101
|
Le Daré B, Ferron PJ, Gicquel T. The Purinergic P2X7 Receptor-NLRP3 Inflammasome Pathway: A New Target in Alcoholic Liver Disease? Int J Mol Sci 2021; 22:2139. [PMID: 33670021 PMCID: PMC7926651 DOI: 10.3390/ijms22042139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization has estimated that approximately 3 million deaths are attributable to alcohol consumption each year. Alcohol consumption is notably associated with the development and/or progression of many non-communicable inflammatory diseases-particularly in the liver. Although these alcoholic liver diseases were initially thought to be caused by the toxicity of ethanol on hepatocytes, the latest research indicates Kupffer cells (the liver macrophages) are at the heart of this "inflammatory shift". Purinergic signaling (notably through P2X7 receptors and the NLRP3 inflammasome) by Kupffer cells appears to be a decisive factor in the pathophysiology of alcoholic liver disease. Hence, the modulation of purinergic signaling might represent a new means of treating alcoholic liver disease. Here, we review current knowledge on the pathophysiology of alcoholic liver diseases and therapeutic perspectives for targeting these inflammatory pathways.
Collapse
Affiliation(s)
- Brendan Le Daré
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| | - Pierre-Jean Ferron
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| |
Collapse
|
102
|
Luo J, Hou Y, Ma W, Xie M, Jin Y, Xu L, Li C, Wang Y, Chen J, Chen W, Zheng Y, Yu D. A novel mechanism underlying alcohol dehydrogenase expression: hsa-miR-148a-3p promotes ADH4 expression via an AGO1-dependent manner in control and ethanol-exposed hepatic cells. Biochem Pharmacol 2021; 189:114458. [PMID: 33556337 DOI: 10.1016/j.bcp.2021.114458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs) play critical roles in alcoholism development and alcohol toxicology; however, few studies have focused on the miRNA-mediated mechanisms underlying the expressions of alcohol-metabolizing enzymes. In the present study, we showed the expression changes of each alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver samples of alcoholic hepatitis (AH) patients, and predicted the miRNAs targeting the dysregulated alcohol-metabolizing genes by a systematic in silico analysis. 13 miRNAs were predicted to regulate the expressions of ADH1A, ADH4, and ALDH2, respectively, with hsa-miR-148a-3p (miR-148a) showing the most significant down-regulation in AH patients. Following experimental evidence using HepG2 cells proved that miR-148a promoted ADH4 expression by directly binding to the coding sequence of ADH4 and increasing the mRNA stability via an AGO1-dependent manner. Additional assays showed that secondary structure of ADH4 transcript affected the target accessibility and binding of miR-148a-3p. In sum, our results suggest that the expressions of key alcohol-metabolizing enzymes are repressed in AH patients, and the non-canonical positive regulation of miR-148a on ADH4 reveals a new regulationary mechanism for ADH genes.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yufei Hou
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Mengyue Xie
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wendi Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
103
|
Takase T, Toyoda T, Kobayashi N, Inoue T, Ishijima T, Abe K, Kinoshita H, Tsuchiya Y, Okada S. Dietary iso-α-acids prevent acetaldehyde-induced liver injury through Nrf2-mediated gene expression. PLoS One 2021; 16:e0246327. [PMID: 33544749 PMCID: PMC7864453 DOI: 10.1371/journal.pone.0246327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
Acetaldehyde is the major toxic metabolite of alcohol (ethanol) and enhances fibrosis of the liver through hepatic stellate cells. Additionally, alcohol administration causes the accumulation of reactive oxygen species (ROS), which induce hepatocyte injury-mediated lipid peroxidation. Iso-α-acids, called isohumulones, are bitter acids in beer. The purpose of this study was to investigate the protective effects of iso-α-acids against alcoholic liver injury in hepatocytes in mice. C57BL/6N mice were fed diets containing isomerized hop extract, which mainly consists of iso-α-acids. After 7 days of feeding, acetaldehyde was administered by a single intraperitoneal injection. The acetaldehyde-induced increases in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were suppressed by iso-α-acids intake. Hepatic gene expression analyses showed the upregulation of detoxifying enzyme genes, glutathione-S-transferase (GST) and aldehyde dehydrogenase (ALDH). In vitro, iso-α-acids upregulated the enzymatic activities of GST and ALDH and induced the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nfe2l2; Nrf2), a master regulator of antioxidant and detoxifying systems. These results suggest that iso-α-acid intake prevents acetaldehyde-induced liver injury by reducing oxidative stress via Nrf2-mediated gene expression.
Collapse
Affiliation(s)
- Takahito Takase
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
- Fundamental Laboratory, POKKA SAPPORO FOOD & BEVERAGE LTD., Yokohama, Kanagawa, Japan
| | - Tsudoi Toyoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoyuki Kobayashi
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
| | - Takashi Inoue
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
- Fundamental Laboratory, POKKA SAPPORO FOOD & BEVERAGE LTD., Yokohama, Kanagawa, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keiko Abe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Miki, Kita, Kagawa, Japan
| | - Youichi Tsuchiya
- Research and Development Division, SAPPORO HOLDINGS LTD., Yaizu, Shizioka, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
104
|
PECULIARITIES OF CONNECTIVE TISSUE DEGRADATION IN RAT’S LIVER ON EARLY TERMS OF CHRONIC ALCOHOLIC HEPATITIS MODELLING. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-1-75-197-200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
105
|
Liang HW, Yang TY, Teng CS, Lee YJ, Yu MH, Lee HJ, Hsu LS, Wang CJ. Mulberry leaves extract ameliorates alcohol-induced liver damages through reduction of acetaldehyde toxicity and inhibition of apoptosis caused by oxidative stress signals. Int J Med Sci 2021; 18:53-64. [PMID: 33390773 PMCID: PMC7738976 DOI: 10.7150/ijms.50174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Mulberry leaves (Morus alba L.), which are traditional Chinese herbs, exert several biological functions, such as antioxidant, anti-inflammation, antidiabetic, and antitumor. Alcohol intake increases inflammation and oxidative stress, and this increase causes liver injury and leads to liver steatosis, cirrhosis, and hepatocellular carcinoma, which are major health problems worldwide. Previous report indicated that mulberry leaf extract (MLE) exited hepatoprotection effects against chronic alcohol-induced liver damages. In this present study, we investigated the effects of MLE on acute alcohol and liver injury induced by its metabolized compound called acetaldehyde (ACE) by using in vivo and in vitro models. Administration of MLE reversed acute alcohol-induced liver damages, increased acetaldehyde (ACE) level, and decreased aldehyde dehydrogenase activity in a dose-dependent manner. Acute alcohol exposure-induced leukocyte infiltration and pro-inflammation factors, including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were blocked by MLE in proportion to MLE concentration. MLE prevented alcohol-induced liver apoptosis via enhanced caveolin-1 expression and attenuated EGFR/STAT3/iNOS pathway using immunohistochemical analysis. ACE induced proteins, such as iNOS, COX-2, TNF-α, and IL-6, and inhibited superoxide dismutase expression, whereas co-treated with MLE reversed these proteins expression. MLE also recovered alcohol-induced apoptosis in cultured Hep G2 cells. Overall, our findings indicated that MLE ameliorated acute alcohol-induced liver damages by reducing ACE toxicity and inhibiting apoptosis caused by oxidative stress signals. Our results implied that MLE might be a potential agent for treating alcohol liver disease.
Collapse
Affiliation(s)
- Hsin-Wen Liang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Tsung-Yuan Yang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung 402, Taiwan.,School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chia-Sheng Teng
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung City 402, Taiwan.,Department of Pathology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Meng-Hsun Yu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Huei-Jane Lee
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan.,Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan.,School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| |
Collapse
|
106
|
Wen B, Zhang C, Zhou J, Zhang Z, Che Q, Cao H, Bai Y, Guo J, Su Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2020; 222:107752. [PMID: 33253739 DOI: 10.1016/j.pharmthera.2020.107752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Targeted therapy is an emerging treatment strategy for alcoholic liver disease (ALD). Inflammation plays an important role in the occurrence and development of ALD, and is a key choice for its targeted treatment, and anti-inflammatory treatment has been considered beneficial for liver disease. Surprisingly, immune checkpoint inhibitors have become important therapeutic agents for hepatocellular carcinoma (HCC). Moreover, studies have shown that the combination of inflammatory molecule inhibitors and immune checkpoint inhibitors can exert better effects than either alone in mouse models of HCC. This review discusses the mechanism of hepatic ethanol metabolism and the conditions under which inflammation occurs. In addition, we focus on the potential molecular targets in inflammatory signalling pathways and summarize the potential targeted inhibitors and immune checkpoint inhibitors, providing a theoretical basis for the targeted treatment of ALD and the development of new combination therapy strategies for HCC.
Collapse
Affiliation(s)
- Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
107
|
Mierzejewski P, Zakrzewska A, Kuczyńska J, Wyszogrodzka E, Dominiak M. Intergenerational implications of alcohol intake: metabolic disorders in alcohol-naïve rat offspring. PeerJ 2020; 8:e9886. [PMID: 32974100 PMCID: PMC7489241 DOI: 10.7717/peerj.9886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol drinking may be associated with an increased risk of various metabolic diseases. Rat lines selectively bred for alcohol preference and alcohol avoidance constitute an interesting model to study inherited factors related to alcohol drinking and metabolic disorders. The aim of the present study was to compare the levels of selected laboratory biomarkers of metabolic disorders in blood samples from naïve offspring of Warsaw alcohol high-preferring (WHP), Warsaw alcohol low-preferring (WLP), and wild Wistar rats. Blood samples were collected from 3-month old (300–350 g) alcohol-naïve, male offspring of WHP (n = 8) and WLP rats (n = 8), as well as alcohol-naïve, male, wild Wistar rats. Markers of metabolic, hepatic, and pancreatic disorders were analysed (levels of homocysteine, glucose, total cholesterol, triglycerides and γ-glutamyl transferase (GGT), aspartate (AST), alanine aminotransferase (ALT), and amylase serum activities). Alcohol-naïve offspring of WHP, WLP, and wild Wistar rats differed significantly in the levels of triglycerides, total cholesterol, homocysteine, as well as in the activity of GGT, ALT, AST, and amylase enzymes. Most markers in the alcohol-naïve offspring of WHP rats were altered even thought they were never exposed to alcohol pre- or postnatally. This may suggest that parental alcohol abuse can have a detrimental influence on offspring vulnerability to metabolic disorders.
Collapse
Affiliation(s)
- Pawel Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Alicja Zakrzewska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Julita Kuczyńska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Edyta Wyszogrodzka
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
108
|
An Overview of the Mechanism of Penthorum chinense Pursh on Alcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4875764. [PMID: 33014105 PMCID: PMC7519454 DOI: 10.1155/2020/4875764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Alcohol liver disease (ALD) caused by excessive alcohol consumption is a progressive disease, and alcohol fatty liver disease is the primary stage. Currently, there is no approved drug for its treatment. Abstinence is the best way to heal, but patients' compliance is poor. Unlike other chronic diseases, alcohol fatty liver disease is not caused by nutritional deficiencies; it is caused by the molecular action of ingested alcohol and its metabolites. More and more studies have shown the potential of Penthorum chinense Pursh (PCP) in the clinical use of alcohol fatty liver treatment. The purpose of this paper is to reveal from the essence of PCP treatment of alcohol liver mechanism mainly by the ethanol dehydrogenase (ADH) and microsomal ethanol oxidation system-dependent cytochrome P4502E1 (CYP2E1) to exert antilipogenesis, antioxidant, anti-inflammatory, antiapoptotic, and autophagy effects, with special emphasis on its mechanisms related to SIRT1/AMPK, KEAP-1/Nrf2, and TLR4/NF-κB. Overall, data from the literature shows that PCP appears to be a promising hepatoprotective traditional Chinese medicine (TCM).
Collapse
|
109
|
Dulman RS, Wandling GM, Pandey SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder. CURRENT PATHOBIOLOGY REPORTS 2020; 8:61-73. [PMID: 33747641 DOI: 10.1007/s40139-020-00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Chronic alcohol use is a worldwide problem with multifaceted consequences including multiplying medical costs and sequelae, societal effects like drunk driving and assault, and lost economic productivity. These large-scale outcomes are driven by the consumption of ethanol, a small permeable molecule that has myriad effects in the human body, particularly in the liver and brain. In this review, we have summarized effects of acute and chronic alcohol consumption on epigenetic mechanisms that may drive pathobiology of Alcohol Use Disorder (AUD) while identifying areas of need for future research. Recent findings Epigenetics has emerged as an interesting field of biology at the intersection of genetics and the environment, and ethanol in particular has been identified as a potent modulator of the epigenome with various effects on DNA methylation, histone modifications, and non-coding RNAs. These changes alter chromatin dynamics and regulate gene expression that contribute to behavioral and physiological changes leading to the development of AUD psychopathology and cancer pathology. Summary Evidence and discussion presented here from preclinical results and available translational studies have increased our knowledge of the epigenetic effects of alcohol consumption. These studies have identified targets that can be used to develop better therapies to reduce chronic alcohol abuse and mitigate its societal burden and pathophysiology.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
110
|
Peng H, Qin X, Chen S, Ceylan AF, Dong M, Lin Z, Ren J. Parkin deficiency accentuates chronic alcohol intake-induced tissue injury and autophagy defects in brain, liver and skeletal muscle. Acta Biochim Biophys Sin (Shanghai) 2020; 52:665-674. [PMID: 32427312 DOI: 10.1093/abbs/gmaa041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholism leads to organ injury including mitochondrial defect and apoptosis with evidence favoring a role for autophagy dysregulation in alcoholic damage. Parkin represents an autosomal recessive inherited gene for Parkinson's disease and an important member of selective autophagy for mitochondria. The association between Parkinson's disease and alcoholic injury remains elusive. This study aimed to examine the effect of parkin deficiency on chronic alcohol intake-induced organ injury in brain, liver and skeletal muscle (rectus femoris muscle). Adult parkin-knockout (PRK-/-) and wild-type mice were placed on Liber-De Carli alcohol liquid diet (4%) for 12 weeks prior to assessment of liver enzymes, intraperitoneal glucose tolerance, protein carbonyl content, apoptosis, hematoxylin and eosin morphological staining, and mitochondrial respiration (cytochrome c oxidase, NADH:cytochrome c reductase and succinate:cytochrome c reductase). Autophagy protein markers were monitored by western blot analysis. Our data revealed that chronic alcohol intake imposed liver injury as evidenced by elevated aspartate aminotransferase and alanine transaminase, glucose intolerance, elevated protein carbonyl formation, apoptosis, focal inflammation, necrosis, microvesiculation, autophagy/mitophagy failure and dampened mitochondrial respiration (complex IV, complexes I and III, and complexes II and III) in the brain, liver and rectus femoris skeletal muscle. Although parkin ablation itself did not generate any notable effects on liver enzymes, insulin sensitivity, tissue carbonyl damage, apoptosis, tissue morphology, autophagy or mitochondrial respiration, it accentuated alcohol intake-induced tissue damage, apoptosis, morphological change, autophagy/mitophagy failure and mitochondrial injury without affecting insulin sensitivity. These data suggest that parkin plays an integral role in the preservation against alcohol-induced organ injury, apoptosis and mitochondrial damage.
Collapse
Affiliation(s)
- Hu Peng
- Department of Emergency and ICU, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi’an 710032, China
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Asli F Ceylan
- Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara 06010, Turkey
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaofen Lin
- Department of Emergency and ICU, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University and Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
111
|
Glaser T, Baiocchi L, Zhou T, Francis H, Lenci I, Grassi G, Kennedy L, Liangpunsakul S, Glaser S, Alpini G, Meng F. Pro-inflammatory signalling and gut-liver axis in non-alcoholic and alcoholic steatohepatitis: Differences and similarities along the path. J Cell Mol Med 2020; 24:5955-5965. [PMID: 32314869 PMCID: PMC7294142 DOI: 10.1111/jcmm.15182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) represent a spectrum of injury, ranging from simple steatosis to steatohepatitis and cirrhosis. In humans, in fact, fatty changes in the liver, possibly leading to end-stage disease, were observed after chronic alcohol intake or in conditions of metabolic impairment. In this article, we examined the features and the pro-inflammatory pathways leading to non-alcoholic and alcoholic steatohepatitis. The involvement of several events (hits) and multiple inter-related pathways in the pathogenesis of these diseases suggest that a single therapeutic agent is unlikely to be an effective treatment strategy. Hence, a combination treatment towards multiple pro-inflammatory targets would eventually be required. Gut-liver crosstalk is involved not only in the impairment of lipid and glucose homoeostasis leading to steatogenesis, but also in the initiation of inflammation and fibrogenesis in both NAFLD and ALD. Modulation of the gut-liver axis has been suggested as a possible therapeutic approach since gut-derived components are likely to be involved in both the onset and the progression of liver damage. This review summarizes the translational mechanisms underlying pro-inflammatory signalling and gut-liver axis in non-alcoholic and alcoholic steatohepatitis. With a multitude of people being affected by liver diseases, identification of possible treatments and the elucidation of pathogenic mechanisms are elements of paramount importance.
Collapse
Affiliation(s)
- Trenton Glaser
- Texas A&M University College of MedicineCollege StationTXUSA
| | - Leonardo Baiocchi
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | - Tianhao Zhou
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Heather Francis
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Ilaria Lenci
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | - Giuseppe Grassi
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Shannon Glaser
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Fanyin Meng
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
112
|
Kubiak-Tomaszewska G, Tomaszewski P, Pachecka J, Struga M, Olejarz W, Mielczarek-Puta M, Nowicka G. Molecular mechanisms of ethanol biotransformation: enzymes of oxidative and nonoxidative metabolic pathways in human. Xenobiotica 2020; 50:1180-1201. [PMID: 32338108 DOI: 10.1080/00498254.2020.1761571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ethanol, as a small-molecule organic compound exhibiting both hydrophilic and lipophilic properties, quickly pass through the biological barriers. Over 95% of absorbed ethanol undergoes biotransformation, the remaining amount is excreted unchanged, mainly with urine and exhaled air.The main route of ethyl alcohol metabolism is its oxidation to acetaldehyde, which is converted into acetic acid with the participation of cytosolic NAD+ - dependent alcohol (ADH) and aldehyde (ALDH) dehydrogenases. Oxidative biotransformation pathways of ethanol also include reactions catalyzed by the microsomal ethanol oxidizing system (MEOS), peroxisomal catalase and aldehyde (AOX) and xanthine (XOR) oxidases. The resulting acetic acid can be activated to acetyl-CoA by the acetyl-CoA synthetase (ACS).It is also possible, to a much smaller extent, non-oxidative routes of ethanol biotransformation including its esterification with fatty acids by ethyl fatty acid synthase (FAEES), re-esterification of phospholipids, especially phosphatidylcholines, with phospholipase D (PLD), coupling with sulfuric acid by alcohol sulfotransferase (SULT) and with glucuronic acid using UDP-glucuronyl transferase (UGT, syn. UDPGT).The intestinal microbiome plays a significant role in the ethanol biotransformation and in the initiation and progression of liver diseases stimulated by ethanol and its metabolite - acetaldehyde, or by lipopolysaccharide and ROS.
Collapse
Affiliation(s)
- Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Tomaszewski
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Jan Pachecka
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Marta Struga
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | - Grażyna Nowicka
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
113
|
Abstract
Silymarin, an extract from milk thistle seeds, has been used for centuries to treat hepatic conditions. Preclinical data indicate that silymarin can reduce oxidative stress and consequent cytotoxicity, thereby protecting intact liver cells or cells not yet irreversibly damaged. Eurosil 85® is a proprietary formulation developed to maximize the oral bioavailability of silymarin. Most of the clinical research on silymarin has used this formulation. Silymarin acts as a free radical scavenger and modulates enzymes associated with the development of cellular damage, fibrosis and cirrhosis. These hepatoprotective effects were observed in clinical studies in patients with alcoholic or non-alcoholic fatty liver disease, including patients with cirrhosis. In a pooled analysis of trials in patients with cirrhosis, silymarin treatment was associated with a significant reduction in liver-related deaths. Moreover, in patients with diabetes and alcoholic cirrhosis, silymarin was also able to improve glycemic parameters. Patients with drug-induced liver injuries were also successfully treated with silymarin. Silymarin is generally very well tolerated, with a low incidence of adverse events and no treatment-related serious adverse events or deaths reported in clinical trials. For maximum benefit, treatment with silymarin should be initiated as early as possible in patients with fatty liver disease and other distinct liver disease manifestations such as acute liver failure, when the regenerative potential of the liver is still high and when removal of oxidative stress, the cause of cytotoxicity, can achieve the best results.
Collapse
Affiliation(s)
- Anton Gillessen
- Department of Internal Medicine, Sacred Heart Hospital, Muenster, Germany.
| | - Hartmut H-J Schmidt
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
114
|
Inflammation in Primary and Metastatic Liver Tumorigenesis-Under the Influence of Alcohol and High-Fat Diets. Nutrients 2020; 12:nu12040933. [PMID: 32230953 PMCID: PMC7230665 DOI: 10.3390/nu12040933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The liver plays an outsized role in oncology. Liver tumors are one of the most frequently found tumors in cancer patients and these arise from either primary or metastatic disease. Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer and the 6th most common cancer type overall, is expected to become the 3rd leading cause of cancer mortality in the US by the year 2030. The liver is also the most common site of distant metastasis from solid tumors. For instance, colorectal cancer (CRC) metastasizes to the liver in two-thirds of cases, and CRC liver metastasis is the leading cause of mortality in these patients. The interplay between inflammation and cancer is unmistakably evident in the liver. In nearly every case, HCC is diagnosed in chronic liver disease (CLD) and cirrhosis background. The consumption of a Western-style high-fat diet is a major risk factor for the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), both of which are becoming more prevalent in parallel with the obesity epidemic. Excessive alcohol intake also contributes significantly to the CLD burden in the form of alcoholic liver disease (ALD). Inflammation is a key component in the development of all CLDs. Additionally, during the development of liver metastasis, pro-inflammatory signaling is crucial in eliminating invading cancer cells but ironically also helps foster a pro-metastatic environment that supports metastatic seeding and colonization. Here we review how Westernized high-fat diets and excessive alcohol intake can influence inflammation within the liver microenvironment, stimulating both primary and metastatic liver tumorigenesis.
Collapse
|
115
|
Neuman MG, Seitz HK, French SW, Malnick S, Tsukamoto H, Cohen LB, Hoffman P, Tabakoff B, Fasullo M, Nagy LE, Tuma PL, Schnabl B, Mueller S, Groebner JL, Barbara FA, Yue J, Nikko A, Alejandro M, Brittany T, Edward V, Harrall K, Saba L, Mihai O. Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines 2020; 8:E63. [PMID: 32197424 PMCID: PMC7148515 DOI: 10.3390/biomedicines8030063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Helmut Karl Seitz
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Stephen Malnick
- Department Internal Medicine C, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Heidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-5311, USA;
- Department of Veterans; Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12205, USA;
| | - Laura E. Nagy
- Departments of Pathobiology and Gastroenterology, Center for Liver Disease Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Sebastian Mueller
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Jennifer L. Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - French A. Barbara
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Jia Yue
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Afifiyan Nikko
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Mendoza Alejandro
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Tillman Brittany
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Vitocruz Edward
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Kylie Harrall
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Laura Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Opris Mihai
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department Family Medicine Clinic CAR, 010164 Bucharest, Romania
| |
Collapse
|
116
|
Méndez-Sánchez N, Valencia-Rodriguez A, Vera-Barajas A, Abenavoli L, Scarpellini E, Ponciano-Rodriguez G, Wang DQH. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 32582865 PMCID: PMC7313221 DOI: 10.20517/2394-5079.2019.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, alcoholic liver disease (ALD) is one of the most prevalent chronic liver diseases worldwide, representing one of the main etiologies of cirrhosis and hepatocellular carcinoma (HCC). Although we do not know the exact mechanisms by which only a selected group of patients with ALD progress to the final stage of HCC, the role of the gut microbiota within the progression to HCC has been intensively studied in recent years. To date, we know that alcohol-induced gut dysbiosis is an important feature of ALD with important repercussions on the severity of this disease. In essence, an increased metabolism of ethanol in the gut induced by an excessive alcohol consumption promotes gut dysfunction and bacterial overgrowth, setting a leaky gut. This causes the translocation of bacteria, endotoxins, and ethanol metabolites across the enterohepatic circulation reaching the liver, where the recognition of the pathogen-associated molecular patterns via specific Toll-like receptors of liver cells will induce the activation of the nuclear factor kappa-B pathway, which releases pro-inflammatory cytokines and chemokines. In addition, the mitogenic activity of hepatocytes will be promoted and cellular apoptosis will be inhibited, resulting in the development of HCC. In this context, it is not surprising that microbiota-regulating drugs have proven effectiveness in prolonging the overall survival of patients with HCC, making attractive the implementation of these drugs as co-adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico.,Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia" Viale Europa, Catanzaro 88100, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit, and Internal Medicine Unit, "Madonna del Soccorso" General Hospital, Via Luciano Manara 7, San Benedetto del Tronto (AP) 63074, Italy
| | - Guadalupe Ponciano-Rodriguez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
117
|
A Microbial Signature Identifies Advanced Fibrosis in Patients with Chronic Liver Disease Mainly Due to NAFLD. Sci Rep 2020; 10:2771. [PMID: 32066758 PMCID: PMC7026172 DOI: 10.1038/s41598-020-59535-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/29/2020] [Indexed: 01/30/2023] Open
Abstract
The presence of advanced fibrosis is an important measure of the severity of chronic liver disease. Prior works that have examined the gut microbiome as a novel biomarker for advanced fibrosis have only examined patients with nonalcoholic fatty liver disease. Therefore, our goal was to examine the gut microbiome across varying etiologies of liver disease to create a predictive model for liver fibrosis based upon a microbial signature. Stool samples were obtained from patients with chronic liver disease (n = 50) undergoing FibroScan (ultrasound elastography) at the VA Greater Los Angeles Healthcare System. Healthy control patients (n = 25) were also recruited as a reference population. Fecal samples underwent 16S ribosomal RNA sequencing. Using differentially abundant microbes, a random forest classifier model was created to distinguish advanced fibrosis from mild/moderate fibrosis. The findings were then validated in a separate cohort of chronic liver disease patients (n = 37). Etiologies for liver disease included non-alcoholic liver disease (58.0%), hepatitis C (26.0%), hepatitis B (10.0%), and alcohol (6.0%). Microbiome composition was distinct in liver patients with advanced fibrosis compared to those with minimal fibrosis and healthy controls (p = 0.003). In multivariate negative binomial modeling, 26 bacterial taxa were differentially abundant in patients with advanced fibrosis as compared to those with minimal/moderate fibrosis (q-value < 0.05). A random forests classifier based on these taxa had an AUROC of 0.90 to predict advanced fibrosis. Prevotella copri, which was enriched in patients with advanced fibrosis, was the most strongly predictive microbe in the classifier. The classifier had an AUROC of 0.82 for advanced fibrosis in the validation cohort and Prevotella copri remained the strongest predictive microbe for advanced fibrosis. There is a distinct microbial signature for patients with advanced fibrosis independent of liver disease etiology and other comorbidities. These results suggest that microbial profiles can be used as a non-invasive marker for advanced fibrosis and support the hypothesis that microbes and their metabolites contribute to hepatic fibrosis.
Collapse
|
118
|
Huang S, Zhou C, Zeng T, Li Y, Lai Y, Mo C, Chen Y, Huang S, Lv Z, Gao L. P-Hydroxyacetophenone Ameliorates Alcohol-Induced Steatosis and Oxidative Stress via the NF-κB Signaling Pathway in Zebrafish and Hepatocytes. Front Pharmacol 2020; 10:1594. [PMID: 32047433 PMCID: PMC6997130 DOI: 10.3389/fphar.2019.01594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD), which is recognized as an important health problem worldwide, is a direct consequence of alcohol consumption, which can induce alcoholic fatty liver, alcoholic steatohepatitis, fibrosis and cirrhosis. P-Hydroxyacetophenone (p-HAP) is mainly used as a choleretic and hepatoprotective compound and has anti-hepatitis B, antioxidative and anti-inflammatory effects. However, no experimental report has focused on p-HAP in ALD, and the effect and mechanism of p-HAP in ALD remain unknown. In addition, there is no research on p-HAP in the treatment of ALD. The potential molecular mechanisms of p-HAP against acute alcoholic liver injury remain unknown. In this study, we aimed to investigate whether p-HAP alleviates ALD and to clarify the potential molecular mechanisms. Zebrafish larvae were soaked in 350 mmol/l ethanol for 32 h at 4 days post fertilization (dpf) and then treated with p-HAP for 48 h. We chose various outcome measures, such as liver histomorphological changes, antioxidation and antiapoptosis capability and expression of inflammation-related proteins, to elucidate the essential mechanism of p-HAP in the treatment of alcohol-induced liver damage. Subsequently, we applied pathological hematoxylin and eosin (H&E) staining, Nile red staining and oil red O staining to detect the histomorphological and lipid changes in liver tissues. We also used TUNEL staining, immunochemistry and Western blot analysis to reveal the changes in apoptosis- and inflammation-related proteins. In particular, we used a variety of fluorescent probes to detect the antioxidant capacity of p-HAP in live zebrafish larvae in vivo. In addition, we discovered that p-HAP treatment relieved alcoholic hepatic steatosis in a dose-dependent manner and that the 50 μM dose had the best therapeutic effect. Generally, this research indicated that p-HAP might reduce oxidative stress and cell apoptosis in vivo and in vitro via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yujia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
119
|
Quesada-Vázquez S, Aragonès G, Del Bas JM, Escoté X. Diet, Gut Microbiota and Non-Alcoholic Fatty Liver Disease: Three Parts of the Same Axis. Cells 2020; 9:E176. [PMID: 31936799 PMCID: PMC7016763 DOI: 10.3390/cells9010176] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/30/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common liver disease in the world. NAFLD is principally characterized by an excessive fat accumulation in the hepatocytes. Diet is considered as one of the main drivers to modulate the composition of gut microbiota, which participate in different processes, affecting human metabolism. A disruption in the homeostasis of gut microbiota may lead to dysbiosis, which is commonly reflected by a reduction of the beneficial species and an increment in pathogenic microbiota. Gut and liver are in close relation due to the anatomical and functional interactions led by the portal vein, thus altered intestinal microbiota might affect liver functions, promoting inflammation, insulin resistance and steatosis, which is translated into NAFLD. This review will highlight the association between diet, gut microbiota and liver, and how this axis may promote the development of NAFLD progression, discussing potential mechanisms and alterations due to the dysbiosis of gut microbiota. Finally, it will revise the variations in gut microbiota composition in NAFLD, and it will focus in specific species, which directly affect NAFLD progression.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Gerard Aragonès
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Nutrigenomics Research Group, 43007 Tarragona, Spain;
| | - Josep M Del Bas
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Xavier Escoté
- Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| |
Collapse
|
120
|
Oxidative Stress Parameters in the Liver of Growing Male Rats Receiving Various Alcoholic Beverages. Nutrients 2020; 12:nu12010158. [PMID: 31935882 PMCID: PMC7019817 DOI: 10.3390/nu12010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Typical alcohol consumption begins in the adolescence period, increasing the risk of alcoholic liver disease (ALD) in adolescents and young adults, and while the pathophysiology of ALD is still not completely understood, it is believed that oxidative stress may be the major contributor that initiates and promotes the progression of liver damage. The aim of the present study was to assess the influence of alcohol consumption on the markers of oxidative stress and liver inflammation in the animal model of prolonged alcohol consumption in adolescents using various alcoholic beverages. In a homogenic group of 24 male Wistar rats (4 groups—6 animals per group), since 30th day of life, in order to mimic the alcohol consumption since adolescence, animals received (1) no alcoholic beverage (control group), (2) ethanol solution, (3) red wine, or (4) beer (experimental groups) for 6 weeks. Afterwards, the activities of alcohol dehydrogenase (ADH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), as well as levels of cytochrome P450-2E1 (CYP2E1), thiobarbituric acid-reactive substances (TBARS), protein carbonyl groups, tumor necrosis factor-α (TNF-α), and interleukine-10 (IL-10) were measured in liver homogenates. The difference between studied groups was observed for CYP2E1 and protein carbonyl groups levels (increased levels for animals receiving beer compared with control group), as well as for ALT activity (decreased activity for animals receiving beer compared with other experimental groups) (p < 0.05). The results suggested that some components of beer, other than ethanol, are responsible for its influence on the markers of oxidative stress and liver inflammation observed in the animal model of prolonged alcohol consumption in adolescents. Taking this into account, beer consumption in adolescents, which is a serious public health issue, should be assessed in further studies to broaden the knowledge of the progression of liver damage caused by alcohol consumption in this group.
Collapse
|
121
|
Isolation and identification of alcohol dehydrogenase stabilizing peptides from Alcalase digested chicken breast hydrolysates. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
122
|
Qiu S, Zhang AH, Guan Y, Sun H, Zhang TL, Han Y, Yan GL, Wang XJ. Functional metabolomics using UPLC-Q/TOF-MS combined with ingenuity pathway analysis as a promising strategy for evaluating the efficacy and discovering amino acid metabolism as a potential therapeutic mechanism-related target for geniposide against alcoholic liver disease. RSC Adv 2020; 10:2677-2690. [PMID: 35496090 PMCID: PMC9048633 DOI: 10.1039/c9ra09305b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolomics has been used as a strategy to evaluate the efficacy of and potential targets for natural products.
Collapse
Affiliation(s)
- Shi Qiu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Yu Guan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Tian-lei Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| |
Collapse
|
123
|
Teschke R, Eickhoff A, Brown AC, Neuman MG, Schulze J. Diagnostic Biomarkers in Liver Injury by Drugs, Herbs, and Alcohol: Tricky Dilemma after EMA Correctly and Officially Retracted Letter of Support. Int J Mol Sci 2019; 21:ijms21010212. [PMID: 31892250 PMCID: PMC6981464 DOI: 10.3390/ijms21010212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Liver injuries caused by the use of exogenous compounds such as drugs, herbs, and alcohol are commonly well diagnosed using laboratory tests, toxin analyses, or eventually reactive intermediates generated during metabolic degradation of the respective chemical in the liver and subject to covalent binding by target proteins. Conditions are somewhat different for idiosyncratic drug induced liver injury (DILI), for which metabolic intermediates as diagnostic aids are rarely available. Although the diagnosis of idiosyncratic DILI can well be established using the validated, liver specific, structured, and quantitative RUCAM (Roussel Uclaf Causality Assessment Method), there is an ongoing search for new diagnostic biomarkers that could assist in and also confirm RUCAM-based DILI diagnoses. With respect to idiosyncratic DILI and following previous regulatory letters of recommendations, selected biomarkers reached the clinical focus, including microRNA-122, microRNA-192, cytokeratin analogues, glutamate dehydrogenase, total HMGB-1 (High Mobility Group Box), and hyperacetylated HMGB-1 proteins. However, the new parameters total HMGB-1, and even more so the acetylated HMGB-1, came under critical scientific fire after misconduct at one of the collaborating partner centers, leading the EMA to recommend no longer the exploratory hyperacetylated HMGB1 isoform biomarkers in clinical studies. The overall promising nature of the recommended biomarkers was considered by EMA as highly dependent on the outstanding results of the now incriminated biomarker hyperacetylated HMGB-1. The EMA therefore correctly decided to officially retract its Letter of Support affecting all biomarkers listed above. New biomarkers are now under heavy scrutiny that will require re-evaluations prior to newly adapted recommendations. With Integrin beta 3 (ITGB3), however, a new diagnostic biomarker may emerge, possibly being drug specific but tested in only 16 patients; due to substantial remaining uncertainties, final recommendations would be premature. In conclusion, most of the currently recommended new biomarkers have lost regulatory support due to scientific misconduct, requiring now innovative approaches and re-evaluation before they can be assimilated into clinical practice.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-63450 Hanau, Germany;
- Correspondence: ; Tel.: +49-6181-21859; Fax: +49-6181-2964211
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-63450 Hanau, Germany;
| | - Amy C. Brown
- Department of Complementary and Integrative Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA;
| | - Manuela G. Neuman
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M2 R1 W6, Canada;
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, D-60590 Frankfurt/Main, Germany;
| |
Collapse
|
124
|
Rehm J, Shield KD. Global Burden of Alcohol Use Disorders and Alcohol Liver Disease. Biomedicines 2019; 7:E99. [PMID: 31847084 PMCID: PMC6966598 DOI: 10.3390/biomedicines7040099] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Alcohol use is a major risk factor for burden of mortality and morbidity. Alcoholic liver disease (ALD) and alcohol use disorders (AUDs) are important disease outcomes caused by alcohol use. We will describe the global mortality and burden of disease in disability-adjusted life years for ALD and AUDs, based on data from the comparative risk assessment of the World Health Organization for 2016. AUDs have a limited impact on mortality in this assessment, since alcohol poisonings are almost the only disease category directly attributable to AUDs; most other alcohol-related deaths are indirect, and the cause which directly led to the death, such as liver cirrhosis, is the one recorded on the death certificate. Burden of disease for AUDs is thus mainly due to disability resulting from alcohol use. In contrast to AUDs, ALD is one of the major lethal outcomes of alcohol use, and burden of disease is mainly due to (premature) years of life lost. Many of the negative outcomes attributable to both AUDs and ALD are due to their interactions with other factors, most notably economic wealth. To avoid alcohol-attributable morbidity and mortality, measures should be taken to reduce the AUDs and ALD burden globally, especially among the poor.
Collapse
Affiliation(s)
- Jürgen Rehm
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON M5T 1P8, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5T 2S1, Canada
- Institute of Clinical Psychology and Psychotherapy & Center for Clinical Epidemiology and Longitudinal Studies, Technische Universität Dresden, Chemnitzer Str. 46, D-01187 Dresden, Germany
- Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, b. 2, Moscow 119992, Russia
| | - Kevin D. Shield
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON M5T 1P8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5T 2S1, Canada
| |
Collapse
|
125
|
Nag S, Manna K, Saha M, Das Saha K. Tannic acid and vitamin E loaded PLGA nanoparticles ameliorate hepatic injury in a chronic alcoholic liver damage model via EGFR-AKT-STAT3 pathway. Nanomedicine (Lond) 2019; 15:235-257. [PMID: 31789102 DOI: 10.2217/nnm-2019-0340] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Tannic acid and vitamin E loaded-poly D, L-lactide-co-glycolic acid (PLGA) nanoparticles (NP) were developed to achieve hepatoprotection in alcoholic liver disease mice model. Materials & methods: PLGA NPs were formed by emulsion solvent evaporation and characterized and delivered to mice. Histology studies were performed, serum enzyme levels of AST, ALT and inflammatory cytokines were checked using ELISA kits. Confocal microscopy and western blot analysis were utilized to determine protein expression levels, and docking studies were performed for interaction analysis. Results: PLGA NPs provided hepatoprotection by reducing inflammatory load, preventing reactive oxygen species generation and apoptosis, as well as by inhibiting the EGFR-AKT-STAT3 pathway. Conclusion: PLGA NPs of tannic acid and vitamin E could be a future medication for alcoholic liver disease treatment.
Collapse
Affiliation(s)
- Sayoni Nag
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata-700032, India
| | - Krishnendu Manna
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata-700032, India
| | - Moumita Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata-700032, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, West Bengal, Kolkata-700032, India
| |
Collapse
|
126
|
Teschke R, Xuan TD. How can green tea polyphenols affect drug metabolism and should we be concerned? Expert Opin Drug Metab Toxicol 2019; 15:989-991. [PMID: 31774338 DOI: 10.1080/17425255.2019.1697228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt/Main, Germany
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
127
|
Development and validation of an assay for a novel ghrelin receptor inverse agonist PF-5190457 and its major hydroxy metabolite (PF-6870961) by LC-MS/MS in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121820. [DOI: 10.1016/j.jchromb.2019.121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023]
|
128
|
Madhombiro M, Musekiwa A, January J, Chingono A, Abas M, Seedat S. Psychological interventions for alcohol use disorders in people living with HIV/AIDS: a systematic review. Syst Rev 2019; 8:244. [PMID: 31661030 PMCID: PMC6819454 DOI: 10.1186/s13643-019-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/27/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alcohol use disorders (AUDs) in people living with HIV/AIDS (PLWH) are a significant impediment to achieving virological control. HIV non-suppression in PLWH with AUDs is mainly attributable to sub-optimal antiretroviral therapy adherence. Sub-optimal adherence makes control of the epidemic elusive, considering that effective antiretroviral treatment and viral suppression are the two key pillars in reducing new infections. Psychological interventions have been proposed as effective treatments for the management of AUDs in PLWH. Evidence for their effectiveness has been inconsistent, with two reviews (2010 and 2013) concluding a lack of effectiveness. However, a 2017 review that examined multiple HIV prevention and treatment outcomes suggested that behavioural interventions were effective in reducing alcohol use. Since then, several studies have been published necessitating a re-examination of this evidence. This review provides an updated synthesis of the effectiveness of psychological interventions for AUDs in PLWH. METHODS A search was conducted in the following databases: PubMed, Cochrane Central Register of Trials (CENTRAL), MEDLINE (Ovid), EMBASE, PsychInfo (Ovid) and Clinical trials.gov (clinicaltrials.gov) for eligible studies until August 2018 for psychotherapy and psychosocial interventions for PLWH with AUDs. Two reviewers independently screened titles, abstracts and full texts to select studies that met the inclusion criteria. Two reviewers independently performed data extraction with any differences resolved through discussion. Risk of bias was assessed by two independent reviewers using the Cochrane risk of bias tool, and the concordance between the first and second reviewers was 0.63 and between the first and third reviewers 0.71. Inclusion criteria were randomised controlled trials using psychological interventions in people aged 16 and above, with comparisons being usual care, enhanced usual care, other active treatments or waitlist controls. RESULTS A total of 21 studies (6954 participants) were included in this review. Studies had diverse populations including men alone, men and women and men who had sex with men (MSM). Use of motivational interviewing alone or blended with cognitive behavioural therapy (CBT) and technology/computer-assisted platforms were common as individual-level interventions, while a few studies investigated group motivational interviewing or CBT. Alcohol use outcomes were all self-report and included assessment of the quantity and the frequency of alcohol use. Measured secondary outcomes included viral load, CD4 count or other self-reported outcomes. There was a lack of evidence for significant intervention effects in the included studies. Isolated effects of motivational interviewing, cognitive behavioural therapy and group therapy were noted. However for some of the studies that found significant effects, the effect sizes were small and not sustained over time. Owing to the variation in outcome measures employed across studies, no meta-analysis could be carried out. CONCLUSION This systematic review did not reveal large or sustained intervention effects of psychological interventions for either primary alcohol use or secondary HIV-related outcomes. Due to the methodological heterogeneity, we were unable to undertake a meta-analysis. Effectiveness trials of psychological interventions for AUDs in PLWH that include disaggregation of data by level of alcohol consumption, gender and age are needed. There is a need to standardise alcohol use outcome measures across studies and include objective biomarkers that provide a more accurate measure of alcohol consumption and are relatively free from social desirability bias. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD 42017063856 .
Collapse
Affiliation(s)
- Munyaradzi Madhombiro
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe.
| | - Alfred Musekiwa
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - James January
- Department of Community Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Alfred Chingono
- Department of Psychiatry, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Melanie Abas
- King's College London, Centre for Global Mental Health, David Goldberg Centre H1.12, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Avenue, 7505, Cape Town, South Africa
| |
Collapse
|
129
|
Teschke R. Alcoholic Liver Disease: Current Mechanistic Aspects with Focus on Their Clinical Relevance. Biomedicines 2019; 7:E68. [PMID: 31491888 PMCID: PMC6783919 DOI: 10.3390/biomedicines7030068] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
The spectrum of alcoholic liver disease (ALD) is broad and includes alcoholic fatty liver, alcoholic steatohepatitis, alcoholic hepatitis, alcoholic fibrosis, alcoholic cirrhosis, and alcoholic hepatocellular carcinoma, best explained as a five-hit sequelae of injurious steps. ALD is not primarily the result of malnutrition as assumed for many decades but due to the ingested alcohol and its metabolic consequences although malnutrition may marginally contribute to disease aggravation. Ethanol is metabolized in the liver to the heavily reactive acetaldehyde via the alcohol dehydrogenase (ADH) and the cytochrome P450 isoform 2E1 of the microsomal ethanol-oxidizing system (MEOS). The resulting disturbances modify not only the liver parenchymal cells but also non-parenchymal cells such as Kupffer cells (KCs), hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). These are activated by acetaldehyde, reactive oxygen species (ROS), and endotoxins, which are produced from bacteria in the gut and reach the liver due to gut leakage. A variety of intrahepatic signaling pathways and innate or acquired immune reactions are under discussion contributing to the pathogenesis of ALD via the five injurious hits responsible for disease aggravation. As some of the mechanistic steps are based on studies with in vitro cell systems or animal models, respective proposals for humans may be considered as tentative. However, sufficient evidence is provided for clinical risk factors that include the amount of alcohol used daily for more than a decade, gender differences with higher susceptibility of women, genetic predisposition, and preexisting liver disease. In essence, efforts within the last years were devoted to shed more light in the pathogenesis of ALD, much has been achieved but issues remain to what extent results obtained from experimental studies can be transferred to humans.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany.
| |
Collapse
|
130
|
Kovalic AJ, Cholankeril G, Satapathy SK. Nonalcoholic fatty liver disease and alcoholic liver disease: metabolic diseases with systemic manifestations. Transl Gastroenterol Hepatol 2019; 4:65. [PMID: 31620647 DOI: 10.21037/tgh.2019.08.09] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
The progression of liver disease is portrayed by several common, overarching signs and symptoms. Classically, these include findings such as spider angiomata, jaundice, palmar erythema, and as cirrhosis decompensates, ascites, variceal hemorrhage (VH), hepatic encephalopathy (HE), and hepatocellular carcinoma (HCC). Aside from these universal hallmarks among cirrhotics, patients with nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) harbor their own distinct systemic associations and manifestations. NAFLD is tightly linked to metabolic syndrome, which appears to be a driving force for a multitude of comorbidities, such as insulin resistance, cardiovascular disease, chronic kidney disease (CKD), obstructive sleep apnea (OSA), as well as increased malignancy risk. ALD also maintains a variety of comorbidities congruent with systemic effects of chronic alcohol use. These findings are highlighted by cardiovascular conditions, neuronal damage, myopathy, nutritional deficiencies, chronic pancreatitis, in addition to increased malignancy risk. While a general, guideline-driven management for all cirrhotic patients remains imperative for minimizing risk of complications, a tailored treatment strategy is useful for patients with NAFLD and ALD who entertain their own constellation of unique systemic manifestations.
Collapse
Affiliation(s)
- Alexander J Kovalic
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, North Carolina, USA
| | - George Cholankeril
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjaya K Satapathy
- Department of Internal Medicine, Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases & Transplantation, Barbara and Zucker School of Medicine for Hofstra/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
131
|
Mahmoudi J, Mahmoodpoor A, Amirnia M, Kazemi T, Chokhachi Baradaran P, Sheikh Najafi S, Sadigh-Eteghad S, Farajdokht F, Xu H, Belalzadeh M, Sandoghchian Shotorbani S. The induced decrease in TLR2 and TLR4 by cerebrolysin in the alcoholic liver of rats. J Cell Physiol 2019; 234:16290-16294. [PMID: 30756376 DOI: 10.1002/jcp.28293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Toll-like receptors (TLRs) are innate immunity receptors, which have an important role in modulating inflammation in disease. Cerebrolysin is a biotechnologically prepared peptide that stimulates neurotrophic regulation in the central nervous system. The aim of the present study was to investigate the effect of experimenting cerebrolysin on TLR2 and TLR4 in alcoholic liver disease (ALD). MATERIALS AND METHODS TLR2 and TLR4 expressions were determined using real-time polymerase chain reaction in rats, which have used alcohol and they were separated into five groups. RESULTS The results of the present study showed that in mild dose of cerebrolysin, the expression of TLR2 and TLR4 was decreased significantly than other groups. Also, the results of the western blot analysis proved the same. CONCLUSION The present study demonstrated that the anti-inflammatory effect of cerebrolysin can decrease the TLR2 and TLR4 expressions through downregulating nuclear factor-κB pathway in the ALD disease.
Collapse
Affiliation(s)
- Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Amirnia
- Department of Dermatology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Huaxi Xu
- Department of Immunology, Jiangsu University of Medical Sciences, Zhenjiang, China
| | - Mobina Belalzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
132
|
Current Status in Testing for Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Cells 2019; 8:cells8080845. [PMID: 31394730 PMCID: PMC6721710 DOI: 10.3390/cells8080845] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries with almost 25% affected adults worldwide. The growing public health burden is getting evident when considering that NAFLD-related liver transplantations are predicted to almost double within the next 20 years. Typically, hepatic alterations start with simple steatosis, which easily progresses to more advanced stages such as nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis. This course of disease finally leads to end-stage liver disease such as hepatocellular carcinoma, which is associated with increased morbidity and mortality. Although clinical trials show promising results, there is actually no pharmacological agent approved to treat NASH. Another important problem associated with NASH is that presently the liver biopsy is still the gold standard in diagnosis and for disease staging and grading. Because of its invasiveness, this technique is not well accepted by patients and the method is prone to sampling error. Therefore, an urgent need exists to find reliable, accurate and noninvasive biomarkers discriminating between different disease stages or to develop innovative imaging techniques to quantify steatosis.
Collapse
|
133
|
Chen XT, Wang XG, Xie LY, Huang JW, Zhao W, Wang Q, Yao LM, Li WR. Effects of Xingnaojing Injection on Adenosinergic Transmission and Orexin Signaling in Lateral Hypothalamus of Ethanol-Induced Coma Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2389485. [PMID: 31346513 PMCID: PMC6620848 DOI: 10.1155/2019/2389485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 11/21/2022]
Abstract
Acute alcohol exposure induces unconscious condition such as coma whose main physical manifestation is the loss of righting reflex (LORR). Xingnaojing Injection (XNJI), which came from Chinese classic formula An Gong Niu Huang Pill, is widely used for consciousness disorders in China, such as coma. Although XNJI efficiently shortened the duration of LORR induced by acute ethanol, it remains unknown how XNJI acts on ethanol-induced coma (EIC). We performed experiments to examine the effects of XNJI on orexin and adenosine (AD) signaling in the lateral hypothalamic area (LHA) in EIC rats. Results showed that XNJI reduced the duration of LORR, which implied that XNJI promotes recovery form coma. Microdialysis data indicated that acute ethanol significantly increased AD release in the LHA but had no effect on orexin A levels. The qPCR results displayed a significant reduction in the Orexin-1 receptors (OX1R) expression with a concomitant increase in the A1 receptor (A1R) and equilibrative nucleoside transporter type 1 (ENT1) expression in EIC rats. In contrast, XNJI reduced the extracellular AD levels but orexin A levels remained unaffected. XNJI also counteracted the downregulation of the OX1R expression and upregulation of A1R and ENT1 expression caused by EIC. As for ADK expression, XNJI but not ethanol, displayed an upregulation in the LHA in EIC rats. Based on these results, we suggest that XNJI promotes arousal by inhibiting adenosine neurotransmission via reducing AD level and the expression of A1R and ENT1.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Xiao-Ge Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Li-Yuan Xie
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Jia-Wen Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Li-Mei Yao
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, 321 Longdong North Road, Tianhe District, Guangzhou 510520, China
| | - Wei-Rong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China
| |
Collapse
|
134
|
Teschke R. Microsomal Ethanol-Oxidizing System: Success Over 50 Years and an Encouraging Future. Alcohol Clin Exp Res 2019; 43:386-400. [PMID: 30667528 DOI: 10.1111/acer.13961] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 01/07/2023]
Abstract
Fifty years ago, in 1968, the pioneering scientists Charles S. Lieber and Leonore M. DeCarli discovered the capacity for liver microsomes to oxidize ethanol (EtOH) and named it the microsomal ethanol-oxidizing system (MEOS), which revolutionized clinical and experimental alcohol research. The last 50 years of MEOS are now reviewed and highlighted. Since its discovery and as outlined in a plethora of studies, significant insight was gained regarding the fascinating nature of MEOS: (i) MEOS is distinct from alcohol dehydrogenase and catalase, representing a multienzyme complex with cytochrome P450 (CYP) and its preferred isoenzyme CYP 2E1, NADPH-cytochrome P450 reductase, and phospholipids; (ii) it plays a significant role in alcohol metabolism at high alcohol concentrations and after induction due to prolonged alcohol use; (iii) hydroxyl radicals and superoxide radicals promote microsomal EtOH oxidation, assisted by phospholipid peroxides; (iv) new aspects focus on microsomal oxidative stress through generation of reactive oxygen species (ROS), with intermediates such as hydroxyethyl radical, ethoxy radical, acetyl radical, singlet radical, hydroxyl radical, alkoxyl radical, and peroxyl radical; (v) triggered by CYP 2E1, ROS are involved in the initiation and perpetuation of alcoholic liver injury, consequently shifting the previous nutrition-based concept to a clear molecular-based disease; (vi) intestinal CYP 2E1 induction and ROS are involved in endotoxemia, leaky gut, and intestinal microbiome modifications, together with hepatic CYP 2E1 and liver injury; (vii) circulating blood CYP 2E1 exosomes may be of diagnostic value; (viii) circadian rhythms provide high MEOS activities associated with significant alcohol metabolism and potential toxicity risks as a largely neglected topic; and (ix) a variety of genetic animal models are useful and have been applied elucidating mechanistic aspects of MEOS. In essence, MEOS along with its CYP 2E1 component currently explains several mechanistic steps leading to alcoholic liver injury and has a promising future in alcohol research.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology (RT), Department of Internal Medicine II, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| |
Collapse
|