101
|
Senatus LM, Schmidt AM. The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Front Genet 2017; 8:187. [PMID: 29259621 PMCID: PMC5723304 DOI: 10.3389/fgene.2017.00187] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
The process of advanced glycation leads to the generation and accumulation of an heterogeneous class of molecules called advanced glycation endproducts, or AGEs. AGEs are produced to accelerated degrees in disorders such as diabetes, renal failure, inflammation, neurodegeneration, and in aging. Further, AGEs are present in foods and in tobacco products. Hence, through both endogenous production and exogenous consumption, AGEs perturb vascular homeostasis by a number of means; in the first case, AGEs can cause cross-linking of long-lived molecules in the basement membranes such as collagens, thereby leading to “vascular stiffening” and processes that lead to hyperpermeability and loss of structural integrity. Second, AGEs interaction with their major cell surface signal transduction receptor for AGE or RAGE sets off a cascade of events leading to modulation of gene expression and loss of vascular and tissue homeostasis, processes that contribute to cardiovascular disease. In addition, it has been shown that an enzyme, which plays key roles in the detoxification of pre-AGE species, glyoxalase 1 (GLO1), is reduced in aged and diabetic tissues. In the diabetic kidney devoid of Ager (gene encoding RAGE), higher levels of Glo1 mRNA and GLO1 protein and activity were observed, suggesting that in conditions of high AGE accumulation, natural defenses may be mitigated, at least in part through RAGE. AGEs are a marker of arterial aging and may be detected by both biochemical means, as well as measurement of “skin autofluorescence.” In this review, we will detail the pathobiology of the AGE-RAGE axis and the consequences of its activation in the vasculature and conclude with potential avenues for therapeutic interruption of the AGE-RAGE ligand-RAGE pathways as means to forestall the deleterious consequences of AGE accumulation and signaling via RAGE.
Collapse
Affiliation(s)
- Laura M Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
102
|
Müller I, Vogl T, Pappritz K, Miteva K, Savvatis K, Rohde D, Most P, Lassner D, Pieske B, Kühl U, Van Linthout S, Tschöpe C. Pathogenic Role of the Damage-Associated Molecular Patterns S100A8 and S100A9 in Coxsackievirus B3-Induced Myocarditis. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004125. [PMID: 29158436 DOI: 10.1161/circheartfailure.117.004125] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/23/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND The alarmins S100A8 and S100A9 are damage-associated molecular patterns, which play a pivotal role in cardiovascular diseases, inflammation, and viral infections. We aimed to investigate their role in Coxsackievirus B3 (CVB3)-induced myocarditis. METHODS AND RESULTS S100A8 and S100A9 mRNA expression was 13.0-fold (P=0.012) and 5.1-fold (P=0.038) higher in endomyocardial biopsies from patients with CVB3-positive myocarditis compared with controls, respectively. Elimination of CVB3 led to a downregulation of these alarmins. CVB3-infected mice developed an impaired left ventricular function and displayed an increased left ventricular S100A8 and S100A9 protein expression versus controls. In contrast, CVB3-infected S100A9 knockout mice, which are also a complete knockout for S100A8 on protein level, showed an improved left ventricular function, which was associated with a reduced cardiac inflammatory and oxidative response, and lower CVB3 copy number compared with wild-type CVB3 mice. Exogenous application of S100A8 to S100A9 knockout CVB3 mice induced a severe myocarditis similar to wild-type CVB3 mice. In CVB3-infected HL-1 cells, S100A8 and S100A9 enhanced oxidative stress and CVB3 copy number compared with unstimulated infected cells. In CVB3-infected RAW macrophages, both alarmins increased MIP-2 (macrophage inflammatory protein-2) chemokine expression, which was reduced in CVB3 S100A8 knockdown versus scrambled siRNA CVB3 cells. CONCLUSIONS S100A8 and S100A9 aggravate CVB3-induced myocarditis and might serve as therapeutic targets in inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- Irene Müller
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Thomas Vogl
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Kathleen Pappritz
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Kapka Miteva
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Konstantinos Savvatis
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - David Rohde
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Patrick Most
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Dirk Lassner
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Burkert Pieske
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Uwe Kühl
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Sophie Van Linthout
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.)
| | - Carsten Tschöpe
- From the Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Germany (I.M., K.P., K.M., B.P., U.K., S.V.L., C.T., K.S.); Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Germany (I.M., K.P., K.M., K.S., S.V.L., C.T.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin (I.M., K.P., B.P., S.V.L., C.T.); Department of Immunology, University of Münster, Germany (T.V.); Inherited Cardiovascular Diseases Unit, Barts Health NHS Trust, Barts Heart Centre, London, United Kingdom (K.S.); William Harvey Research Institute, Queen Mary University London, United Kingdom (K.S.); Department of Internal Medicine III, Center for Molecular and Translational Cardiology, University of Heidelberg, Germany (D.R., P.M.); DZHK, (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (P.M.); Institut Kardiale Diagnostik und Therapie (IKDT), Berlin, Germany (D.L.); and Department of Cardiology, Deutsches Herzzentrum Berlin (DHZB), Germany (B.P.).
| |
Collapse
|
103
|
Agod Z, Fekete T, Budai MM, Varga A, Szabo A, Moon H, Boldogh I, Biro T, Lanyi A, Bacsi A, Pazmandi K. Regulation of type I interferon responses by mitochondria-derived reactive oxygen species in plasmacytoid dendritic cells. Redox Biol 2017; 13:633-645. [PMID: 28818792 PMCID: PMC5558471 DOI: 10.1016/j.redox.2017.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial reactive oxygen species (mtROS) generated continuously under physiological conditions have recently emerged as critical players in the regulation of immune signaling pathways. In this study we have investigated the regulation of antiviral signaling by increased mtROS production in plasmacytoid dendritic cells (pDCs), which, as major producers of type I interferons (IFN), are the key coordinators of antiviral immunity. The early phase of type I IFN production in pDCs is mediated by endosomal Toll-like receptors (TLRs), whereas the late phase of IFN response can also be triggered by cytosolic retinoic acid-inducible gene-I (RIG-I), expression of which is induced upon TLR stimulation. Therefore, pDCs provide an ideal model to study the impact of elevated mtROS on the antiviral signaling pathways initiated by receptors with distinct subcellular localization. We found that elevated level of mtROS alone did not change the phenotype and the baseline cytokine profile of resting pDCs. Nevertheless increased mtROS levels in pDCs lowered the TLR9-induced secretion of pro-inflammatory mediators slightly, whereas reduced type I IFN production markedly via blocking phosphorylation of interferon regulatory factor 7 (IRF7), the key transcription factor of the TLR9 signaling pathway. The TLR9-induced expression of RIG-I in pDCs was also negatively regulated by enhanced mtROS production. On the contrary, elevated mtROS significantly augmented the RIG-I-stimulated expression of type I IFNs, as well as the expression of mitochondrial antiviral-signaling (MAVS) protein and the phosphorylation of Akt and IRF3 that are essential components of RIG-I signaling. Collectively, our data suggest that increased mtROS exert diverse immunoregulatory functions in pDCs both in the early and late phase of type I IFN responses depending on which type of viral sensing pathway is stimulated.
Collapse
Affiliation(s)
- Zsofia Agod
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Marietta M Budai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Aliz Varga
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary; Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca 400112, Romania
| | - Hyelim Moon
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, USA
| | - Tamas Biro
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary; Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca 400112, Romania
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary; Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca 400112, Romania
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, Debrecen H-4032, Hungary.
| |
Collapse
|
104
|
Comparative Analysis of AGE and RAGE Levels in Human Somatic and Embryonic Stem Cells under H 2O 2-Induced Noncytotoxic Oxidative Stress Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4240136. [PMID: 29104727 PMCID: PMC5623800 DOI: 10.1155/2017/4240136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
Abstract
The accumulation of advanced glycation end products (AGEs) occurs in ageing and in many degenerative diseases as a final outcome of persistent oxidative stress on cells and organs. Environmental alterations taking place during early embryonic development can also lead to oxidative damage, reactive oxygen species (ROS) production, and AGE accumulation. Whether similar mechanisms act on somatic and embryonic stem cells (ESC) exposed to oxidative stress is not known; and therefore, the modelling of oxidative stress in vitro on human ESC has been the focus of this study. We compared changes in Nε-carboxymethyl-lysine (CML) advanced glycation end products and RAGE levels in hESC versus differentiated somatic cells exposed to H2O2 within the noncytotoxic range. Our data revealed that hESC accumulates CML and RAGE under oxidative stress conditions in different ways than somatic cells, being the accumulation of CML statistically significant only in somatic cells and, conversely, the RAGE increase exclusively appreciated in hESC. Then, following cardiac and neural differentiation, we observed a progressive removal of AGEs and at the same time an elevated activity of the 20S proteasome. We conclude that human ESCs constitute a unique model to study the consequence of an oxidative environment in the pluripotent cells of the embryo during the human preimplantation period.
Collapse
|
105
|
Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017; 131:1069-1092. [PMID: 28515343 DOI: 10.1042/cs20160823] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
Advanced glycation end-product (AGE) is the generic term for a heterogeneous group of derivatives arising from a non-enzymatic reaction between reducing sugars and proteins. In recent years, evidence has accumulated that incriminates AGEs in pathogenic processes associated with both chronic hyperglycaemia and age-related diseases. Regardless of their exogenous or endogenous origin, the accumulation of AGEs and their derivatives could promote accelerated ageing by leading to protein modifications and activating several inflammatory signalling pathways via AGE-specific receptors. However, it remains to be demonstrated whether preventing the accumulation of AGEs and their effects is an important therapeutic option for successful ageing. The present review gives an overview of the current knowledge on the pathogenic role of AGEs by focusing on three AGE target organs: kidney, heart and brain. For each of these organs we concentrate on an age-related disease, each of which is a major public health issue: chronic kidney disease, heart dysfunction and neurodegenerative diseases. Even though strong connections have been highlighted between glycation and age-related pathogenesis, causal links still need to be validated. In each case, we report evidence and uncertainties suggested by animal or epidemiological studies on the possible link between pathogenesis and glycation in a chronic hyperglycaemic state, in the absence of diabetes, and with exogenous AGEs alone. Finally, we present some promising anti-AGE strategies that are currently being studied.
Collapse
|
106
|
Tabatabaei-Malazy O, Khodaeian M, Bitarafan F, Larijani B, M.Amoli M. Polymorphisms of Antioxidant Genes as a Target for Diabetes Management. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:135-147. [PMID: 29682485 PMCID: PMC5898637 DOI: 10.22088/acadpub.bums.6.3.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is one of the most important health problems with increasing prevalence worldwide. Oxidative stress, a result of imbalance between reactive oxygen species (ROS) generation and antioxidant defense mechanisms has been demonstrated as the main pathology in DM. Hyperglycemia-induced ROS productions can induce oxidative stress through four major molecular mechanisms including the polyol pathway, advanced glycation end- products formation, activation of protein kinase C isoforms, and the hexosamine pathways. In the development of type 2 DM (T2DM) and its complications, genetic and environmental factors play important roles. Therefore, the aim of this review was to focus on the assessment of single-nucleotide polymorphisms within antioxidant enzymes including superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, nitric oxide synthase, and NAD(P)H oxidase and their association with T2DM. The results would be helpful in understanding the mechanisms involved in pathogenesis of disease besides discovering new treatment approaches in management of DM.
Collapse
Affiliation(s)
- Ozra Tabatabaei-Malazy
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrnoosh Khodaeian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Bitarafan
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa M.Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
107
|
Sukjamnong S, Chan YL, Zakarya R, Saad S, Sharma P, Santiyanont R, Chen H, Oliver BG. Effect of long-term maternal smoking on the offspring's lung health. Am J Physiol Lung Cell Mol Physiol 2017; 313:L416-L423. [PMID: 28522560 DOI: 10.1152/ajplung.00134.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022] Open
Abstract
Maternal smoking during pregnancy contributes to long-term health problems in offspring, especially respiratory disorders that can manifest in either childhood or adulthood. Receptors for advanced glycation end products (RAGE) are multiligand receptors abundantly localized in the lung, capable of responding to by-products of reactive oxygen species and proinflammatory responses. RAGE signaling is a key regulator of inflammation in cigarette smoking-related pulmonary diseases. However, the impact of maternal cigarette smoke exposure on lung RAGE signaling in the offspring is unclear. This study aims to investigate the effect of maternal cigarette smoke exposure (SE), as well as mitochondria-targeted antioxidant [mitoquinone mesylate (MitoQ)] treatment, during pregnancy on the RAGE-mediated signaling pathway in the lung of male offspring. Female Balb/c mice (8 wk) were divided into a sham group (exposed to air), an SE group (exposed to cigarette smoke), and an SE + MQ group (exposed to cigarette smoke with MitoQ supplement from mating). The lungs from male offspring were collected at 13 wk. RAGE and its downstream signaling, including nuclear factor-κB and mitogen-activated protein kinase family consisting of extracellular signal-regulated kinase 1, ERK2, c-JUN NH2-terminal kinase (JNK), and phosphorylated JNK, in the lung were significantly increased in the SE offspring. Mitochondrial antioxidant manganese superoxide dismutase was reduced, whereas IL-1β and oxidative stress response nuclear factor (erythroid-derived 2)-like 2 were significantly increased in the SE offspring. Maternal MitoQ treatment normalized RAGE, IL-1β, and Nrf-2 levels in the SE + MQ offspring. Maternal SE increased RAGE and its signaling elements associated with increased oxidative stress and inflammatory cytokines in offspring lungs, whereas maternal MitoQ treatment can partially normalize these changes.
Collapse
Affiliation(s)
- Surpon Sukjamnong
- Centre for Health Technologies & Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Department of Clinical Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Yik Lung Chan
- Centre for Health Technologies & Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Razia Zakarya
- Centre for Health Technologies & Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Sonia Saad
- Centre for Health Technologies & Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Renal Group Kolling Institute, Royal North Shore Hospital, St. Leonards, New South Wales, Australia; and
| | - Pawan Sharma
- Centre for Health Technologies & Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Rachana Santiyanont
- Department of Clinical Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Hui Chen
- Centre for Health Technologies & Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Brian G Oliver
- Centre for Health Technologies & Molecular Biosciences, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia;
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
108
|
Li P, Tang Z, Wang L, Feng B. Glucagon-like peptide-1 analogue liraglutide ameliorates atherogenesis via inhibiting advanced glycation end product-induced receptor for advanced glycosylation end product expression in apolipoprotein-E deficient mice. Mol Med Rep 2017; 16:3421-3426. [PMID: 28713911 DOI: 10.3892/mmr.2017.6978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) can protect arteriosclerotic lesions in apolipoprotein-E deficient (ApoE-/-) mice. Advanced glycation end products (AGEs)/receptor for advanced glycation end products (RAGE) interaction serves a key role in the development of diabetic vascular complications. The present study examined whether the GLP-1 analogue liraglutide can ameliorate atherogenesis via inhibiting AGEs-induced RAGE expression. Male ApoE-/- mice (age, 10 weeks) were divided into control, GLP-1, AGEs and AGEs+GLP-1 group. All mice were fed a high-fat diet. The AGEs and AGEs+GLP-1 groups were treated with intraperitoneal injection of AGEs (30 mg/kg/day). The GLP-1 and AGEs+GLP-1 groups were treated with subcutaneous injections of liraglutide (0.4 mg/kg/day). After 9 weeks, blood was drawn and the aortas were rapidly procured. The serum levels of AGEs, soluble RAGE (sRAGE), stromal cell-derived factor-1α (SDF-1α), total cholesterol and triacylglycerol were measured. Atherosclerotic plaque area was determined by Sudan IV staining. The mRNA and protein expression levels of RAGE were determined using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that AGEs treatment increased serum AGEs levels, increased the expression of RAGE in the aorta, and aggravated atherosclerotic lesions compared with the control. Liraglutide treatment reduced serum AGEs levels, reduced the expression of RAGE in aorta, and relieved atherosclerotic lesions compared with the control. In conclusion, these data suggested that liraglutide serves an anti-atherosclerotic effect via inhibiting AGEs-induced RAGE expression in ApoE-/- mice. These findings provide novel evidence for the use of GLP-1-type agents for the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Peicheng Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200000, P.R. China
| | - Zhaosheng Tang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200000, P.R. China
| | - Lin Wang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200000, P.R. China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200000, P.R. China
| |
Collapse
|
109
|
Chernikov AA, Severina AS, Shamhalova MS, Shestakova MV. The role of «metabolic memory» mechanisms in the development and progression of vascular complications of diabetes mellitus. DIABETES MELLITUS 2017. [DOI: 10.14341/7674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study of diabetes mellitus (DM), its complications and related pathologies has been continuously performed for many years; however, despite the substantial work and outstanding achievements in studying the mechanisms of DM development and the success of new medicinal products for controlling glycaemia, the problems associated with the late complications of DM continue to increase. The importance of glycaemic control in the early stages of DM for the development of complications is seen only after a sufficiently long period of observation. Such a delayed effect of primary good or unsatisfactory metabolic control, which shapes the patients clinical fate to a greater extent, is termed metabolic memory. The disorders developed under the influence of hyperglycaemia persist for long periods after the normalisation of carbohydrate metabolism; moreover, the effect of previous hyperglycaemia extends over the next 20 and even 30 years. Current research is focused on the possible mechanisms of metabolic memory development, including oxidative stress, advanced glycation end products and epigenetic mechanisms. This research will provide insight into potential markers for the early development and progression of vascular complications and new therapeutic possibilities for the future. However, determining the probable point of no return is more important, which implies that a point exists; after this point is crossed, the progression of vascular complications associated with DM cannot be prevented or reversed. The results of numerous experimental studies demonstrate that the prerequisite components of metabolic memory can be used as potential markers of the progression of DM complications, and may be potential therapeutic targets.
Collapse
|
110
|
Haines D, Miranda HG, Flynn BC. The Role of Hemoglobin A1c as a Biomarker and Risk Assessment Tool in Patients Undergoing Non-cardiac and Cardiac Surgical Procedures. J Cardiothorac Vasc Anesth 2017; 32:488-494. [PMID: 29199050 DOI: 10.1053/j.jvca.2017.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel Haines
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS
| | | | - Brigid C Flynn
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
111
|
Behl T, Kotwani A. Omega-3 fatty acids in prevention of diabetic retinopathy. ACTA ACUST UNITED AC 2017; 69:946-954. [PMID: 28481011 DOI: 10.1111/jphp.12744] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To review the competence of Omega-3 fatty acids in restricting the progression, thereby leading to prevention of diabetic retinopathy. KEY FINDINGS Owing to their anti-inflammatory and anti-angiogenic properties, Omega-3 fatty acids alleviate major aetiological agents. These fatty acids are renowned for their beneficial effects in various cardiovascular and other disorders; however, their potential to prevent the progression of diabetic retinopathy remains least explored. SUMMARY Utilizing this potential, we may develop effective prophylactic agents which markedly inhibit the advent of retinal angiogenesis and prevent the apoptosis of retinal endothelial and neuronal cells, thereby averting retinal degeneration, hence safeguarding diabetic patients from this sight-threatening complication.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
112
|
Nass N, Trau S, Paulsen F, Kaiser D, Kalinski T, Sel S. The receptor for advanced glycation end products RAGE is involved in corneal healing. Ann Anat 2017; 211:13-20. [PMID: 28163201 DOI: 10.1016/j.aanat.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
|
113
|
Bioactive phytochemicals in barley. J Food Drug Anal 2017; 25:148-161. [PMID: 28911532 PMCID: PMC9333424 DOI: 10.1016/j.jfda.2016.08.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have consistently shown that regular consumption of whole grain barley reduces the risk of developing chronic diseases. The presence of barley fiber, especially β-glucan in whole grain barley, has been largely credited for these health benefits. However, it is now widely believed that the actions of the fiber component alone do not explain the observed health benefits associated with the consumption of whole grain barley. Whole grain barley also contains phytochemicals including phenolic acids, flavonoids, lignans, tocols, phytosterols, and folate. These phytochemicals exhibit strong anti-oxidant, antiproliferative, and cholesterol lowering abilities, which are potentially useful in lowering the risk of certain diseases. Therefore, the high concentration of phytochemicals in barley may be largely responsible for its health benefits. This paper reviews available information regarding barley phytochemicals and their potential to combat common nutrition-related diseases including cancer, cardiovascular disease, diabetes, and obesity.
Collapse
|
114
|
Tsutsui A, Pradipta AR, Kitazume S, Taniguchi N, Tanaka K. Effect of spermine-derived AGEs on oxidative stress and polyamine metabolism. Org Biomol Chem 2017; 15:6720-6724. [DOI: 10.1039/c7ob01346a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spermine-derived AGEs CES- and MOSD-induced oxidative stress proceeds through different pathways.
Collapse
Affiliation(s)
- Ayumi Tsutsui
- Department of Agricultural and Life Sciences
- Faculty of Agriculture
- Shinshu University
- Nagano 399-4598
- Japan
| | | | - Shinobu Kitazume
- Disease Glycomics Team
- Systems Glycobiology Research Group
- Global Research Cluster
- RIKEN
- Saitama 351-0198
| | - Naoyuki Taniguchi
- Disease Glycomics Team
- Systems Glycobiology Research Group
- Global Research Cluster
- RIKEN
- Saitama 351-0198
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Biofunctional Chemistry Laboratory
| |
Collapse
|
115
|
Yamagishi SI, Matsui T. Protective role of sulphoraphane against vascular complications in diabetes. PHARMACEUTICAL BIOLOGY 2016; 54:2329-2339. [PMID: 26841240 DOI: 10.3109/13880209.2016.1138314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Diabetes is a global health challenge. Although large prospective clinical trials have shown that intensive control of blood glucose or blood pressure reduces the risk for development and progression of vascular complications in diabetes, a substantial number of diabetic patients still experience renal failure and cardiovascular events, which could account for disabilities and high mortality rate in these subjects. Objective Sulphoraphane is a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, such as broccoli, cabbage and Brussels sprouts, and an inducer of phase II antioxidant and detoxification enzymes with anticancer properties. We reviewed here the protective role of sulphoraphane against diabetic vascular complications. Methods In this review, literature searches were undertaken in Medline and in CrossRef. Non-English language articles were excluded. Keywords [sulphoraphane and (diabetes, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, diabetic complications, vascular, cardiomyocytes, heart or glycation)] have been used to select the articles. Results There is accumulating evidence that sulphoraphane exerts beneficial effects on vascular damage in both cell culture and diabetic animal models via antioxidative properties. Furthermore, we have recently found that sulphoraphane inhibits in vitro formation of advanced glycation end products (AGEs), suppresses the AGE-induced inflammatory reactions in rat aorta by reducing receptor for AGEs (RAGE) expression and decreases serum levels of AGEs in humans. Conclusion These findings suggest that blockade of oxidative stress and/or the AGE-RAGE axis by sulphoraphane may be a novel therapeutic strategy for preventing vascular complications in diabetes.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- a Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications , Kurume University School of Medicine , Kurume , Japan
| | - Takanori Matsui
- a Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications , Kurume University School of Medicine , Kurume , Japan
| |
Collapse
|
116
|
Aikawa E, Fujita R, Asai M, Kaneda Y, Tamai K. Receptor for Advanced Glycation End Products-Mediated Signaling Impairs the Maintenance of Bone Marrow Mesenchymal Stromal Cells in Diabetic Model Mice. Stem Cells Dev 2016; 25:1721-1732. [PMID: 27539289 DOI: 10.1089/scd.2016.0067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have been demonstrated to contribute to tissue regeneration. However, chronic pathological conditions, such as diabetes and aging, can result in a decreased number and/or quality of BM-MSCs. We therefore investigated the maintenance mechanism of BM-MSCs by studying signaling through the receptor for advanced glycation end products (RAGE), which is thought to be activated under various pathological conditions. The abundance of endogenous BM-MSCs decreased in a type 2 diabetes mellitus (DM2) model, as determined by performing colony-forming unit (CFU) assays. Flow cytometric analysis revealed that the prevalence of the Lin-/ckit-/CD106+/CD44- BM population, which was previously identified as a slow-cycling BM-MSC population, also decreased. Furthermore, in a streptozotocin-induced type 1 DM model (DM1), the CFUs of fibroblasts and the prevalence of the Lin-/ckit-/CD106+/CD44- BM population also significantly decreased. BM-MSCs in RAGE knockout (KO) mice were resistant to such reduction induced by streptozotocin treatment, suggesting that chronic RAGE signaling worsened the maintenance mechanism of BM-MSCs. Using an in vitro culture condition, BM-MSCs from RAGE-KO mice showed less proliferation and expressed significantly more Nanog and Oct-4, which are key factors in multipotency, than did wild-type BM-MSCs. Furthermore, RAGE-KO BM-MSCs showed a greater capacity for differentiation into mesenchymal lineages, such as adipocytes and osteocytes. These data suggested that RAGE signaling inhibition is useful for maintaining BM-MSCs in vitro. Together, our findings indicated that perturbation of BM-MSCs in DM could be partially explained by chronic RAGE signaling and that targeting the RAGE signaling pathway is a viable approach for maintaining BM-MSCs under chronic pathological conditions.
Collapse
Affiliation(s)
- Eriko Aikawa
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Ryo Fujita
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan .,2 Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan .,3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Maiko Asai
- 4 Faculty of Medicine, Hiroshima University , Higashihiroshima, Japan
| | - Yasufumi Kaneda
- 3 Division of Gene Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| | - Katsuto Tamai
- 1 Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University , Suita, Japan
| |
Collapse
|
117
|
Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM. Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front Physiol 2016; 7:439. [PMID: 27746742 PMCID: PMC5040721 DOI: 10.3389/fphys.2016.00439] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
Obesity and osteoporosis are two alarming health disorders prominent among middle and old age populations, and the numbers of those affected by these two disorders are increasing. It is estimated that more than 600 million adults are obese and over 200 million people have osteoporosis worldwide. Interestingly, both of these abnormalities share some common features including a genetic predisposition, and a common origin: bone marrow mesenchymal stromal cells. Obesity is characterized by the expression of leptin, adiponectin, interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), macrophage colony stimulating factor (M-CSF), growth hormone (GH), parathyroid hormone (PTH), angiotensin II (Ang II), 5-hydroxy-tryptamine (5-HT), Advance glycation end products (AGE), and myostatin, which exert their effects by modulating the signaling pathways within bone and muscle. Chemical messengers (e.g., TNF-α, IL-6, AGE, leptins) that are upregulated or downregulated as a result of obesity have been shown to act as negative regulators of osteoblasts, osteocytes and muscles, as well as positive regulators of osteoclasts. These additive effects of obesity ultimately increase the risk for osteoporosis and muscle atrophy. The aim of this review is to identify the potential cellular mechanisms through which obesity may facilitate osteoporosis, muscle atrophy and bone fractures.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Mary E Curtis
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Letimicia S Fears
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Samuel N Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University Nashville, TN, USA
| | - Hugh M Fentress
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| |
Collapse
|
118
|
Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1015390. [PMID: 27688824 PMCID: PMC5027322 DOI: 10.1155/2016/1015390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 01/11/2023]
Abstract
Obstructive sleep apnea (OSA) associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH) triggered tissue damage. Receptor for advanced glycation end product (RAGE) and its ligand high mobility group box 1 (HMGB1) are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE), the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1) normal air (NA), (2) CIH, (3) CIH+sRAGE, and (4) NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6), apoptotic (Bcl-2/Bax), and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK) signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.
Collapse
|
119
|
Viana SD, Valero J, Rodrigues-Santos P, Couceiro P, Silva AM, Carvalho F, Ali SF, Fontes-Ribeiro CA, Pereira FC. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson's disease. J Neurochem 2016; 138:598-609. [PMID: 27221633 DOI: 10.1111/jnc.13682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 09/01/2023]
Abstract
Convincing evidence indicates that advanced glycation end-products and danger-associated protein S100B play a role in Parkinson's disease (PD). These agents operate through the receptor for advanced glycation end-products (RAGE), which displays distinct isoforms playing protective/deleterious effects. However, the nature of RAGE variants has been overlooked in PD studies. Hence, we attempted to characterize RAGE regulation in early stages of PD striatal pathology. A neurotoxin-based rodent model of PD was used in this study, through administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to C57BL/6 mice. Animals were killed 6 h post-MPTP to assess S100B/RAGE contents (RT-qPCR, ELISA) and RAGE isoform density (WB) and cellular distribution (immunohistochemistry). Dopaminergic and gliotic status were also mapped (HPLC-ED, WB, immunohistochemistry). At this preliminary stage of MPTP-induced PD in mice, RAGE inhibitory isoforms were increased whereas full-length RAGE was not affected. This putative cytoprotective RAGE phenotype paired an inflammatory and pro-oxidant setting fueling DAergic denervation. Increased RAGE inhibitory variants occur in astrocytes showing higher S100B density but no overt signs of hypertrophy or NF-κB activation, a canonical effector of RAGE. These findings expand our understanding of the toxic effect of MPTP on striatum and offer first in vivo evidence of RAGE being a responder in early stages of astrogliosis dynamics, supporting a protective rather tissue-destructive phenotype of RAGE in the initial phase of PD degeneration. These data lay the groundwork for future studies on the relevance of astrocytic RAGE in DAergic neuroprotection strategies. We report increased antagonistic RAGE variants paralleling S100B up-regulation in early stages of MPTP-induced astrogliosis dynamics . We propose that selective RAGE regulation reflects a self-protective mechanism to maintain low levels of RAGE ligands , preventing long-term inflammation and oxidative stress arising from sustained ligands/flRAGE activation . Understanding loss of RAGE protective response to stress may provide new therapeutic options to halt or slow down dopaminergic axonopathy and, ultimately, neuronal death .
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Jorge Valero
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
- Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia, Spain
- Ikerbasque Foundation, Bilbao, Bizkaia, Spain
| | - Paulo Rodrigues-Santos
- Institute of Immunology - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Andréa M Silva
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research/Food and Drug Administration, Jefferson, Arkansas, USA
| | - Carlos A Fontes-Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics/IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
120
|
Kay AM, Simpson CL, Stewart JA. The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. J Diabetes Res 2016; 2016:6809703. [PMID: 27547766 PMCID: PMC4980539 DOI: 10.1155/2016/6809703] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022] Open
Abstract
AGE/RAGE signaling has been a well-studied cascade in many different disease states, particularly diabetes. Due to the complex nature of the receptor and multiple intersecting pathways, the AGE/RAGE signaling mechanism is still not well understood. The purpose of this review is to highlight key areas of AGE/RAGE mediated vascular calcification as a complication of diabetes. AGE/RAGE signaling heavily influences both cellular and systemic responses to increase bone matrix proteins through PKC, p38 MAPK, fetuin-A, TGF-β, NFκB, and ERK1/2 signaling pathways in both hyperglycemic and calcification conditions. AGE/RAGE signaling has been shown to increase oxidative stress to promote diabetes-mediated vascular calcification through activation of Nox-1 and decreased expression of SOD-1. AGE/RAGE signaling in diabetes-mediated vascular calcification was also attributed to increased oxidative stress resulting in the phenotypic switch of VSMCs to osteoblast-like cells in AGEs-induced calcification. Researchers found that pharmacological agents and certain antioxidants decreased the level of calcium deposition in AGEs-induced diabetes-mediated vascular calcification. By understanding the role the AGE/RAGE signaling cascade plays diabetes-mediated vascular calcification will allow for pharmacological intervention to decrease the severity of this diabetic complication.
Collapse
Affiliation(s)
- Amber M. Kay
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - C. LaShan Simpson
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - James A. Stewart
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
121
|
Rowisha M, El-Batch M, El Shikh T, El Melegy S, Aly H. Soluble receptor and gene polymorphism for AGE: relationship with obesity and cardiovascular risks. Pediatr Res 2016; 80:67-71. [PMID: 26991258 DOI: 10.1038/pr.2016.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/30/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Obesity in adolescents has quadrupled in the past 30 y. Markers for cardiovascular risks are needed in this population. We hypothesized that soluble receptor for advanced glycation end products (sRAGE) and asymmetric dimethyl arginine (ADMA) can correlate with carotid intima-media thickness (cIMT), a known index of subclinical atherosclerosis. We also aimed to evaluate the frequency of (Gly82Ser) RAGE gene polymorphism in obese adolescents. METHODS Obese and nonobese adolescents were evaluated in a cross-sectional study for lipid profile, insulin resistance, ADMA, sRAGE, and RAGE gene (Gly 82 Ser) polymorphism. We measured cIMT in all subjects and performed correlation analyses with all markers. RESULTS The study included 50 obese and 40 healthy control adolescents. Compared to controls, obese subjects had less sRAGE (P = 0.02) and greater cIMT (P = 0.006), insulin resistance (P < 0.0001), and ADMA (P < 0.0001). In a multivariate linear regression model, sRAGE was associated with cIMT (β = 0.28, P = 0.04). Both GS and SS genotypes of RAGE were more frequent in obese than controls (P = 0.04). CONCLUSION Increased ADMA and decreased sRAGE are associated with cardiovascular risks in obese adolescents. The S allele in RAGE gene is more frequently detected with obesity. The role of RAGE gene and mechanisms leading to cardiovascular risks need further studying.
Collapse
Affiliation(s)
- Mohamed Rowisha
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manal El-Batch
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Thanaa El Shikh
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Salwa El Melegy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hany Aly
- Department of Pediatrics, the George Washington University and Children's National Medical Center, Washington, DC
| |
Collapse
|
122
|
Linssen PB, Henry RM, Schalkwijk CG, Dekker JM, Nijpels G, Brunner-La Rocca HP, Stehouwer CDA. Serum advanced glycation endproducts are associated with left ventricular dysfunction in normal glucose metabolism but not in type 2 diabetes: The Hoorn Study. Diab Vasc Dis Res 2016; 13:278-85. [PMID: 27190078 DOI: 10.1177/1479164116640680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate whether serum advanced glycation endproducts are associated with left ventricular systolic and diastolic function in participants with normal glucose metabolism, impaired glucose metabolism and type 2 diabetes mellitus. METHODS Participants from a cross-sectional, population-based study (n = 280 with normal glucose metabolism, n = 171 with impaired glucose metabolism, n = 242 with type 2 diabetes mellitus) underwent echocardiography. Serum protein-bound advanced glycation endproducts [i.e. Nε-(carboxymethyl)lysine, pentosidine and Nε-(carboxyethyl)lysine] were measured. Linear regression analyses were used and stratified according to glucose metabolism status. RESULTS In normal glucose metabolism, higher Nε-(carboxymethyl)lysine and pentosidine levels were associated with worse diastolic function (left atrial volume index and left atrial volume × left ventricular mass index product term) and higher Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine levels with worse systolic function (ejection fraction). In impaired glucose metabolism, a similar pattern emerged, though less consistent. In type 2 diabetes mellitus, these associations were non-existent for diastolic function or even reversed for systolic function. CONCLUSION This suggests that serum advanced glycation endproducts are associated with impaired left ventricular function in normal glucose metabolism, but that with deteriorating glucose metabolism status, serum advanced glycation endproducts may not mirror heart failure risk.
Collapse
Affiliation(s)
- Pauline Bc Linssen
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ronald Ma Henry
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jacqueline M Dekker
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Giel Nijpels
- EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans-Peter Brunner-La Rocca
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen DA Stehouwer
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
123
|
Neviere R, Yu Y, Wang L, Tessier F, Boulanger E. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions. Glycoconj J 2016; 33:607-17. [PMID: 27277623 DOI: 10.1007/s10719-016-9679-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
|
124
|
Rustom A. The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol 2016; 6:160057. [PMID: 27278648 PMCID: PMC4929939 DOI: 10.1098/rsob.160057] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
Tunnelling nanotubes (TNTs) are increasingly recognized as central players in a multitude of cellular mechanisms and diseases. Although their existence and functions in animal organisms are still elusive, emerging evidence suggests that they are involved in developmental processes, tissue regeneration, viral infections or pathogen transfer, stem cell differentiation, immune responses as well as initiation and progression of neurodegenerative disorders and cancer (see Sisakhtnezhad & Khosravi 2015 Eur. J. Cell Biol. 94, 429-443. (doi:10.1016/j.ejcb.2015.06.010)). A broader field of vision, including their striking functional and structural resemblance with nanotube-mediated phenomena found throughout the phylogenetic tree, from plants down to bacteria, points to a universal, conserved and tightly regulated mechanism of cellular assemblies. Based on our initial definition of TNTs as open-ended channels mediating membrane continuity between connected cells (Rustom et al. 2004 Science 303, 1007-1010. (doi:10.1126/science.1093133)), it is suggested that animal tissues represent supercellular assemblies that-besides opening discrete communication pathways-balance diverse stress factors caused by pathological changes or fluctuating physiological and environmental conditions, such as oxidative stress or nutrient shortage. By combining current knowledge about nanotube formation, intercellular transfer and communication phenomena as well as associated molecular pathways, a model evolves, predicting that the linkage between reactive oxygen species, TNT-based supercellularity and the intercellular shuttling of materials will have significant impact on diverse body functions, such as cell survival, redox/metabolic homeostasis and mitochondrial heteroplasmy. It implies that TNTs are intimately linked to the physiological and pathological state of animal cells and represent a central joint element of diverse diseases, such as neurodegenerative disorders, diabetes or cancer.
Collapse
Affiliation(s)
- Amin Rustom
- Interdisciplinary Center for Neurosciences (IZN), Institute of Neurobiology, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| |
Collapse
|
125
|
Chen J, Jing J, Yu S, Song M, Tan H, Cui B, Huang L. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis. Am J Transl Res 2016; 8:2169-2178. [PMID: 27347324 PMCID: PMC4891429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Elevated levels of advanced glycation endproducts (AGEs) is an important risk factor for atherosclerosis. Dysfunction of endothelial progenitor cells (EPCs), which is essential for re-endothelialization and neovascularization, is a hallmark of atherosclerosis. However, it remains unclear whether and how AGEs acts on EPCs to promote pathogenesis of atherosclerosis. In this study, EPCs were exposed to different concentrations of AGEs. The expression of NADPH and Rac1 was measured to investigate the involvement of NADPH oxidase pathway. ROS was examined to indicate the level of oxidative stress in EPCs. Total JNK and p-JNK were determined by Western blotting. Cell apoptosis was evaluated by both TUNEL staining and flow cytometry. Cell proliferation was measured by (3)H thymidine uptake. The results showed that treatment of EPCs with AGEs increased the levels of ROS in EPCs. Mechanistically, AGEs increased the activity of NADPH oxidase and the expression of Rac1, a major component of NADPH. Importantly, treatment of EPCs with AGEs activated the JNK signaling pathway, which was closely associated with cell apoptosis and inhibition of proliferation. Our results suggest that the RAGE activation by AGEs in EPCs upregulates intracellular ROS levels, which contributes to increased activity of NADPH oxidase and expression of Rac1, thus promoting cellular apoptosis and inhibiting proliferation. Mechanistically, AGEs binding to the receptor RAGE in EPCs is associated with hyperactivity of JNK signaling pathway, which is downstream of ROS. Our findings suggest that dysregulation of the AGEs/RAGE axis in EPCs may promote atherosclerosis and identify the NADPH/ROS/JNK signaling axis as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jianfei Chen
- Institute of Cardiovascular Research of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University Chongqing 400037, China
| | - Jun Jing
- Institute of Cardiovascular Research of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University Chongqing 400037, China
| | - Shiyong Yu
- Institute of Cardiovascular Research of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University Chongqing 400037, China
| | - Minbao Song
- Institute of Cardiovascular Research of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University Chongqing 400037, China
| | - Hu Tan
- Institute of Cardiovascular Research of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University Chongqing 400037, China
| | - Bin Cui
- Institute of Cardiovascular Research of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University Chongqing 400037, China
| | - Lan Huang
- Institute of Cardiovascular Research of PLA, Department of Cardiology, Xinqiao Hospital, The Third Military Medical University Chongqing 400037, China
| |
Collapse
|
126
|
Juranek JK, Daffu GK, Geddis MS, Li H, Rosario R, Kaplan BJ, Kelly L, Schmidt AM. Soluble RAGE Treatment Delays Progression of Amyotrophic Lateral Sclerosis in SOD1 Mice. Front Cell Neurosci 2016; 10:117. [PMID: 27242430 PMCID: PMC4860390 DOI: 10.3389/fncel.2016.00117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
The etiology of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder characterized by progressive muscle weakness and spasticity, remains largely unknown. Approximately 5-10% of cases are familial, and of those, 15-20% are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Mutations of the SOD1 gene interrupt cellular homeostasis and contribute to cellular toxicity evoked by the presence of altered SOD1, along with other toxic species, such as advanced glycation end products (AGEs). AGEs trigger activation of their chief cell surface receptor, RAGE (receptor for advanced glycation end products), and induce RAGE-dependent cellular stress and inflammation in neurons, thereby affecting their function and leading to apoptosis. Here, we show for the first time that the expression of RAGE is higher in the SOD1 transgenic mouse model of ALS vs. wild-type mouse spinal cord. We tested whether pharmacological blockade of RAGE may delay the onset and progression of disease in this mouse model. Our findings reveal that treatment of SOD1 transgenic mice with soluble RAGE (sRAGE), a natural competitor of RAGE that sequesters RAGE ligands and blocks their interaction with cell surface RAGE, significantly delays the progression of ALS and prolongs life span compared to vehicle treatment. We demonstrate that in sRAGE-treated SOD1 transgenic animals at the final stage of the disease, a significantly higher number of neurons and lower number of astrocytes is detectable in the spinal cord. We conclude that RAGE antagonism may provide a novel therapeutic strategy for ALS intervention.
Collapse
Affiliation(s)
- Judyta K Juranek
- Division of Endocrinology, Department of Medicine, New York University Langone Medical CenterNew York, NY, USA; Department of Surgery, Columbia University Medical CenterNew York, NY, USA
| | - Gurdip K Daffu
- Division of Endocrinology, Department of Medicine, New York University Langone Medical Center New York, NY, USA
| | - Matthew S Geddis
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Science, Borough of Manhattan Community College-City University of New YorkNew York, NY, USA
| | - Huilin Li
- Division of Biostatistics, Department of Population Health, New York University Langone Medical Center New York, NY, USA
| | - Rosa Rosario
- Division of Endocrinology, Department of Medicine, New York University Langone Medical CenterNew York, NY, USA; Department of Surgery, Columbia University Medical CenterNew York, NY, USA
| | - Benjamin J Kaplan
- Department of Surgery, Columbia University Medical Center New York, NY, USA
| | - Lauren Kelly
- Department of Surgery, Columbia University Medical Center New York, NY, USA
| | - Ann Marie Schmidt
- Division of Endocrinology, Department of Medicine, New York University Langone Medical CenterNew York, NY, USA; Department of Surgery, Columbia University Medical CenterNew York, NY, USA
| |
Collapse
|
127
|
López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2244-2252. [PMID: 27166197 DOI: 10.1016/j.bbadis.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Post-translational modification of proteins imparts diversity to protein functions. The process of glycation represents a complex set of pathways that mediates advanced glycation endproduct (AGE) formation, detoxification, intracellular disposition, extracellular release, and induction of signal transduction. These processes modulate the response to hyperglycemia, obesity, aging, inflammation, and renal failure, in which AGE formation and accumulation is facilitated. It has been shown that endogenous anti-AGE protective mechanisms are thwarted in chronic disease, thereby amplifying accumulation and detrimental cellular actions of these species. Atop these considerations, receptor for advanced glycation endproducts (RAGE)-mediated pathways downregulate expression and activity of the key anti-AGE detoxification enzyme, glyoxalase-1 (GLO1), thereby setting in motion an interminable feed-forward loop in which AGE-mediated cellular perturbation is not readily extinguished. In this review, we consider recent work in the field highlighting roles for glycation in obesity and atherosclerosis and discuss emerging strategies to block the adverse consequences of AGEs. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States.
| |
Collapse
|
128
|
Stefano GB, Challenger S, Kream RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr 2016; 55:2339-2345. [PMID: 27084094 PMCID: PMC5122622 DOI: 10.1007/s00394-016-1212-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
Abstract
Purpose The severity of untreated or refractory diabetes mellitus has been functionally linked to elevated concentrations of free plasma glucose, clinically defined as hyperglycemia. Operationally, the pathophysiological presentations of prolonged hyperglycemia may be categorized within insulin-dependent and insulin-independent, type 1 and type 2 diabetic phenotypes, respectively. Accordingly, major areas of empirical biomedical research have focused on the elucidation of underlying mechanisms driving key cellular signaling systems that are significantly altered in patients presenting with diabetes-associated chronic hyperglycemia. Methods Presently, we provide a translationally oriented review of key studies evaluating the aberrant effects of hyperglycemia on two major signaling pathways linked to debilitating cellular and systemic effects via targeted disruption of mitochondrial bioenergetics: (1) advanced glycation end-products (AGEs)/and their cognate receptor for advanced glycation end-products (RAGEs), and (2) the hexosamine biosynthetic pathway (HBP). Results In preclinical models, cultured vascular endothelial cells exposed to hyperglycemic glucose concentrations were observed to produce enhanced levels of reactive oxygen species (ROS) functionally linked to increased formation of AGEs and expression of their cognate RAGEs. Importantly, inhibitors of AGEs formation, mitochondrial complex II, or un-couplers of oxidative phosphorylation, were observed to significantly reduce the effects of hyperglycemia on ROS production and cellular damage, thereby establishing a critical linkage to multiple levels of mitochondrial functioning. Hyperglycemia-mediated enhancement of mitochondrial ROS/superoxide production in vascular endothelial cells has been functionally linked to the shunting of glucose into the HBP with resultant long-term activation of pro-inflammatory signaling processes. Additionally, exposure of cultured cells to hyperglycemic conditions resulted in enhanced HBP-mediated inhibition of protein subunits of mitochondrial respiratory complexes I, III, and IV, intimately associated with normative cellular bioenergetics and ATP production. Conclusions Convergent lines of evidence link chronic hyperglycemic conditions to aberrant expression of AGEs/RAGEs and HBP signaling pathways in relation to the pathophysiological formation of ROS and pro-inflammatory processes on the functional dysregulation of mitochondrial bioenergetics.
Collapse
Affiliation(s)
- George B Stefano
- MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA.
| | - Sean Challenger
- MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Richard M Kream
- MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| |
Collapse
|
129
|
Zhao C, Lv C, Li H, Du S, Liu X, Li Z, Xin W, Zhang W. Geniposide Protects Primary Cortical Neurons against Oligomeric Aβ1-42-Induced Neurotoxicity through a Mitochondrial Pathway. PLoS One 2016; 11:e0152551. [PMID: 27046221 PMCID: PMC4821580 DOI: 10.1371/journal.pone.0152551] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction plays a key role in the progression of Alzheimer’s disease (AD). The accumulation of amyloid-beta peptide (Aβ) in the brains of AD patients is thought to be closely related to neuronal mitochondrial dysfunction and oxidative stress. Therefore, protecting mitochondria from Aβ-induced neurotoxicity is an effective strategy for AD therapeutics. In a previous study, we found that geniposide, a pharmacologically active compound purified from gardenia fruit, has protective effects on oxidative stress and mitochondrial dysfunction in AD transgenic mouse models. However, whether geniposide has a protective effect on Aβ-induced neuronal dysfunction remains unknown. In the present study, we demonstrate that geniposide protects cultured primary cortical neurons from Aβ-mediated mitochondrial dysfunction by recovering ATP generation, mitochondrial membrane potential (MMP), and cytochrome c oxidase (CcO) and caspase 3/9 activity; by reducing ROS production and cytochrome c leakage; as well as by inhibiting apoptosis. These findings suggest that geniposide may attenuate Aβ-induced neuronal injury by inhibiting mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Chunhui Zhao
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, China
- College of Resources Science Technology, Beijing Normal University, Beijing, China
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, China
| | - Cui Lv
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, China
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Shandong Academy of science, Jinan, China
- College of Resources Science Technology, Beijing Normal University, Beijing, China
| | - Hang Li
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, China
- College of Resources Science Technology, Beijing Normal University, Beijing, China
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, China
| | - Shijing Du
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, China
- College of Resources Science Technology, Beijing Normal University, Beijing, China
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, China
| | - Xiaoli Liu
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, China
- Engineering Research Center of Sanqi Biotechnology and Pharmaceutical, Yun Nan Province, Kunming, China
| | - Zhi Li
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, China
| | - Wenfeng Xin
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, China
- Engineering Research Center of Sanqi Biotechnology and Pharmaceutical, Yun Nan Province, Kunming, China
| | - Wensheng Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, China
- College of Resources Science Technology, Beijing Normal University, Beijing, China
- Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal University, Beijing, China
- Engineering Research Center of Sanqi Biotechnology and Pharmaceutical, Yun Nan Province, Kunming, China
- * E-mail:
| |
Collapse
|
130
|
Belmokhtar K, Robert T, Ortillon J, Braconnier A, Vuiblet V, Boulagnon-Rombi C, Diebold MD, Pietrement C, Schmidt AM, Rieu P, Touré F. Signaling of Serum Amyloid A Through Receptor for Advanced Glycation End Products as a Possible Mechanism for Uremia-Related Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:800-9. [PMID: 26988587 DOI: 10.1161/atvbaha.115.306349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Cardiovascular disease is the leading cause of death in patients with end-stage renal disease. Serum amyloid A (SAA) is an acute phase protein and a binding partner for the multiligand receptor for advanced glycation end products (RAGE). We investigated the role of the interaction between SAA and RAGE in uremia-related atherogenesis. APPROACH AND RESULTS We used a mouse model of uremic vasculopathy, induced by 5 of 6 nephrectomy in the Apoe(-/-) background. Sham-operated mice were used as controls. Primary cultures of Ager(+/+) and Ager(-/-) vascular smooth muscle cells (VSMCs) were stimulated with recombinant SAA, S100B, or vehicle alone. Relevance to human disease was assessed with human VSMCs. The surface area of atherosclerotic lesions at the aortic roots was larger in uremic Apoe(-/-) than in sham-operated Apoe(-/-) mice (P<0.001). Furthermore, atherosclerotic lesions displayed intense immunostaining for RAGE and SAA, with a pattern similar to that of α-SMA. Ager transcript levels in the aorta were 6× higher in uremic animals than in controls (P<0.0001). Serum SAA concentrations were higher in uremic mice, not only after 4 weeks of uremia but also at 8 and 12 weeks of uremia, than in sham-operated animals. We investigated the functional role of RAGE in uremia-induced atherosclerosis further, in animals lacking RAGE. We found that the induction of uremia in Apoe(-/-) Ager(-/-) mice did not accelerate atherosclerosis. In vitro, the stimulation of Ager(+/+) but not of Ager(-/-) VSMCs with SAA or S100B significantly induced the production of reactive oxygen species, the phosphorylation of AKT and mitogen-activated protein kinase-extracellular signal-regulated kinases and cell migration. Reactive oxygen species inhibition with N-acetyl cysteine significantly inhibited both the phosphorylation of AKT and the migration of VSMCs. Similar results were obtained for human VSMCs, except that the phosphorylation of mitogen-activated protein kinase-extracellular signal-regulated kinases, rather than of AKT, was subject to specific redox-regulation by SAA and S100B. Furthermore, human aortic atherosclerotic sections were positively stained for RAGE and SAA. CONCLUSIONS Uremia upregulates SAA and RAGE expression in the aortic wall and in atherosclerotic lesions in mice. Ager(-/-) animals are protected against the uremia-induced acceleration of atherosclerosis. SAA modulates the functions of murine and human VSMCs in vitro in a RAGE-dependent manner. This study, therefore, identifies SAA as a potential new uremic toxin involved in uremia-related atherosclerosis through interaction with RAGE.
Collapse
Affiliation(s)
- Karim Belmokhtar
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Thomas Robert
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Jeremy Ortillon
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Antoine Braconnier
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Vincent Vuiblet
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Camille Boulagnon-Rombi
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Marie Danièle Diebold
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Christine Pietrement
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Ann Marie Schmidt
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Philippe Rieu
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.)
| | - Fatouma Touré
- From the UFR Medecine, Laboratoire de néphrologie, Faculté de Médecine, Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France (K.B., T.R., J.O., V.V., M.D.D., C.P., P.R., F.T.); Division of Nephrology (T.R., A.B., V.V., P.R., F.T.), Division of Anatomopathology (C.B.-R., M.D.D.), and Division of Pediatrics (C.P.), CHU Reims, Reims, France; and Diabetes Research Program, New York University, New York (A.M.S.).
| |
Collapse
|
131
|
Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem Biol Interact 2016; 250:59-67. [PMID: 26972669 DOI: 10.1016/j.cbi.2016.03.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/13/2016] [Accepted: 03/08/2016] [Indexed: 11/23/2022]
Abstract
AGE-RAGE interaction mediated oxidative stress and inflammation is the key mechanism involved in the pathogenesis of cardiovascular disease in diabetes. Inhibition of AGE-RAGE axis by several PPAR-γ agonists has shown positive results in ameliorating cardio-metabolic disease conditions. Chrysin, a natural flavonoid has shown to possess PPAR-γ agonist activity along with antioxidant and anti-inflammatory effect. Therefore, the present study was designed to evaluate the effect of chrysin in isoproterenol-induced myocardial injury in diabetic rats. In male albino Wistar rats, diabetes was induced by single injection of streptozotocin (70 mg/kg, i.p.). After confirmation of the diabetes, rats were treated with vehicle (1.5 mL/kg, p.o.), chrysin (60 mg/kg, p.o.) or PPAR-γ antagonist GW9662 (1 mg/kg, i.p.) for 28 days. Simultaneously, on 27th and 28th day myocardial injury was induced by isoproterenol (85 mg/kg, s.c.). Chrysin significantly ameliorated cardiac dysfunction as reflected by improved MAP, ±LVdP/dtmax and LVEDP in diabetic rats. This improvement was associated with increased PPAR-γ expression and reduced RAGE expression in diabetic rats. Chrysin significantly decreased inflammation through inhibiting NF-κBp65/IKK-β expression and TNF-α level. Additionally, chrysin significantly reduced apoptosis as indicated by augmented Bcl-2 expression and decreased Bax and caspase-3 expressions. Furthermore, chrysin inhibited nitro-oxidative stress by normalizing the alteration in 8-OHdG, GSH, TBARS, NO and CAT levels and Nox4, MnSOD, eNOS and NT expressions. Co-administration of GW9662 significantly blunted the chrysin mediated cardioprotective effect as there was increase in oxidative stress, inflammation and apoptosis markers. Chrysin significantly ameliorated isoproterenol-induced myocardial injury in diabetic rats via PPAR-γ activation and inhibition of AGE-RAGE mediated oxidative stress and inflammation.
Collapse
|
132
|
Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2398573. [PMID: 27042259 PMCID: PMC4799824 DOI: 10.1155/2016/2398573] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant) and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.
Collapse
|
133
|
Manigrasso MB, Pan J, Rai V, Zhang J, Reverdatto S, Quadri N, DeVita RJ, Ramasamy R, Shekhtman A, Schmidt AM. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Sci Rep 2016; 6:22450. [PMID: 26936329 PMCID: PMC4776135 DOI: 10.1038/srep22450] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer’s disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI).
Collapse
Affiliation(s)
- Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Jinhong Pan
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, 12222 New York, USA
| | - Vivek Rai
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Jinghua Zhang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Sergey Reverdatto
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, 12222 New York, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Robert J DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC, 332 W. Dudley Avenue, Westfield, New Jersey 07090, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, 12222 New York, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| |
Collapse
|
134
|
Goel R, Bhat SA, Hanif K, Nath C, Shukla R. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation. ACS Chem Neurosci 2016; 7:206-17. [PMID: 26689453 DOI: 10.1021/acschemneuro.5b00274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia.
Collapse
Affiliation(s)
- Ruby Goel
- Division of Pharmacology and ‡Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shahnawaz Ali Bhat
- Division of Pharmacology and ‡Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kashif Hanif
- Division of Pharmacology and ‡Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Chandishwar Nath
- Division of Pharmacology and ‡Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rakesh Shukla
- Division of Pharmacology and ‡Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
135
|
Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5698931. [PMID: 26881031 PMCID: PMC4736408 DOI: 10.1155/2016/5698931] [Citation(s) in RCA: 717] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/29/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Oxidative stress has been implicated in many chronic diseases. However, antioxidant trials are so far largely unsuccessful as a preventive or curative measure. Chronic low-grade inflammatory process, on the other hand, plays a central role in the pathogenesis of a number of chronic diseases. Oxidative stress and inflammation are closely related pathophysiological processes, one of which can be easily induced by another. Thus, both processes are simultaneously found in many pathological conditions. Therefore, the failure of antioxidant trials might result from failure to select appropriate agents that specifically target both inflammation and oxidative stress or failure to use both antioxidants and anti-inflammatory agents simultaneously or use of nonselective agents that block some of the oxidative and/or inflammatory pathways but exaggerate the others. To examine whether the interdependence between oxidative stress and inflammation can explain the antioxidant paradox we discussed in the present review the basic aspects of oxidative stress and inflammation and their relationship and dependence.
Collapse
|
136
|
Advanced Glycation End Products Evolution after Pancreas-Kidney Transplantation: Plasmatic and Cutaneous Assessments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2189582. [PMID: 26881017 PMCID: PMC4736383 DOI: 10.1155/2016/2189582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/11/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus leads to increased Advanced Glycation End Products (AGE) production, which has been associated with secondary diabetic complications. Type 1 diabetic patients undergoing pancreas-kidney transplantation (SPKT) can restore normoglycemia and renal function, eventually decreasing AGE accumulation. We aimed to prospectively study AGE evolution after SPKT. Circulating AGE were assessed in 20 patients, at time 0 (T0), 3 months (T3), 6 months (T6), and 12 months (T12) after successful SPKT. Global AGE and carboxymethyllysine (CML) were analyzed, as well as advanced oxidation protein products (AOPP). Skin biopsies were obtained at T0 and T12. Immunohistochemistry with anti-AGE antibody evaluated skin AGE deposition. AGE mean values were 16.8 ± 6.4 μg/mL at T0; 17.1 ± 3.8 μg/mL at T3; 17.5 ± 5.6 μg/mL at T6; and 16.0 ± 5.2 μg/mL at T12. CML mean values were 0.94 ± 0.36 ng/mL at T0; 1.11 ± 0.48 ng/mL at T3; 0.99 ± 0.42 ng/mL at T6; and 0.78 ± 0.38 ng/mL at T12. AOPP mean values were 130.1 ± 76.8 μMol/L at T0; 137.3 ± 110.6 μMol/L at T3; 116.4 ± 51.2 μMol/L at T6; and 106.4 ± 57.9 μMol/L at T12. CML variation was significant (P = 0.022); AOPP variation was nearly significant (P = 0.076). Skin biopsies evolved mostly from a cytoplasmic diffuse to a peripheral interkeratinocytic immunoreaction pattern; in 7 cases, a reduction in AGE immunoreaction intensity was evident at T12. In conclusion, glycoxidation markers decrease, plasmatic and on tissues, may start early after SPKT. Studies with prolonged follow-up may confirm these data.
Collapse
|
137
|
Elevated levels of S100A12 in the seminal plasma of infertile men with varicocele. Int Urol Nephrol 2016; 48:343-7. [DOI: 10.1007/s11255-015-1188-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022]
|
138
|
Juranek JK, Daffu GK, Wojtkiewicz J, Lacomis D, Kofler J, Schmidt AM. Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:485. [PMID: 26733811 PMCID: PMC4686801 DOI: 10.3389/fncel.2015.00485] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE) as a significant contributor to the pathogenesis of certain neurodegenerative diseases and chronic conditions. It is hypothesized that detrimental actions of RAGE are triggered upon binding to its ligands, such as AGEs (advanced glycation end products), S100/calgranulin family members, and High Mobility Group Box-1 (HMGB1) proteins. Here, we examined the expression of RAGE and its ligands in human ALS spinal cord. Tissue samples from age-matched human control and ALS spinal cords were tested for the expression of RAGE, carboxymethyllysine (CML) AGE, S100B, and HMGB1, and intensity of the immunofluorescent and immunoblotting signals was assessed. We found that the expression of both RAGE and its ligands was significantly increased in the spinal cords of ALS patients versus age-matched control subjects. Our study is the first report describing co-expression of both RAGE and its ligands in human ALS spinal cords. These findings suggest that further probing of RAGE as a mechanism of neurodegeneration in human ALS is rational.
Collapse
Affiliation(s)
- Judyta K Juranek
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Medicine, New York University Langone Medical Center - New York University School of MedicineNew York, NY, USA
| | - Gurdip K Daffu
- Department of Medicine, New York University Langone Medical Center - New York University School of Medicine New York, NY, USA
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, University of Warmia and Mazury Olsztyn, Poland
| | - David Lacomis
- Department of Neurology, University of Pittsburgh Pittsburgh, PA, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh Pittsburgh, PA, USA
| | - Ann Marie Schmidt
- Department of Surgery, Columbia University Medical CenterNew York, NY, USA; Department of Medicine, New York University Langone Medical Center - New York University School of MedicineNew York, NY, USA
| |
Collapse
|
139
|
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 2015; 20:431-46. [PMID: 26558318 DOI: 10.1517/14728222.2016.1111873] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This review focuses on the multi-ligand receptor of the immunoglobulin superfamily--receptor for advanced glycation endproducts (RAGE). The accumulation of the multiple ligands of RAGE in cellular stress milieux links RAGE to the pathobiology of chronic disease and natural aging. AREAS COVERED In this review, we present a discussion on the ligands of RAGE and the implications of these ligand families in disease. We review the recent literature on the role of ligand-RAGE interaction in the consequences of natural aging; the macro- and microvascular complications of diabetes; obesity and insulin resistance; autoimmune disorders and chronic inflammation; and tumors and Alzheimer's disease. We discuss the mechanisms of RAGE signaling through its intracellular binding effector molecule--the formin DIAPH1. Physicochemical evidence of how the RAGE cytoplasmic domain binds to the FH1 (formin homology 1) domain of DIAPH1, and the consequences thereof, are also reviewed. EXPERT OPINION We discuss the modalities of RAGE antagonism currently in preclinical and clinical studies. Finally, we present the rationale behind potentially targeting the RAGE cytoplasmic domain-DIAPH1 interaction as a logical strategy for therapeutic intervention in the pathological settings of chronic diseases and aging wherein RAGE ligands accumulate and signal.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| | - Alexander Shekhtman
- b Department of Chemistry , University at Albany, State University of New York , Albany , NY 12222 , USA
| | - Ann Marie Schmidt
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| |
Collapse
|
140
|
Yamagishi SI, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced Glycation End Products: A Molecular Target for Vascular Complications in Diabetes. Mol Med 2015; 21 Suppl 1:S32-40. [PMID: 26605646 DOI: 10.2119/molmed.2015.00067] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022] Open
Abstract
A nonenzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules and subsequently alters their structural integrity and function. This process has been known to progress at an accelerated rate under hyperglycemic and/or oxidative stress conditions. Over a course of days to weeks, early glycation products undergo further reactions such as rearrangements and dehydration to become irreversibly cross-linked, fluorescent and senescent macroprotein derivatives termed advanced glycation end products (AGEs). There is a growing body of evidence indicating that interaction of AGEs with their receptor (RAGE) elicits oxidative stress generation and as a result evokes proliferative, inflammatory, thrombotic and fibrotic reactions in a variety of cells. This evidence supports AGEs' involvement in diabetes- and aging-associated disorders such as diabetic vascular complications, cancer, Alzheimer's disease and osteoporosis. Therefore, inhibition of AGE formation could be a novel molecular target for organ protection in diabetes. This report summarizes the pathophysiological role of AGEs in vascular complications in diabetes and discusses the potential clinical utility of measurement of serum levels of AGEs for evaluating organ damage in diabetes.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Nobutaka Nakamura
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Mika Suematsu
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.,Saravio Central Institute, Oita, Japan
| | | | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
141
|
Khazaei M, Karimi J, Sheikh N, Goodarzi MT, Saidijam M, Khodadadi I, Moridi H. Effects of Resveratrol on Receptor for Advanced Glycation End Products (RAGE) Expression and Oxidative Stress in the Liver of Rats with Type 2 Diabetes. Phytother Res 2015; 30:66-71. [DOI: 10.1002/ptr.5501] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Mohammad Khazaei
- Department of Biochemistry, School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - Jamshid Karimi
- Department of Biochemistry, School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - Nasrin Sheikh
- Department of Biochemistry, School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - Mohammad Taghi Goodarzi
- Research Center for Molecular Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - Heresh Moridi
- Department of Biochemistry, School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| |
Collapse
|
142
|
Nongnuch A, Davenport A. Skin autofluorescence advanced glycosylation end products as an independent predictor of mortality in high flux haemodialysis and haemodialysis patients. Nephrology (Carlton) 2015; 20:862-7. [DOI: 10.1111/nep.12519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Arkom Nongnuch
- Renal Unit; Department of Medicine; Faculty of Medicine; Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- UCL Centre for Nephrology; Royal Free Hospital; University College London Medical School; London UK
| | - Andrew Davenport
- UCL Centre for Nephrology; Royal Free Hospital; University College London Medical School; London UK
| |
Collapse
|
143
|
Soluble Receptor for Advanced Glycation End Product: A Biomarker for Acute Coronary Syndrome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:815942. [PMID: 26491690 PMCID: PMC4605229 DOI: 10.1155/2015/815942] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023]
Abstract
The receptor of advanced glycation end products (RAGE) and its ligands are linked to the pathogenesis of coronary artery disease (CAD), and circulating soluble receptor of advanced glycation end products (sRAGE), reflecting the RAGE activity, is suggested as a potential biomarker. Elevated sRAGE levels are reported in relation to acute ischemia and this review focuses on the role of sRAGE as a biomarker for the acute coronary syndrome (ACS). The current studies demonstrated that sRAGE levels are elevated in relation to ACS, however during a very narrow time period, indicating that the time of sampling needs attention. Interestingly, activation of RAGE may influence the pathogenesis and reflection in sRAGE levels in acute and stable CAD differently.
Collapse
|
144
|
Soluble and Endogenous Secretory Receptors for Advanced Glycation End Products in Threatened Preterm Labor and Preterm Premature Rupture of Fetal Membranes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:568042. [PMID: 26413536 PMCID: PMC4564602 DOI: 10.1155/2015/568042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022]
Abstract
The aim of the study was to compare sRAGE and esRAGE plasma levels in pregnant women with (A) threatened premature labor (n = 41), (B) preterm premature rupture of membranes (n = 49), and (C) preterm rupture of membranes at term (n = 48). The relationship between these and classic intrauterine infection markers and the latent time from symptoms up to delivery depending on RAGE's concentration were investigated. In groups A and B, a positive correlation was found between plasma sRAGE and latent time (r = 0,422; p = 0,001; r = 0,413, p = 0,004, resp.). High prognostic values were found in both groups for plasma sRAGE concentration and the latent time from symptoms up to delivery. Groups B and C presented higher levels of esRAGE than group A (526,315 ± 129,453 pg/mL and 576,212 ± 136,237 pg/mL versus 485,918 ± 133,127 pg/mL, p< 0,05). The conclusion is that sRAGE concentration can be a favorable prognostic factor in the presence of symptoms of threatened premature labor. Higher esRAGE plasma level in case of the rupture of membranes in mature and premature pregnancy suggests its participation in fetal membranes destruction.
Collapse
|
145
|
Song BJ, Akbar M, Abdelmegeed MA, Byun K, Lee B, Yoon SK, Hardwick JP. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol 2015; 3:109-23. [PMID: 25465468 PMCID: PMC4297931 DOI: 10.1016/j.redox.2014.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critically important in providing cellular energy ATP as well as their involvement in anti-oxidant defense, fat oxidation, intermediary metabolism and cell death processes. It is well-established that mitochondrial functions are suppressed when living cells or organisms are exposed to potentially toxic agents including alcohol, high fat diets, smoking and certain drugs or in many pathophysiological states through increased levels of oxidative/nitrative stress. Under elevated nitroxidative stress, cellular macromolecules proteins, DNA, and lipids can undergo different oxidative modifications, leading to disruption of their normal, sometimes critical, physiological functions. Recent reports also indicated that many mitochondrial proteins are modified via various post-translation modifications (PTMs) and primarily inactivated. Because of the recently-emerging information, in this review, we specifically focus on the mechanisms and roles of five major PTMs (namely oxidation, nitration, phosphorylation, acetylation, and adduct formation with lipid-peroxides, reactive metabolites, or advanced glycation end products) in experimental models of alcoholic and nonalcoholic fatty liver disease as well as acute hepatic injury caused by toxic compounds. We also highlight the role of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) in some of these PTM changes. Finally, we discuss translational research opportunities with natural and/or synthetic anti-oxidants, which can prevent or delay the onset of mitochondrial dysfunction, fat accumulation and tissue injury. Hepatotoxic agents including alcohol and high fat elevate nitroxidative stress. Increased nitroxidative stress promotes post-translational protein modifications. Post-translational protein modifications of many proteins lead to their inactivation. Inactivation of mitochondrial proteins contributes to mitochondrial dysfunction. Mitochondrial dysfunction contributes to necrotic or apoptotic tissue injury.
Collapse
|
146
|
Witztum JL. CEP Is an Important and Ubiquitous Oxidation Specific Epitope Recognized by Innate Pattern Recognition Receptors. Circ Res 2015; 117:305-8. [PMID: 26227873 DOI: 10.1161/circresaha.115.306928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph L Witztum
- From the Department of Medicine, University of California, San Diego.
| |
Collapse
|
147
|
Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460:53-71. [PMID: 25998734 DOI: 10.1016/j.bbrc.2015.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca(2+) signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca(2+) and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca(2+) signalling.
Collapse
|
148
|
Advanced glycation end products and schizophrenia: A systematic review. J Psychiatr Res 2015; 66-67:112-7. [PMID: 26001588 DOI: 10.1016/j.jpsychires.2015.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 11/21/2022]
Abstract
Oxidative stress has become an exciting area of research on schizophrenia, which is a highly prevalent condition that affects approximately 1% of the worldwide population. Advanced glycation end products (AGEs), which are considered metabolic biomarkers of increased oxidative stress, have a pathogenic role in the development and progression of different oxidative stress-based diseases including atherosclerosis, diabetes, neurodegenerative disorders and schizophrenia. AGE formation and accumulation as well as the activation of its receptor (RAGE) can lead to signaling through several inflammatory signaling pathways and further damaging effects. This systematic review is based on a search conducted in July 2014 in which 6 studies were identified that met our criteria. In this work, we describe how recent methodological advances regarding the role of AGEs may contribute to a better understanding of the pathophysiology of schizophrenia and provide a different approach in the comprehension of the relationship between cardiovascular disease and schizophrenia. These latest findings may lead to new directions for future research on novel diagnostic and treatment strategies.
Collapse
|
149
|
Schmidt AM. Soluble RAGEs - Prospects for treating & tracking metabolic and inflammatory disease. Vascul Pharmacol 2015; 72:1-8. [PMID: 26130225 DOI: 10.1016/j.vph.2015.06.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Emerging evidence links the receptor for advanced glycation endproducts (RAGE) to the pathogenesis of tissue damage in chronic metabolic and inflammatory diseases. In human subjects, multiple reports suggest that in the plasma/serum, circulating levels of distinct forms of soluble RAGEs may be biomarkers of the presence or absence, and the extent of chronic disease. These considerations prompt us to consider in this review, what are soluble RAGEs; how are they formed; what might be their natural functions; and may they serve as biomarkers of inflammatory and metabolic disease activity? In this brief review, we seek to address what is known and suggest new areas for scientific investigation to uncover the biology of soluble RAGEs.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
150
|
Rzepka R, Dołęgowska B, Sałata D, Rajewska A, Budkowska M, Domański L, Kwiatkowski S, Mikołajek-Bedner W, Torbé A. Soluble receptors for advanced glycation end products and receptor activator of NF-κB ligand serum levels as markers of premature labor. BMC Pregnancy Childbirth 2015; 15:134. [PMID: 26059227 PMCID: PMC4461927 DOI: 10.1186/s12884-015-0559-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
Background This study aimed to determine the relationships between secretory and endogenous secretory receptors for advanced glycation end products (sRAGE, esRAGE), sRANKL, osteoprotegerin and the interval from diagnosis of threatened premature labor or premature rupture of the fetal membranes to delivery, and to evaluate the prognostic values of the assessed parameters for preterm birth. Methods Ninety women between 22 and 36 weeks’ gestation were included and divided into two groups: group A comprised 41 women at 22 to 36 weeks’ gestation who were suffering from threatened premature labor; and group B comprised 49 women at 22 to 36 weeks’ gestation with preterm premature rupture of the membranes. Levels of sRAGE, esRAGE, sRANKL, and osteoprotegerin were measured. The Mann–Whitney test was used to assess differences in parameters between the groups. For statistical analysis of relationships, correlation coefficients were estimated using Spearman’s test. Receiver operating characteristics were used to determine the cut-off point and predictive values. Results In group A, sRAGE and sRANKL levels were correlated with the latent time from symptoms until delivery (r = 0.422; r = −0.341, respectively). The sensitivities of sRANKL and sRAGE levels for predicting preterm delivery were 0.895 and 0.929 with a negative predictive value (NPV) of 0.857 and 0.929, respectively. In group B, sRAGE and sRANKL levels were correlated with the latent time from pPROM until delivery (r = 0.381; r = −0.439). The sensitivity of sRANKL and sRAGE for predicting delivery within 24 h after pPROM was 0.682 and 0.318, with NPVs of 0.741 and 0.625, respectively. Levels of esRAGE and sRANKL were lower in group A than in group B (median = 490.2 vs 541.1 pg/mL; median = 6425.0 vs 11362.5 pg/mL, respectively). Conclusions Correlations between sRAGE, sRANKL, and pregnancy duration after the onset of symptoms suggest their role in preterm delivery. The high prognostic values of these biomarkers indicate their usefulness in diagnosis of pregnancies with threatened premature labor.
Collapse
Affiliation(s)
- Rafał Rzepka
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Barbara Dołęgowska
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Daria Sałata
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Aleksandra Rajewska
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Marta Budkowska
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Wioletta Mikołajek-Bedner
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Andrzej Torbé
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| |
Collapse
|