabetic MI. IL-10 significantly reduced infarct size and improved cardiac function in diabetic mice. Moreover, IL-10 improved capillary density, reduced apoptosis, and decreased inflammation in the border zone of the infarcted hearts, findings that were partially inhibited by Tin protoporphyrin (a heme oxygenase-1 inhibitor). IL-10 upregulated CD163, the hemoglobin:haptoglobin scavenger receptor, and heme oxygenase-1 in THP-1-derived and primary human CD14+ macrophages. IL-10 significantly protected against ischemic injury when HL-1 cardiomyocytes were cotreated with hemoglobin. Together, our findings indicate that IL-10 is cardioprotective in diabetic myocardial infarction via upregulation of heme clearance pathways. These findings implicate heme clearance as a potentially novel therapeutic direction for diabetic myocardial infarction.
Collapse
Affiliation(s)
- Rajesh Gupta
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lijun Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Xiaolu Zhang
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Xiaoming Fan
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Prasanna Krishnamurthy
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering and
| | - Suresh Verma
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jörn Tongers
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University, Halle (Saale), Germany
| | - Sol Misener
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nikita Ashcherkin
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Hongliu Sun
- Department of Pathology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Jiang Tian
- Division of Cardiovascular Medicine, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Raj Kishore
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
121
|
Heme is involved in the systemic inflammatory response following radiofrequency ablation of hepatic hemangiomas. Eur J Gastroenterol Hepatol 2020; 32:1200-1206. [PMID: 31851092 DOI: 10.1097/meg.0000000000001636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Radiofrequency ablation (RFA) is an effective and minimally invasive treatment for managing hepatic hemangiomas. Systemic inflammatory response syndrome (SIRS) often occurs with hemoglobinuria, and its underlying pathophysiological mechanism is unknown. Heme can trigger inflammation by inducing the generation of reactive oxygen species (ROS) and the production of inflammatory mediators. We therefore investigated whether circulating heme is involved in SIRS following RFA of hepatic hemangiomas. METHODS We enrolled 65 patients with hepatic hemangioma who underwent RFA. Serum concentrations of free heme, ROS, and tumor necrosis factor α (TNF-α) were measured after RFA. Univariate analysis and a multivariate binary logistic regression model were used to evaluate the contribution of 17 risk factors for SIRS after RFA. RESULTS Fifty-nine (59/65, 90.8%) patients developed hemoglobinuria, among which 25 (25/59, 42.4%) experienced SIRS shortly after RFA. In the SIRS group, the serum concentrations of heme, ROS, and TNF-α were immediately elevated after RFA compared with baseline and slowly regained their normal levels 3 days after RFA. Moreover, the concentrations of circulating heme significantly correlated with those of ROS (r = 0.805, P < 0.001) and TNF-α (r = 0.797, P < 0.001). Multivariate analysis showed that the volume of hemangioma [odds ratio (OR) = 1.293, P = 0.031], time of ablation (OR = 1.194, P = 0.029) as well as the concentrations of heme (OR = 1.430, P = 0.017), ROS (OR = 1.251, P = 0.031), and TNF-α (OR = 1.309, P = 0.032) were significantly associated with SIRS. CONCLUSION Circulating heme was associated with the induction of ROS and the production of TNF-α, which may contribute to the induction of SIRS following RFA of hepatic hemangiomas.
Collapse
|
122
|
Janciauskiene S, Vijayan V, Immenschuh S. TLR4 Signaling by Heme and the Role of Heme-Binding Blood Proteins. Front Immunol 2020; 11:1964. [PMID: 32983129 PMCID: PMC7481328 DOI: 10.3389/fimmu.2020.01964] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs), also known as pattern recognition receptors, respond to exogenous pathogens and to intrinsic danger signals released from damaged cells and tissues. The tetrapyrrole heme has been suggested to be an agonist for TLR4, the receptor for the pro-inflammatory bacterial component lipopolysaccharide (LPS), synonymous with endotoxin. Heme is a double-edged sword with contradictory functions. On the one hand, it has vital cellular functions as the prosthetic group of hemoproteins including hemoglobin, myoglobin, and cytochromes. On the other hand, if released from destabilized hemoproteins, non-protein bound or “free” heme can have pro-oxidant and pro-inflammatory effects, the mechanisms of which are not fully understood. In this review, the complex interactions between heme and TLR4 are discussed with a particular focus on the role of heme-binding serum proteins in handling extracellular heme and its impact on TLR4 signaling. Moreover, the role of heme as a direct and indirect trigger of TLR4 activation and species-specific differences in the regulation of heme-dependent TLR4 signaling are highlighted.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hanover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hanover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hanover, Germany
| |
Collapse
|
123
|
Koike R, Cueno ME, Nodomi K, Tamura M, Kamio N, Tanaka H, Kotani A, Imai K. Heat-Killed Fusobacterium nucleatum Triggers Varying Heme-Related Inflammatory and Stress Responses Depending on Primary Human Respiratory Epithelial Cell Type. Molecules 2020; 25:molecules25173839. [PMID: 32847022 PMCID: PMC7504371 DOI: 10.3390/molecules25173839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Fusobacterium nucleatum (Fn) is generally an opportunistic oral pathogen that adheres to mammalian mucosal sites, triggering a host inflammatory response. In general, Fn is normally found within the human oral cavity; however, it was previously reported that Fn is a risk factor for certain respiratory diseases. Surprisingly, this was never fully elucidated. Here, we investigated the virulence potential of heat-killed Fn on primary human tracheal, bronchial, and alveolar epithelial cells. In this study, we measured the secretion of inflammatory- (IL-8 and IL-6), stress- (total heme and hydrogen peroxide), and cell death-related (caspase-1 and caspase-3) signals. We established that the inflammatory response mechanism varies in each epithelial cell type: (1) along tracheal cells, possible Fn adherence would trigger increased heme secretion and regulated inflammatory response; (2) along bronchial cells, potential Fn adherence would simultaneously initiate an increase in secreted H2O2 and inflammatory response (ascribable to decreased secreted heme amounts); and (3) along alveolar cells, putative Fn adherence would instigate the increased secretion of inflammatory responses attributable to a decrease in secreted heme levels. Moreover, regardless of the epithelial cell-specific inflammatory mechanism, we believe these are putative, not harmful. Taken together, we propose that any potential Fn-driven inflammation along the respiratory tract would be initiated by differing epithelial cell-specific inflammatory mechanisms that are collectively dependent on secreted heme.
Collapse
Affiliation(s)
- Ryo Koike
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan;
| | - Marni E. Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (K.N.); (M.T.); (N.K.); (H.T.)
- Correspondence: (M.E.C.); (K.I.)
| | - Keiko Nodomi
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (K.N.); (M.T.); (N.K.); (H.T.)
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (K.N.); (M.T.); (N.K.); (H.T.)
| | - Noriaki Kamio
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (K.N.); (M.T.); (N.K.); (H.T.)
| | - Hajime Tanaka
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (K.N.); (M.T.); (N.K.); (H.T.)
| | - Ai Kotani
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Kanagawa 259-1193, Japan;
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (K.N.); (M.T.); (N.K.); (H.T.)
- Correspondence: (M.E.C.); (K.I.)
| |
Collapse
|
124
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
125
|
Rodrigues DAS, Prestes EB, Gama AMS, Silva LDS, Pinheiro AAS, Ribeiro JMC, Campos RMP, Pimentel-Coelho PM, De Souza HS, Dicko A, Duffy PE, Fried M, Francischetti IMB, Saraiva EM, Paula-Neto HA, Bozza MT. CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes. PLoS Pathog 2020; 16:e1008230. [PMID: 32797076 PMCID: PMC7449500 DOI: 10.1371/journal.ppat.1008230] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/26/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022] Open
Abstract
Neutrophil extracellular traps (NETs) evolved as a unique effector mechanism contributing to resistance against infection that can also promote tissue damage in inflammatory conditions. Malaria infection can trigger NET release, but the mechanisms and consequences of NET formation in this context remain poorly characterized. Here we show that patients suffering from severe malaria had increased amounts of circulating DNA and increased neutrophil elastase (NE) levels in plasma. We used cultured erythrocytes and isolated human neutrophils to show that Plasmodium-infected red blood cells release macrophage migration inhibitory factor (MIF), which in turn caused NET formation by neutrophils in a mechanism dependent on the C-X-C chemokine receptor type 4 (CXCR4). NET production was dependent on histone citrullination by peptidyl arginine deiminase-4 (PAD4) and independent of reactive oxygen species (ROS), myeloperoxidase (MPO) or NE. In vitro, NETs functioned to restrain parasite dissemination in a mechanism dependent on MPO and NE activities. Finally, C57/B6 mice infected with P. berghei ANKA, a well-established model of cerebral malaria, presented high amounts of circulating DNA, while treatment with DNAse increased parasitemia and accelerated mortality, indicating a role for NETs in resistance against Plasmodium infection.
Collapse
Affiliation(s)
- Danielle A. S. Rodrigues
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa B. Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreza M. S. Gama
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro de Souza Silva
- Laboratório de Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Acácia S. Pinheiro
- Laboratório de Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Marcos C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Raquel M. P. Campos
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro
| | - Pedro M. Pimentel-Coelho
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro
| | - Heitor S. De Souza
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Departmento de Medicina Interna, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro and Instituto D’Or para Pesquisa e Educação (IDOR), Rio de Janeiro, Brazil
| | - Alassane Dicko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivo M. B. Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor A. Paula-Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
126
|
Funes SC, Rios M, Fernández-Fierro A, Covián C, Bueno SM, Riedel CA, Mackern-Oberti JP, Kalergis AM. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Front Immunol 2020; 11:1467. [PMID: 32849503 PMCID: PMC7396584 DOI: 10.3389/fimmu.2020.01467] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is the primary antioxidant enzyme involved in heme group degradation. A variety of stimuli triggers the expression of the inducible HO-1 isoform, which is modulated by its substrate and cellular stressors. A major anti-inflammatory role has been assigned to the HO-1 activity. Therefore, in recent years HO-1 induction has been employed as an approach to treating several disorders displaying some immune alterations components, such as exacerbated inflammation or self-reactivity. Many natural compounds have shown to be effective inductors of HO-1 without cytotoxic effects; among them, most are chemicals present in plants used as food, flavoring, and medicine. Here we discuss some naturally derived compounds involved in HO-1 induction, their impact in the immune response modulation, and the beneficial effect in diverse autoimmune disorders. We conclude that the use of some compounds from natural sources able to induce HO-1 is an attractive lifestyle toward promoting human health. This review opens a new outlook on the investigation of naturally derived HO-1 inducers, mainly concerning autoimmunity.
Collapse
Affiliation(s)
- Samanta C Funes
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Rios
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Covián
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Millenium Institute on Immunolgy and Immunotherapy, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU CCT Mendoza- CONICET, Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
127
|
Silva RCMC, Travassos LH, Paiva CN, Bozza MT. Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance. PLoS Pathog 2020; 16:e1008599. [PMID: 32692767 PMCID: PMC7373268 DOI: 10.1371/journal.ppat.1008599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proinflammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate infection through reduction of tissue damage or affecting resistance, the ability of the host to control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 constitute an interesting area of study and an opportunity for drug development.
Collapse
Affiliation(s)
- Rafael C. M. C. Silva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leonardo H. Travassos
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
128
|
Bozza MT, Jeney V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front Immunol 2020; 11:1323. [PMID: 32695110 PMCID: PMC7339442 DOI: 10.3389/fimmu.2020.01323] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Damage associated molecular patterns (DAMPs) are endogenous molecules originate from damaged cells and tissues with the ability to trigger and/or modify innate immune responses. Upon hemolysis hemoglobin (Hb) is released from red blood cells (RBCs) to the circulation and give a rise to the production of different Hb redox states and heme which can act as DAMPs. Heme is the best characterized Hb-derived DAMP that targets different immune and non-immune cells. Heme is a chemoattractant, activates the complement system, modulates host defense mechanisms through the activation of innate immune receptors and the heme oxygenase-1/ferritin system, and induces innate immune memory. The contribution of oxidized Hb forms is much less studied, but some evidence show that these species might play distinct roles in intravascular hemolysis-associated pathologies independently of heme release. This review aims to summarize our current knowledge about the formation and pro-inflammatory actions of heme and other Hb-derived DAMPs.
Collapse
Affiliation(s)
- Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
129
|
Nithichanon A, Tussakhon I, Samer W, Kewcharoenwong C, Ato M, Bancroft GJ, Lertmemongkolchai G. Immune responses in beta-thalassaemia: heme oxygenase 1 reduces cytokine production and bactericidal activity of human leucocytes. Sci Rep 2020; 10:10297. [PMID: 32581238 PMCID: PMC7314746 DOI: 10.1038/s41598-020-67346-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Patients with beta-thalassaemia increase the risk of bacterial infections, particularly Burkholderia pseudomallei (Bp), the causative agent of melioidosis in Thailand. Impaired immune cell functions may be the cause of this susceptibility, but detailed mechanisms have not been defined. In this study, we observed impaired production of IFN-gamma and IL-10 by whole blood from beta-thalassaemia patients upon stimulation with a range of bacteria-derived stimuli. In contrast, IFN-gamma response via TCR and plasma IgG specific for Bp were still intact. Importantly, mRNA expression of heme oxygenase 1 (HO-1), a potential modulator of immune function, was increased in whole blood from beta-thalassaemia patients, either with or without stimulation with Bp in vitro. Induction of HO-1 by hemin or CoPP in vitro reduced production of IFN-gamma and IL-10 from healthy human PBMCs and decreased bacterial clearance activity of whole blood from healthy controls and beta-thalassaemia, while inhibition of HO-1 by SnPP enhanced both functions in healthy controls. These results were confirmed to some extent in purified human monocytes of healthy controls. Our results suggest a mechanism that excess hemin of beta-thalassaemia patients is a significant cause of immune suppression via HO-1 induction and may underlie the susceptibility of these individuals to severe bacterial infection.
Collapse
Affiliation(s)
- Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Inthira Tussakhon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Waraporn Samer
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chidchamai Kewcharoenwong
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Gregory J Bancroft
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ganjana Lertmemongkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
130
|
Laramée AS, Raczkowski H, Shao P, Batista C, Shukla D, Xu L, Haeryfar SMM, Tesfagiorgis Y, Kerfoot S, DeKoter R. Opposing Roles for the Related ETS-Family Transcription Factors Spi-B and Spi-C in Regulating B Cell Differentiation and Function. Front Immunol 2020; 11:841. [PMID: 32457757 PMCID: PMC7225353 DOI: 10.3389/fimmu.2020.00841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Generation of specific antibodies during an immune response to infection or vaccination depends on the ability to rapidly and accurately select clones of antibody-secreting B lymphocytes for expansion. Antigen-specific B cell clones undergo the cell fate decision to differentiate into antibody-secreting plasma cells, memory B cells, or germinal center B cells. The E26-transformation-specific (ETS) transcription factors Spi-B and Spi-C are important regulators of B cell development and function. Spi-B is expressed throughout B cell development and is downregulated upon plasma cell differentiation. Spi-C is highly related to Spi-B and has similar DNA-binding specificity. Heterozygosity for Spic rescues B cell development and B cell proliferation defects observed in Spi-B knockout mice. In this study, we show that heterozygosity for Spic rescued defective IgG1 secondary antibody responses in Spib–/– mice. Plasma cell differentiation was accelerated in Spib–/– B cells. Gene expression, ChIP-seq, and reporter gene analysis showed that Spi-B and Spi-C differentially regulated Bach2, encoding a key regulator of plasma cell and memory B cell differentiation. These results suggest that Spi-B and Spi-C oppose the function of one another to regulate B cell differentiation and function.
Collapse
Affiliation(s)
- Anne-Sophie Laramée
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Hannah Raczkowski
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Peng Shao
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Carolina Batista
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Devanshi Shukla
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Li Xu
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada
| | - Yodit Tesfagiorgis
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Steven Kerfoot
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Rodney DeKoter
- Department of Microbiology and Immunology, Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| |
Collapse
|
131
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
132
|
mSphere of Influence: Predicting Immune Responses and Susceptibility to Influenza Virus-May the Data Be with You. mSphere 2020; 5:5/2/e00085-20. [PMID: 32188748 PMCID: PMC7082138 DOI: 10.1128/msphere.00085-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Irene Ramos works in the field of immunology to viral infections. In this mSphere of Influence article, she reflects on how “Global analyses of human immune variation reveal baseline predictors of postvaccination responses” by Tsang et al. (Cell 157:499–513, 2014, https://doi.org/10.1016/j.cell.2014.03.031) and “A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection” by Fourati et al. Irene Ramos works in the field of immunology to viral infections. In this mSphere of Influence article, she reflects on how “Global analyses of human immune variation reveal baseline predictors of postvaccination responses” by Tsang et al. (Cell 157:499–513, 2014, https://doi.org/10.1016/j.cell.2014.03.031) and “A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection” by Fourati et al. (Nat Commun 9:4418, 2018, https://doi.org/10.1038/s41467-018-06735-8) made an impact on her by highlighting the importance of data science methods to understand virus-host interactions.
Collapse
|
133
|
Nader E, Romana M, Connes P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front Immunol 2020; 11:454. [PMID: 32231672 PMCID: PMC7082402 DOI: 10.3389/fimmu.2020.00454] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) is a genetic disease caused by a single mutation in the β-globin gene, leading to the production of an abnormal hemoglobin called hemoglobin S (HbS), which polymerizes under deoxygenation, and induces the sickling of red blood cells (RBCs). Sickled RBCs are very fragile and rigid, and patients consequently become anemic and develop frequent and recurrent vaso-occlusive crises. However, it is now evident that SCD is not only a RBC rheological disease. Accumulating evidence shows that SCD is also characterized by the presence of chronic inflammation and oxidative stress, participating in the development of chronic vasculopathy and several chronic complications. The accumulation of hemoglobin and heme in the plasma, as a consequence of enhanced intravascular hemolysis, decreases nitric oxide bioavailability and enhances the production of reactive oxygen species (ROS). Heme and hemoglobin also represent erythrocytic danger-associated molecular pattern molecules (eDAMPs), which may activate endothelial inflammation through TLR-4 signaling and promote the development of complications, such as acute chest syndrome. It is also suspected that heme may activate the innate immune complement system and stimulate neutrophils to release neutrophil extracellular traps. A large amount of microparticles (MPs) from various cellular origins (platelets, RBCs, white blood cells, endothelial cells) is also released into the plasma of SCD patients and participate in the inflammation and oxidative stress in SCD. In turn, this pro-inflammatory and oxidative stress environment further alters the RBC properties. Increased pro-inflammatory cytokine concentrations promote the activation of RBC NADPH oxidase and, thus, raise the production of intra-erythrocyte ROS. Such enhanced oxidative stress causes deleterious damage to the RBC membrane and further alters the deformability of the cells, modifying their aggregation properties. These RBC rheological alterations have been shown to be associated to specific SCD complications, such as leg ulcers, priapism, and glomerulopathy. Moreover, RBCs positive for the Duffy antigen receptor for chemokines may be very sensitive to various inflammatory molecules that promote RBC dehydration and increase RBC adhesiveness to the vascular wall. In summary, SCD is characterized by a vicious circle between abnormal RBC rheology and inflammation, which modulates the clinical severity of patients.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
134
|
Erdei J, Tóth A, Nagy A, Nyakundi BB, Fejes Z, Nagy B, Novák L, Bognár L, Balogh E, Paragh G, Kappelmayer J, Bácsi A, Jeney V. The Role of Hemoglobin Oxidation Products in Triggering Inflammatory Response Upon Intraventricular Hemorrhage in Premature Infants. Front Immunol 2020; 11:228. [PMID: 32210955 PMCID: PMC7069470 DOI: 10.3389/fimmu.2020.00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Intraventricular hemorrhage (IVH) is a frequent complication of prematurity that is associated with high neonatal mortality and morbidity. IVH is accompanied by red blood cell (RBC) lysis, hemoglobin (Hb) oxidation, and sterile inflammation. Here we investigated whether extracellular Hb, metHb, ferrylHb, and heme contribute to the inflammatory response after IVH. We collected cerebrospinal fluid (CSF) (n = 20) from premature infants with grade III IVH at different time points after the onset of IVH. Levels of Hb, metHb, total heme, and free heme were the highest in CSF samples obtained between days 0 and 20 after the onset of IVH and were mostly non-detectable in CSF collected between days 41 and 60 of post-IVH. Besides Hb monomers, we detected cross-linked Hb dimers and tetramers in post-IVH CSF samples obtained in days 0–20 and 21–40, but only Hb tetramers were present in CSF samples obtained after 41–60 days. Vascular cell adhesion molecule-1 (VCAM-1) and interleukin-8 (IL-8) levels were higher in CSF samples obtained between days 0 and 20 than in CSF collected between days 41 and 60 of post-IVH. Concentrations of VCAM-1, intercellular adhesion molecule-1 (ICAM-1), and IL-8 strongly correlated with total heme levels in CSF. Applying the identified heme sources on human brain microvascular endothelial cells revealed that Hb oxidation products and free heme contribute to the inflammatory response. We concluded that RBC lysis, Hb oxidation, and heme release are important components of the inflammatory response in IVH. Pharmacological interventions targeting cell-free Hb, Hb oxidation products, and free heme could have potential to limit the neuroinflammatory response following IVH.
Collapse
Affiliation(s)
- Judit Erdei
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Nagy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Benard Bogonko Nyakundi
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Novák
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikö Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
135
|
Humayun F, Domingo-Fernández D, Paul George AA, Hopp MT, Syllwasschy BF, Detzel MS, Hoyt CT, Hofmann-Apitius M, Imhof D. A Computational Approach for Mapping Heme Biology in the Context of Hemolytic Disorders. Front Bioeng Biotechnol 2020; 8:74. [PMID: 32211383 PMCID: PMC7069124 DOI: 10.3389/fbioe.2020.00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 01/07/2023] Open
Abstract
Heme is an iron ion-containing molecule found within hemoproteins such as hemoglobin and cytochromes that participates in diverse biological processes. Although excessive heme has been implicated in several diseases including malaria, sepsis, ischemia-reperfusion, and disseminated intravascular coagulation, little is known about its regulatory and signaling functions. Furthermore, the limited understanding of heme's role in regulatory and signaling functions is in part due to the lack of curated pathway resources for heme cell biology. Here, we present two resources aimed to exploit this unexplored information to model heme biology. The first resource is a terminology covering heme-specific terms not yet included in standard controlled vocabularies. Using this terminology, we curated and modeled the second resource, a mechanistic knowledge graph representing the heme's interactome based on a corpus of 46 scientific articles. Finally, we demonstrated the utility of these resources by investigating the role of heme in the Toll-like receptor signaling pathway. Our analysis proposed a series of crosstalk events that could explain the role of heme in activating the TLR4 signaling pathway. In summary, the presented work opens the door to the scientific community for exploring the published knowledge on heme biology.
Collapse
Affiliation(s)
- Farah Humayun
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Benjamin F. Syllwasschy
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Milena S. Detzel
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
136
|
Bhutia YD, Ogura J, Grippo PJ, Torres C, Sato T, Wachtel M, Ramachandran S, Babu E, Sivaprakasam S, Rajasekaran D, Schniers B, On N, Smoot L, Thangaraju M, Gnana-Prakasam JP, Ganapathy V. Chronic exposure to excess iron promotes EMT and cancer via p53 loss in pancreatic cancer. Asian J Pharm Sci 2020; 15:237-251. [PMID: 32373202 PMCID: PMC7193456 DOI: 10.1016/j.ajps.2020.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Based on the evidence that hemochromatosis, an iron-overload disease, drives hepatocellular carcinoma, we hypothesized that chronic exposure to excess iron, either due to genetic or environmental causes, predisposes an individual to cancer. Using pancreatic cancer as our primary focus, we employed cell culture studies to interrogate the connection between excess iron and cancer, and combined in vitro and in vivo studies to explore the connection further. Ferric ammonium citrate was used as an exogenous iron source. Chronic exposure to excess iron induced epithelial-mesenchymal transition (EMT) in normal and cancer cell lines, loss of p53, and suppression of p53 transcriptional activity evidenced from decreased expression of p53 target genes (p21, cyclin D1, Bax, SLC7A11). To further extrapolate our cell culture data, we generated EL-KrasG12D (EL-Kras) mouse (pancreatic neoplastic mouse model) expressing Hfe+/+and Hfe−/− genetic background. p53 target gene expression decreased in EL-Kras/Hfe−/− mouse pancreas compared to EL-Kras/Hfe+/+ mouse pancreas. Interestingly, the incidence of acinar-to-ductal metaplasia and cystic pancreatic neoplasms (CPN) decreased in EL-Kras/Hfe−/− mice, but the CPNs that did develop were larger in these mice than in EL-Kras/Hfe+/+ mice. In conclusion, these in vitro and in vivo studies support a potential role for chronic exposure to excess iron as a promoter of more aggressive disease via p53 loss and SLC7A11 upregulation within pancreatic epithelial cells.
Collapse
Affiliation(s)
- Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Carolina Torres
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Mitchell Wachtel
- Department of Surgical Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sabarish Ramachandran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ellappan Babu
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Devaraja Rajasekaran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Bradley Schniers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nhu On
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79410, USA.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| | - Logan Smoot
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | | | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
137
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
138
|
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, da Silva Vaz I, Mulenga A. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis 2020; 14:e0007758. [PMID: 32049966 PMCID: PMC7041860 DOI: 10.1371/journal.pntd.0007758] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/25/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24–48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding. The lone star tick, Amblyomma americanum, is a medically important species in US that transmits 5 of the 16 reported tick-borne disease agents. Most recently, bites of this tick were associated with red meat allergies in humans. Vaccination of animals against tick feeding has been shown to be a sustainable and an effective alternative to current acaricide based tick control method which has several limitations. The pre-requisite to tick vaccine development is to understand the molecular basis of tick feeding physiology. Toward this goal, this study has identified proteins that A. americanum ticks inject into the host at different phases of its feeding cycle. This data set has identified proteins that A. americanum inject into the host within 24–48 h of feeding before it starts to transmit pathogens. Of high importance, we identified 284 proteins that are present in saliva of other tick species, which we suspect regulate important role(s) in tick feeding success and might represent rich source target antigens for a tick vaccine. Overall, this study provides a foundation to understand the molecular mechanisms regulating tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, Californai, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
139
|
Interplay of Heme with Macrophages in Homeostasis and Inflammation. Int J Mol Sci 2020; 21:ijms21030740. [PMID: 31979309 PMCID: PMC7036926 DOI: 10.3390/ijms21030740] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages are an integral part of the mononuclear phagocyte system that is critical for maintaining immune homeostasis. They play a key role for initiation and modulation of immunological responses in inflammation and infection. Moreover, macrophages exhibit a wide spectrum of tissue-specific phenotypes in steady-state and pathophysiological conditions. Recent clinical and experimental evidence indicates that the ubiquitous compound heme is a crucial regulator of these cells, e.g., in the differentiation of monocytes to tissue-resident macrophages and/ or in activation by inflammatory stimuli. Notably, heme, an iron containing tetrapyrrole, is essential as a prosthetic group of hemoproteins (e.g., hemoglobin and cytochromes), whereas non-protein bound free or labile heme can be harmful via pro-oxidant, pro-inflammatory, and cytotoxic effects. In this review, it will be discussed how the complex interplay of heme with macrophages regulates homeostasis and inflammation via modulating macrophage inflammatory characteristics and/ or hematopoiesis. A particular focus will be the distinct roles of intra- and extracellular labile heme and the regulation of its availability by heme-binding proteins. Finally, it will be addressed how heme modulates macrophage functions via specific transcriptional factors, in particular the nuclear repressor BTB and CNC homologue (BACH)1 and Spi-C.
Collapse
|
140
|
Ponikowska M, Matusiak L, Kasztura M, Jankowska EA, Szepietowski JC. Deranged Iron Status Evidenced by Iron Deficiency Characterizes Patients with Hidradenitis Suppurativa. Dermatology 2020; 236:52-58. [PMID: 31927542 DOI: 10.1159/000505184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Proinflammatory activation and autoimmune processes underlie the pathophysiology of hidradenitis suppurativa (HS). Iron deficiency (ID) is frequently present in inflammation-mediated chronic diseases, irrespective of anemia. OBJECTIVES We aimed to characterize iron status in patients with HS. METHODS Serum concentrations of ferritin, transferrin saturation (Tsat), soluble transferrin receptor and hepcidin were assessed as the biomarkers of iron status in 74 patients with HS and 44 healthy subjects. ID was defined as ferritin <100 µg/L or ferritin 100-299 µg/L with Tsat <20% (following the definition used in the other studies in chronic disease). RESULTS Compared with controls, patients with HS demonstrated a deranged iron status as evidenced by decreased levels of ferritin (91 ± 87 vs. 157 ± 99 µg/L), Tsat (21.5 ± 10.8 vs. 42.2 ± 11.7%) and hepcidin (31.3 ± 25.9 vs. 44.2 ± 22.0 ng/mL) (all p < 0.05 vs. controls). There was also a trend toward higher values of soluble transferrin receptor (1.23 ± 0.35 vs. 1.12 ± 0.19 mg/L) (p = 0.09 vs. controls). Disease severity (assessed with the Hidradenitis Suppurativa Severity Index and the 3-degree Hurley scale) did not differentiate iron status biomarkers. ID was present in 75% of HS patients, and its prevalence was not related with disease severity (Hurley I/II/III - 82 vs. 73 vs. 67%). In HS, none of the iron status biomarkers correlated with the levels of interleukin-6 (a marker of proinflammatory activation). CONCLUSIONS The majority of HS patients demonstrate derangements in iron status typical of ID. These abnormalities are neither related to proinflammatory activation nor associated with disease severity. Whether it may have a therapeutic impact needs to be further studied.
Collapse
Affiliation(s)
- Malgorzata Ponikowska
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland,
| | - Lukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| | - Monika Kasztura
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa A Jankowska
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, Wrocław, Poland.,Cardiology Department, Centre for Heart Diseases, University Clinical Hospital, Wrocław, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
141
|
Ansari J, Gavins FNE. Ischemia-Reperfusion Injury in Sickle Cell Disease: From Basics to Therapeutics. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:706-718. [PMID: 30904156 DOI: 10.1016/j.ajpath.2018.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/17/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022]
Abstract
Sickle cell disease (SCD) is one of the most common hereditary hemoglobinopathies worldwide, affecting almost 400,000 newborns globally each year. It is characterized by chronic hemolytic anemia and endothelial dysfunction, resulting in a constant state of disruption of the vascular system and leading to recurrent episodes of ischemia-reperfusion injury (I/RI) to multiple organ systems. I/RI is a fundamental vascular pathobiological paradigm and contributes to morbidity and mortality in a wide range of conditions, including myocardial infarction, stroke, acute kidney injury, and transplantation. I/RI is characterized by an initial restriction of blood supply to an organ, which can lead to ischemia, followed by the subsequent restoration of perfusion and concomitant reoxygenation. Recent advances in the pathophysiology of SCD have led to an understanding that many of the consequences of this disease can be explained by mechanisms associated with I/RI. The following review focuses on the evolving pathobiology of SCD, how various complications of SCD can be attributed to I/RI, and the role of timely therapeutic intervention(s) based on targeting mediators or pathways that influence I/R insult.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana
| | - Felicity N E Gavins
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana.
| |
Collapse
|
142
|
After haemin treatment intracellular non-haem iron increases prior to haem oxygenase-1 induction: A study in human monocytic cell line THP-1. Transfus Apher Sci 2019; 58:102662. [PMID: 31727545 DOI: 10.1016/j.transci.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Iron overload is a major health concern for transfusion-dependent patients. Repeated transfusions result in the loading of large amounts of haem-derived iron on macrophages, in turn, inducing cell death. We previously demonstrated that haemin-induced cell death in human monocytic THP-1 cells is consistent with ferroptosis, an iron-dependent cell death regulation mechanism. However, direct measurement of iron after haemin treatment has not yet been conducted. In this study, we measured intracellular non-haem iron concentration and haem oxygenase levels after haemin treatment. MATERIAL AND METHODS Human monocytic THP-1 cells were treated with haemin, and the cell lysate was prepared. Non-haem iron concentration of the cell lysate was measured using the Nitroso-PSAP method. Expression of haem oxygenase-1 (HO-1) and haem oxygenase-2 (HO-2) was quantified by western blotting. RESULTS We measured intracellular non-haem iron and the expression of haem oxygenases post-haemin treatment. Concentration of non-haem iron post-haemin treatment increased dependently with time and dose. HO-1 expression was detected 4 h after haemin treatment, whereas HO-2 expression was constitutive. DISCUSSION Increase in non-haem iron prior to induction of HO-1 expression suggests the involvement of HO-2 in haem-induced cytotoxicity. (184 words).
Collapse
|
143
|
Wißbrock A, Goradia NB, Kumar A, Paul George AA, Kühl T, Bellstedt P, Ramachandran R, Hoffmann P, Galler K, Popp J, Neugebauer U, Hampel K, Zimmermann B, Adam S, Wiendl M, Krönke G, Hamza I, Heinemann SH, Frey S, Hueber AJ, Ohlenschläger O, Imhof D. Structural insights into heme binding to IL-36α proinflammatory cytokine. Sci Rep 2019; 9:16893. [PMID: 31729440 PMCID: PMC6858345 DOI: 10.1038/s41598-019-53231-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Cytokines of the interleukin (IL)-1 family regulate immune and inflammatory responses. The recently discovered IL-36 family members are involved in psoriasis, rheumatoid arthritis, and pulmonary diseases. Here, we show that IL-36α interacts with heme thereby contributing to its regulation. Based on in-depth spectroscopic analyses, we describe two heme-binding sites in IL-36α that associate with heme in a pentacoordinated fashion. Solution NMR analysis reveals structural features of IL-36α and its complex with heme. Structural investigation of a truncated IL-36α supports the notion that the N-terminus is necessary for association with its cognate receptor. Consistent with our structural studies, IL-36-mediated signal transduction was negatively regulated by heme in synovial fibroblast-like synoviocytes from rheumatoid arthritis patients. Taken together, our results provide a structural framework for heme-binding proteins and add IL-1 cytokines to the group of potentially heme-regulated proteins.
Collapse
Affiliation(s)
- Amelie Wißbrock
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Nishit B Goradia
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany.,European Molecular Biology Laboratory, D-22607, Hamburg, Germany
| | - Amit Kumar
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany
| | - Peter Bellstedt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Ramadurai Ramachandran
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany
| | - Patrick Hoffmann
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany
| | - Kerstin Galler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747, Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | | | | | - Susanne Adam
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Silke Frey
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Axel J Hueber
- Department of Internal Medicine 3 - Rheumatology and Immunology, University of Erlangen-Nürnberg (FAU) and University Hospital Erlangen, D-91054, Erlangen, Germany
| | - Oliver Ohlenschläger
- CS Protein Production, Leibniz Institute on Aging/Fritz Lipmann Institute, D-07745, Jena, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121, Bonn, Germany.
| |
Collapse
|
144
|
Hemolysis Derived Products Toxicity and Endothelium: Model of the Second Hit. Toxins (Basel) 2019; 11:toxins11110660. [PMID: 31766155 PMCID: PMC6891750 DOI: 10.3390/toxins11110660] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular diseases are multifactorial, often requiring multiple challenges, or ‘hits’, for their initiation. Intra-vascular hemolysis illustrates well the multiple-hit theory where a first event lyses red blood cells, releasing hemolysis-derived products, in particular cell-free heme which is highly toxic for the endothelium. Physiologically, hemolysis derived-products are rapidly neutralized by numerous defense systems, including haptoglobin and hemopexin which scavenge hemoglobin and heme, respectively. Likewise, cellular defense mechanisms are involved, including heme-oxygenase 1 upregulation which metabolizes heme. However, in cases of intra-vascular hemolysis, those systems are overwhelmed. Heme exerts toxic effects by acting as a damage-associated molecular pattern and promoting, together with hemoglobin, nitric oxide scavenging and ROS production. In addition, it activates the complement and the coagulation systems. Together, these processes lead to endothelial cell injury which triggers pro-thrombotic and pro-inflammatory phenotypes. Moreover, among endothelial cells, glomerular ones display a particular susceptibility explained by a weaker capacity to counteract hemolysis injury. In this review, we illustrate the ‘multiple-hit’ theory through the example of intra-vascular hemolysis, with a particular focus on cell-free heme, and we advance hypotheses explaining the glomerular susceptibility observed in hemolytic diseases. Finally, we describe therapeutic options for reducing endothelial injury in hemolytic diseases.
Collapse
|
145
|
|
146
|
Rocco-Machado N, Cosentino-Gomes D, Nascimento MT, Paes-Vieira L, Khan YA, Mittra B, Andrews NW, Meyer-Fernandes JR. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity. Free Radic Biol Med 2019; 143:341-353. [PMID: 31446054 DOI: 10.1016/j.freeradbiomed.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023]
Abstract
Leishmania amazonensis is one of leishmaniasis' causative agents, a disease that has no cure and leads to the appearance of cutaneous lesions. Recently, our group showed that heme activates a Na+/K+ ATPase in these parasites through a signaling cascade involving hydrogen peroxide (H2O2) generation. Heme has a pro-oxidant activity and signaling capacity, but the mechanism by which this molecule increases H2O2 levels in L. amazonensis has not been elucidated. Here we investigated the source of H2O2 stimulated by heme, ruling out the participation of mitochondria and raising the possibility of a role for a NADPH oxidase (Nox) activity. Despite the absence of a classical Nox sequence in trypanosomatid genomes, L. amazonensis expresses a surface ferric iron reductase (LFR1). Interestingly, Nox enzymes are thought to have evolved from ferric iron reductases because they share same core domain and are very similar in structure. The main difference is that Nox catalyses electron flow from NADPH to oxygen, generating reactive oxygen species (ROS), while ferric iron reductase promotes electron flow to ferric iron, generating ferrous iron. Using L. amazonensis overexpressing or knockout for LFR1 and heterologous expression of LFR1 in mammalian embryonic kidney (HEK 293) cells, we show that this enzyme is bifunctional, being able to generate both ferrous iron and H2O2. It was previously described that protozoans knockout for LFR1 have their differentiation to virulent forms (amastigote and metacyclic promastigote) impaired. In this work, we observed that LFR1 overexpression stimulates protozoan differentiation to amastigote forms, reinforcing the importance of this enzyme in L. amazonensis life cycle regulation. Thus, we not only identified a new source of ROS production in Leishmania, but also described, for the first time, an enzyme with both ferric iron reductase and Nox activities.
Collapse
Affiliation(s)
- N Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - D Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of Chemistry, Department of Biochemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - M T Nascimento
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - L Paes-Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Y A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - B Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - J R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
147
|
Murphy RA, Moore S, Playdon M, Kritchevsky S, Newman AB, Satterfield S, Ayonayon H, Clish C, Gerszten R, Harris TB. Metabolites Associated With Risk of Developing Mobility Disability in the Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci 2019; 74:73-80. [PMID: 29186400 DOI: 10.1093/gerona/glx233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/23/2017] [Indexed: 01/25/2023] Open
Abstract
Background Metabolic pathways that give rise to functional decline and mobility disability in older adults are incompletely understood. Methods To identify metabolic perturbations that may affect functional decline, nontargeted metabolomics was used to measure 350 metabolites in baseline plasma from 313 black men in the Health ABC Study (median age 74 years). Usual gait speed was measured over 20 m. Cross-sectional relationships between gait speed and metabolites were explored with partial correlations adjusted for age, study site, and smoking status. Risk of incident mobility disability (two consecutive reports of severe difficulty walking quarter mile or climb 10 stairs) over 13 years of follow-up was explored with Cox regression models among 307 men who were initially free of mobility disability. Significance was determined at p ≤ .01 and q (false discovery rate) ≤ 0.30. Results Two metabolites were correlated with gait speed: salicylurate (r = -.19) and 2-hydroxyglutarate (r = -.18). Metabolites of amino acids and amino acid degradation (indoxy sulfate; hazard ratio [HR] = 1.48, 95% confidence interval [CI] = 1.09-2.03, symmetric dimethylarginine; HR = 3.58, 95% CI = 1.57-8.15, N-carbamoyl beta-alanine; HR = 1.91, 95% CI = 1.16-3.14, quinolinate; HR = 2.56, 95% CI = 1.65-3.96) and metabolites related to kidney function (aforementioned symmetric dimethylarginine and indoxy sulfate as well as creatinine; HR = 5.91, 95% CI = 2.06-16.9, inositol; HR = 2.70, 95% CI = 1.47-4.97) were among the 23 metabolites associated with incident mobility disability. Conclusions This study highlights the potential role of amino acid derivatives and products and kidney function early in the development of mobility disability and suggests metabolic profiles could help identify individuals at risk of functional decline.
Collapse
Affiliation(s)
- Rachel A Murphy
- Centre of Excellence in Cancer Prevention, School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Steven Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Mary Playdon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Stephen Kritchevsky
- Stitch Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anne B Newman
- Center for Aging and Population Health, Department of Epidemiology, University of Pittsburgh, Pennsylvania
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis
| | - Hilsa Ayonayon
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Robert Gerszten
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland
| |
Collapse
|
148
|
Vitali SH, Fernandez-Gonzalez A, Nadkarni J, Kwong A, Rose C, Mitsialis SA, Kourembanas S. Heme oxygenase-1 dampens the macrophage sterile inflammasome response and regulates its components in the hypoxic lung. Am J Physiol Lung Cell Mol Physiol 2019; 318:L125-L134. [PMID: 31664855 DOI: 10.1152/ajplung.00074.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to hypoxia causes an inflammatory reaction in the mouse lung, and this response can be modulated by overexpressing the hypoxia-inducible stress-response enzyme, heme oxygenase-1 (HO-1). We hypothesized that the inflammasome activity may be a central pathway by which HO-1 controls pulmonary inflammation following alveolar hypoxia. Therefore, we investigated whether HO-1 controls inflammasome activation by altering its expression in macrophages primed with classic NOD-like receptor containing a pyrin domain 3 (NLRP3) inducers, and in murine lungs lacking HO-1 and exposed to acute hypoxia. We found that lack of HO-1 activated lipopolysaccharide (LPS) and ATP-treated bone marrow-derived macrophages, causing an increase in secreted levels of cleaved interleukin (IL)-1B, IL-18, and caspase-1, markers of increased inflammasome activity, whereas HO-1 overexpression suppressed IL-1B, NLRP3, and IL-18. The production of cleaved IL-1B and the activation of caspase-1 in LPS- and ATP-primed macrophages were inhibited by hemin, an HO-1 inducer, and two HO-1 enzymatic products [bilirubin and carbon monoxide (CO)]. Exposure of mice to hypoxia induced the expression of several inflammasome mRNA components (IL-1B, Nlrp3, and caspase-1), and this was further augmented by HO-1 deficiency. This pronounced inflammasome activation was detected as increased protein levels of apoptosis-associated speck-like protein containing a COOH-terminal caspase recruitment domain, IL-18, procaspase-1, and cleaved caspase-1 in the lungs of hypoxic mice. Systemically, Hmox1-deficient mice showed increased basal levels of IL-18 that were further increased after 48 h of hypoxic exposure. Taken together, these finding point to a pivotal role for HO-1 in the control of baseline and hypoxic inflammasome signaling, perhaps through the antioxidant properties of bilirubin and CO's pleiotropic effects.
Collapse
Affiliation(s)
- Sally H Vitali
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Janhavi Nadkarni
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - April Kwong
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - Chase Rose
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - S Alex Mitsialis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stella Kourembanas
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
149
|
Gray LT, Puig Lombardi E, Verga D, Nicolas A, Teulade-Fichou MP, Londoño-Vallejo A, Maizels N. G-quadruplexes Sequester Free Heme in Living Cells. Cell Chem Biol 2019; 26:1681-1691.e5. [PMID: 31668518 DOI: 10.1016/j.chembiol.2019.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
Heme is an essential cofactor for many enzymes, but free heme is toxic and its levels are tightly regulated. G-quadruplexes bind heme avidly in vitro, raising the possibility that they may sequester heme in vivo. If so, then treatment that displaces heme from quadruplexes is predicted to induce expression of genes involved in iron and heme homeostasis. Here we show that PhenDC3, a G-quadruplex ligand structurally unrelated to heme, displaces quadruplex-bound heme in vitro and alters transcription in cultured human cells, upregulating genes that support heme degradation and iron homeostasis, and most strikingly causing a 30-fold induction of heme oxidase 1, the key enzyme in heme degradation. We propose that G-quadruplexes sequester heme to protect cells from the pathophysiological consequences of free heme.
Collapse
Affiliation(s)
- Lucas T Gray
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Emilia Puig Lombardi
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris 75005, France
| | - Daniela Verga
- Institut Curie, Centre de Recherche, CNRS-UMR9187, INSERM-U1196, PSL Research University, Sorbonne Universités, Orsay 91405, France; CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris-Saclay, Orsay 91405, France
| | - Alain Nicolas
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris 75005, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, Centre de Recherche, CNRS-UMR9187, INSERM-U1196, PSL Research University, Sorbonne Universités, Orsay 91405, France; CNRS UMR9187, INSERM U1196, Université Paris Sud, Université Paris-Saclay, Orsay 91405, France
| | - Arturo Londoño-Vallejo
- Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University, Paris 75005, France
| | - Nancy Maizels
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.
| |
Collapse
|
150
|
Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunnington AJ, Raupach B, Cunningham D, Langhorne J, Krüger R, Barrera V, Harding SP, Berg A, Patel S, Otterdal K, Mordmüller B, Schwarzer E, Brinkmann V, Zychlinsky A, Amulic B. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci Immunol 2019; 4:eaaw0336. [PMID: 31628160 PMCID: PMC6892640 DOI: 10.1126/sciimmunol.aaw0336] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are essential innate immune cells that extrude chromatin in the form of neutrophil extracellular traps (NETs) when they die. This form of cell death has potent immunostimulatory activity. We show that heme-induced NETs are essential for malaria pathogenesis. Using patient samples and a mouse model, we define two mechanisms of NET-mediated inflammation of the vasculature: activation of emergency granulopoiesis via granulocyte colony-stimulating factor production and induction of the endothelial cytoadhesion receptor intercellular adhesion molecule-1. Soluble NET components facilitate parasite sequestration and mediate tissue destruction. We demonstrate that neutrophils have a key role in malaria immunopathology and propose inhibition of NETs as a treatment strategy in vascular infections.
Collapse
Affiliation(s)
- Sebastian Lorenz Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrike Abu-Abed
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | | | - Bärbel Raupach
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pneumology, Immunology and Intensive Care, Berlin, Germany
| | - Valentina Barrera
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Aase Berg
- Stavanger University Hospital, Stavanger, Norway
| | - Sam Patel
- Maputo Central Hospital, Maputo, Mozambique
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Universität Tübingen, Institut für Tropenmedizin, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy
| | - Volker Brinkmann
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Borko Amulic
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.
- University of Bristol, School of Cellular and Molecular Medicine, Bristol BS8 1TD, UK
| |
Collapse
|