101
|
Jiménez-Segovia A, Mota A, Rojo-Sebastián A, Barrocal B, Rynne-Vidal A, García-Bermejo ML, Gómez-Bris R, Hawinkels LJAC, Sandoval P, Garcia-Escudero R, López-Cabrera M, Moreno-Bueno G, Fresno M, Stamatakis K. Prostaglandin F 2α-induced Prostate Transmembrane Protein, Androgen Induced 1 mediates ovarian cancer progression increasing epithelial plasticity. Neoplasia 2019; 21:1073-1084. [PMID: 31734628 PMCID: PMC6888713 DOI: 10.1016/j.neo.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 10/29/2022] Open
Abstract
The role of prostaglandin (PG) F2α has been scarcely studied in cancer. We have identified a new function for PGF2α in ovarian cancer, stimulating the production of Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1). We show that this induction increases cell plasticity and proliferation, enhancing tumor growth through PMEPA1. Thus, PMEPA1 overexpression in ovarian carcinoma cells, significantly increased cell proliferation rates, whereas PMEPA1 silencing decreased proliferation. In addition, PMEPA1 overexpression buffered TGFβ signaling, via reduction of SMAD-dependent signaling. PMEPA1 overexpressing cells acquired an epithelial morphology, associated with higher E-cadherin expression levels while β-catenin nuclear translocation was inhibited. Notwithstanding, high PMEPA1 levels also correlated with epithelial to mesenchymal transition markers, such as vimentin and ZEB1, allowing the cells to take advantage of both epithelial and mesenchymal characteristics, gaining in cell plasticity and adaptability. Interestingly, in mouse xenografts, PMEPA1 overexpressing ovarian cells had a clear survival and proliferative advantage, resulting in higher metastatic capacity, while PMEPA1 silencing had the opposite effect. Furthermore, high PMEPA1 expression in a cohort of advanced ovarian cancer patients was observed, correlating with E-cadherin expression. Most importantly, high PMEPA1 mRNA levels were associated with lower patient survival.
Collapse
Affiliation(s)
- Alba Jiménez-Segovia
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alba Mota
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain; MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain
| | - Alejandro Rojo-Sebastián
- MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Angela Rynne-Vidal
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - María-Laura García-Bermejo
- Biomarkers and Therapeutic Targets Lab, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raquel Gómez-Bris
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Pilar Sandoval
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ramon Garcia-Escudero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Molecular Oncology Unit, CIEMAT, Madrid, Spain; Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid 28041, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain; MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Manuel Fresno
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-P), Madrid, Spain.
| | - Konstantinos Stamatakis
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-P), Madrid, Spain.
| |
Collapse
|
102
|
Liu Z, Zhu W, Kong X, Chen X, Sun X, Zhang W, Zhang R. Tanshinone IIA inhibits glucose metabolism leading to apoptosis in cervical cancer. Oncol Rep 2019; 42:1893-1903. [PMID: 31485631 PMCID: PMC6775814 DOI: 10.3892/or.2019.7294] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer requires aerobic glycolysis to supply the energy required for proliferation. Existing evidence has revealed that blocking glycolysis results in apoptosis of cancer cells. Tanshinone IIA (Tan IIA) is a diterpenoid naphthoquinone found in traditional Chinese medicine, Danshen (Salvia sp.). Tan IIA exhibits potential anticancer activity. However, its effect on cell viability of human cervical cancer cells and its mechanism are unknown. The aim of the present study was to determine the effect of Tan IIA on proliferation and glucose metabolism in cervical cancer cells. Cell viability was measured by MTT assay, apoptosis was determined using flow cytometry and glucose uptake, lactate production, and adenosine triphosphate content were measured to assess glucose metabolism. The expression of apoptosis‑associated proteins was detected by western blotting and the antitumor activity of Tan IIA in vivo was evaluated in cervical carcinoma‑bearing mice. The results revealed Tan IIA treatment resulted in a considerable reduction in the viability of SiHa cells. Tan IIA decreased the expression of HPV oncogenes E6 and E7, induced apoptosis and also decreased glycolysis by suppressing the activity of the intracellular AKT/mTOR and HIF‑1α. In vivo, treatment with Tan IIA resulted in a 72.7% reduction in tumor volume. The present study highlights the potential therapeutic value of Tan IIA, which functions by inducing apoptosis and may be associated with inhibition of glycolysis.
Collapse
Affiliation(s)
- Zhigang Liu
- Faculty of Medicine, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Wenhe Zhu
- Department of Biochemistry, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Xiangyu Kong
- Faculty of Medicine, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Xi Chen
- Faculty of Medicine, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Xinyi Sun
- Faculty of Medicine, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Wei Zhang
- Department of Biochemistry, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Ruowen Zhang
- Faculty of Medicine, Beihua University, Jilin, Jilin 132013, P.R. China
| |
Collapse
|
103
|
Human Ovarian Cancer Tissue Exhibits Increase of Mitochondrial Biogenesis and Cristae Remodeling. Cancers (Basel) 2019; 11:cancers11091350. [PMID: 31547300 PMCID: PMC6770021 DOI: 10.3390/cancers11091350] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer characterized by an elevated apoptosis resistance that, potentially, leads to chemo-resistance in the recurrent disease. Mitochondrial oxidative phosphorylation was found altered in OC, and mitochondria were proposed as a target for therapy. Molecular evidence suggests that the deregulation of mitochondrial biogenesis, morphology, dynamics, and apoptosis is involved in carcinogenesis. However, these mitochondrial processes remain to be investigated in OC. Eighteen controls and 16 OC tissues (serous and mucinous) were collected. Enzymatic activities were performed spectrophotometrically, mitochondrial DNA (mtDNA) content was measured by real-time-PCR, protein levels were determined by Western blotting, and mitochondrial number and structure were measured by electron microscopy. Statistical analysis was performed using Student’s t-test, Mann-Whitney U test, and principal component analysis (PCA). We found, in OC, that increased mitochondrial number associated with increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and mitochondrial transcription factor A (TFAM) protein levels, as well as mtDNA content. The OC mitochondria presented an increased maximum length, as well as reduced cristae width and junction diameter, associated with increased optic atrophy 1 protein (OPA1) and prohibitin 2 (PHB2) protein levels. In addition, in OC tissues, augmented cAMP and sirtuin 3 (SIRT3) protein levels were observed. PCA of the 25 analyzed biochemical parameters classified OC patients in a distinct group from controls. We highlight a “mitochondrial signature” in OC that could result from cooperation of the cAMP pathway with the SIRT3, OPA1, and PHB2 proteins.
Collapse
|
104
|
L19-IL2 Immunocytokine in Combination with the Anti-Syndecan-1 46F2SIP Antibody Format: A New Targeted Treatment Approach in an Ovarian Carcinoma Model. Cancers (Basel) 2019; 11:cancers11091232. [PMID: 31443604 PMCID: PMC6769537 DOI: 10.3390/cancers11091232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the fifth most common cancer affecting the female population. At present, different targeted treatment approaches may improve currently employed therapies leading either to the delay of tumor recurrence or to disease stabilization. In this study we show that syndecan-1 (SDC1) and tumor angiogenic-associated B-fibronectin isoform (B-FN) are involved in EOC progression and we describe the prominent role of SDC1 in the vasculogenic mimicry (VM) process. We also investigate a possible employment of L19-IL2, an immunocytokine specific for B-FN, and anti-SDC1 46F2SIP (small immuno protein) antibody in combination therapy in a human ovarian carcinoma model. A tumor growth reduction of 78% was obtained in the 46F2SIP/L19-IL2-treated group compared to the control group. We observed that combined treatment was effective in modulation of epithelial-mesenchymal transition (EMT) markers, loss of stemness properties of tumor cells, and in alleviating hypoxia. These effects correlated with reduction of VM structures in tumors from treated mice. Interestingly, the improved pericyte coverage in vascular structures suggested that combined therapy could be efficacious in induction of vessel normalization. These data could pave the way for a possible use of L19-IL2 combined with 46F2SIP antibody as a novel therapeutic strategy in EOC.
Collapse
|
105
|
Pujade-Lauraine E, Banerjee S, Pignata S. Management of Platinum-Resistant, Relapsed Epithelial Ovarian Cancer and New Drug Perspectives. J Clin Oncol 2019; 37:2437-2448. [PMID: 31403868 DOI: 10.1200/jco.19.00194] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Eric Pujade-Lauraine
- ARCAGY-GINECO (Association de Recherche contre les Cancers dont Gynécologiques-Groupe des Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, gynécologiques et du sein), Paris, France
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Sandro Pignata
- Istituto Nazionale Tumori Fondazione G Pascale, Istituto di Ricovero e Cura a Carattere Scientifico, Napoli, Italy
| |
Collapse
|
106
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
107
|
Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells 2019; 11:383-397. [PMID: 31396367 PMCID: PMC6682502 DOI: 10.4252/wjsc.v11.i7.383] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell (CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryonic-like stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Gynecology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
108
|
Schillaci O, Scimeca M, Toschi N, Bonfiglio R, Urbano N, Bonanno E. Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9429761. [PMID: 31354394 PMCID: PMC6636452 DOI: 10.1155/2019/9429761] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
In the era of personalized medicine, the management of oncological patients requires a translational and multidisciplinary approach. During early phases of cancer development, biochemical alterations of cell metabolism occur much before the formation of detectable tumour masses. Current molecular imaging techniques, targeted to the study of molecular kinetics, employ molecular tracers capable of detecting cancer lesions with both high sensitivity and specificity while also providing essential information for both prognosis and therapy. On the contrary, complementary and crucial information is provided by histopathological examination and ancillary techniques such as immunohistochemistry. Thus, the successful collaboration between diagnostic imaging and anatomic pathology can represent a fundamental step in the "tortuous" but decisive path towards personalized medicine.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- Martinos Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
| | | | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed Lab, “Diagnostica Medica”, “Villa dei Platani”, Avellino, Italy
| |
Collapse
|
109
|
Labrie M, Kim TB, Ju Z, Lee S, Zhao W, Fang Y, Lu Y, Chen K, Ramirez P, Frumovitz M, Meyer L, Fleming ND, Sood AK, Coleman RL, Mills GB, Westin SN. Adaptive responses in a PARP inhibitor window of opportunity trial illustrate limited functional interlesional heterogeneity and potential combination therapy options. Oncotarget 2019; 10:3533-3546. [PMID: 31191824 PMCID: PMC6544405 DOI: 10.18632/oncotarget.26947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Poly (ADP-ribose) polymerase inhibitor (PARPi)-based combination therapies are demonstrating efficacy in patients, however, identifying the right combination for the right patient remains a critical challenge. Thus, it is urgent to develop approaches able to identify patients likely to benefit from specific combination therapies. Several groups, including ours, have demonstrated that targeting adaptive responses induced by PARPi increases depth and duration of response. In this study, we instituted a talazoparib (PARPi) monotherapy window of opportunity trial to identify informative adaptive responses in high grade serous ovarian cancer patients (HGSOC). Patients were treated for 7 to 14 days with PARPi monotherapy prior to surgery with tissue samples from multiple sites being collected pre- and post-treatment in each patient. Analysis of these samples demonstrated that individual patients displayed different adaptive responses with limited interlesional heterogeneity. Ability of combination therapies designed to interdict adaptive responses to decrease viability was validated using model systems. Thus, assessment of adaptive responses to PARPi provides an opportunity for patient-specific selection of combination therapies designed to interdict patient-specific adaptive responses to maximize patient benefit.
Collapse
Affiliation(s)
- Marilyne Labrie
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Tae-Beom Kim
- Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Zhao
- Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Fang
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Yiling Lu
- Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Pedro Ramirez
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Larissa Meyer
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole D Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.,Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
110
|
Zeng XY, Xie H, Yuan J, Jiang XY, Yong JH, Zeng D, Dou YY, Xiao SS. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol Ther 2019; 20:956-966. [PMID: 31062668 PMCID: PMC6606001 DOI: 10.1080/15384047.2018.1564567] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Ovarian cancer (OC) is the gynecologic malignant tumor with high mortality. Accumulating evidence indicates that M2-like tumor-associated macrophages (TAMs) can secret EGF to participate in ovarian cancer growth, migration, and metastasis. An EGF-downregulated lncRNA, LIMT (lncRNA inhibiting metastasis), was identified as a critical regulator of mammary cell migration and invasion. Nevertheless, whether EGF secreted from M2-like TAMs regulates LIMT expression in ovarian cancer progression remains largely unknown. Methods: The human OC cell lines OV90 and OVCA429 were recruited in this study. The differentiation of the human monocyte cell line THP-1 into M2-like TAMs was confirmed using flow cytometry within the application of phorbol 12-myristate 13-acetate (PMA). ELISA was performed to detect EGF concentration in co-culture system of M2-like TAMs and OC cell lines. Moreover, CCK-8, flow cytometry and immunofluorescence staining of Ki67 were performed to assess the capacity of cell proliferation. Besides, cell migration and invasion were determined by wound healing and transwell assays. Furthermore, the expression levels of epithelial-mesenchymal transition (EMT) markers and EGFR/ERK signals were analyzed by qRT-PCR and western blot. Female athymic nude mice (8-12 weeks of age; n = 8 for each group) were recruited for in vivo study. Results: In the present study, THP-1 cells exhibited the phenotype markers of M2-like TAMs with low proportion of CD14+ marker and high proportion of CD68+, CD204+, CD206+ markers within the application of PMA. After co-culturing with M2-like TAMs, EGF concentration in the supernatants was significantly increased in a time-dependent manner. Besides, OC cells presented better cell viability, higher cell proliferation, and stronger migration and invasion. The expression of EMT-related markers N-cadherin, Vimentin and EGFR/ERK signals were markedly up-regulated, while E-cadherin was significantly decreased. However, these effects induced by co-culture system were reversed by the application of AG1478 (an EGFR inhibitor) or LIMT overexpression. Furthermore, the endogenous expression of LIMT was decreased in OC cell lines compared with the control group. Also, the in vivo experiments verified that the inhibition of EGFR signaling by AG1478 or overexpression of LIMT effectively repressed the tumor growth. Conclusion: Taken together, we demonstrated that EGF secreted by M2-like TAMs might suppress LIMT expression via activating EGFR-ERK signaling pathway to promote the progression of OC.
Collapse
Affiliation(s)
- Xiang-Yang Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Hui Xie
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jing Yuan
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Xiao-Yan Jiang
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jia-Hui Yong
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Da Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ying-Yu Dou
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Song-Shu Xiao
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
111
|
Sadłecki P, Grabiec M, Grzanka D, Jóźwicki J, Antosik P, Walentowicz-Sadłecka M. Expression of zinc finger transcription factors (ZNF143 and ZNF281) in serous borderline ovarian tumors and low-grade ovarian cancers. J Ovarian Res 2019; 12:23. [PMID: 30885238 PMCID: PMC6423742 DOI: 10.1186/s13048-019-0501-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Low-grade ovarian cancers represent up to 8% of all epithelial ovarian carcinomas (EOCs). Recent studies demonstrated that epithelial-mesenchymal transition (EMT) is crucial for the progression of EOCs. EMT plays a key role in cancer invasion, metastasis formation and chemotherapy resistance. An array of novel EMT transcription factors from the zinc finger protein family have been described recently, among them zinc finger protein 143 (ZNF143) and zinc finger protein 281 (ZNF281). The study included tissue specimens from 42 patients. Based on histopathological examination of surgical specimens, eight lesions were classified as serous borderline ovarian tumors (sBOTs) and 34 as low-grade EOCs. The proportions of the ovarian tumors that tested positively for ZNF143 and ZNF281 were 90 and 57%, respectively. No statistically significant differences were found in the expressions of ZNF143 and ZNF281 transcription factors in SBOTs and low-grade EOCs. Considering the expression patterns for ZNF143 and ZNF281 identified in this study, both sBOTs and low-grade EOCs might undergo a dynamic epithelial-mesenchymal interconversion. The lack of statistically significant differences in the expressions of the zinc finger proteins in sBOTs and low-grade serous EOCs might constitute an evidence for common origin of these two tumor types.
Collapse
Affiliation(s)
- Paweł Sadłecki
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Walentowicz-Sadłecka
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| |
Collapse
|
112
|
Liu F, Zhang G, Lv S, Wen X, Liu P. miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. J Cell Biochem 2019; 120:12618-12627. [PMID: 30834603 DOI: 10.1002/jcb.28528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 01/02/2023]
Abstract
High-grade ovarian serous carcinoma (HGS-OvCa), a type of ovarian cancer with poor prognosis due to distant metastasis, is urgently in need of new therapeutic targets. microRNAs (miRNAs), a class of small noncoding RNAs, perform significant roles in tumor progression. Mounting evidence has revealed the aberrant expression of miRNA in various cancers, one of which is HGS-OvCa. Present study planned to investigate that miRNA-301b-3p accelerates migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis. Upregulation of miR-301b-3p was uncovered in HGS-OvCa tissues and cell lines, and was identified to be associated with metastasis. The Kaplan-Meier analysis confirmed the association of miR-301b-3p with poor prognosis of HGS-OvCa patients. Transwell assay validated the oncogenic effect of miR-301b-3p on migration and invasion of HGS-OvCa cells. Cytoplasmic polyadenylation element binding protein 3 (CPEB3) was then identified as a target of miR-301b-3p. It was also discovered that CPEB3 was downregulated in HGS-OvCa tissues and cell lines. The Spearman correlation curve presented the negative correlation of CPEB3 expression with miR-301b-3p. Furthermore, rescue assays proved that miRNA-301b-3p regulated the invasion and migration through CPEB3. Western blot and qRT-PCR analysis showed that miRNA-301b-3p induced epidermal growth factor receptor and downstream metastasis-related proteins, p38, and extracellular signal-regulated kinase 1/2 (ERK1/2), through CPEB3. To be concluded, these results indicated that miRNA-301b-3p accelerated migration and invasion of high-grade ovarian serous tumor via targeting CPEB3/EGFR axis.
Collapse
Affiliation(s)
- Fengying Liu
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Guilian Zhang
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Shiming Lv
- Department of Gynecology and obstetrics, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Xinmian Wen
- Department of Laboratory Medicine, the Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Peishu Liu
- Department of Gynecology and obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
113
|
High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci 2019. [PMID: 30813239 DOI: 10.3390/ijms20040952] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among a litany of malignancies affecting the female reproductive tract, that of the ovary is the most frequently fatal. Moreover, while the steady pace of scientific discovery has fuelled recent ameliorations in the outcomes of many other cancers, the rates of mortality for ovarian cancer have been stagnant since around 1980. Yet despite the grim outlook, progress is being made towards better understanding the fundamental biology of this disease and how its biology in turn influences clinical behaviour. It has long been evident that ovarian cancer is not a unitary disease but rather a multiplicity of distinct malignancies that share a common anatomical site upon presentation. Of these, the high-grade serous subtype predominates in the clinical setting and is responsible for a disproportionate share of the fatalities from all forms of ovarian cancer. This review aims to provide a detailed overview of the clinical-pathological features of ovarian cancer with a particular focus on the high-grade serous subtype. Along with a description of the relevant clinical aspects of this disease, including novel trends in treatment strategies, this text will inform the reader of recent updates to the scientific literature regarding the origin, aetiology and molecular-genetic basis of high-grade serous ovarian cancer (HGSOC).
Collapse
|
114
|
High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci 2019. [PMID: 30813239 DOI: 10.3390/ijms20040952]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Among a litany of malignancies affecting the female reproductive tract, that of the ovary is the most frequently fatal. Moreover, while the steady pace of scientific discovery has fuelled recent ameliorations in the outcomes of many other cancers, the rates of mortality for ovarian cancer have been stagnant since around 1980. Yet despite the grim outlook, progress is being made towards better understanding the fundamental biology of this disease and how its biology in turn influences clinical behaviour. It has long been evident that ovarian cancer is not a unitary disease but rather a multiplicity of distinct malignancies that share a common anatomical site upon presentation. Of these, the high-grade serous subtype predominates in the clinical setting and is responsible for a disproportionate share of the fatalities from all forms of ovarian cancer. This review aims to provide a detailed overview of the clinical-pathological features of ovarian cancer with a particular focus on the high-grade serous subtype. Along with a description of the relevant clinical aspects of this disease, including novel trends in treatment strategies, this text will inform the reader of recent updates to the scientific literature regarding the origin, aetiology and molecular-genetic basis of high-grade serous ovarian cancer (HGSOC).
Collapse
|
115
|
High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci 2019; 20:ijms20040952. [PMID: 30813239 PMCID: PMC6412907 DOI: 10.3390/ijms20040952] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Among a litany of malignancies affecting the female reproductive tract, that of the ovary is the most frequently fatal. Moreover, while the steady pace of scientific discovery has fuelled recent ameliorations in the outcomes of many other cancers, the rates of mortality for ovarian cancer have been stagnant since around 1980. Yet despite the grim outlook, progress is being made towards better understanding the fundamental biology of this disease and how its biology in turn influences clinical behaviour. It has long been evident that ovarian cancer is not a unitary disease but rather a multiplicity of distinct malignancies that share a common anatomical site upon presentation. Of these, the high-grade serous subtype predominates in the clinical setting and is responsible for a disproportionate share of the fatalities from all forms of ovarian cancer. This review aims to provide a detailed overview of the clinical-pathological features of ovarian cancer with a particular focus on the high-grade serous subtype. Along with a description of the relevant clinical aspects of this disease, including novel trends in treatment strategies, this text will inform the reader of recent updates to the scientific literature regarding the origin, aetiology and molecular-genetic basis of high-grade serous ovarian cancer (HGSOC).
Collapse
|
116
|
Ulm M, Ramesh AV, McNamara KM, Ponnusamy S, Sasano H, Narayanan R. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr Connect 2019; 8:R10-R26. [PMID: 30640710 PMCID: PMC6365668 DOI: 10.1530/ec-18-0425] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Hormonal cancers affect over 400,000 men and women and contribute collectively to over 100,000 deaths in the United States alone. Thanks to advances in the understanding of these cancers at the molecular level and to the discovery of several disease-modifying therapeutics, the last decade has seen a plateauing or even a decreasing trend in the number of deaths from these cancers. These advanced therapeutics not only effectively slow the growth of hormonal cancers, but also provide an insight on how these cancers become refractory and evolve as an altogether distinct subset. This review summarizes the current therapeutic trends in hormonal cancers, with focus on prostate, breast and ovarian cancers. The review discusses the clinical drugs being used now, promising molecules that are going through various stages of development and makes some predictions on how the therapeutic landscape will shift in the next decade.
Collapse
Affiliation(s)
- Michael Ulm
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| | | | | | - Suriyan Ponnusamy
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Ramesh Narayanan
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| |
Collapse
|
117
|
Variation in Clinical Application of Hyperthermic Intraperitoneal Chemotherapy: A Review. Cancers (Basel) 2019; 11:cancers11010078. [PMID: 30641919 PMCID: PMC6357036 DOI: 10.3390/cancers11010078] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastasis (PM) originating from gastrointestinal and gynecological malignancies are associated with a poor prognosis and rapid disease progression. Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) is an effective treatment option with curative intent. Hyperthermia enhances the cytotoxicity of chemotherapeutic drugs, thereby killing microscopic tumors and reducing the risk of tumor recurrence. Eight parameters potentially have an impact on the efficacy of HIPEC: the type of drug, drug concentrations, carrier solution, volume of the perfusate, temperature of the perfusate, duration of the treatment, the technique of delivery, and patient selection. In this review, a literature search was performed on PubMed, and a total of 564 articles were screened of which 168 articles were included. Although HIPEC is a successful treatment, there is no standardized method for delivering HIPEC: the choice of parameters is presently largely determined by institutional preferences. We discuss the current choice of the parameters and hypothesize about improvements toward uniform standardization. Quantifying the effect of each parameter separately is necessary to determine the optimal way to perform HIPEC procedures. In vivo, in vitro, in silico, and other experimental studies should shed light on the role of each of the eight parameters.
Collapse
|
118
|
Zhou Y, Layton O, Hong L. Identification of Genes and Pathways Involved in Ovarian Epithelial Cancer by Bioinformatics Analysis. J Cancer 2018; 9:3016-3022. [PMID: 30210623 PMCID: PMC6134813 DOI: 10.7150/jca.26133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/09/2018] [Indexed: 01/05/2023] Open
Abstract
Ovarian epithelial cancer (OEC) is an often fatal disease with poor prognosis in women with high-stage disease. In contrast, ovarian low malignant potential (LMP) tumors with favorable prognosis behaves as a disease between benign and malignant tumors. The involved genes and pathways between benign-like LMP and aggressive OEC are largely unknown. This study integrated two cohorts profile datasets to investigate the potential key candidate genes and pathways associated with OEC. Gene expression in two datasets (GSE9891 and GSE12172), including 327 OECs and 48 LMP tumors, were analyzed. 559 differentially expressed genes were found to overlap, 251 up-regulated and 308 down-regulated. Subsequently, analysis of gene ontology, signaling pathway enrichment and protein-protein interaction (PPI) network was performed. Gene ontology analysis clustered the up-regulated and down-regulated genes based on significant enrichment. 282 nodes/ differentially expressed genes (DEGs) were identified from DEGs PPI network complex, and two most significant k-clique modules were identified from PPI. In a summary, using integrated bioinformatics analysis, we are able to identify biomarkers potentially significant in the pathogenesis of OEC, which can improve our understanding of the cause and molecular events. These candidate genes and pathways could be used for further confirmation, and lead to better disease diagnose and therapy.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Olivia Layton
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Li Hong
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| |
Collapse
|
119
|
Áyen Á, Jiménez Martínez Y, Marchal JA, Boulaiz H. Recent Progress in Gene Therapy for Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19071930. [PMID: 29966369 PMCID: PMC6073662 DOI: 10.3390/ijms19071930] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in developed countries. This is due to the lack of specific symptoms that hinder early diagnosis and to the high relapse rate after treatment with radical surgery and chemotherapy. Hence, novel therapeutic modalities to improve clinical outcomes in ovarian malignancy are needed. Progress in gene therapy has allowed the development of several strategies against ovarian cancer. Most are focused on the design of improved vectors to enhance gene delivery on the one hand, and, on the other hand, on the development of new therapeutic tools based on the restoration or destruction of a deregulated gene, the use of suicide genes, genetic immunopotentiation, the inhibition of tumour angiogenesis, the alteration of pharmacological resistance, and oncolytic virotherapy. In the present manuscript, we review the recent advances made in gene therapy for ovarian cancer, highlighting the latest clinical trials experience, the current challenges and future perspectives.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| |
Collapse
|
120
|
Garziera M, Cecchin E, Canzonieri V, Sorio R, Giorda G, Scalone S, De Mattia E, Roncato R, Gagno S, Poletto E, Romanato L, Sartor F, Polesel J, Toffoli G. Identification of Novel Somatic TP53 Mutations in Patients with High-Grade Serous Ovarian Cancer (HGSOC) Using Next-Generation Sequencing (NGS). Int J Mol Sci 2018; 19:ijms19051510. [PMID: 29783665 PMCID: PMC5983728 DOI: 10.3390/ijms19051510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/26/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations in TP53 are a hallmark of high-grade serous ovarian cancer (HGSOC), although their prognostic and predictive value as markers is not well defined. Next-generation sequencing (NGS) can identify novel mutations with high sensitivity, that may be repurposed as potential druggable anti-cancer targets and aid in therapeutic decisions. Here, a commercial NGS cancer panel comprising 26 genes, including TP53, was used to identify new genetic markers of platinum resistance and patient prognosis in a retrospective set of patients diagnosed with epithelial ovarian cancer. Six novel TP53 somatic mutations in untreated tumors from six distinct patients diagnosed with HGSOC were identified: TP53 c.728_739delTGGGCGGCATGA (p.Met243_Met247del, in-frame insertion or deletion (INDEL); TP53 c.795_809delGGGACGGAACAGCTT (p.Gly266_Phe270del, in-frame INDEL); TP53 c.826_827GC>AT (p.Ala276Ile, missense); TP53 c.1022insT (p.Arg342Profs*5, frameshift INDEL); TP53 c.1180delT (p.Ter394Aspfs*28, frameshift INDEL); and TP53 c.573insT (p.Gln192Serfs*17, frameshift INDEL). Novel TP53 variants were validated by classical sequencing methods and their impact on protein expression in tumors explored by immunohistochemistry. Further insights into the potential functional effect of the mutations were obtained by different in silico approaches, bioinformatics tools, and structural modeling. This discovery of previously unreported TP53 somatic mutations provides an opportunity to translate NGS technology into personalized medicine and identify new potential targets for therapeutic applications.
Collapse
Affiliation(s)
- Marica Garziera
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Roberto Sorio
- Medical Oncology Unit C, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Giorgio Giorda
- Gynecological Oncology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Simona Scalone
- Medical Oncology Unit C, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Elena Poletto
- Medical Oncology Department, Azienda Sanitaria Universitaria Integrata di Udine, via Pozzuolo 330, 33100 Udine (UD), Italy.
| | - Loredana Romanato
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Franca Sartor
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Jerry Polesel
- Unit of Cancer Epidemiology, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO Aviano-National Cancer Institute, IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| |
Collapse
|