101
|
Kyuchyuk S, Paneva D, Manolova N, Rashkov I, Karashanova D, Naydenov M, Markova N. Electrospun Fibers of Biocompatible and Biodegradable Polyesters, Poly(Ethylene Oxide) and Beeswax with Anti-Bacterial and Anti-Fungal Activities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4882. [PMID: 37445197 DOI: 10.3390/ma16134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Fibrous materials composed of core-sheath fibers from poly(ethylene oxide) (PEO), beeswax (BW) and 5-nitro-8-hydroxyquinoline (NQ) were prepared via the self-organization of PEO and BW during the single-spinneret electrospinning of a homogeneous blend solution of the partners. Additionally, the application of the same approach enabled the preparation of fibrous materials composed of core-double sheath fibers from PEO, poly(L-lactide) (PLA) and NQ or 5-chloro-7-iodo-8-hydroxyquinoline (CQ), as well as from PEO, poly(ε-caprolactone) (PCL) and NQ. The consecutive selective extraction of BW and of the polyester with hexane and tetrahydrofuran, respectively, evidenced that core-double sheath fibers from PEO/polyester/BW/drug consisted of a PEO core, a polyester inner sheath and a BW outer sheath. In order to evaluate the possibility of the application of fibrous materials from PEO/BW/NQ, PEO/PLA/BW/NQ, PEO/PCL/BW/NQ and PEO/PLA/BW/CQ for plant protection, microbiological studies were performed using both phytopathogenic microorganisms (Pseudomonas corrugata, Fusarium graminearum and Fusarium avenaceum) and beneficial microorganisms (Pseudomonas chlororaphis, Bacillus amyloliquefaciens and Trichoderma asperellum). It was found that the fibrous materials had anti-bacterial and anti-fungal activity against both phytopathogenic and beneficial microorganisms. This is the first report on the activity of fibrous materials loaded with 8-hydroxyquinoline derivatives not only against phytopathogenic but also against beneficial microorganisms that are of importance in agriculture.
Collapse
Affiliation(s)
- Selin Kyuchyuk
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Dilyana Paneva
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 103A, BG-1113 Sofia, Bulgaria
| | - Daniela Karashanova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 109, BG-1113 Sofia, Bulgaria
| | - Mladen Naydenov
- Department of Microbiology, Agricultural University, BG-4000 Plovdiv, Bulgaria
| | - Nadya Markova
- Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 26, BG-1113 Sofia, Bulgaria
| |
Collapse
|
102
|
Bansal R, Sahoo SA, Barvkar VT, Srivastava AK, Mukherjee PK. Trichoderma virens exerts herbicidal effect on Arabidopsis thaliana via modulation of amino acid metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111702. [PMID: 37030329 DOI: 10.1016/j.plantsci.2023.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Trichoderma virens is a plant beneficial fungus well-known for its biocontrol, herbicidal and growth promotion activity. Earlier, we identified HAS (HA-synthase, a terpene cyclase) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to be involved in the production of multiple non-volatiles and non-volatile+volatile metabolites, respectively. The present study delineates the function of HAS and GAPDH in regulating herbicidal activity, using the model plant Arabidopsis thaliana. Under axenic conditions, rosette-biomass of seedlings co-cultivated with ΔHAS (HASR) and ΔGAPDH (GAPDHR) was higher than WT-Trichoderma (WTR) as well as non-colonized control (NoTR), even though the root colonization ability was reduced. However, HASR biomass was still higher than those of GAPDHR, indicating that blocking volatiles will not provide any additional contribution over non-volatile metabolites for Trichoderma-induced herbicidal activity. LC-MS analysis revealed that loss of herbicidal activity of ΔHAS/ΔGAPDH was associated with an increase in the levels of amino acids, which coincided with reduced expression levels of amino-acid catabolism and anabolism related genes in HASR/GAPDHR. RNAi-mediated suppression of an oxidoreductase gene, VDN5, specifically prevented viridin-to-viridiol conversion. Additionally, vdn5 mimics ΔHAS, in terms of amino-acid metabolism gene expression and partially abolishes the herbicidal property of WT-Trichoderma. Thus, the study provides mechanistic frame-work for better utilization of Trichoderma virens for biocontrol purposes, balancing between plant growth promotion and herbicidal activity.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Sripati Abhiram Sahoo
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, India
| | | | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - Prasun Kumar Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
103
|
Asad S, Priyashantha AKH, Tibpromma S, Luo Y, Zhang J, Fan Z, Zhao L, Shen K, Niu C, Lu L, Promputtha I, Karunarathna SC. Coffee-Associated Endophytes: Plant Growth Promotion and Crop Protection. BIOLOGY 2023; 12:911. [PMID: 37508343 PMCID: PMC10376224 DOI: 10.3390/biology12070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Endophytic microbes are a ubiquitous group of plant-associated communities that colonize the intercellular or intracellular host tissues while providing numerous beneficial effects to the plants. All the plant species are thought to be associated with endophytes, majorly constituted with bacteria and fungi. During the last two decades, there has been a considerable movement toward the study of endophytes associated with coffee plants. In this review, the main consideration is given to address the coffee-associated endophytic bacteria and fungi, particularly their action on plant growth promotion and the biocontrol of pests. In addition, we sought to identify and analyze the gaps in the available research. Additionally, the potential of endophytes to improve the quality of coffee seeds is briefly discussed. Even though there are limited studies on the subject, the potentiality of coffee endophytes in plant growth promotion through enhancing nitrogen fixation, availability of minerals, nutrient absorption, secretion of phytohormones, and other bioactive metabolites has been well recognized. Further, the antagonistic effect against various coffee pathogenic bacteria, fungi, nematodes, and also insect pests leads to the protection of the crop. Furthermore, it is recognized that endophytes enhance the sensory characteristics of coffee as a new field of study.
Collapse
Affiliation(s)
- Suhail Asad
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | | | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Yinling Luo
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Jianqiang Zhang
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Zhuqing Fan
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Likun Zhao
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Ke Shen
- School of Biology and Chemistry, Pu'er University, Pu'er 665000, China
| | - Chen Niu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou 570100, China
| | - Li Lu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy 20000, Sri Lanka
| |
Collapse
|
104
|
Hafiz FB, Geistlinger J, Al Mamun A, Schellenberg I, Neumann G, Rozhon W. Tissue-Specific Hormone Signalling and Defence Gene Induction in an In Vitro Assembly of the Rapeseed Verticillium Pathosystem. Int J Mol Sci 2023; 24:10489. [PMID: 37445666 DOI: 10.3390/ijms241310489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Priming plants with beneficial microbes can establish rapid and robust resistance against numerous pathogens. Here, compelling evidence is provided that the treatment of rapeseed plants with Trichoderma harzianum OMG16 and Bacillus velezensis FZB42 induces defence activation against Verticillium longisporum infection. The relative expressions of the JA biosynthesis genes LOX2 and OPR3, the ET biosynthesis genes ACS2 and ACO4 and the SA biosynthesis and signalling genes ICS1 and PR1 were analysed separately in leaf, stem and root tissues using qRT-PCR. To successfully colonize rapeseed roots, the V. longisporum strain 43 pathogen suppressed the biosynthesis of JA, ET and SA hormones in non-primed plants. Priming led to fast and strong systemic responses of JA, ET and SA biosynthesis and signalling gene expression in each leaf, stem and root tissue. Moreover, the quantification of plant hormones via UHPLC-MS analysis revealed a 1.7- and 2.6-fold increase in endogenous JA and SA in shoots of primed plants, respectively. In roots, endogenous JA and SA levels increased up to 3.9- and 2.3-fold in Vl43-infected primed plants compared to non-primed plants, respectively. Taken together, these data indicate that microbial priming stimulates rapeseed defence responses against Verticillium infection and presumably transduces defence signals from the root to the upper parts of the plant via phytohormone signalling.
Collapse
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Abdullah Al Mamun
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ingo Schellenberg
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Günter Neumann
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| |
Collapse
|
105
|
Al-Mutar DMK, Noman M, Abduljaleel Alzawar NS, Li D, Song F. Cyclic Lipopeptides of Bacillus amyloliquefaciens DHA6 Are the Determinants to Suppress Watermelon Fusarium Wilt by Direct Antifungal Activity and Host Defense Modulation. J Fungi (Basel) 2023; 9:687. [PMID: 37367623 DOI: 10.3390/jof9060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), poses a serious threat to watermelon productivity. We previously characterized six antagonistic bacterial strains, including DHA6, capable of suppressing watermelon Fusarium wilt under greenhouse conditions. This study investigates the role of extracellular cyclic lipopeptides (CLPs) produced by strain DHA6 in Fusarium wilt suppression. Taxonomic analysis based on the 16S rRNA gene sequence categorized strain DHA6 as Bacillus amyloliquefaciens. MALDI-TOF mass spectrometry identified five families of CLPs, i.e., iturin, surfactin, bacillomycin, syringfactin, and pumilacidin, in the culture filtrate of B. amyloliquefaciens DHA6. These CLPs exhibited significant antifungal activity against Fon by inducing oxidative stress and disrupting structural integrity, inhibiting mycelial growth and spore germination. Furthermore, pretreatment with CLPs promoted plant growth and suppressed watermelon Fusarium wilt by activating antioxidant enzymes (e.g., catalase, superoxide dismutase, and peroxidase) and triggering genes involved in salicylic acid and jasmonic acid/ethylene signaling in watermelon plants. These results highlight the critical roles of CLPs as determinants for B. amyloliquefaciens DHA6 in suppressing Fusarium wilt through direct antifungal activity and modulation of plant defense responses. This study provides a foundation for developing B. amyloliquefaciens DHA6-based biopesticides, serving as both antimicrobial agents and resistance inducers, to effectively control Fusarium wilt in watermelon and other crops.
Collapse
Affiliation(s)
- Dhabyan Mutar Kareem Al-Mutar
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Basra Agriculture Directorate, Almudaina 61008, Iraq
| | - Muhammad Noman
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Dayong Li
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
106
|
Nowak A, Kutyła M, Kaczmarek J, Jaroszuk-Ściseł J, Jędryczka M. Differences in the Production of Extracellular Polymeric Substances (EPS) and Other Metabolites of Plenodomus ( Leptosphaeria) Infecting Winter Oilseed Rape ( Brassica napus L.). Metabolites 2023; 13:759. [PMID: 37367918 DOI: 10.3390/metabo13060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Species of the genus Plenodomus (Leptosphaeria) are phytopathogens of the Brassicaceae family, which includes oilseed rape. The spores of these fungi spread by airborne transmission, infect plants, and cause crop losses. The secondary metabolism of P. lingam and P. biglobosus was studied and compared, with the main focus being on the ability to produce Extracellular Polymeric Substances (EPS). In spite of the 1.5-2-fold faster growth rate of P. biglobosus on Czapek-Dox and other screening media, the average yield of EPS in this fungus was only 0.29 g/L, compared to that of P. lingam (0.43 g/L). In turn, P. biglobosus showed a higher capacity to synthesise IAA, i.e., 14 µg/mL, in contrast to <1.5 µg/mL produced by P. lingam. On the other hand, the P. lingam strains showed higher β-glucanase activity (350-400 mU/mL), compared to 50-100 mU/mL in P. biglobosus. Invertase levels were similar in both species (250 mU/mL). The positive correlation between invertase activity and EPS yield contrasted with the absence of a correlation of EPS with β-glucanase. Plenodomus neither solubilised phosphate nor used proteins from milk. All strains showed the ability to synthesise siderophores on CAS agar. P. biglobosus exhibited the highest efficiency of amylolytic and cellulolytic activity.
Collapse
Affiliation(s)
- Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Mateusz Kutyła
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Joanna Kaczmarek
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Małgorzata Jędryczka
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| |
Collapse
|
107
|
Xie P, Yang S, Liu X, Zhang T, Zhao X, Wen T, Zhang J, Xue C, Shen Q, Yuan J. Learning from Seed Microbes: Trichoderma Coating Intervenes in Rhizosphere Microbiome Assembly. Microbiol Spectr 2023; 11:e0309722. [PMID: 37195176 PMCID: PMC10269462 DOI: 10.1128/spectrum.03097-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Seed-associated microbiomes can impact the later colonization of a plant rhizosphere microbiome. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome may intervene in the assembly of a rhizosphere microbiome. In this study, the fungus Trichoderma guizhouense NJAU4742 was introduced to both maize and watermelon seed microbiomes by seed coating. Application was found to significantly promote seed germination and improve plant growth and rhizosphere soil quality. The activities of acid phosphatase, cellulase, peroxidase, sucrase, and α-glucosidase increased significantly in two crops. The introduction of Trichoderma guizhouense NJAU4742 also led to a decrease in the occurrence of disease. Coating with T. guizhouense NJAU4742 did not alter the alpha diversities of the bacterial and fungal communities but formed a key network module that contained both Trichoderma and Mortierella. This key network module comprised of these potentially beneficial microorganisms was positively linked with the belowground biomass and activities of rhizosphere soil enzymes but negatively correlated with disease incidence. Overall, this study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome. IMPORTANCE Seed-associated microbiomes can impact the rhizosphere microbiome assembly and function display. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome with the beneficial microbes may intervene in the assembly of a rhizosphere microbiome. Here, we introduced T. guizhouense NJAU4742 to the seed microbiome by seed coating. This introduction led to a decrease in the occurrence of disease and an increase in plant growth; furthermore, it formed a key network module that contained both Trichoderma and Mortierella. Our study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome.
Collapse
Affiliation(s)
- Penghao Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shengdie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xinyuan Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tao Wen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Green Intelligent Fertilizer Innovation, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China
| | - Chao Xue
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jun Yuan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
108
|
Ghoneem KM, Al-Askar AA, Saber WIA. A Simple Formula of the Endophytic Trichoderma viride, a Case Study for the Management of Rhizoctonia solani on the Common Bean. Life (Basel) 2023; 13:1358. [PMID: 37374140 DOI: 10.3390/life13061358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The utilization of beneficial endophytic microorganisms presents a promising and innovative strategy for attaining environmental sustainability and fostering development. The majority of microbial bioagents are unsuitable for preparation in a suitable granular formula, and few are prepared in complicated formulas. In this work, Trichoderma viride was simply prepared in a marketable granular formula to manage Rhizoctonia solani and improve common bean growth. The GC-MS analysis showed several antimicrobial compounds in the fungal filtrate. T. viride was able to suppress the phytopathogenic R. solani in the laboratory. The formula had up to 6 months of shelf-life viability. Under greenhouse conditions, the formula improved plant resistance against R. solani. Moreover, the vegetative plant growth and physiological performance (peroxidase, polyphenol, total phenols, phenylalanine ammonia-lyase, and photosynthetic pigments) of the common bean showed obvious promotion. The formula reduced the disease incidence by 82.68% and increased the yield by 69.28%. This work may be considered a step in the right direction for producing simple bioactive products on a large scale. Moreover, the study's findings suggest that this method can be considered a novel approach to enhancing plant growth and protection, in addition to reducing costs, improving handling and application, and maintaining fungal viability for enhancing plant growth and protecting against fungal infections.
Collapse
Affiliation(s)
- Khalid M Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abdulaziz A Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - WesamEldin I A Saber
- Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
109
|
Liu M, Niu Q, Wang Z, Qi H, Liang X, Gai Y, Wang B, Yin S. Comparative physiological and transcriptome analysis provide insights into the inhibitory effect of 6-pentyl-2H-pyran-2-one on Clarireedia jacksonii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105456. [PMID: 37248022 DOI: 10.1016/j.pestbp.2023.105456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Clarireedia spp. is a destructive phytopathogenic fungus that causes turf dollar spot of bent-grass, leading to widespread lawn death. In this study, we explored the antifungal capability of 6-pentyl-2H-pyran-2-one (6PP), a natural metabolite volatilized by microorganisms, which plays an important role in the biological control of turfgrass dollar spot. However, the mechanisms by which 6PP inhibits Clarireedia jacksonii remain unknown. In the present study, C. jacksonii mycelial growth was inhibited by the 6PP treatment and the 6PP treatment damaged cell membrane integrity, causing an increase in relative conduc-tivity. Furthermore, physiological and biochemistry assay showed that 6PP treatment can enhance reactive oxygen species (ROS) levels, malondialdehyde (MDA) content obviously increased with 6PP exposure, increased alchohol dehydrogenase (ADH) and depleted acetalde-hyde dehydrogenase (ALDH), and activated the activities of many antioxidant enzymes in C. jacksonii. Gen Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that some genes in C. jacksonii after 6PP treatment related to integrity of the cell wall and membrane, and oxidative stress were significantly downregulated. It is worth mentioning that the fatty acid degradation pathway is significantly upregulated, with an increase in ATP content and ATP synthase activity, which may promote fungal cell apoptosis. Moreover, we found that the expression of ABC transporters, and glutathione metabolism encoding genes were increased to respond to external stimuli. Taken together, these findings revealed the potential antifungal mechanism of 6PP against Clarireedia spp., which also provides a theoretical basis for the commercial utilization of 6PP as a green pesticide in the future.
Collapse
Affiliation(s)
- Man Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Qichen Niu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Ziyue Wang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Hongyin Qi
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Xingxing Liang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Baisen Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Shuxia Yin
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
110
|
Weirich CE, Marques MR, de Castro AP, Assumpção Benitez B, Roque FDO, Marchetti CR, Rodrigues AD, de Lima DP, Dos Santos EDA. Impact of Iron Mining Activity on the Endophytic Fungal Community of Aspilia grazielae. J Fungi (Basel) 2023; 9:632. [PMID: 37367568 DOI: 10.3390/jof9060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023] Open
Abstract
Aspilia grazielae (J. U. Santos) is an endemic plant species in Morro do Urucum in the Pantanal wetland (Brazil). A. grazielae is used for the restoration of areas impacted by iron mining activities. This study evaluates the diversity (composition, value and abundance) of endophytic fungal communities, considering parts of the plant and soil condition. The leaves and roots of A. grazielae were collected from native vegetation areas (NVA) and recovery areas (RCA) in Morro do Urucum. Illumina sequencing technology was used to investigate variation in endophytic fungal biodiversity. The operational taxonomic units detected in NVA ranged from 183 to 263 (leaf) and 115 to 285 (root), while RCA samples ranged from 200 to 282 (leaf) and 156 to 348 (root). Ascomycota phylum was the most common species among all plant samples. The most significant classes identified were Lecanoromycetes and Dothideomycetes that differed significantly (p ≤ 0.05) according to their plant hosts and soil stress. The relative abundance of Pestalotiopsis (Sordariomycetes class) and Stereocaulon (Lecanoromycetes class) genera was influenced by the iron mining activities according to the leaf samples analysed. However, the abundance and wealth of endophytic fungal communities in A. grazielae from RCA were evidence that could explain their high resilience to environmental disturbances and the source-sink dynamics of fungal propagules.
Collapse
Affiliation(s)
- Carlos Eduardo Weirich
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Maria Rita Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Alinne Pereira de Castro
- Departamento de Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| | | | - Fabio de Oliveira Roque
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Centre for Tropical Environmental and Sustainability Science (TESS), James Cook University, Cairns, QLD 4878, Australia
| | - Clarice Rossato Marchetti
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Dênis Pires de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Edson Dos Anjos Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
111
|
Lana M, Simón O, Velasco P, Rodríguez VM, Caballero P, Poveda J. First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bioinsecticide against cotton leafworm (Spodoptera littoralis). Microbiol Res 2023; 270:127334. [PMID: 36804128 DOI: 10.1016/j.micres.2023.127334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Cotton leaf worm (Spodoptera littoralis) is a pest that produces important losses in horticultural and ornamental crops in greenhouse, being classified as quarantine pest A2 by EPPO. One of the strategies proposed to control agricultural pests in a health and environmentally friendly way is biological control with entomopathogenic fungi. The genus of filamentous fungi Trichoderma includes different species with direct (infection, antibiosis, anti-feeding, etc.) and indirect (systemic activation of plant defenses) insecticidal capacity, however, the species T. hamatum has never been described previously as entomopathogenic. In this work, the entomopathogenic capacity of T. hamatum on S. littoralis L3 larvae was analyzed by applying spores and fungal filtrates (topically and orally). Infection by spores was compared with the commercial entomopathogenic fungus Beauveria bassiana, obtaining similar results with respect to the production of larval mortality. Oral application of spores reported high mortality and fungal colonization of larvae, however, T. hamatum did not show chitinase activity when grown in the presence of S. littoralis tissues. Therefore, infection of S. littoralis larvae by T. hamatum is through natural openings such as mouth, anus or spiracles. With respect to the application of filtrates, only those obtained from the liquid culture of T. hamatum in contact with S. littoralis tissues reported a significant reduction in larval growth. Metabolomic analysis of the filtrates determined that the filtrate with insecticidal capacity presented the siderophore rhizoferrin in large quantities, which could be responsible for this activity. However, the production of this siderophore had never been previously described in Trichoderma and its insecticidal capacity was unknown. In conclusion, T. hamatum presents entomopathogenic capacity against S. littoralis larvae through the application of spores and filtrates, and both ways could be the basis for the development of efficient bioinsecticides against the pest.
Collapse
Affiliation(s)
- Maite Lana
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - Oihane Simón
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Mision Biologica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain
| | - Víctor M Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Mision Biologica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Recognised Research Group AGROBIOTECH, Department of Plant Production and Forest Resources, Higher Technical School of Agricultural Engineering of Palencia, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004 Palencia, Spain.
| |
Collapse
|
112
|
Leonardi GR, Polizzi G, Vitale A, Aiello D. Efficacy of Biological Control Agents and Resistance Inducer for Control of Mal Secco Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:1735. [PMID: 37176793 PMCID: PMC10181300 DOI: 10.3390/plants12091735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Mal secco, caused by Plenodomus tracheiphilus, is an economically important fungal vascular disease in citrus-growing countries of the Mediterranean basin. Preventing fungal infections usually requires a high number of copper treatments but European legislation imposes the minimization of their accumulation in soil. In our study, biological control agents (BCAs) and a plant resistance inducer (PRI), tested in four different experiments on citrus seedlings under controlled conditions, have resulted in promising strategies to control mal secco disease. Foliar (Experiment I) and soil (Experiment II) applications of two formulations of Bacillus amyloliquefaciens strain D747 (Amylo-X® LC and Amylo-X® WG) provided similar performances in reducing the disease amount (incidence and symptoms severity) over time compared to the untreated control, whereas copper hydroxide (Kocide Opti®) used as standard was the most effective treatment over time. In the third experiment, Pythium oligandrum strain M1 (Polyversum®) and Trichoderma asperellum strain ICC012 + Trichoderma gamsii strain ICC080 (Remedier®) were able to reduce disease incidence and symptoms severity compared to the untreated control. Remedier® provided the best performances in reducing the disease amount, whereas the Polyversum® application was the least effective treatment over time. The effectiveness of the Trichoderma spp. formulation in reducing P. tracheiphilus infections did not significantly differ from the standard copper compound (Kocide Opti®). Comprehensively, in the last experiment (IV), acibenzolar-S-methyl (ASM) alone and in mixture with metalaxyl-M proved as effective as B. amyloliquefaciens strain FZB24, with no dose-response relationships observed. These findings provide important insight for the integrated management of mal secco disease.
Collapse
Affiliation(s)
| | | | - Alessandro Vitale
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy; (G.R.L.)
| | | |
Collapse
|
113
|
Dourou M, La Porta CAM. A Pipeline to Investigate Fungal-Fungal Interactions: Trichoderma Isolates against Plant-Associated Fungi. J Fungi (Basel) 2023; 9:jof9040461. [PMID: 37108915 PMCID: PMC10142788 DOI: 10.3390/jof9040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Soil fungi play essential roles in ecosystems, forming complex interaction networks with bacteria, yeasts, other fungi, or plants. In the framework of biocontrol strategies, Trichoderma-based fungicides are at the forefront of research as an alternative to synthetic ones. However, the impact of introducing new microbial strain(s) on the soil microbiome of a habitat is not well-explored. Aiming to identify a quantitative method to explore the complex fungal interactions, we isolated twelve fungi from three Italian vineyards and identified three strains of the Trichoderma genus in addition to nine more plant-associated fungi of different genera. Investigating in dual nucleation assay fungal-fungal interactions, we recognised two types of interaction: neutral or antagonistic. All three Trichoderma strains displayed a slight inhibitory behaviour against themselves. Trichoderma strains showed a mutually intermingling growth with Aspergillus aculeatus and Rhizopus arrhizus but antagonistic behaviour against the plant pathogens Alternaria sp., Fusarium ramigenum, and Botrytis caroliniana. Yet, in some cases, antagonistic behaviour by Trichoderma fungi was also observed against plant-promoting fungi (e.g., Aspergillus piperis and Penicillium oxalicum). Our study highlights the importance of studying the interactions between fungi, aiming to clarify better the impact of fungal-based biological fungicides in the soil communities, and offers a pipeline for further applications.
Collapse
Affiliation(s)
- Marianna Dourou
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy
- Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milan, Italy
| | - Caterina Anna Maria La Porta
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy
- Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milan, Italy
- Innovation for Well-Being and Environment (CRC-I-WE), University of Milan, 20122 Milan, Italy
| |
Collapse
|
114
|
Giordano DF, Pastor NA, Rouws LFM, de Freitas KM, Erazo JG, Del Canto A, da Silva Coelho I, Oddino CM, Torres AM. Trichoderma harzianum ITEM 3636 colonizes peanut roots as an endophyte and protects the plants against late leaf spot. Symbiosis 2023. [DOI: 10.1007/s13199-023-00913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
115
|
Racić G, Vukelić I, Kordić B, Radić D, Lazović M, Nešić L, Panković D. Screening of Native Trichoderma Species for Nickel and Copper Bioremediation Potential Determined by FTIR and XRF. Microorganisms 2023; 11:microorganisms11030815. [PMID: 36985388 PMCID: PMC10053837 DOI: 10.3390/microorganisms11030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Soil pollution with heavy metals is a serious threat to the environment. However, soils polluted with heavy metals are considered good sources of native metal-resistant Trichoderma strains. Trichoderma spp. are free-living fungi commonly isolated from different ecosystems, establishing endophytic associations with plants. They have important ecological and biotechnological roles due to their production of a wide range of secondary metabolites, thus regulating plant growth and development or inducing resistance to plant pathogens. In this work we used indigenous Trichoderma strains that were previously isolated from different soil types to determine their tolerance to increased copper and nickel concentrations as well as mechanisms of metal removal. The concentrations of bioavailable metal concentrations were determined after extraction with diethylene-triamine pentaacetate (DTPA)-extractable metals (Cd, Cr, Co, Cu, Pb, Mn, Ni, and Zn) from the soil samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). Two indigenous T. harzianum strains were selected for copper tolerance, and three indigenous T. longibrachiatum strains were selected for nickel tolerance tests. Strains were isolated from the soils with the highest and among the lowest DTPA-extractable metal concentrations to determine whether the adaptation to different concentrations of metals affects the mechanisms of remediation. Mechanisms of metal removal were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray fluorescence spectroscopy (XRF), non-destructive methods characterized by high measurement speed with little or no need for sample preparation and very low costs. Increased DTPA-extractable metal content for nickel and copper was detected in the soil samples above the target value (TV), and for nickel above the soil remediation intervention values (SRIVs), for total metal concentrations which were previously determined. The SRIV is a threshold of metal concentrations indicating a serious soil contamination, thus confirming the need for soil remediation. The use of FTIR and XRF methods revealed that the presence of both biosorption and accumulation of metals in the Trichoderma cells, providing good bioremediation potential for Ni and Cu.
Collapse
Affiliation(s)
- Gordana Racić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Igor Vukelić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Branko Kordić
- Faculty of Natural Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Danka Radić
- Institute of General and Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Milana Lazović
- AbioTech Lab, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| | - Ljiljana Nešić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Dejana Panković
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia
| |
Collapse
|
116
|
Rahman M, Borah SM, Borah PK, Bora P, Sarmah BK, Lal MK, Tiwari RK, Kumar R. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops viz., Trichoderma harzianum MC2, and Trichoderma harzianum NBG. FRONTIERS IN PLANT SCIENCE 2023; 14:1141506. [PMID: 36938007 PMCID: PMC10020943 DOI: 10.3389/fpls.2023.1141506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The Solanaceae family is generally known to be the third most economically important plant taxon, but also harbors a host of plant pathogens. Diseases like wilt and fruit rot of solanaceous crops cause huge yield losses in the field as well as in storage. In the present study, eight isolates of Trichoderma spp. were obtained from rhizospheric micro-flora of three solanaceous crops: tomato, brinjal, and chili plants, and were subsequently screened for pre-eminent biocontrol activity against three fungal (Fusarium oxysporum f. sp. lycopersicum, Colletotrichum gloeosporioides, and Rhizoctonia solani) and one bacterial (Ralstonia solanacearum) pathogen. Morphological, ITS, and tef1α marker-based molecular identification revealed eight isolates were different strains of Trichoderma. Seven isolates were distinguished as T. harzianum while one was identified as T. asperellum. In vitro antagonistic and biochemical assays indicated significant biocontrol activity governed by all eight isolates. Two fungal isolates, T. harzianum MC2 and T. harzianum NBG were further evaluated to decipher their best biological control activity. Preliminary insights into the secondary metabolic profile of both isolates were retrieved by liquid chromatography-mass spectrometry (LC-MS). Further, a field experiment was conducted with the isolates T. harzianum MC2 and T. harzianum NBG which successfully resulted in suppression of bacterial wilt disease in tomato. Which possibly confer biocontrol properties to the identified isolates. The efficacy of these two strains in suppressing bacterial wilt and promoting plant growth in the tomato crop was also tested in the field. The disease incidence was significantly reduced by 47.50% and yield incremented by 54.49% in plants treated in combination with both the bioagents. The results of scanning electron microscopy were also in consensus with the in planta results. The results altogether prove that T. harzianum MC2 and T. harzianum NBG are promising microbes for their prospective use in agricultural biopesticide formulations.
Collapse
Affiliation(s)
- Mehjebin Rahman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Pradip Kr. Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Popy Bora
- Department of Plant Pathology, Regional Agricultural Research Station, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Milan Kumar Lal
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Rahul Kumar Tiwari
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Ravinder Kumar
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
117
|
Ou T, Zhang M, Gao H, Wang F, Xu W, Liu X, Wang L, Wang R, Xie J. Study on the Potential for Stimulating Mulberry Growth and Drought Tolerance of Plant Growth-Promoting Fungi. Int J Mol Sci 2023; 24:ijms24044090. [PMID: 36835498 PMCID: PMC9966926 DOI: 10.3390/ijms24044090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Drought stress often leads to heavy losses in mulberry planting, especially for fruits and leaves. Application of plant growth-promoting fungi (PGPF) endows various plant beneficial traits to overcome adverse environmental conditions, but little is known about the effects on mulberry under drought stress. In the present study, we isolated 64 fungi from well-growing mulberry trees surviving periodical drought stress, and Talaromyces sp. GS1, Pseudeurotium sp. GRs12, Penicillium sp. GR19, and Trichoderma sp. GR21 were screened out due to their strong potential in plant growth promotion. Co-cultivation assay revealed that PGPF stimulated mulberry growth, exhibiting increased biomass and length of stems and roots. Exogenous application of PGPF could alter fungal community structures in the rhizosphere soils, wherein Talaromyces was obviously enhanced after inoculation of Talaromyces sp. GS1, and Peziza was increased in the other treatments. Moreover, PGPF could promote iron and phosphorus absorption of mulberry as well. Additionally, the mixed suspensions of PGPF induced the production of catalase, soluble sugar, and chlorophyll, which in turn enhanced the drought tolerance of mulberry and accelerated their growth recovery after drought. Collectively, these findings might provide new insights into improving mulberry drought tolerance and further boosting mulberry fruit yields by exploiting interactions between hosts and PGPF.
Collapse
|
118
|
Dos Santos UR, Dos Santos JL. Trichoderma after crossing kingdoms: infections in human populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:97-126. [PMID: 36748123 DOI: 10.1080/10937404.2023.2172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Trichoderma is a saprophytic fungus that is used worldwide as a biocontrol and biofertilizer agent. Although considered nonpathogenic until recently, reports of human infections produced by members of the Trichoderma genus are increasing. Numerous sources of infection were proposed based upon patient data and phylogenetic analysis, including air, agriculture, and healthcare facilities, but the deficit of knowledge concerning Trichoderma infections makes patient treatment difficult. These issues are compounded by isolates that present profiles which exhibit high minimum inhibitory concentration values to available antifungal drugs. The aim of this review is to present the global distribution and sources of infections that affect both immunocompetent and immunocompromised hosts, clinical features, therapeutic strategies that are used to treat patients, as well as highlighting treatments with the best responses. In addition, the antifungal susceptibility profiles of Trichoderma isolates that have emerged in recent decades were examined and which antifungal drugs need to be further evaluated as potential candidates to treat Trichoderma infections are also indicated.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
119
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
120
|
Vera-Morales M, López Medina SE, Naranjo-Morán J, Quevedo A, Ratti MF. Nematophagous Fungi: A Review of Their Phosphorus Solubilization Potential. Microorganisms 2023; 11:137. [PMID: 36677427 PMCID: PMC9867276 DOI: 10.3390/microorganisms11010137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023] Open
Abstract
Nematophagous fungi (NF) are a group of diverse fungal genera that benefit plants. The aim of this review is to increase comprehension about the importance of nematophagous fungi and their role in phosphorus solubilization to favor its uptake in agricultural ecosystems. They use different mechanisms, such as acidification in the medium, organic acids production, and the secretion of enzymes and metabolites that promote the bioavailability of phosphorus for plants. This study summarizes the processes of solubilization, in addition to the mechanisms of action and use of NF on crops, evidencing the need to include innovative alternatives for the implementation of microbial resources in management plans. In addition, it provides information to help understand the effect of NF to make phosphorus available for plants, showing how these biological means promote phosphorus uptake, thus improving productivity and yield.
Collapse
Affiliation(s)
- Marcos Vera-Morales
- Escuela de Postgrado, Universidad Nacional de Trujillo, Jr. San Martin 392, Trujillo 13007, Perú
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
| | - Segundo E. López Medina
- Escuela de Postgrado, Universidad Nacional de Trujillo, Jr. San Martin 392, Trujillo 13007, Perú
| | - Jaime Naranjo-Morán
- Laboratorio de Biotecnología Vegetal, Ingeniería en Biotecnología, Facultad Ciencias de la Vida, Campus María Auxiliadora, Universidad Politécnica Salesiana (UPS), Km 19.5 Vía a la Costa, Guayaquil P.O. Box 09-01-2074, Ecuador
| | - Adela Quevedo
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
| | - María F. Ratti
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090608, Ecuador
| |
Collapse
|
121
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
122
|
Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol 2023; 14:1160551. [PMID: 37206337 PMCID: PMC10189891 DOI: 10.3389/fmicb.2023.1160551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Hailin Guo
- Science and Technology Innovation Development Center of Bijie City, Bijie, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Mengyu Zhao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
- *Correspondence: Jingjun Ruan,
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Jie Chen,
| |
Collapse
|
123
|
Forlano P, Mang SM, Caccavo V, Fanti P, Camele I, Battaglia D, Trotta V. Effects of Below-Ground Microbial Biostimulant Trichoderma harzianum on Diseases, Insect Community, and Plant Performance in Cucurbita pepo L. under Open Field Conditions. Microorganisms 2022; 10:2242. [PMID: 36422311 PMCID: PMC9692614 DOI: 10.3390/microorganisms10112242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2024] Open
Abstract
Agrochemicals are generally used in agriculture to maximize yields and product quality, but their overuse can cause environmental pollution and human health problems. To reduce the off-farm input of chemicals, numerous biostimulant products based on beneficial symbiont plant fungi are receiving a great deal of attention. The evolution of plant diseases and the performance of insects are influenced by plant chemical defences, both of which are, in turn, influenced by below-ground symbionts. Direct and indirect plant defences mediated by belowground symbionts against plant diseases and insect herbivores were demonstrated in greenhouses experiments. However, little attention has been paid to the use of Trichoderma under open field conditions, and no data are available for zucchini (Cucurbita pepo L.) plants in the field. To determine the effects of a commercial Trichoderma harzianum strain T22 on plant viruses, powdery mildew, the arthropod community, and on the agronomic performance associated with zucchini plants, an experiment was conducted in 2022 under open field conditions in South Italy. Our results indicate that T. harzianum T22 makes zucchini plants more attractive to aphids and to Hymenoptera parasitoid but failed to control zucchini pathogens. The complex plant-disease-arthropod-microorganism interactions that occurred in the field during the entire plant cycle are discussed to enrich our current information on the possibilities of using these microorganisms as a green alternative in agriculture.
Collapse
Affiliation(s)
- Pierluigi Forlano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vittoria Caccavo
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Fanti
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Donatella Battaglia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vincenzo Trotta
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
124
|
Kiruba N JM, Saeid A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int J Mol Sci 2022; 23:13049. [PMID: 36361844 PMCID: PMC9656562 DOI: 10.3390/ijms232113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2023] Open
Abstract
The plant-microbe holobiont has garnered considerable attention in recent years, highlighting its importance as an ecological unit. Similarly, manipulation of the microbial entities involved in the rhizospheric microbiome for sustainable agriculture has also been in the limelight, generating several commercial bioformulations to enhance crop yield and pest resistance. These bioformulations were termed biofertilizers, with the consistent existence and evolution of different types. However, an emerging area of interest has recently focused on the application of these microorganisms for waste valorization and the production of "bio-organic" fertilizers as a result. In this study, we performed a bibliometric analysis and systematic review of the literature retrieved from Scopus and Web of Science to determine the type of microbial inoculants used for the bioconversion of waste into "bio-organic" fertilizers. The Bacillus, Acidothiobacillus species, cyanobacterial biomass species, Aspergillus sp. and Trichoderma sp. were identified to be consistently used for the recovery of nutrients and bioconversion of wastes used for the promotion of plant growth. Cyanobacterial strains were used predominantly for wastewater treatment, while Bacillus, Acidothiobacillus, and Aspergillus were used on a wide variety of wastes such as sawdust, agricultural waste, poultry bone meal, crustacean shell waste, food waste, and wastewater treatment plant (WWTP) sewage sludge ash. Several bioconversion strategies were observed such as submerged fermentation, solid-state fermentation, aerobic composting, granulation with microbiological activation, and biodegradation. Diverse groups of microorganisms (bacteria and fungi) with different enzymatic functionalities such as chitinolysis, lignocellulolytic, and proteolysis, in addition to their plant growth promoting properties being explored as a consortium for application as an inoculum waste bioconversion to fertilizers. Combining the efficiency of such functional and compatible microbial species for efficient bioconversion as well as higher plant growth and crop yield is an enticing opportunity for "bio-organic" fertilizer research.
Collapse
Affiliation(s)
- Jennifer Michellin Kiruba N
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Saeid
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| |
Collapse
|
125
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
126
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
127
|
Ray P, Sahu D, Aminedi R, Chandran D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:977502. [PMID: 37746174 PMCID: PMC10512274 DOI: 10.3389/ffunb.2022.977502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 09/26/2023]
Abstract
Existing, emerging, and reemerging strains of phytopathogenic fungi pose a significant threat to agricultural productivity globally. This risk is further exacerbated by the lack of resistance source(s) in plants or a breakdown of resistance by pathogens through co-evolution. In recent years, attenuation of essential pathogen gene(s) via double-stranded (ds) RNA-mediated RNA interference (RNAi) in host plants, a phenomenon known as host-induced gene silencing, has gained significant attention as a way to combat pathogen attack. Yet, due to biosafety concerns regarding transgenics, country-specific GMO legislation has limited the practical application of desirable attributes in plants. The topical application of dsRNA/siRNA targeting essential fungal gene(s) through spray-induced gene silencing (SIGS) on host plants has opened up a transgene-free avenue for crop protection. However, several factors influence the outcome of RNAi, including but not limited to RNAi mechanism in plant/fungi, dsRNA/siRNA uptake efficiency, dsRNA/siRNA design parameters, dsRNA stability and delivery strategy, off-target effects, etc. This review emphasizes the significance of these factors and suggests appropriate measures to consider while designing in silico and in vitro experiments for successful RNAi in open-field conditions. We also highlight prospective nanoparticles as smart delivery vehicles for deploying RNAi molecules in plant systems for long-term crop protection and ecosystem compatibility. Lastly, we provide specific directions for future investigations that focus on blending nanotechnology and RNAi-based fungal control for practical applications.
Collapse
Affiliation(s)
- Poonam Ray
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Debashish Sahu
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raghavendra Aminedi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
128
|
Li X, Leng J, Yu L, Bai H, Li X, Wisniewski M, Liu J, Sui Y. Efficacy of the biocontrol agent Trichoderma hamatum against Lasiodiplodia theobromae on macadamia. Front Microbiol 2022; 13:994422. [PMID: 36118222 PMCID: PMC9470996 DOI: 10.3389/fmicb.2022.994422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Macadamia (Macadamia integrifolia) trees are an important source of revenue in rainforest ecosystems. Their nuts are rich in vitamins, minerals, fiber, antioxidants, and monounsaturated oils. The fungus Lasiodiplodia theobromae, however, is a major disease problem, causing kernel rot and other disease symptoms. In the present study, a dual confrontation assay was used to evaluate the inhibitory effect of an endophytic strain of Trichoderma hamatum C9 from macadamia root against L. theobromae. Volatiles and cell-free culture filtrate of T. hamatum were also used to assess their antifungal activity against L. theobromae. Results suggested that T. hamatum exhibited a significant inhibitory effect against L. theobromae in vitro. Further results of a biocontrol assay indicated that a spray treatment of T. hamatum conidial suspension significantly decreased the size of lesions caused by artificially inoculated L. theobromae on macadamia leaves, as well as the disease index in young trees inoculated with L. theobromae, relative to sterile water controls. Collectively, our findings indicate that T. hamatum C9 represents a potential biocontrol agent that can be used to manage L. theobromae on macadamia.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Jinsong Leng
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | | | - Xiaojun Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
129
|
Cabral-Miramontes JP, Olmedo-Monfil V, Lara-Banda M, Zúñiga-Romo ER, Aréchiga-Carvajal ET. Promotion of Plant Growth in Arid Zones by Selected Trichoderma spp. Strains with Adaptation Plasticity to Alkaline pH. BIOLOGY 2022; 11:1206. [PMID: 36009833 PMCID: PMC9405189 DOI: 10.3390/biology11081206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Trichoderma species are filamentous fungi that support plant health and confer improved growth, disease resistance, and abiotic stress tolerance. The objective of this study is to describe the physiological characteristics of the abundance and structure of Trichoderma model strains from arid zones and evaluate and describe their possible adaptation and modulation in alkaline pH. The presence of biotic factors such as phytopathogens forces farmers to take more actions such as using pesticides. In addition, factors such as the lack of water worldwide lead to losses in agricultural production. Therefore, the search for biocontrol microorganisms that support drought opens the door to the search for variations in the molecular mechanisms involved in these phenomena. In our case, we isolated 11 tested Trichoderma fungal strains from samples collected both from the rhizosphere and roots from two endemic plants. We probed their molecular markers to obtain their identity and assessed their resistance to alkaline conditions, as well as their response to mycoparasitism, plant growth promotion, and drought stress. The findings were worthy of being analyzed in depth. Three fungal taxa/species were grouped by phylogenetic/phenotypic characteristics; three T. harzianum strains showed outstanding capabilities to adapt to alkalinity stress. They also showed antagonistic activity against three phytopathogenic fungi. Additionally, we provided evidence of significant growth promotion in Sorghum bicolor seedlings under endemic agriculture conditions and a reduction in drought damage with Trichoderma infection. Finally, beneficial fungi adapted to specific ambient niches use various molecular mechanisms to survive and modulate their metabolism.
Collapse
Affiliation(s)
- Juan Pablo Cabral-Miramontes
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico
| | - Vianey Olmedo-Monfil
- Departamento de Biología, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 38116, Gto., Mexico
| | - María Lara-Banda
- FIME-Centro de Investigación e Innovación en Ingeniería Aeronáutica (CIIIA), Universidad Autónoma de Nuevo Leon, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
| | - Efrén Ricardo Zúñiga-Romo
- Departamento de Biología, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 38116, Gto., Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico
| |
Collapse
|
130
|
Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081169. [PMID: 36013348 PMCID: PMC9409700 DOI: 10.3390/life12081169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Managing soil biodiversity by reduced or no tillage is an increasingly popular approach. Soil mycobiome in Siberian agroecosystems has been scarcely studied; little is known about its changes due to tillage. We studied mycobiome in Chernozem under natural steppe vegetation and cropped for wheat by conventional or no tillage in a long-term field trial in West Siberia, Russia, by using ITS2 rDNA gene marker (Illumina MiSeq sequencing). Half of the identified OTUs were Ascomycota with 82% of the total number of sequence reads and showing, like other phyla (Basidiomycota, Zygomycota, Mortierellomycota, Chytridiomycota, Glomeromycota), field-related differential abundance. Several dominant genera (Mortierella, Chaetomium, Clonostachys, Gibberella, Fusarium, and Hypocrea) had increased abundance in both cropped soils as compared with the undisturbed one and therefore can be safely assumed to be associated with wheat residues. Fungal OTUs' richness in cropped soils was less than in the undisturbed one; however, no tillage shifted soil mycobiome composition closer to the latter, albeit, it was still similar to the ploughed soil, despite different organic matter and wheat residue content. The study provided the first inventory of soil mycobiome under different tillage treatments in the south of West Siberia, where wheat production is an important section of the regional economy.
Collapse
|
131
|
Joo JH, Hussein KA. Biological Control and Plant Growth Promotion Properties of Volatile Organic Compound-Producing Antagonistic Trichoderma spp. FRONTIERS IN PLANT SCIENCE 2022; 13:897668. [PMID: 35958189 PMCID: PMC9360753 DOI: 10.3389/fpls.2022.897668] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/20/2022] [Indexed: 05/25/2023]
Abstract
Trichoderma is environmentally vital due to their plant growth-promoting effects (such as enhancement of nutrients supply, suppression of plant pathogens, and promotion of plant defense). Biogenic volatile organic compounds (VOCs) are diverse chemical substances emitted by Trichoderma spp. The potential role of VOCs in biological control and plant growth promotion has recently been recognized. Here, the Trichoderma-VOCs' performance for plant growth promotion and suppression of plant pathogens are evaluated. We further investigated VOC emission profiles of T. harzianum using GC-MS. The Trichoderma-VOCs exhibited significant (p < 0.05) antifungal properties against all tested pathogenic fungi. T. atroviride-VOCs showed a decisive inhibition of Alternaria panax, Botrytis cinerea, Cylindrocarpon destructans, and Sclerotinia nivalis. The germinating seeds demonstrated growth enhancement in the presence of Trichoderma-VOCs emitted by different strains. Low levels of cyclopentasiloxane, decamethyl, cyclotetrasiloxane, and octamethyl were found in T. harzianum KNU1 strain whereas cyclopentasiloxane, decamethyl, cyclotetrasiloxane, and octamethyl showed higher emission levels as Si-containing compounds. The results reveal the potentiality of VOCs as a biocontrol resource against deleterious rhizosphere microorganisms and underline the importance of Trichoderma-VOCs emissions in regulating plant growth and development.
Collapse
Affiliation(s)
- Jin Ho Joo
- Soil Biochemistry Lab, Department of Biological Environment, Kangwon National University, Chuncheon, South Korea
| | - Khalid Abdallah Hussein
- Soil Biochemistry Lab, Department of Biological Environment, Kangwon National University, Chuncheon, South Korea
- Botany and Microbiology Department, Faculty of Science, Assiut University, Asyut, Egypt
| |
Collapse
|
132
|
Biological Control of the Cucumber Downy Mildew Pathogen Pseudoperonospora cubensis. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cucumber downy mildew (CDM) is a destructive plant disease caused by the air-borne oomycete pathogen Pseudoperonospora cubensis. CDM causes severe yield reduction of cucumber and significant economic losses. Biocontrol is a promising method to control CDM with the advantage of being beneficial to sustainable agricultural development. However, until now, no reviews of biocontrol of CDM have been reported. The objective of this review is to more comprehensively understand the biocontrol of CDM. In this review, the biological characteristics of P. cubensis are introduced, and strategies for screening biocontrol agents to suppress CDM are recommended. Then the current biocontrol agents, including fungi such as Trichoderma and biocontrol bacteria such as Bacillus, which possess the ability to control CDM, and their control characteristics and ability against CDM are also summarized. The potential mechanisms by which these biocontrol agents prevent CDM are discussed. Finally, several suggestions for future research on the biocontrol of CDM are provided.
Collapse
|
133
|
Caccavo V, Forlano P, Mang SM, Fanti P, Nuzzaci M, Battaglia D, Trotta V. Effects of Trichoderma harzianum Strain T22 on the Arthropod Community Associated with Tomato Plants and on the Crop Performance in an Experimental Field. INSECTS 2022; 13:418. [PMID: 35621754 PMCID: PMC9147967 DOI: 10.3390/insects13050418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Fungi belonging to the genus Trichoderma have received much attention in recent years due to their beneficial effects on crop health and their use as pest control agents. Trichoderma activates direct plant defenses against phytophagous arthropods and reinforces indirect plant defense through the attraction of predators. Although the plant defenses against insect herbivores were demonstrated in laboratory experiments, little attention has been paid to the use of Trichoderma spp. in open field conditions. In the present study, we investigated the effects of the inoculation of the commercial Trichoderma harzianum strain T22 on the arthropod community associated with tomato plants and on the crop performance in an experimental field located in South Italy. Our results showed that inoculation with T. harzianum could alter the arthropod community and reduce the abundance of specific pests under field conditions with respect to the sampling period. The present study also confirmed the beneficial effect of T. harzianum against plant pathogens and on tomato fruit. The complex tomato-arthropod-microorganism interactions that occurred in the field are discussed to enrich our current information on the possibilities of using Trichoderma as a green alternative agent in agriculture.
Collapse
Affiliation(s)
- Vittoria Caccavo
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Pierluigi Forlano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Paolo Fanti
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Donatella Battaglia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| | - Vincenzo Trotta
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.C.); (P.F.); (S.M.M.); (M.N.); (D.B.)
| |
Collapse
|