101
|
Wang C, Gao P, Xu J, Liu S, Tian W, Liu J, Zhou L. Natural phytochemicals prevent side effects in BRCA-mutated ovarian cancer and PARP inhibitor treatment. Front Pharmacol 2022; 13:1078303. [PMID: 36569329 PMCID: PMC9767960 DOI: 10.3389/fphar.2022.1078303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is among the most common malignant tumors in gynecology and is characterized by insidious onset, poor differentiation, high malignancy, and a high recurrence rate. Numerous studies have shown that poly ADP-ribose polymerase (PARP) inhibitors can improve progression-free survival (PFS) in patients with BRCA-mutated ovarian cancer. With the widespread use of BRCA mutation and PARP inhibitor (PARPi) combination therapy, the side effects associated with BRCA mutation and PARPi have garnered attention worldwide. Mutations in the BRCA gene increase KEAP1-NRF2 ubiquitination and reduce Nrf2 content and cellular antioxidant capacity, which subsequently produces side effects such as cardiovascular endothelial damage and atherosclerosis. PARPi has hematologic toxicity, producing thrombocytopenia, fatigue, nausea, and vomiting. These side effects not only reduce patients' quality of life, but also affect their survival. Studies have shown that natural phytochemicals, a class of compounds with antitumor potential, can effectively prevent and treat the side effects of chemotherapy. Herein, we reviewed the role of natural phytochemicals in disease prevention and treatment in recent years, including sulforaphane, lycopene, catechin, and curcumin, and found that these phytochemicals have significant alleviating effects on atherosclerosis, nausea, and vomiting. Moreover, these mechanisms of action significantly correlated with the side-effect-producing mechanisms of BRCA mutations and PARPi. In conclusion, natural phytochemicals may be effective in alleviating the side effects of BRCA mutant ovarian cancer cells and PARP inhibitors.
Collapse
Affiliation(s)
- Chuanlin Wang
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Pengning Gao
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Jiali Xu
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Shanling Liu
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Wenda Tian
- Yunnan Cancer Center, Kunming, Yunnan, China,Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiayu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lan Zhou
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China,*Correspondence: Lan Zhou,
| |
Collapse
|
102
|
Chupeerach C, Temviriyanukul P, Thangsiri S, Inthachat W, Sahasakul Y, Aursalung A, Wongchang P, Sangkasa-ad P, Wongpia A, Polpanit A, Nuchuchua O, Suttisansanee U. Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand. Foods 2022; 11:foods11233905. [PMID: 36496713 PMCID: PMC9738633 DOI: 10.3390/foods11233905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Legumes and pulses are important food components with various phytochemicals and health benefits. However, the health-related bioactivities of some underutilized species remain uninvestigated. To breed a new bean lineage with particular health-related properties, this study investigated phenolics (specifically, isoflavones) and the in vitro inhibitory activities of the enzyme relevant to some non-communicable diseases in underutilized cultivars of Phaseolus lunatus (lima beans), compared to the commonly consumed P. vulgaris (red kidney bean) and beans in the Glycine and Vigna genera. The results indicated that soybeans in the Glycine genus contained the highest isoflavone contents, especially glycitein (1825-2633 mg/100 g bean) and daidzein (1153-6471 mg/100 g bean), leading to potentially higher enzyme inhibitory activities (25-26% inhibition against α-amylase, 54-60% inhibition against α-glucosidase, 42-46% inhibition against dipeptidyl peptidase IV, 12-19% inhibition against acetylcholinesterase and 20-23% inhibition against butyrylcholinesterase) than those from other genera. Interestingly, lima beans with low isoflavone content (up to 2 mg/100 g bean) still possessed high inhibitory activities against lipase (12-21% inhibition) and β-secretase (50-58% inhibition), suggesting that bioactive compounds other than the isoflavones might be responsible for these activities. Isoflavone contents and enzyme inhibitory activities in Vigna beans were diverse, depending on the particular cultivars. The information gained from this study can be used for further investigation of bioactive components and in-depth health properties, as well as for future breeding of a new lineage of bean with specific health potentials.
Collapse
Affiliation(s)
- Chaowanee Chupeerach
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Amornrat Aursalung
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Pitthaya Wongchang
- Biotechnology Research and Development Office, Department of Agriculture Rangsit-Nakorn Nayok, Rangsit (Klong 6), Thanyaburi, Pathum Thani 12100, Thailand
| | - Parichart Sangkasa-ad
- Biotechnology Research and Development Office, Department of Agriculture Rangsit-Nakorn Nayok, Rangsit (Klong 6), Thanyaburi, Pathum Thani 12100, Thailand
| | - Aphinya Wongpia
- Biotechnology Research and Development Office, Department of Agriculture Rangsit-Nakorn Nayok, Rangsit (Klong 6), Thanyaburi, Pathum Thani 12100, Thailand
| | - Auytin Polpanit
- Chiang Mai Field Crops Research Center, Department of Agriculture, Nong Han, San Sai District, Chiang Mai 50290, Thailand
| | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
103
|
Effects of phytoestrogens on reproductive organ health. Arch Pharm Res 2022; 45:849-864. [DOI: 10.1007/s12272-022-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
|
104
|
Tuli HS, Kumar A, Sak K, Aggarwal D, Gupta DS, Kaur G, Vashishth K, Dhama K, Kaur J, Saini AK, Varol M, Capanoglu E, Haque S. Gut Microbiota-Assisted Synthesis, Cellular Interactions and Synergistic Perspectives of Equol as a Potent Anticancer Isoflavone. Pharmaceuticals (Basel) 2022; 15:ph15111418. [PMID: 36422548 PMCID: PMC9697248 DOI: 10.3390/ph15111418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
It is well known that, historically, plants have been an important resource of anticancer agents, providing several clinically approved drugs. Numerous preclinical studies have shown a strong anticancer potential of structurally different phytochemicals, including polyphenolic constituents of plants, flavonoids. In this review article, suppressing effects of equol in different carcinogenesis models are unraveled, highlighting the mechanisms involved in these anticancer activities. Among flavonoids, daidzein is a well-known isoflavone occurring in soybeans and soy products. In a certain part of population, this soy isoflavone is decomposed to equol under the action of gut microflora. Somewhat surprisingly, this degradation product has been shown to be more bioactive than its precursor daidzein, revealing a strong and multifaceted anticancer potential. In this way, it is important to bear in mind that the metabolic conversion of plant flavonoids might lead to products that are even more efficient than the parent compounds themselves, definitely deserving further studies.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali 160071, India
| | - Katrin Sak
- NGO Praeventio, 50407 Tartu, Estonia
- Correspondence:
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s, NMIMS, Mumbai 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s, NMIMS, Mumbai 400056, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh 160012, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Adesh K. Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
105
|
What Is the Relationship between Antioxidant Efficacy, Functional Composition, and Genetic Characteristics in Comparing Soybean Resources by Year? Antioxidants (Basel) 2022; 11:antiox11112249. [DOI: 10.3390/antiox11112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to analyze the physiological activity of 48 soybean resources harvested in 2020 to identify the soybean resources’ relationships with individual isoflavone compounds and their genetic properties. These data will subsequently be compared with the research results on soybeans harvested in 2019. Initially, with respect to the physiological activity (6 types) and substances (19 types), this study evaluated the differences between the cultivation year (two years), seed coat color (three colors), and the interaction of the year and seed coat color of soybeans through ANOVA. Among the physiological activities, there were differences in the estrogen, estrogen receptor alpha, and UCP-1 (uncoupling protein-1) activities depending on the cultivation year. Moreover, there were differences in NO (nitric oxide), revealing differences in the ABTS (2, 2′-azino-bis-3ethylbenzo-thiazoline-6-sulfonic acid) and DPPH (2, 2-diphenyl-2-picrylhydrazyl) radical scavenging activities due to the seed coat color and the interaction of the year and seed coat color. Soybeans harvested in 2020 exhibited increased ABTS, DPPH, and NO inhibitory activities and reduced estrogen, estrogen receptor alpha, and UCP-1 activities compared to those harvested in 2019. According to the ANOVA results, eight of the nineteen individual derivatives illustrated yearly differences, while three derivatives displayed differences due to the seed coat color. Secondly, according to the relationship between the efficacy, derivative substances, and genetic properties, it was determined that genistein 7-O-(2″-O-apiosyl)glucoside (F5) is the individual isoflavone derivative that affected the six types of physiological activity, on which the genome-wide association study (GWAS) showed no significant differences for genetic properties. These results were inconsistent with the 2019 data, where three types of individual compounds, including F5, were proposed as substances that correlated with efficacy and there was a high correlation with genetic properties. Therefore, this study selected B17, B23, B15, B24, and Y7 as excellent varieties that are stable and highly functional in the cultivation environment, producing only small annual differences. The results of this study will be utilized as basic data for predicting soybean varieties and their cultivation, which have high environmental stability under climate variation and properly retain the functional substances and efficacy.
Collapse
|
106
|
Sajid M, Stone SR, Kaur P. Phylogenetic Analysis and Protein Modelling of Isoflavonoid Synthase Highlights Key Catalytic Sites towards Realising New Bioengineering Endeavours. Bioengineering (Basel) 2022; 9:bioengineering9110609. [PMID: 36354520 PMCID: PMC9687675 DOI: 10.3390/bioengineering9110609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
Isoflavonoid synthase (IFS) is a critical enzyme for the biosynthesis of over 2400 isoflavonoids. Isoflavonoids are an important class of plant secondary metabolites that have a range of pharmaceutical and nutraceutical properties. With growing interest in isoflavonoids from both research and industrial perspectives, efforts are being forwarded to enhance isoflavonoid production in-planta and ex-planta; therefore, in-silico analysis and characterisation of available IFS protein sequences are needed. The present study is the first-ever attempt toward phylogenetic analysis and protein modelling of available IFS protein sequences. Phylogenetic analysis has shown that IFS amino acid sequences have 86.4% pairwise identity and 26.5% identical sites, and the sequences were grouped into six different clades. The presence of a β-hairpin and extra loop at catalytic sites of Trifolium pratense, Beta vulgaris and Medicago truncatula, respectively, compared with Glycyrrhiza echinata are critical structural differences that may affect catalytic function. Protein docking highlighted the preference of selected IFS for liquiritigenin compared with naringenin and has listed T. pratense as the most efficient candidate for heterologous biosynthesis of isoflavonoids. The in-silico characterisation of IFS represented in this study is vital in realising the new bioengineering endeavours and will help in the characterisation and selection of IFS candidate enzymes for heterologous biosynthesis of isoflavonoids.
Collapse
|
107
|
Sutrisno S, Miryani I, Made Dwijayasa P, Rini Suprobo N, Wayan Arsana Wiyasa I. Genistein administration increases the level of superoxide dismutase and glutathione peroxidase in the endometriosis mice model: An experimental study. Int J Reprod Biomed 2022; 20:873-882. [PMID: 36381358 PMCID: PMC9644648 DOI: 10.18502/ijrm.v20i10.12271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/24/2022] [Accepted: 07/12/2022] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Endometriosis and infertility are caused by reactive oxygen species or free radicals, which promote endometrial cell growth and adhesion in the peritoneal cavity. Genistein has been proven to protect cells against reactive oxygen species by scavenging free radicals and decreasing the expression of genes-associated stress responses. OBJECTIVE This study was conducted to determine whether genistein also acts as an antioxidant by elevating superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the peritoneal fluid of the endometriosis mice model. MATERIALS AND METHODS This experimental study involved 32 healthy female mice (Mus musculus), aged between 2-3 months and weighing 20-30 gr. They were divided into negative control group (healthy mice without genistein), endometriosis group (endometriosis mice without genistein), treatment group that was given different doses of genistein, that is, 0.13; 0.26; 0.52; 0.78; 1.04; and 1.3 mg/day (n = 4/each). SOD level in the peritoneal fluid was measured using the quantitative colorimetric determination method, and a colorimetric assay measured the GPx levels. RESULTS Results showed that the endometriosis model has lower SOD and GPx levels than the control group. The administration of genistein significantly normalized these changes. Genistein significantly increased SOD levels in the 0.13 mg and 0.26 mg treatment groups. Genistein also increased GPx levels significantly in all treatment groups. CONCLUSION Genistein increases SOD and GPx levels in the peritoneal fluid of an endometriosis mice model, and the change is dose-dependent.
Collapse
Affiliation(s)
- Sutrisno Sutrisno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Brawijaya University/Saiful Anwar General Hospital, Malang, East Java, Indonesia
- Department of Midwifery, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Ira Miryani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Brawijaya University/Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Pande Made Dwijayasa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Brawijaya University/Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Nina Rini Suprobo
- Department of Public Health, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - I Wayan Arsana Wiyasa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Brawijaya University/Saiful Anwar General Hospital, Malang, East Java, Indonesia
| |
Collapse
|
108
|
A Novel Soy Isoflavone Derivative, 3′-Hydroxyglycitin, with Potent Antioxidant and Anti-α-Glucosidase Activity. PLANTS 2022; 11:plants11172202. [PMID: 36079584 PMCID: PMC9460358 DOI: 10.3390/plants11172202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
This study demonstrated the enzymatic hydroxylation of glycitin to 3′-hydroxyglycitin, confirming the structure by mass and nucleic magnetic resonance spectral analyses. The bioactivity assays further revealed that the new compound possessed over 100-fold higher 1,1-diphenyl-2-picrylhydrazine free-radical scavenging activity than the original glycitin, although its half-time of stability was 22.3 min. Furthermore, the original glycitin lacked anti-α-glucosidase activity, whereas the low-toxic 3′-hydroxyglycitin displayed a 10-fold higher anti-α-glucosidase activity than acarbose, a standard clinical antidiabetic drug. The inhibition mode of 3′-hydroxyglycitin was noncompetitive, with a Ki value of 0.34 mM. These findings highlight the potential use of the new soy isoflavone 3′-hydroxyglycitin in biotechnology industries in the future.
Collapse
|
109
|
Jafari A, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji H, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. An overview of possible pivotal mechanisms of Genistein as a potential phytochemical against SARS-CoV-2 infection: A hypothesis. J Food Biochem 2022; 46:e14345. [PMID: 35866873 PMCID: PMC9350103 DOI: 10.1111/jfbc.14345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID‐19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti‐cancer, anti‐inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF‐κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID‐19 through its anti‐inflammatory and anti‐oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID‐19 patients.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Sarvin Pashapour
- Department of Pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
110
|
Widowati W, Prahastuti S, Hidayat M, Hasianna ST, Wahyudianingsih R, Eltania TF, Azizah AM, Aviani JK, Subangkit M, Handayani RAS, Kusuma HSW. Detam 1 black soybean against cisplatin-induced acute ren failure on rat model via antioxidant, antiinflammatory and antiapoptosis potential. J Tradit Complement Med 2022; 12:426-435. [PMID: 35747350 PMCID: PMC9209860 DOI: 10.1016/j.jtcme.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background and aim Cis-Diamminedichloroplatinum (II) (Cisplatin) is one of the most synthetic anticancer drug but have several adverse effects and one of them is acute ren failure. Cisplatin can induce nephrotoxicity occur via the toxic generation of reactive oxygen species (ROS). Black soybean (Glycine max L. Merr.) has been reported contain high levels of phenolics and anthocyanins that has antioxidant activity. This study aims to determine the effect of ethanol extract of black soybean (EEBS) against cisplatin-induced nephrotoxicity in rats. Experimental procedure Cisplatin-induced nephrotoxicity rats treated with EEBS and the blood samples taken on days 0, 9, and 18. The effects of EEBS was evaluated by determining Interferon-γ (IFN-γ), Caspase-3 (Casp-3), and Interleukin-1β (IL-1β) expression using immunohistochemistry (IHC), blood urea nitrogen (BUN), Uric Acid (UA) content and catalase (CAT) content in the blood plasma with colorimetric assay kit. Results and conclusion Based on the results, EEBS treatment had successfully reduced pro-inflammatory cytokines IL-1β and IFN-γ, and improved physiological condition by lowering BUN and UA content while increasing CAT activity. No significant effect was found in Casp-3 expression. EEBS has potential to improve acute renal failure condition through inflammatory suppression and renal function improvement.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Jl. Prof. Drg. Surya Sumantri 65, Bandung, 40164, West Java, Indonesia
| | - Sijani Prahastuti
- Faculty of Medicine, Maranatha Christian University, Jl. Prof. Drg. Surya Sumantri 65, Bandung, 40164, West Java, Indonesia
| | - Meilinah Hidayat
- Faculty of Medicine, Maranatha Christian University, Jl. Prof. Drg. Surya Sumantri 65, Bandung, 40164, West Java, Indonesia
| | - Stella Tinia Hasianna
- Faculty of Medicine, Maranatha Christian University, Jl. Prof. Drg. Surya Sumantri 65, Bandung, 40164, West Java, Indonesia
| | - Roro Wahyudianingsih
- Faculty of Medicine, Maranatha Christian University, Jl. Prof. Drg. Surya Sumantri 65, Bandung, 40164, West Java, Indonesia
| | - The Fransiska Eltania
- Faculty of Medicine, Maranatha Christian University, Jl. Prof. Drg. Surya Sumantri 65, Bandung, 40164, West Java, Indonesia
| | - Alya Mardhotillah Azizah
- Aretha Medika Utama, Biomolecular and Biomedical Research Center, Jl. Babakan Jeruk II No. 9, Bandung, 40163, West Java, Indonesia
| | - Jenifer Kiem Aviani
- Aretha Medika Utama, Biomolecular and Biomedical Research Center, Jl. Babakan Jeruk II No. 9, Bandung, 40163, West Java, Indonesia
| | - Mawar Subangkit
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, IPB University, Jl. Agathis No. 1, IPB University Darmaga Campus, Bogor, 16680, West Java, Indonesia
| | - Rr Anisa Siwianti Handayani
- Aretha Medika Utama, Biomolecular and Biomedical Research Center, Jl. Babakan Jeruk II No. 9, Bandung, 40163, West Java, Indonesia
| | - Hanna Sari Widya Kusuma
- Aretha Medika Utama, Biomolecular and Biomedical Research Center, Jl. Babakan Jeruk II No. 9, Bandung, 40163, West Java, Indonesia
| |
Collapse
|
111
|
Błaszczuk A, Barańska A, Kanadys W, Malm M, Jach ME, Religioni U, Wróbel R, Herda J, Polz-Dacewicz M. Role of Phytoestrogen-Rich Bioactive Substances ( Linum usitatissimum L., Glycine max L., Trifolium pratense L.) in Cardiovascular Disease Prevention in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:2467. [PMID: 35745197 PMCID: PMC9228013 DOI: 10.3390/nu14122467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this report was to determine the impact of flaxseed, soy and red clover, and their bioactive substances on the lipid profile in postmenopausal women in cardiovascular diseases prevention. We used the following databases: MEDLINE (PubMed), EMBASE and the Cochrane Library. Meta-analysis indicates that the intake of flaxseed by postmenopausal women is associated with a statistically significant reduction in total cholesterol (TC) levels (weighted-mean difference (WMD) = -0.26; 95% confidence interval (95% CI): -0.38 to -0.13; p = 0.0001), low-density lipoprotein cholesterol (LDL-C) levels (WMD = -0.19; 95% CI: -0.30 to -0.08; p = 0.0006), and high-density lipoprotein cholesterol (HDL-C) levels (WMD = -0.06; 95% CI: -0.11 to -0.01; p = 0.0150). The effect of soy protein on the lipid profile showed a significant decrease in TC levels: WMD = -0.15; 95% CI: -0.25-0.05; p = 0.0048, LDL-C levels: WMD = -0.15; 95% CI: -0.25-0.05; p = 0.0067, as well as a significant increase in HDL-C levels: WMD = 0.05; 95% CI: 0.02-0.08; p = 0.0034. Changes in the lipid profile showed a significant reduction in TC levels after the use of red clover (WMD = -0.11; 95% CI: -0.18--0.04; p = 0.0017) and a significant increase in HDL-C levels (WMD = 0.04; 95% CI: 0.01 to 0.07; p = 0.0165). This meta-analysis provides evidence that consuming flaxseed, soy and red clover can have a beneficial effect on lipids in postmenopausal women and suggest a favorable effect in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Agnieszka Barańska
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, 20-090 Lublin, Poland;
| | | | - Maria Malm
- Department of Medical Informatics and Statistics with e-Health Lab, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, Faculty of Science and Health, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | - Urszula Religioni
- School of Public Health, Centre of Postgraduate Medical Education of Warsaw, 01-826 Warsaw, Poland;
| | - Rafał Wróbel
- Department of Developmental Dentistry, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Jolanta Herda
- Department of Public Health, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| |
Collapse
|
112
|
Feng X, Xu S, Weng J. Marijuana and endothelial dysfunction: new mechanism and therapy. Trends Mol Med 2022; 28:613-615. [PMID: 35701315 DOI: 10.1016/j.molmed.2022.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
Marijuana (cannabis) can cause cardiovascular side effects, yet the mechanisms and treatments remain poorly understood. In a recent study published in Cell, Wei et al. discovered that soy isoflavone genistein attenuates Δ9-tetrahydrocannabinol (Δ9-THC, a main constituent from marijuana)-induced endothelial dysfunction and atherosclerosis by directly antagonizing peripheral cannabinoid receptor 1, demonstrating a therapeutic potential for ameliorating the cardiovascular side effects of cannabis.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
113
|
Rasheed S, Rehman K, Shahid M, Suhail S, Akash MSH. Therapeutic potentials of genistein: New insights and perspectives. J Food Biochem 2022; 46:e14228. [PMID: 35579327 DOI: 10.1111/jfbc.14228] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Genistein, a polyphenolic isoflavone compound found abundantly in soy or soy-based products, is widely consumed in the Asian population. Genistein has poor bioavailability, to overcome this problem many advanced nano-drug delivery carrier systems are designed to enhance its water solubility and stability. However, further research is required to develop more efficient bioavailability improvement strategies. Genistein is a phytoestrogen which has been associated with reducing the risk of cancer, cardiovascular disorders, and diabetes mellitus. This plant-based bioactive compound possesses numerous biological activities such as anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, cardioprotective, and anti-diabetic activities to treat various disease states. Genistein has been used as an active therapeutic agent in many medications. Moreover, several clinical trials are in the ongoing stage to develop more efficient treatment therapies, especially for cancer treatment. This article highlights the protective and therapeutic benefits of genistein in the treatment of different ailments, and more specifically elaborates on the anti-cancer potential of genistein regarding various types of cancers. PRACTICAL APPLICATIONS: Genistein possesses versatile biological activities, including anti-diabetic, anti-inflammatory, anti-oxidant, anti-obesity, and anti-angiogenic. The most studied activity is anti-cancer. Currently, a number of pre-clinical and clinical trials are being carried out on anti-neoplastic and cytotoxic activities of genistein to develop novel therapeutic agents with excellent anti-cancer potential for the treatment of various kinds of cancer. Moreover, many bioavailability enhancement strategies have been developed to improve the bioavailability of genistein. Genistein shows significant hypoglycemic effects alone or in combination with other anti-diabetic agents. Genistein in combination with other chemotherapeutic agents is used for the treatment of prostate, bone, colorectal, glioma, breast, and bladder cancer.
Collapse
Affiliation(s)
- Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Momina Shahid
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Shaleem Suhail
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
114
|
Kharnaior P, Tamang JP. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front Microbiol 2022; 13:868383. [PMID: 35572705 PMCID: PMC9106393 DOI: 10.3389/fmicb.2022.868383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Kinema is a popular sticky fermented soybean food of the Eastern Himalayan regions of North East India, east Nepal, and south Bhutan. We hypothesized that some dominant bacteria in kinema may contribute to the formation of targeted and non-targeted metabolites for health benefits; hence, we studied the microbiome-metabolite mining of kinema. A total of 1,394,094,912 bp with an average of 464,698,304 ± 120,720,392 bp was generated from kinema metagenome, which resulted in the identification of 47 phyla, 331 families, 709 genera, and 1,560 species. Bacteria (97.78%) were the most abundant domain with the remaining domains of viruses, eukaryote, and archaea. Firmicutes (93.36%) was the most abundant phylum with 280 species of Bacillus, among which Bacillus subtilis was the most dominant species in kinema followed by B. glycinifermentans, B. cereus, B. licheniformis, B. thermoamylovorans, B. coagulans, B. circulans, B. paralicheniformis, and Brevibacillus borstelensis. Predictive metabolic pathways revealed the abundance of genes associated with metabolism (60.66%), resulting in 216 sub-pathways. A total of 361 metabolites were identified by metabolomic analysis (liquid chromatography-mass spectrophotometry, LC-MS). The presence of metabolites, such as chrysin, swainsonine, and 3-hydroxy-L-kynurenine (anticancer activity) and benzimidazole (antimicrobial, anticancer, and anti-HIV activities), and compounds with immunomodulatory effects in kinema supports its therapeutic potential. The correlation between the abundant species of Bacillus and primary and secondary metabolites was constructed with a bivariate result. This study proves that Bacillus spp. contribute to the formation of many targeted and untargeted metabolites in kinema for health-promoting benefits.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
115
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
116
|
Mediterranean Diet and Soy Isoflavones for Integrated Management of the Menopausal Metabolic Syndrome. Nutrients 2022; 14:nu14081550. [PMID: 35458114 PMCID: PMC9031521 DOI: 10.3390/nu14081550] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
|
117
|
Garbiec E, Cielecka-Piontek J, Kowalówka M, Hołubiec M, Zalewski P. Genistein-Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022; 27:815. [PMID: 35164079 PMCID: PMC8840253 DOI: 10.3390/molecules27030815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein's potential side effects resulting from its estrogenic and goitrogenic effects.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Magdalena Kowalówka
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, 42 Marcelińska St., 60-354 Poznan, Poland;
| | - Magdalena Hołubiec
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| |
Collapse
|
118
|
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. Effect of Traditional Cooking and In Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010067. [PMID: 35009070 PMCID: PMC8747412 DOI: 10.3390/plants11010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 05/05/2023]
Abstract
The edible beans in Fabaceae have been used for foods and medicines since the ancient time, and being used more and more. It is also appeared as a major ingredient in dairy cooking menu in many regions including Thailand, a rich biodiversity country. Many studies reported on health benefits of their flavonoids, but there is no report on the effect of cooking on phytochemical profile and pharmacological potentials. Thus, this present study aims to complete this knowledge, with the 10 most consumed Fabaceae beans in Thailand, by determining the impact of traditional cooking and gastrointestinal digestion on their phytochemicals, their antioxidant and anti-diabetic activities using different in vitro and in cellulo yeast models. The results showed that Vigna unguiculata subsp. sesquipedalis were the richest source of phytochemicals, whereas the population of V. mungo, Phaseolus vulgaris, V. angularis, and V. unguiculata subsp. sesquipedalis were richest in monomeric anthocyanin contents (MAC). Furthermore, the results clearly demonstrated the impact of the plant matrix effect on the preservation of a specific class of phytochemicals. In particular, after cooking and in vitro digestion, total flavonoid contents (TFC) in Glycine max extract was higher than in the uncooked sample. This study is the first report on the influence of cooking and in vitro gastrointestinal digestion on the inhibition capacity toward advanced glycation end products (AGEs). All samples showed a significant capacity to stimulate glucose uptake in yeast model, and V. angularis showed the highest capacity. Interestingly, the increase in glucose uptake after in vitro digestion was higher than in uncooked samples for both P. vulgaris and G. max samples. The current study is the first attempt to investigate at the effects of both processes not only on the natural bioactive compounds but also on antioxidant and anti-diabetic activities of Thailand's 10 most consumed beans that can be applied for agro-industrial and phytopharmaceutical sectors.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orleans, France
- Correspondence: (D.T.); (C.H.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orleans, France
- Correspondence: (D.T.); (C.H.)
| |
Collapse
|
119
|
A Correlation Study on In Vitro Physiological Activities of Soybean Cultivars, 19 Individual Isoflavone Derivatives, and Genetic Characteristics. Antioxidants (Basel) 2021; 10:antiox10122027. [PMID: 34943130 PMCID: PMC8698514 DOI: 10.3390/antiox10122027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022] Open
Abstract
The functionality of soybeans is an important factor in the selection and utilization of excellent soybean cultivars, and isoflavones are representative functional substances in soybeans, which exhibit effects on antioxidants, estrogen activity, and cancer, and prevent cardiovascular diseases. This study analyzed ABTS, DPPH, estrogen, ER (ER) alpha, UCP-1, and NO inhibition activities in 48 types of soybean cultivars, as well as the relationship with 19 isolated types of individual isoflavone derivatives. Statistical analysis was conducted to find individual isoflavone derivatives affecting physiological activities, revealing the high correlation of three types of derivatives: genistein 7-O-(6″-O-acetyl)glucoside (6″-O-acetylgenistin), genistein 7-O-(2″-O-apiosyl)glucoside, and glycitein. Based on these results, 15 types of soybean cultivars were selected (one control type, seven yellow types, six black types, and one green type), which have both high physiological activities and a high content of individual isoflavone derivatives. In addition, these high correlations were further verified through a genome-wide association study (GWAS) to determine the association between activities, substances, and genetic characteristics. This study comprehensively describes the relationship between the specific physiological activities of soybean resources, individual isoflavone derivative substances, and SNPs, which will be utilized for in-depth research, such as selection of excellent soybean resources with specific physiological activities.
Collapse
|
120
|
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. Characterization of Bioactive Phenolics and Antioxidant Capacity of Edible Bean Extracts of 50 Fabaceae Populations Grown in Thailand. Foods 2021; 10:3118. [PMID: 34945669 PMCID: PMC8700874 DOI: 10.3390/foods10123118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Fabaceae is the third largest family containing great variation among populations. However, previous studies mainly focus on single species, and phytochemicals at population level have never been reported. This work aims to complete this knowledge with 50 populations from throughout Thailand by (1) determining total phenolic (TPC), flavonoid (TFC), and anthocyanin (TAC) contents; and (2) investigating in vitro and cellular antioxidant potentials. Phytochemicals of 50 populations from different localities are differed, illustrating high heterogeneity occurring in polyphenols accumulations. Vigna unguiculata subsp. sesquipedalis populations showed low variability in TPC ranging from 628.3 to 717.3 mg/100 g DW gallic acid equivalent, whereas the high variability found in TFC and TAC range from 786.9 to 1536.1 mg/100 g DW quercetin equivalent, and 13.4 to 41.6 mg/100 g DW cyanidin equivalent. Red cultivar population #16 had the greatest TAC, but surprisingly the cream cultivars were relatively high in anthocyanins. HPLC quantification of genistein and daidzein showed great variations among populations. In vitro antioxidant results indicated that antioxidant capacity mediated by electron transfer. Cellular antioxidants ranged from 59.7% to 87.9% of ROS/RNS in yeast model. This study investigated at the population level contributing to better and frontier knowledge for nutraceutical/phytopharmaceutical sectors to seek potential raw plant material.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| |
Collapse
|
121
|
Ceccarelli I, Bioletti L, Peparini S, Solomita E, Ricci C, Casini I, Miceli E, Aloisi AM. Estrogens and phytoestrogens in body functions. Neurosci Biobehav Rev 2021; 132:648-663. [PMID: 34890602 DOI: 10.1016/j.neubiorev.2021.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/23/2022]
Abstract
Estrogens are the hormones of reproduction in women as well as of many other important functions in the male and female body. They undergo significant changes in the different phases of life, e.g. during puberty, pregnancy or at menopause/andropause. Phytoestrogens are natural non-steroidal phenolic plant compounds that can mimic the activity of estrogens and their beneficial effects in women and in men. This narrative review summarizes the literature on the physiological role of estrogens and the several potential health benefits of phytoestrogens, with particular attention given to the possible role of phytoestrogens in aging.
Collapse
Affiliation(s)
- Ilaria Ceccarelli
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Lucia Bioletti
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Sofia Peparini
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Erminia Solomita
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Comasia Ricci
- Department Life Sciences, University of Siena, Siena, Italy
| | - Ilenia Casini
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elisangela Miceli
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Anna Maria Aloisi
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| |
Collapse
|
122
|
Lipid equilibrating actions of syringic acid following lost ovarian function. Menopause 2021; 28:1328-1329. [PMID: 34854836 DOI: 10.1097/gme.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
123
|
Lephart ED. Phytoestrogens (Resveratrol and Equol) for Estrogen-Deficient Skin-Controversies/Misinformation versus Anti-Aging In Vitro and Clinical Evidence via Nutraceutical-Cosmetics. Int J Mol Sci 2021; 22:11218. [PMID: 34681876 PMCID: PMC8538984 DOI: 10.3390/ijms222011218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The overarching theme for this review is perspective. Superfoods (a marketing term for fruits and vegetables, etc.) have a positive connotation, while many superfoods contain phytoestrogens, a term that is alarming to the public and has a negative connotation because phytoestrogens are endocrine-disruptors, even though they are strong antioxidants that have many health benefits. To understand phytoestrogens, this paper provides a brief summary of the characteristics of: (a) estrogens, (b) estrogen receptors (ER), (c) estrogen-deficient skin, (d) how perspective(s) get off track, (e) phytoestrogen food sources, and (f) misconceptions of phytoestrogens and food safety, in general, that influence person(s) away from what is true. Finally, a brief history of cosmetics to nutraceuticals is covered plus the characteristics of phytoestrogens, resveratrol and equol on: (g) estrogen receptor binding, (h) topical and oral dosing, and (i) in vitro, molecular mechanisms and select clinical evidence, where both phytoestrogens (resveratrol and equol) demonstrate promising applications to improve skin health is presented along with future directions of nutraceuticals. Perspective is paramount in understanding the controversies associated with superfoods, phytoestrogens, and endocrine-disruptors because they have both positive and negative connotations. Everyone is exposed to and consumes these molecules everyday regardless of age, gender, or geographic location around the world, and how we understand this is a matter of perspective.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Cell Biology, Physiology and The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
124
|
Jung JW, Park SY, Oh SD, Jang Y, Suh SJ, Park SK, Ha SH, Park SU, Kim JK. Metabolomic Variability of Different Soybean Genotypes: β-Carotene-Enhanced ( Glycine max), Wild ( Glycine soja), and Hybrid ( Glycine max × Glycine soja) Soybeans. Foods 2021; 10:foods10102421. [PMID: 34681471 PMCID: PMC8535314 DOI: 10.3390/foods10102421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/27/2022] Open
Abstract
We obtained a new hybrid soybean (Hybrid) by hybridizing β-carotene-enhanced soybean (BCE; Glycine max L.) containing the phytoene synthase-2A-carotene desaturase gene and wild-type soybean (Wild; Glycine soja). To investigate metabolic changes between variants, we performed metabolic profiling of leaves (three growth stages) and seeds. Multivariate analyses revealed significant metabolic differences between genotypes in seeds and leaves, with seeds showing accumulation of phytosterols, tocopherols, and carotenoids (BCE only), indicating co-induction of the methylerythritol 4-phosphate and mevalonic acid pathways. Additionally, Hybrid produced intermediate levels of carotenoids and high levels of amino acids. Principal component analysis revealed metabolic discrimination between growth stages of soybean leaves and identified differences in leaf groups according to different genotypes at 8, 12, and 16 weeks, with Wild showing higher levels of environmental stress-related compounds relative to BCE and Hybrid leaves. The metabolic profiling approach could be a useful tool to identify metabolic links in various soybean cultivars.
Collapse
Affiliation(s)
- Jung-Won Jung
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea;
| | - Soo-Yun Park
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju-si 55365, Korea; (S.-Y.P.); (S.-D.O.); (Y.J.)
| | - Sung-Dug Oh
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju-si 55365, Korea; (S.-Y.P.); (S.-D.O.); (Y.J.)
| | - Yejin Jang
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju-si 55365, Korea; (S.-Y.P.); (S.-D.O.); (Y.J.)
| | - Sang-Jae Suh
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-J.S.); (S.-K.P.)
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-J.S.); (S.-K.P.)
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Sang-Un Park
- Department of Crop Science and Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: (S.-U.P.); (J.-K.K.); Tel.: +82-42-821-5730 (S.-U.P.); +82-32-835-8241 (J.-K.K.)
| | - Jae-Kwang Kim
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea;
- Correspondence: (S.-U.P.); (J.-K.K.); Tel.: +82-42-821-5730 (S.-U.P.); +82-32-835-8241 (J.-K.K.)
| |
Collapse
|
125
|
Stolarczyk EU, Strzempek W, Łaszcz M, Leś A, Menaszek E, Sidoryk K, Stolarczyk K. Anti-Cancer and Electrochemical Properties of Thiogenistein-New Biologically Active Compound. Int J Mol Sci 2021; 22:8783. [PMID: 34445486 PMCID: PMC8395759 DOI: 10.3390/ijms22168783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Pharmacological and nutraceutical effects of isoflavones, which include genistein (GE), are attributed to their antioxidant activity protecting cells against carcinogenesis. The knowledge of the oxidation mechanisms of an active substance is crucial to determine its pharmacological properties. The aim of the present work was to explain complex oxidation processes that have been simulated during voltammetric experiments for our new thiolated genistein analog (TGE) that formed the self-assembled monolayer (SAM) on the gold electrode. The thiol linker assured a strong interaction of sulfur nucleophiles with the gold surface. The research comprised of the study of TGE oxidative properties, IR-ATR, and MALDI-TOF measurements of SAM before and after electrochemical oxidation. TGE has been shown to be electrochemically active. It undergoes one irreversible oxidation reaction and one quasi-reversible oxidation reaction in PBS buffer at pH 7.4. The oxidation of TGE results in electroactive products composed likely from TGE conjugates (e.g., trimers) as part of polymer. The electroactive centers of TGE and its oxidation mechanism were discussed using IR supported by quantum chemical and molecular mechanics calculations. Preliminary in-vitro studies indicate that TGE exhibits higher cytotoxic activity towards DU145 human prostate cancer cells and is safer for normal prostate epithelial cells (PNT2) than genistein itself.
Collapse
Affiliation(s)
- Elżbieta U. Stolarczyk
- Research Analytics Team, Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland;
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland;
- Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna Street, 30-068 Krakow, Poland;
| | - Marta Łaszcz
- Research Analytics Team, Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland;
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; (A.L.); (K.S.)
| | - Elżbieta Menaszek
- Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna Street, 30-068 Krakow, Poland;
| | - Katarzyna Sidoryk
- Chemistry Group, Department of Pharmacy, Cosmetic Chemistry and Biotechnology, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland;
| | - Krzysztof Stolarczyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; (A.L.); (K.S.)
| |
Collapse
|