101
|
Filby BW, Weldrick PJ, Paunov VN. Overcoming Beta-Lactamase-Based Antimicrobial Resistance by Nanocarrier-Loaded Clavulanic Acid and Antibiotic Cotreatments. ACS APPLIED BIO MATERIALS 2022; 5:3826-3840. [PMID: 35819369 DOI: 10.1021/acsabm.2c00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antimicrobial resistance (AMR) is one of the major threats to modern healthcare. Many types of bacteria have developed resistance to multiple antibiotic treatments, while additional antibiotics have not been recently brought to market. One approach to counter AMR based on the beta-lactamase enzyme has been to use cotreatments of an antibiotic and an inhibitor, to enhance the antibiotic action. Here, we aimed to enhance this technique by developing nanocarriers of two cationic beta-lactam class antibiotics, amoxicillin, and ticarcillin, combined with a beta-lactamase inhibitor, clavulanic acid, which can potentially overcome this type of AMR. We demonstrate for the first time that beta-lactamase inhibitor-loaded nanocarriers in cotreatments with either free or nanocarrier-loaded beta-lactam antibiotics can enhance their effectiveness further than when used alone. We use surface-functionalized shellac-/Poloxamer 407-stabilized antibiotic nanocarriers on Pseudomonas aeruginosa, which is susceptible to ticarcillin but is resistant to amoxicillin. We show an amplification of the antibiotic effect of amoxicillin and ticarcillin loaded in shellac nanoparticles, both alone and as a cotreatment with free or nanocarrier-loaded clavulanic acid. We also report a significant increase in the antimicrobial effects of clavulanic acid loaded in such nanocarriers as a cotreatment. We explain the increased antimicrobial activity of the cationically functionalized antibiotic-loaded nanoparticles with electrostatic attraction to the bacterial cell wall, which delivers higher local antibiotic and inhibitor concentrations. The effect is due to the accumulation of the clavulanic acid-loaded nanocarriers on the bacterial cell walls that allows a higher proportion of the inhibitor to engage with the produced intracellular beta-lactamases. These nanocarriers were also found to have a very low cytotoxic effect against human keratinocytes, which shows great potential for overcoming enzyme-based AMR.
Collapse
Affiliation(s)
- Benjamin W Filby
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Paul J Weldrick
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave 53, Nur-Sultan 020000, Kazakhstan
| |
Collapse
|
102
|
Mahajan HS, Jadhao VD, Chandankar SM. Pullulan and Pluronic F-127 based in situ gel system for intranasal delivery: Development, in vitro and in vivo evaluation. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221110284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The current work seeks to use Pullulan and Pluronic F-127 (PF-127), a new gel-forming material, for sildenafil citrate (SLC) intranasal delivery. The cold approach was used to develop an SLC-loaded in situ gel based on thermoreversible polymer PF-127 and mucoadhesive polymer Pullulan. In situ gel systems based on Pullulan responds intelligently to environmental stimuli like charge, pH, temperature, light, and redox. To achieve gelation at physiological temperature formulations were modified to have gelation temperatures lower than 34.1°C. Physical appearance and rheological measurements were used to calculate the temperature of gelation. With the addition of increasing quantities of Pullulan, the gelation temperatures fell (from 34.1°C for 8% w/v, 10% w/v, and 12% w/v 0.5% Pullulan). In the goat nasal mucosal membrane, Pullulan concentration increased the mucoadhesive force in terms of detachment stress. The results of drug permeation testing in vitro investigations over the goat nasal mucosa showed that utilizing an in situ gelling formulation with a Pullulan content of 0.5% or higher can greatly boost the effective penetration coefficient. The formulation was shown to be safe for the nasal mucosa after a histological investigation. Conclusively, Pullulan and PF-127 may be appropriate carriers for SLC intranasal administration.
Collapse
Affiliation(s)
- Hitendra S Mahajan
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Vikram D Jadhao
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Sachin M Chandankar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
103
|
Noreen S, Pervaiz F, Ijaz M, Shoukat H. Synthesis and characterization of pH-sensitive chemically crosslinked block copolymer [Hyaluronic acid/Poloxamer 407-co-poly (Methacrylic acid)] hydrogels for colon targeting. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2033771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, Comsats University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
104
|
Šrom O, Trávníková V, Bláha L, Ciofalo M, Šoóš M. Investigation of poloxamer cell protective ability via shear sensitive aggregates in stirred aerated bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
105
|
Fang L, Lu X, Cui C, Shi Q, Wang H. Metronidazole-loaded nanoparticulate thermoreversible gel for gynecologic infection of Trichomonas vaginalis. Am J Transl Res 2022; 14:4015-4023. [PMID: 35836901 PMCID: PMC9274572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Trichomoniasis is a common sexually-transmitted disease that is associated with increased perinatal morbidity and human immunodeficiency virus (HIV) transmission. This study aimed to develop a Metronidazole-loaded nanoparticulate thermoreversible gel for gynecological infection of Trichomonas vaginalis (T. vaginalis). METHODS The optimized nanoparticulate formulation was used in thermoreversible gel and characterized for physico-chemical properties, antiparasitic activity, and in vivo efficacy in the BALB/c mouse model. RESULT A nearly threefold rise in antiparasitic activity of the optimized formulation was observed as compared to that of regular gel. Formulation F5 successfully cured the trichomoniasis within 3 days, while regular gel and pure Metronidazole (MTDZ) failed to cure this infection (P<0.05). CONCLUSION The present investigation confirms the ability of thermoreversible gel containing nanoparticulate metronidazole againstthe infection by T. vaginalis. The developed gel could be an alternative to the existing drug delivery system for the treatment of trichomoniasis.
Collapse
Affiliation(s)
- Ling Fang
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Chengjun Cui
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Qifeng Shi
- Department of Pathology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Haojue Wang
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| |
Collapse
|
106
|
Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels 2022; 8:gels8060360. [PMID: 35735704 PMCID: PMC9222596 DOI: 10.3390/gels8060360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022] Open
Abstract
Poloxamer is a triblock copolymer with amphiphilicity and reversible thermal responsiveness and has wide application prospects in biomedical applications owing to its multifunctional properties. Poloxamer hydrogels play a crucial role in the field of tissue engineering and have been regarded as injectable scaffolds for loading cells or growth factors (GFs) in the last few years. Hydrogel micelles can maintain the integrity and stability of cells and GFs and form an appropriate vascular network at the application site, thus creating an appropriate microenvironment for cell growth, nerve growth, or bone integration. The injectability and low toxicity of poloxamer hydrogels make them a noninvasive method. In addition, they can also be good candidates for bio-inks, the raw material for three-dimensional (3D) printing. However, the potential of poloxamer hydrogels has not been fully explored owing to the complex biological challenges. In this review, the latest progress and cutting-edge research of poloxamer-based scaffolds in different fields of application such as the bone, vascular, cartilage, skin, nervous system, and organs in tissue engineering and 3D printing are reviewed, and the important roles of poloxamers in tissue engineering scaffolds are discussed in depth.
Collapse
|
107
|
Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
108
|
Baldassa MA, Dias RV, Oliveira LC, Feitosa E. Aqueous mixtures of cornstarch and Pluronic® F127 studied by experimental and computational techniques. Food Res Int 2022; 158:111515. [DOI: 10.1016/j.foodres.2022.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
|
109
|
Polymeric Micelles Enhance Mucosal Contact Time and Deposition of Fluocinolone Acetonide. Polymers (Basel) 2022; 14:polym14112247. [PMID: 35683926 PMCID: PMC9182893 DOI: 10.3390/polym14112247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/20/2022] Open
Abstract
This study used polymeric micelles to improve quality by increasing drug solubility, extending mucosal drug retention time, enhancing mucoadhesiveness, and promoting drug permeation and deposition. Fluocinolone acetonide (FA) was loaded into polymeric micelles (FPM), which were composed of poloxamer 407 (P407), sodium polyacrylate (SPA), and polyethylene glycol 400, and their physicochemical properties were examined. Small-angle X-ray scattering (SAXS) revealed a hexagonal micellar structure at all temperatures, and the concentrations of P407 and SPA were shown to significantly affect the solubility, mucoadhesion, release, and permeation of FPMs. The proportion of P407 to PEG at a ratio of 7.5:15 with or without 0.1% w/v of SPA provided suitable FPM formulations. Moreover, the characteristics of FPMs revealed crystalline states inside the micelles, which was consistent with the morphology and nano-hexagonal structure. The results of ex vivo experiments using focal plane array (FPA)-based Fourier transform infrared (FTIR) imaging showed that the FPM with SPA penetrated quickly through the epithelium, lamina propria, and submucosa, and remained in all layers from 5-30 min following administration. In contrast, the FPM without SPA penetrated and passed through all layers. The FPM with extended mucoadhesion, improved drug-mucosal retention time, and increased FA permeation and deposition were successfully developed, and could be a promising innovation for increasing the efficiency of mouth rinses, as well as other topical pharmaceutical and dental applications.
Collapse
|
110
|
Haggag MA, Salem AES, Elsherbini AM. Sustained Release In Situ Thermogelling Hydrogel of Cerebrolysin for Treatment of Facial Nerve Axotomy in Rats. J Oral Maxillofac Surg 2022; 80:949-959. [PMID: 35041809 DOI: 10.1016/j.joms.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The most essential principle in managing facial nerve (FN) injury is proper diagnosis and early treatment. This study evaluated local application of different concentrations and injection intervals of Cerebrolysin hydrogel (CBLH) for facial nerve axotomy (FNA) treatment. We hypothesized that local application of CBLH may provide a sustained release of Cerebrolysin and enhance neural regeneration. METHODS The authors implemented a randomized, controlled, blinded animal study. The sample was composed of the right FN. Functionally, eye-blink reflex was evaluated 2 and 4 weeks postoperatively. All rats were euthanized after 4 weeks, and nerve regeneration was evaluated histopathologically and immunohistochemically (IHC) with antibody against neurofilament (anti-NF) and S100 proteins. Descriptive and correlation statistics were computed, and the P value was set at .05. RESULTS The sample was composed of 72 adult male rats equally allocated into 8 groups. Groups I and V served as control groups and were injected with phosphate buffered saline once and four times, respectively. Rest of the groups were injected with 5%, 10%, and 15% CBLH once in groups II, III, IV and weekly in groups VI, VII, and VIII. CBLH showed statistically significant FN regeneration by enhancing Schwann and axonal growth compared to control group especially with single injection of 10%, 15%, and 5% 4-time injections, where the P value was less than .001. Significant improvement of eye-blink reflex was correlated with structural improvement associated with CBLH. CONCLUSION Finally, CBLH enhanced nerve regeneration and rehabilitation after FNA in rats. Therefore, it could be considered as an alternative treatment of FNA. More experimental and clinical trials should be considered to detect the effectiveness of CBLH in neural regeneration.
Collapse
Affiliation(s)
- Mai Ahmed Haggag
- Assistant Professor, Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Mansoura University, Egypt
| | - Amgad El-Said Salem
- Lecturer, Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Amira M Elsherbini
- Assistant Professor, Oral Biology Department, Faculty of Dentistry, Mansoura University, Egypt.
| |
Collapse
|
111
|
Dinh L, Hong J, Min Kim D, Lee G, Jung Park E, Hyuk Baik S, Hwang SJ. A novel thermosensitive poloxamer-hyaluronic acid- kappa-carrageenan-based hydrogel anti-adhesive agent loaded with 5-fluorouracil: a preclinical study in Sprague-Dawley rats. Int J Pharm 2022; 621:121771. [PMID: 35487401 DOI: 10.1016/j.ijpharm.2022.121771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
Although the first-choice treatment for colorectal cancer is cytoreductive surgery combined with chemotherapy, post-surgical peritoneal adhesion and extant malignancy can cause fatal complications. Studies examining hydrogel-based postoperative anti-adhesion treatments are still limited. In this study, several formulations of 5-fluorouracil (5-FU) loaded into hyaluronic acid (HA) and kappa-carrageenan (kCGN)-poloxamer 407 (P407)-based cross-linked hydrogels were prepared and evaluated in vitro and in vivo for their efficacy in preventing adhesion. These hydrogels met a set of desired specifications such as thermosensitive behavior, strong elasticity at body temperature (tan δ < 1.0 at 37°C), and ability to encapsulate hydrophilic drug and deliver it in a sustained released manner. Our secondary purpose is to provide in situ 5-FU for additional local antitumor effect when the anti-adhesion agent is spread over the tumor site. Over 60% of the total loaded drug was released within 4 hours, and about 80% of 5-FU was released after three days. Both the Higuchi and Korsmeyer-Peppas models showed that the mechanism of sustained drug release involved diffusion. The constructed hydrogels were evaluated for in vivo intra-abdominal anti-adhesion barrier efficiency; the HA/kCGN 1%/3% w/v hydrogel formulation showed the best anti-adhesion effect in this preclinical study using Sprague-Dawley rat models.
Collapse
Affiliation(s)
- Linh Dinh
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jiyeon Hong
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dong Min Kim
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Gawon Lee
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Eun Jung Park
- Division of Colon and Rectal Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, 06273 Republic of Korea.
| | - Seung Hyuk Baik
- Division of Colon and Rectal Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, 06273 Republic of Korea
| | - Sung-Joo Hwang
- College of Pharmacy & Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
112
|
White JM, Calabrese MA. Impact of small molecule and reverse poloxamer addition on the micellization and gelation mechanisms of poloxamer hydrogels. Colloids Surf A Physicochem Eng Asp 2022; 638. [PMID: 35221534 PMCID: PMC8880963 DOI: 10.1016/j.colsurfa.2021.128246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poloxamer 407 (P407) is widely used for targeted drug-delivery because it exhibits thermoresponsive gelation behavior near body temperature, stemming from a disorder-to-order transition. Hydrophobic small molecules can be encapsulated within P407; however, these additives often negatively impact the rheological properties and lower the gelation temperatures of the hydrogels, limiting their clinical utility. Here we investigate the impact of adding two BAB reverse poloxamers (RPs), 25R4 and 31R1, on the thermal transitions, rheological properties, and assembled structures of P407 both with and without incorporated small molecules. By employing a combination of differential scanning calorimetry (DSC), rheology, and small-angle x-ray scattering (SAXS), we determine distinct mechanisms for RP incorporation. While 25R4 addition promotes inter-micelle bridge formation, the highly hydrophobic 31R1 co-micellizes with P407. Small molecule addition lowers thermal transition temperatures and increases the micelle size, while RP addition mitigates the decreases in modulus traditionally associated with small molecule incorporation. This fundamental understanding yields new strategies for tuning the mechanical and structural properties of the hydrogels, enabling design of drug-loaded formulations with ideal thermal transitions for a range of clinical applications.
Collapse
Affiliation(s)
- Joanna M White
- University of Minnesota, 421 Washington Ave SE, Minneapolis, 55455, MN, USA
| | | |
Collapse
|
113
|
Popovici V, Bucur L, Gîrd CE, Rambu D, Calcan SI, Cucolea EI, Costache T, Ungureanu-Iuga M, Oroian M, Mironeasa S, Schröder V, Ozon EA, Lupuliasa D, Caraiane A, Badea V. Antioxidant, Cytotoxic, and Rheological Properties of Canola Oil Extract of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070854. [PMID: 35406834 PMCID: PMC9002375 DOI: 10.3390/plants11070854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 05/04/2023]
Abstract
Usnea genus (Parmeliaceae, lichenized Ascomycetes) is a potent phytomedicine, due to phenolic secondary metabolites, with various pharmacological effects. Therefore, our study aimed to explore the antioxidant, cytotoxic, and rheological properties of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) extract in canola oil (UBO) compared to cold-pressed canola seed oil (CNO), as a green solvent used for lichen extraction, which has phytoconstituents. The antiradical activity (AA) of UBO and CNO was investigated using UV-Vis spectrophotometry. Their cytotoxicity was examined in vivo through a brine shrimp lethality (BSL) test after Artemia salina (A. salina) larvae exposure for 6 h to previously emulsified UBO and CNO. The rheological properties of both oil samples (flow behavior, thixotropy, and temperature-dependent viscosity variation) were comparatively analyzed. The obtained results showed that UBO (IC50 = 0.942 ± 0.004 mg/mL) had a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than CNO (IC50 = 1.361 ± 0.008 mg/mL). Both UBO and CNO emulsions induced different and progressive morphological changes to A. salina larvae, incompatible with their survival; UBO cytotoxicity was higher than that of CNO. Finally, in the temperature range of 32-37 °C, the UBO and CNO viscosity and viscoelastic behavior indicated a clear weakening of the intermolecular bond when temperature increases, leading to a more liquid state, appropriate for possible pharmaceutical formulations. All quantified parameters were highly intercorrelated. Moreover, their significant correlation with trace/heavy minerals and phenolic compounds can be observed. All data obtained also suggest a possible synergism between lichen secondary metabolites, minerals, and canola oil phytoconstituents.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Dan Rambu
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Suzana Ioana Calcan
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Elena Iulia Cucolea
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Teodor Costache
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Mădălina Ungureanu-Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
- Integrated Center for Research, Development, and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Emma-Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania;
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| |
Collapse
|
114
|
Affiliation(s)
- Haoyue Lu
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| | - Jingcheng Hao
- Shandong University Key Laboratory of Colloid and Interface Chemistry 27 Shanda Nanlu 250100 Jinan CHINA
| | - Xu Wang
- Shandong University National Engineering Research Center for Colloidal Materials 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
115
|
Fathalla Z, Mustafa WW, Abdelkader H, Moharram H, Sabry AM, Alany RG. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Deliv 2022; 29:374-385. [PMID: 35068268 PMCID: PMC8788381 DOI: 10.1080/10717544.2021.2023236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Thermosensitive in situ gels have been around for decades but only a few have been translated into ophthalmic pharmaceuticals. The aim of this study was to combine the thermo-gelling polymer poloxamer 407 and mucoadhesive polymers chitosan (CS) and methyl cellulose (MC) for developing effective and long-acting ophthalmic delivery systems for L-carnosine (a natural dipeptide drug) for corneal wound healing. Methods The effect of different polymer combinations on parameters like gelation time and temperature, rheological properties, texture, spreading coefficients, mucoadhesion, conjunctival irritation potential, in vitro release, and ex vivo permeation were studied. Healing of corneal epithelium ulcers was investigated in a rabbit’s eye model. Results Both gelation time and temperature were significantly dependent on the concentrations of poloxamer 407 and additive polymers (chitosan and methyl cellulose), where it ranged from <10 s to several minutes. Mechanical properties investigated through texture analysis (hardness, adhesiveness, and cohesiveness) were dependent on composition. Promising spreading-ability, mucoadhesion, transcorneal permeation of L-carnosine, high ocular tolerability, and enhanced corneal epithelium wound healing were recorded for poloxamer 407/chitosan systems. Conclusion In situ gelling systems comprising combinations of poloxamer-chitosan exhibited superior gelation time and temperature, mucoadhesion, and rheological characteristics suitable for effective long-acting drug delivery systems for corneal wounds.
Collapse
Affiliation(s)
- Zeinab Fathalla
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Wesam W. Mustafa
- Department of Chemical and Pharmaceutical Sciences, Kingston University London, Kingston upon Thames, UK
- Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | - Hamdy Abdelkader
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Hossam Moharram
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ahmed Mohamed Sabry
- Ophthalmology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Raid G. Alany
- Drug Discovery, Delivery and Patient Care Theme, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, UK
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
116
|
Sicurella M, Sguizzato M, Mariani P, Pepe A, Baldisserotto A, Buzzi R, Huang N, Simelière F, Burholt S, Marconi P, Esposito E. Natural Polyphenol-Containing Gels against HSV-1 Infection: A Comparative Study. NANOMATERIALS 2022; 12:nano12020227. [PMID: 35055245 PMCID: PMC8780422 DOI: 10.3390/nano12020227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/04/2023]
Abstract
Herpes simplex virus type 1 infection commonly affects many people, causing perioral sores, as well as severe complications including encephalitis in immunocompromised patients. The main pharmacological approach involves synthetic antiviral drugs, among which acyclovir is the golden standard, often leading to resistant virus strains under long-term use. An alternative approach based on antiviral plant-derived compounds, such as quercetin and mangiferin, demonstrated an antiviral potential. In the present study, semisolid forms for cutaneous application of quercetin and mangiferin were designed and evaluated to treat HSV-1 infection. Phosphatidylcholine- and poloxamer-based gels were produced and characterized. Gel physical–chemical aspects were evaluated by rheological measurements and X-ray diffraction, evidencing the different thermoresponsive behaviors and supramolecular organizations of semisolid forms. Quercetin and mangiferin diffusion kinetics were compared in vitro by a Franz cell system, demonstrating the different gel efficacies to restrain the polyphenol diffusion. The capability of gels to control polyphenol antioxidant potential and stability was evaluated, indicating a higher stability and antioxidant activity in the case of quercetin loaded in poloxamer-based gel. Furthermore, a plaque reduction assay, conducted to compare the virucidal effect of quercetin and mangiferin loaded in gels against the HSV-1 KOS strain, demonstrated the suitability of poloxamer-based gel to prolong the polyphenol activity.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Alessia Pepe
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, I-60131 Ancona, Italy; (P.M.); (A.P.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Nicolas Huang
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Fanny Simelière
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Sam Burholt
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
- Correspondence: (P.M.); (E.E.); Tel.: +39-0532-455230 (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.)
- Correspondence: (P.M.); (E.E.); Tel.: +39-0532-455230 (E.E.)
| |
Collapse
|
117
|
Pérez-González N, Bozal-de Febrer N, Calpena-Campmany AC, Nardi-Ricart A, Rodríguez-Lagunas MJ, Morales-Molina JA, Soriano-Ruiz JL, Fernández-Campos F, Clares-Naveros B. New Formulations Loading Caspofungin for Topical Therapy of Vulvovaginal Candidiasis. Gels 2021; 7:259. [PMID: 34940319 PMCID: PMC8701247 DOI: 10.3390/gels7040259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) poses a significant problem worldwide affecting women from all strata of society. It is manifested as changes in vaginal discharge, irritation, itching and stinging sensation. Although most patients respond to topical treatment, there is still a need for increase the therapeutic arsenal due to resistances to anti-infective agents. The present study was designed to develop and characterize three hydrogels of chitosan (CTS), Poloxamer 407 (P407) and a combination of both containing 2% caspofungin (CSP) for the vaginal treatment of VVC. CTS was used by its mucoadhesive properties and P407 was used to exploit potential advantages related to increasing drug concentration in order to provide a local effect. The formulations were physically, mechanically and morphologically characterized. Drug release profile and ex vivo vaginal permeation studies were performed. Antifungal efficacy against different strains of Candida spp. was also evaluated. In addition, tolerance of formulations was studied by histological analysis. Results confirmed that CSP hydrogels could be proposed as promising candidates for the treatment of VVC.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
| | - Ana C. Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Anna Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - José A. Morales-Molina
- Department of Pharmacy, Torrecárdenas University Hospital, s/n Hermandad de Donantes de Sangre St., 04009 Almeria, Spain;
| | - José L. Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | | | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
118
|
Ma X, Lang J, Chen P, Yang R. Silver Nanoparticles as an Effective Antimicrobial against Otitis Media Pathogens. AIChE J 2021; 67:e17468. [PMID: 35450419 PMCID: PMC9017526 DOI: 10.1002/aic.17468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023]
Abstract
Otitis Media (OM) is the most common reason for U.S. children to receive prescribed oral antibiotics, leading to potential to cause antibiotic resistance. To minimize oral antibiotic usage, we developed polyvinylpyrrolidone-coated silver nanoparticles (AgNPs-PVP), which completely eradicated common OM pathogens, i.e., Streptococcus pneumoniae and non-typeable Haemophilus influenzae (NTHi) at 1.04μg/mL and 2.13μg/mL. The greater antimicrobial efficacy against S. pneumoniae was a result of the H2O2-producing ability of S. pneumoniae and the known synergistic interactions between H2O2 and AgNPs. To enable the sustained local delivery of AgNPs-PVP (e.g., via injection through perforated tympanic membranes), a hydrogel formulation of 18%(w/v)P407 was developed. Reverse thermal gelation of the AgNPs-PVP-P407 hydrogel could gel rapidly upon entering the warm auditory bullae and thereby sustained release of antimicrobials. This hydrogel-based local delivery system completely eradicated OM pathogens in vitro without cytotoxicity, and thus represents a promising strategy for treating bacterial OM without relying on conventional antibiotics.
Collapse
Affiliation(s)
- Xiaojing Ma
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jiayan Lang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Pengyu Chen
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
119
|
Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021; 13:2049. [PMID: 34959331 PMCID: PMC8704573 DOI: 10.3390/pharmaceutics13122049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023] Open
Abstract
Treatment of neurodegenerative diseases or other central nervous system (CNS) disorders has always been a significant challenge. The nature of the blood-brain barrier (BBB) limits the penetration of therapeutic molecules to the brain after oral or parenteral administration, which, in combination with hepatic metabolism and drug elimination and inactivation during its journey in the systemic circulation, decreases the efficacy of the treatment, requires high drug doses and often induces adverse side effects. Nose-to-brain drug delivery allows the direct transport of therapeutic molecules by bypassing the BBB and increases drug concentration in the brain. The present review describes mechanisms of nose-to-brain drug delivery and discusses recent advances in this area with especial emphasis on nanotechnology-based approaches.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
120
|
Poloxamer 407-Based Thermosensitive Emulgel as a Novel Formulation Providing a Controlled Release of Oil-Soluble Pharmaceuticals-Ibuprofen Case Study. MATERIALS 2021; 14:ma14237266. [PMID: 34885421 PMCID: PMC8658182 DOI: 10.3390/ma14237266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
This article covers the design and evaluation of a novel drug vehicle: a thermosensitive, injectable, high-oil-content (50% w/w) emulgel providing a controlled release of lipophilic pharmaceuticals. Different vegetable (castor, canola, olive, peanut, grapeseed, linseed), mineral (paraffin) and semisynthetic (isopropyl myristate, oleic acid) oils were screened for ibuprofen (IBU) solubility and for their capacity for high-shear emulsification in a 17% (w/w) aqueous solution of poloxamer 407. Chosen emulgels were subject to a rheological evaluation, a syringeability test (TA.XT texture analyser; 2 mL syringe; 18 G, 20 G and 22 G needles) and a drug release study (48 h; cellulose membrane; 0.05 mol/L phosphate buffer at pH 7.4). Castor oil turned out to be an optimal component for IBU incorporation. Blank and drug-loaded castor oil emulgels were susceptible to administration via a syringe and needle, with the absolute injection force not exceeding 3 kg (29.4 N). The drug release test revealed dose-dependent, quasi-linear kinetics, with up to 44 h of controlled, steady, linear release. The results indicate the significant potential of high-oil-content, oil-in-water thermosensitive emulgel formulations as vehicles for the controlled release of lipophilic APIs.
Collapse
|
121
|
Li Y, Cui Y, Li L, Lin X, Zhou X, Zhu H, Feng B. A UHPLC-Q-TOF/MS method for the determination of poloxamer 124 and its application in a tissue distribution study in rats. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5516-5522. [PMID: 34750596 DOI: 10.1039/d1ay01373d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poloxamers are commonly used pharmaceutical excipients. They are high molecular weight polymers formed from polypropylene oxide (PPO) and polyethylene oxide (PEO). However, PL124, a low molecular weight example in the poloxamer family, has rarely been reported, and there is no research into its tissue distribution in the body after administration. In this study, rat tissue samples were quantitatively studied via UHPLC-Q-TOF/MS after the intravenous administration of 10 mg kg-1 PL124. The quantitative method showed good sensitivity and selectivity. The linear range of PL124 was 0.1-5 μg mL-1 and the LLOQ was 0.1 μg mL-1. The relative error in terms of the accuracy was no higher than 13.9%, and the relative standard deviation in terms of the precision was no higher than 9.6%. The extraction recovery, matrix effect, and stability results of the established method were also satisfactory. The research showed that PL124 can be quickly distributed to large amounts of tissue, and tissue with higher levels of blood flow has higher concentrations. PL124 could be rapidly eliminated in 4 h from most organs, except the heart and liver. This study can be helpful for the further analysis of PL124.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Pharmacy, Jilin Medical University, Jilin, 132013, PR China.
- School of Pharmacy, Yanbian University, Yanji, 133002, PR China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin, 132013, PR China.
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin, 132013, PR China.
| | - Xiaoyin Lin
- School of Pharmacy, Jilin Medical University, Jilin, 132013, PR China.
| | - Xinxin Zhou
- School of Pharmacy, Jilin Medical University, Jilin, 132013, PR China.
- School of Pharmacy, Yanbian University, Yanji, 133002, PR China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin, 132013, PR China.
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin, 132013, PR China.
| |
Collapse
|
122
|
Danilevicz CK, Wagner VP, Ferreira N, Bock H, Salles Pilar EF, Webber LP, Schmidt TR, Alonso ECP, de Mendonça EF, Valadares MC, Marreto RN, Martins MD. Curcuma longa L. Effects on Akt/mTOR Pathway and NF-κB Expression During Skin Wound Healing: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2021; 29:e92-e100. [PMID: 34261975 DOI: 10.1097/pai.0000000000000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Skin ulcers, wounds, or burns represent a burden for health care worldwide. Our aim was to explore the effects of mucoadhesive formulation with Curcuma longa L. extract mucoadhesive formulation containing curcumin (MFC) on skin healing in Wistar rats. Fifty-four rats were randomly allocated into 3 groups: control, vehicle, and MFC. A full-thickness circular wound was induced on the back of each animal. Two daily applications of the products were performed according to the experimental group. On days 3, 10, and 21, 6 animals in each group were euthanized. Clinical analysis was based on wound area. Histologic analysis was performed in hematoxylin and eosin-stained sections, with re-epithelization and inflammation being assessed by means of semiquantitative scores. To analyze the Akt/mTOR pathway, immunohistochemistry for phospho Akt (pAkt) and phospho ribosomal protein S6 were investigated. In addition, nuclear factor kappa-light-chain-enhancer of activated B cells immunolabeling was performed. Clinical analysis revealed wounds with a smaller area on days 3 and 10 in curcumin-treated animals. Histologically, MFC had a significant impact on inflammatory events on days 3 and 10 and promoted faster re-epithelization, which was evidenced on day 10. MFC-treated wounds exhibited pAkt upregulation on day 10 and both pAkt and phospho ribosomal protein S6 downregulation on day 21. Nuclear factor kappa-light-chain-enhancer of activated B cells expression varied through the evaluation periods; however, no significant difference was observed between groups. Collectively, our results indicate that MFC is efficient in accelerating cutaneous wound repair through modulation of the inflammatory process and stimulus of re-epithelization by an Akt/mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Chris K Danilevicz
- Department of Oral Pathology, School of Dentistry
- Department of Pharmacology, Institute of Basic Health Sciences
| | - Vivian P Wagner
- Department of Oral Pathology, School of Dentistry
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
| | - Nilson Ferreira
- School of Dentistry, Federal University of Uberlândia, Uberlândia, MG
| | - Hugo Bock
- Unit of Molecular and Protein Analysis (Experimental Research Center), Clinics Hospital of Porto Alegre
| | - Emily F Salles Pilar
- Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | | | | | - Ellen C P Alonso
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy
| | | | - Marize C Valadares
- Laboratory of Pharmacology and Cellular Toxicology, Pharmacy Faculty, Federal University of Goiás, Goiânia, GO, Brazil
| | - Ricardo N Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy
| | - Manoela D Martins
- Department of Oral Pathology, School of Dentistry
- Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba
| |
Collapse
|
123
|
Calixto GMF, Muniz BV, Castro SR, de Araujo JSM, de Souza Amorim K, Ribeiro LNM, Ferreira LEN, de Araújo DR, de Paula E, Franz-Montan M. Mucoadhesive, Thermoreversible Hydrogel, Containing Tetracaine-Loaded Nanostructured Lipid Carriers for Topical, Intranasal Needle-Free Anesthesia. Pharmaceutics 2021; 13:1760. [PMID: 34834175 PMCID: PMC8617820 DOI: 10.3390/pharmaceutics13111760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Recent advances have been reported for needle-free local anesthesia in maxillary teeth by administering a nasal spray of tetracaine (TTC) and oxymetazoline, without causing pain, fear, and stress. This work aimed to assess whether a TTC-loaded hybrid system could reduce cytotoxicity, promote sustained permeation, and increase the anesthetic efficacy of TTC for safe, effective, painless, and prolonged analgesia of the maxillary teeth in dental procedures. The hybrid system based on TTC (4%) encapsulated in nanostructured lipid carriers (NLC) and incorporated into a thermoreversible hydrogel of poloxamer 407 (TTCNLC-HG4%) displayed desirable rheological, mechanical, and mucoadhesive properties for topical application in the nasal cavity. Compared to control formulations, the use of TTCNLC-HG4% slowed in vitro permeation of the anesthetic across the nasal mucosa, maintained cytotoxicity against neuroblastoma cells, and provided a three-fold increase in analgesia duration, as observed using the tail-flick test in mice. The results obtained here open up perspectives for future clinical evaluation of the thermoreversible hybrid hydrogel, which contains TTC-loaded NLC, with the aim of creating an effective, topical, intranasal, needle-free anesthesia for use in dentistry.
Collapse
Affiliation(s)
- Giovana Maria Fioramonti Calixto
- Department of Biosciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, Brazil; (G.M.F.C.); (B.V.M.); (J.S.M.d.A.); (K.d.S.A.)
| | - Bruno Vilela Muniz
- Department of Biosciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, Brazil; (G.M.F.C.); (B.V.M.); (J.S.M.d.A.); (K.d.S.A.)
| | - Simone R. Castro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas 13083-872, Brazil; (S.R.C.); (E.d.P.)
| | - Jaiza Samara Macena de Araujo
- Department of Biosciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, Brazil; (G.M.F.C.); (B.V.M.); (J.S.M.d.A.); (K.d.S.A.)
| | - Klinger de Souza Amorim
- Department of Biosciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, Brazil; (G.M.F.C.); (B.V.M.); (J.S.M.d.A.); (K.d.S.A.)
| | - Lígia N. M. Ribeiro
- Institute of Biotechnology, Federal University of Uberlandia-UFU, Uberlandia 38405-302, Brazil;
| | | | | | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas 13083-872, Brazil; (S.R.C.); (E.d.P.)
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, Brazil; (G.M.F.C.); (B.V.M.); (J.S.M.d.A.); (K.d.S.A.)
| |
Collapse
|
124
|
Feng Y, Li L, Li Y, Zhou X, Lin X, Cui Y, Zhu H, Feng B. A MS ALL quantitative method for the determination of Poloxamer 188 in rat plasma by UHPLC-Q-TOF/MS and its application to pharmacokinetic study. Biomed Chromatogr 2021; 36:e5265. [PMID: 34648212 DOI: 10.1002/bmc.5265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
Poloxamer (PL)188 is a commonly used pharmaceutical excipient with unique physicochemical properties. In this study, an MSALL quantitative method for the determination of PL188 in rat plasma by UHPLC-Q-TOF/MS was developed and validated. PL188 was analyzed on PLRP-S reversed-phase column (50 × 4.6 mm, 8 μm, 1,000 Å) with mobile phase 0.1% formic acid-water and 0.1% formic acid in acetonitrile-isopropanol (2:3, v/v). The liner range was 0.1-10.0 μg/ml. A pharmacokinetic study was performed on rats at a dose of 5 mg/kg by intravenous injection. The pharmacokinetic parameters of intravenous injection were as follows: half-life was 2.0 ± 1.1 h, volume of distribution was 5.1 ± 3.2 L/kg, area under the concentration-time curve was 3.0 ± 0.6 μg/L h and clearance was 1.7 ± 0.3 L/h/kg. The results indicated that PL188 could be rapidly distributed to tissues with a high clearance rate. This study can provide a good reference for the further study of PL188.
Collapse
Affiliation(s)
- Yixuan Feng
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Yuxuan Li
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Xinxin Zhou
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Xiaoying Lin
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| |
Collapse
|
125
|
Jeon JH, Seong YW, Han JE, Cho S, Kim JH, Jheon S, Kim K. Randomized trial of poloxamer 407-based ropivacaine hydrogel after thoracoscopic pulmonary resection. Ann Thorac Surg 2021; 114:1189-1196. [PMID: 34653384 DOI: 10.1016/j.athoracsur.2021.08.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND We conducted a comparative study to evaluate the efficacy of poloxamer 407-based ropivacaine hydrogel at the wound site (Gel) and continuous thoracic paravertebral block (On-Q) for postoperative pain following thoracoscopic pulmonary resection. METHODS This prospective, randomized, noninferiority study included 89 patients randomized into the two groups; Gel (poloxamer 407-based 0.75% ropivacaine, 22.5 mg) and On-Q (0.2% ropivacaine, 4 mg/hour for 48 hours). The primary outcome measure was total fentanyl consumption and secondary outcome measures were the need for rescue analgesia and pain intensity using the numeric rating scale (NRS). RESULTS There was no significant difference in total fentanyl consumption between the Gel group and the On-Q group (1504.29 ± 315.72 mcg vs 1560.32 ± 274.81 mcg, p = 0.374). Pain intensity using the NRS between the Gel group and the On-Q group demonstrated no statistical differences (6 hours: 3.56 vs 3.55, p = 0.958; 24 hours: 3.21 vs 3.00, p = 0.250; 48 hours: 2.75 vs 2.49, p = 0.233; and 72 hours: 2.39 vs 2.33, p = 0.811), and there was no significant difference in the frequency of analgesic rescue medication use (3.70 vs 3.33, p = 0.417). CONCLUSIONS We confirm the noninferiority of Gel compared with On-Q for acute postoperative pain following thoracoscopic pulmonary resection. Considering a technical simplicity and low systemic toxicity of the local injection of Gel, this analgesic modality may be worthy of further research and is thus considered to have potential as a viable alternative to On-Q for regional analgesia.
Collapse
Affiliation(s)
- Jae Hyun Jeon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Won Seong
- Department of Thoracic and Cardiovascular Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Han
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
126
|
Novel In-Situ NanoEmulGel (NEG) of Azithromycin with Eugenol for the Treatment of Periodontitis: Formulation Development and Characterization. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
127
|
Lee W, Lee JY, Lee HS, Yoo Y, Shin H, Kim H, Min DS, Bae JS, Seo YK. Thermosensitive Hydrogel Harboring CD146/IGF-1 Nanoparticles for Skeletal-Muscle Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:7070-7080. [PMID: 35006939 DOI: 10.1021/acsabm.1c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In skeletal-muscle regeneration, it is critical to promote efferocytosis of immune cells and differentiation of satellite cells/postnatal muscle stem cells at the damaged sites. With the optimized poloxamer 407 composition gelled at body temperature, the drugs can be delivered locally. The purpose of this study is to develop a topical injection therapeutic agent for muscle regeneration, sarcopenia, and cachexia. Herein, we construct an injectable, in situ hydrogel system consisting of CD146, IGF-1, collagen I/III, and poloxamer 407, termed CIC gel. The secreted CD146 then binds to VEGFR2 on the muscle surface and effectively induces efferocytosis of neutrophils and macrophages. IGF-1 promotes satellite cell differentiation, and biocompatible collagen evades immune responses of the CIC gel. Consequently, these combined molecules activate muscle regeneration via autophagy and suppress muscle inflammation and apoptosis. Conclusively, we provide an applicable concept of the myogenesis-activating protein formulation, broadening the thermoreversible hydrogel to protein therapeutics for damaged muscle recovery.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngbum Yoo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyosoo Shin
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
128
|
Ponnusamy C, Sugumaran A, Krishnaswami V, Palanichamy R, Velayutham R, Natesan S. Development and Evaluation of Polyvinylpyrrolidone K90 and Poloxamer 407 Self-Assembled Nanomicelles: Enhanced Topical Ocular Delivery of Artemisinin. Polymers (Basel) 2021; 13:3038. [PMID: 34577939 PMCID: PMC8470191 DOI: 10.3390/polym13183038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration is a multifactorial disease affecting the posterior segment of the eye and is characterized by aberrant nascent blood vessels that leak blood and fluid. It ends with vision loss. In the present study, artemisinin which is poorly water-soluble and has potent anti-angiogenic and anti-inflammatory properties was formulated into nanomicelles and characterized for its ocular application and anti-angiogenic activity using a CAM assay. Artemisinin-loaded nanomicelles were prepared by varying the concentrations of PVP k90 and poloxamer 407 at different ratios and showed spherical shape particles in the size range of 41-51 nm. The transparency and cloud point of the developed artemisinin-loaded nanomicelles was found to be 99-94% and 68-70 °C, respectively. The in vitro release of artemisinin from the nanomicelles was found to be 96.0-99.0% within 8 h. The trans-corneal permeation studies exhibited a 1.717-2.169 µg permeation of the artemisinin from nanomicelles through the excised rabbit eye cornea for 2 h. Drug-free nanomicelles did not exhibit noticeable DNA damage and showed an acceptable level of hemolytic potential. Artemisinin-loaded nanomicelles exhibited remarkable anti-angiogenic activity compared to artemisinin suspension. Hence, the formulated artemisinin-loaded nanomicelles might have the potential for the treatment of AMD.
Collapse
Affiliation(s)
- Chandrasekar Ponnusamy
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620024, Tamil Nadu, India; (C.P.); (V.K.)
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Venkateshwaran Krishnaswami
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620024, Tamil Nadu, India; (C.P.); (V.K.)
| | - Rajaguru Palanichamy
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 627007, Tamil Nadu, India;
| | - Ravichandiran Velayutham
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India;
| | - Subramanian Natesan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India;
| |
Collapse
|
129
|
Giuliano E, Fresta M, Cosco D. Development and characterization of poloxamine 908-hydrogels for potential pharmaceutical applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
130
|
Li Y, Cui Y, Li L, Lin X, Zhou X, Zhu H, Feng B. Ultra-high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry method for quantifying polymer poloxamer 124 and its application to pharmacokinetic study. J Sep Sci 2021; 44:3822-3829. [PMID: 34435744 DOI: 10.1002/jssc.202100552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Poloxamer is a commonly used pharmaceutical excipient. It is a high molecular polymer formed using polypropylene oxide and polyethylene oxide units. Specifically, poloxamer 124 is one of the smaller molecular weight in the poloxamer series; however, its pharmacokinetic behaviors in vivo are still unclear. In this study, a method for quantifying poloxamer 124 in rat plasma through ultra-high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry was developed. The intravenous dosage of PL124 was 10 mg/kg. Plasma was collected at different times. The calibration curve was linear in the range of 0.1-5 μg/mL for the poloxamer 124 (r ≥ 0.9956) with the lower limit of quantitation of 0.1 μg/ml. The relative standard deviation of the intraday and interday precisions was below 8.0%, and the relative error of the accuracy was within ±12.0%. The extraction recovery, matrix effect, and stability were satisfactory in rat plasma. The validated method was successfully applied to a pharmacokinetic study of poloxamer 124 in rats. Results indicated that poloxamer 124 could be rapidly absorbed and eliminated through caudal vein injection. This study is helpful for the further study of poloxamer 124.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China.,School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Xiaoyin Lin
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Xinxin Zhou
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China.,School of Pharmacy, Yanbian University, Yanji, P. R. China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin, P. R. China
| |
Collapse
|
131
|
Sicurella M, Sguizzato M, Cortesi R, Huang N, Simelière F, Montesi L, Marconi P, Esposito E. Mangiferin-Loaded Smart Gels for HSV-1 Treatment. Pharmaceutics 2021; 13:pharmaceutics13091323. [PMID: 34575399 PMCID: PMC8465222 DOI: 10.3390/pharmaceutics13091323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Infections due to HSV-1 affect many people all over the world. To counteract this pathology, usually characterized by perioral sores or by less frequent serious symptoms including keratitis, synthetic antiviral drugs are employed, such as acyclovir, often resulting in resistant viral strains under long-term use. Many plant-derived compounds, such as mangiferin and quercetin, have demonstrated antiviral potentials. In this study, smart semisolid forms based on phosphatidylcholine and Pluronic were investigated as delivery systems to administer mangiferin on skin and mucosae affected by HSV-1 infection. Particularly, lecithin organogels, Pluronic gel, and Pluronic lecithin organogels were formulated and characterized. After the selection of gel compositions, physical aspects, such as rheological behavior, spreadability, leakage, and adhesion were evaluated, suggesting a scarce suitability of the lecithin organogel for topical administration. Mangiferin was efficiently included in all type of gels. An in vitro study based on the Franz cell enabled us to find evidence of the gel capability to control drug diffusion, especially in the case of Pluronic organogel, while an in vivo study conducted on human volunteers demonstrated the safeness of all of the gels after cutaneous administration. Furthermore, a plaque reduction assay demonstrated the virucidal effect of mangiferin loaded in a Pluronic gel and a Pluronic lecithin organogel against the HSV-1 KOS strain.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
| | - Nicolas Huang
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Fanny Simelière
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (N.H.); (F.S.)
| | - Leda Montesi
- Cosmetology Center, University of Ferrara, I-44121 Ferrara, Italy;
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
- Correspondence: (P.M.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (M.S.); (R.C.)
- Correspondence: (P.M.); (E.E.)
| |
Collapse
|
132
|
Chen Y, Lee JH, Meng M, Cui N, Dai CY, Jia Q, Lee ES, Jiang HB. An Overview on Thermosensitive Oral Gel Based on Poloxamer 407. MATERIALS 2021; 14:ma14164522. [PMID: 34443046 PMCID: PMC8399853 DOI: 10.3390/ma14164522] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
In this review, we describe the application of thermosensitive hydrogels composed of poloxamer in medicine, especially for oral cavities. Thermosensitive hydrogels remain fluid at room temperature; at body temperature, they become more viscous gels. In this manner, the gelling system can remain localized for considerable durations and control and prolong drug release. The chemical structure of the poloxamer triblock copolymer leads to an amphiphilic aqueous solution and an active surface. Moreover, the poloxamer can gel by forming micelles in an aqueous solution, depending on its critical micelle concentration and critical micelle temperature. Owing to its controlled-release effect, a thermosensitive gel based on poloxamer 407 (P407) is used to deliver drugs with different characteristics. As demonstrated in studies on poloxamer formulations, an increase in gelling viscosity decreases the drug release rate and gel dissolution time to the extent that it prolongs the drug’s duration of action in disease treatment. This property is used for drug delivery and different therapeutic applications. Its unique route of administration, for many oral diseases, is advantageous over traditional routes of administration, such as direct application and systemic treatment. In conclusion, thermosensitive gels based on poloxamers are suitable and have great potential for oral disease treatment.
Collapse
Affiliation(s)
- Yabing Chen
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Jeong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
| | - Mingyue Meng
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Naiyu Cui
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Chun-Yu Dai
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Qi Jia
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
- Correspondence: (E.-S.L.); (H.-B.J.)
| | - Heng-Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
- Correspondence: (E.-S.L.); (H.-B.J.)
| |
Collapse
|
133
|
Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent Advances in the Excipients Used for Modified Ocular Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4290. [PMID: 34361483 PMCID: PMC8347600 DOI: 10.3390/ma14154290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022]
Abstract
In ocular drug delivery, maintaining an efficient concentration of the drug in the target area for a sufficient period of time is a challenging task. There is a pressing need for the development of effective strategies for drug delivery to the eye using recent advances in material sciences and novel approaches to drug delivery. This review summarizes the important aspects of ocular drug delivery and the factors affecting drug absorption in the eye including encapsulating excipients (chitosan, hyaluronic acid, poloxamer, PLGA, PVCL-PVA-PEG, cetalkonium chloride, and gelatin) for modified drug delivery.
Collapse
Affiliation(s)
- Melitini Koutsoviti
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece;
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| |
Collapse
|
134
|
Presley KF, Fan F, DiRando NM, Shahhosseini M, Rao JZ, Tedeschi A, Castro CE, Lannutti JJ. Injectable, dispersible polysulfone-polysulfone core-shell particles for optical oxygen sensing. J Appl Polym Sci 2021; 138:50603. [PMID: 36091476 PMCID: PMC9455784 DOI: 10.1002/app.50603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/31/2021] [Indexed: 11/12/2022]
Abstract
Injectable sensors can significantly improve the volume of critical biomedical information emerging from the human body in response to injury or disease. Optical oxygen sensors with rapid response times can be achieved by incorporating oxygen-sensitive luminescent molecules within polymeric matrices with suitably high surface area to volume ratios. In this work, electrospraying utilizes these advances to produce conveniently injectable, oxygen sensing particles made up of a core-shell polysulfone-polysulfone structure containing a phosphorescent oxygen-sensitive palladium porphyrin species within the core. Particle morphology is highly dependent on solvent identity and electrospraying parameters; DMF offers the best potential for the creation of uniform, sub-micron particles. Total internal reflection fluorescence (TIRF) microscopy confirms the existence of both core-shell structure and oxygen sensitivity. The dissolved oxygen response time is rapid (<0.30 s), ideal for continuous real-time monitoring of oxygen concentration. The incorporation of Pluronic F-127 surfactant enables efficient dispersion; selection of an appropriate electrospraying solvent (DMF) yields particles readily injected even through a <100 μm diameter needle.
Collapse
Affiliation(s)
- Kayla F Presley
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA
| | - Fan Fan
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA; Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nicole M DiRando
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA
| | - Melika Shahhosseini
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, OH 43210, USA
| | - Jim Z Rao
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, 460W 12th Avenue, Columbus, OH 43210, USA
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, OH 43210, USA
| | - John J Lannutti
- Department of Materials Science and Engineering, The Ohio State University, 116 W 19th Avenue, Columbus, OH 43210, USA; Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
135
|
Development and Optimization of Cinnamon Oil Nanoemulgel for Enhancement of Solubility and Evaluation of Antibacterial, Antifungal and Analgesic Effects against Oral Microbiota. Pharmaceutics 2021; 13:pharmaceutics13071008. [PMID: 34371700 PMCID: PMC8309164 DOI: 10.3390/pharmaceutics13071008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Oral health is a key contributor to a person’s overall health and well-being. Oral microbiota can pose a serious threat to oral health. Thus, the present study aimed to develop a cinnamon oil (CO)-loaded nanoemulsion gel (NEG1) to enhance the solubilization of oil within the oral cavity, which will enhance its antibacterial, antifungal, and analgesic actions against oral microbiota. For this purpose, the CO-loaded nanoemulsion (CO-NE) was optimized using I-optimal response surface design. A mixture of Pluracare L44 and PlurolOleique CC 497 was used as the surfactant and Capryol was used as the co-surfactant. The optimized CO-NE had a globule size of 92 ± 3 nm, stability index of 95% ± 2%, and a zone of inhibition of 23 ± 1.5 mm. This optimized CO-NE formulation was converted into NEG1 using 2.5% hydroxypropyl cellulose as the gelling agent. The rheological characterizations revealed that the NEG1 formulation exhibited pseudoplastic behavior. The in vitro release of eugenol (the marker molecule for CO) from NEG1 showed an enhanced release compared with that of pure CO. The ex vivo mucosal permeation was found to be highest for NEG1 compared to the aqueous dispersion of CO-NE and pure cinnamon oil. The latency reaction time during the hot-plate test in rats was highest (45 min) for the NEG1 sample at all-time points compared with those of the other tested formulations. The results showed that the CO-NEG formulation could be beneficial in enhancing the actions of CO against oral microbiota, as well as relieving pain and improving overall oral health.
Collapse
|
136
|
Stanciauskaite M, Marksa M, Ivanauskas L, Perminaite K, Ramanauskiene K. Ophthalmic In Situ Gels with Balsam Poplar Buds Extract: Formulation, Rheological Characterization, and Quality Evaluation. Pharmaceutics 2021; 13:pharmaceutics13070953. [PMID: 34202901 PMCID: PMC8308992 DOI: 10.3390/pharmaceutics13070953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023] Open
Abstract
Balsam poplar buds are a raw material with a high content of polyphenols. Various polyphenols are known for their anti-inflammatory and antioxidant properties. In this study, an aqueous extract of balsam poplar buds was prepared in order to use environmentally friendly and non-aggressive solvents. The aqueous extract was lyophilized, and a 1% aqueous solution of lyophilized balsam poplar buds extract (L1) was prepared. L1 solution was used as a source of polyphenols for the production of ophthalmic in situ gels, so as to develop a product featuring antioxidant properties. Poloxamer 407 (P407) and hydroxypropyl methylcellulose (HPMC) were selected as gelling agents for the in situ gels. In order to select the formulations with the best conditions of use, formulations of different polymer concentrations (P407—10%, 12%, 15%; HPMC—0.5%, 0.75%) were prepared, choosing the same amount of the active polyphenol source L1. The physicochemical properties, rheological parameters, stability, and irritant effect on the rabbit corneal cell line (SIRC) were evaluated. Formulations in which P407 and HMPC concentrations were 10/0.75% and 12%/0.75% reached a gelation point close to the ocular surface temperature; the gels remained stable for 30 days and did not cause an irritant effect on the SIRC cell line.
Collapse
Affiliation(s)
- Monika Stanciauskaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50161 Kaunas, Lithuania; (K.P.); (K.R.)
- Correspondence: ; Tel.: +370-679-670-17
| | - Mindaugas Marksa
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50161 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Liudas Ivanauskas
- Department of Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50161 Kaunas, Lithuania; (M.M.); (L.I.)
| | - Kristina Perminaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50161 Kaunas, Lithuania; (K.P.); (K.R.)
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50161 Kaunas, Lithuania; (K.P.); (K.R.)
| |
Collapse
|
137
|
Modi D, Mohammad, Warsi MH, Garg V, Bhatia M, Kesharwani P, Jain GK. Formulation development, optimization, and in vitro assessment of thermoresponsive ophthalmic pluronic F127-chitosan in situ tacrolimus gel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1678-1702. [PMID: 34013840 DOI: 10.1080/09205063.2021.1932359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To overcome problems associated with topical delivery of tacrolimus (TCS), a thermoresponsive in situ gel system containing pluronic F127 (PL), and chitosan (CS) was developed, to enhance the precorneal retention, and to sustain the release of the drug. The PL-CS in situ gel was optimized using a 2-factor-3-level central composite experimental design by selecting the concentration of PL and CS as independent variables while gelation time, gelation temperature, and spreadability as dependent variables. The optimized formulation was developed using 22.5 g PL and 0.3 g CS, gels at 33.6 °C, in 22.93 s, and showed the spreadability of 6.2 cm. In vitro studies conducted for the optimized gel revealed the sustained release of TCS (81.73% in 4 h) and improved corneal permeation (74.13% in 4 h), compared with TCS solution. The mechanism of release of TCS followed the Higuchi model with Fickian diffusion transport. Further, histopathology and HET-CAM studies revealed that the developed gel was non-irritating and safe for ocular administration.
Collapse
Affiliation(s)
- Deepika Modi
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Mohammad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India
| | - Musarrat H Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif-Al-Haweiah, Saudi Arabia
| | - Vaidehi Garg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, Delhi, India
| |
Collapse
|
138
|
Qassemyar Q, Michel G, Gianfermi M, Atlan M, Havet E, Luca-Pozner V. Sutureless venous microanastomosis using thermosensitive poloxamer and cyanoacrylate: experimental study on a rat model. J Plast Reconstr Aesthet Surg 2021; 75:433-438. [PMID: 34247962 DOI: 10.1016/j.bjps.2021.05.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 05/08/2021] [Accepted: 05/28/2021] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Sutureless microvascular anastomoses could simplify the microvascular field, shortening operative time and improving the final outcome. The use of thermosensitive poloxamers (TP407) together with the application of cyanoacrylate as an alternative method for conventional sutures was well-documented for arteries, but not for veins. The purpose of our study was to prove the feasibility of this technique for venous anastomoses and compare it with the traditional hand-sewn technique on a rat model. MATERIALS AND METHODS Twenty male Sprague-Dawley rats that weighed between 265 and 310 g were used. In the sutureless group (SG), 20 left external jugular veins (LEJV) end-to-end anastomoses were performed using a T704 and cyanoacrylate glue. They were compared to 20 right external jugular veins (REJV) anastomoses sutured with conventional 10-0 stitches (control group - CG). Diameters of veins, anastomosis time, and patency rate at 15 days were reported. Foreign body reaction was assessed histologically. RESULTS The mean diameter of the LEJV was 0.94 ± 0.1 mm and 0.95 ± 0.09 mm for the REJV. The mean anastomosis time was 11.9 ± 1.37 min for the SG and 27.75 ± 3.31 min for the CG. In the latter group, the immediate patency rate was 95% and 90% at 15 days. For the SG group, 90% of the anastomoses were patent immediately and 85% at 15 days. CONCLUSION TP407 and cyanoacrylate could offer a fast and reliable technique for sutureless venous anastomoses. Before human application, effectiveness of this method remains to be confirmed in larger animals in a long-term follow-up.
Collapse
Affiliation(s)
- Q Qassemyar
- Department of Plastic and Reconstructive Surgery, University Hospital Armand-Trousseau, 26 avenue du Dr Arnold Netter, 75012 Paris, France; Faculty of Medicine, Sorbonne University, 91 boulevard de l'hôpital, 75013 Paris, France; Anatomy Department, University of Picardie, Rue des Louvels, 80000 Amiens, France
| | - G Michel
- Anatomy Department, University of Picardie, Rue des Louvels, 80000 Amiens, France
| | - M Gianfermi
- Anatomy Department, University of Picardie, Rue des Louvels, 80000 Amiens, France
| | - M Atlan
- Faculty of Medicine, Sorbonne University, 91 boulevard de l'hôpital, 75013 Paris, France; Department of Plastic Surgery, Tenon Hospital, 4 Rue de la Chine, 75020 Paris, France
| | - E Havet
- Anatomy Department, University of Picardie, Rue des Louvels, 80000 Amiens, France
| | - V Luca-Pozner
- Department of Plastic and Reconstructive Surgery, University Hospital Armand-Trousseau, 26 avenue du Dr Arnold Netter, 75012 Paris, France; Faculty of Medicine, Sorbonne University, 91 boulevard de l'hôpital, 75013 Paris, France.
| |
Collapse
|
139
|
Perminaite K, Marksa M, Stančiauskaitė M, Juknius T, Grigonis A, Ramanauskiene K. Formulation of Ocular In Situ Gels with Lithuanian Royal Jelly and Their Biopharmaceutical Evaluation In Vitro. Molecules 2021; 26:3552. [PMID: 34200887 PMCID: PMC8230528 DOI: 10.3390/molecules26123552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Royal jelly is a natural substance produced by worker bees that possesses a variety of biological activities, including antioxidant, anti-inflammatory, antibacterial, and protective. Although fresh royal jelly is kept at low temperatures, to increase its stability, it needs to be incorporated into pharmaceutical formulations, such as in situ gels. The aim of this study was to formulate in situ ocular gels containing Lithuanian royal jelly for topical corneal use in order to increase the retention time of the formulation on the ocular surface and bioavailability. Gels were evaluated for physicochemical characteristics (pH, rheological properties, refractive index) and in vitro drug release measuring the amount of 10-hydroxy-2-decenoic acid (10-HDA). An ocular irritation test and cell viability tests were performed using the SIRC (Statens Seruminstitut Rabbit Cornea) cell culture line. Results indicated that all the in situ gels were within an acceptable pH and refractive index range close to corneal properties. Rheology studies have shown that the gelation temperature varies between 25 and 32 °C, depending on the amount of poloxamers. The release studies have shown that the release of 10-HDA from in situ gels is more sustained than royal jelly suspension. All gel formulations were non-irritant according to the short-time exposure test (STE) using the SIRC cell culture line, and long-term cell viability studies indicated that the formulations used in small concentrations did not induce cell death. Prepared in situ gels containing royal jelly have potential for ocular drug delivery, and they may improve the bioavailability, stability of royal jelly, and formation of non-irritant ocular formulations.
Collapse
Affiliation(s)
- Kristina Perminaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania; (M.S.); (K.R.)
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania;
| | - Monika Stančiauskaitė
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania; (M.S.); (K.R.)
| | - Tadas Juknius
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, 47181 Kaunas, Lithuania;
| | - Aidas Grigonis
- Dr. L. Kriaučeliūnas Small Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, 47181 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania; (M.S.); (K.R.)
| |
Collapse
|
140
|
Fonseca ADM, Araújo CDCB, da Silva JH, Honório TDS, Nasciutti LE, Cabral LM, do Carmo FA, de Sousa VP. Development of transdermal based hydrogel formulations of vinorelbine with an evaluation of their in vitro profiles and activity against melanoma cells and in silico prediction of drug absorption. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
141
|
El-Shenawy AA, Mahmoud RA, Mahmoud EA, Mohamed MS. Intranasal In Situ Gel of Apixaban-Loaded Nanoethosomes: Preparation, Optimization, and In Vivo Evaluation. AAPS PharmSciTech 2021; 22:147. [PMID: 33948767 DOI: 10.1208/s12249-021-02020-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
The present study was conducted to formulate ethosomal thermoreversible in situ gel of apixaban, an anticoagulant drug, for nasal delivery. Ethosomes were formed, of lecithin, cholesterol, and ethanol, by using thin-film hydration method. The prepared ethosomes were characterized by Zetasizer, transmission electron microscope, entrapment efficiency, and in vitro study. The selected ethosomal formula (API-ETHO2) was incorporated in gel using P407 and P188 as thermoreversible agents and carbopol 934 as mucoadhesive agent. Box-Behnken design was used to study the effect of independent variables (concentration of P407, P188, and carbopol 934) on gelation temperature, mucoadhesive strength, and in vitro cumulative percent drug released at 12h (response variables). The optimized formulation was subjected to compatibility study, ex vivo permeation, histopathological examination for the nasal mucosa, and in vivo study. API-ETHO2 was spherical with an average size of 145.1±12.3 nm, zeta potential of -20±4 mV, entrapment efficiency of 67.11%±3.26, and in vitro % release of 79.54%±4.1. All gel formulations exhibited an acceptable pH and drug content. The optimum gel offered 32.3°C, 1226.3 dyne/cm2, and 53.50% for gelation temperature, mucoadhesive strength, and in vitro percent released, respectively. Apixaban ethosomal in situ gel evolved higher ex vivo permeation (1.499±0.11 μg/cm2h) through the nasal mucosa than pure apixaban gel. Histopathological study assured that there is no necrosis or tearing of the nasal mucosa happened by ethosomal gel. The pharmacokinetic parameters in rabbit plasma showed that intranasal administration of optimized API-ethosomal in situ gel achieved higher Cmax and AUC0-∞ than unprocessed API nasal gel, nasal suspension, and oral suspension. The ethosomal thermoreversible nasal gel established its potential to improve nasal permeation and prolong anticoagulant effect of apixaban.
Collapse
|
142
|
Katona G, Sipos B, Budai-Szűcs M, Balogh GT, Veszelka S, Gróf I, Deli MA, Volk B, Szabó-Révész P, Csóka I. Development of In Situ Gelling Meloxicam-Human Serum Albumin Nanoparticle Formulation for Nose-to-Brain Application. Pharmaceutics 2021; 13:646. [PMID: 34062873 PMCID: PMC8147280 DOI: 10.3390/pharmaceutics13050646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/30/2023] Open
Abstract
The aim of this study was to develop an intranasal in situ thermo-gelling meloxicam-human serum albumin (MEL-HSA) nanoparticulate formulation applying poloxamer 407 (P407), which can be administered in liquid state into the nostril, and to increase the resistance of the formulation against mucociliary clearance by sol-gel transition on the nasal mucosa, as well as to improve drug absorption. Nanoparticle characterization showed that formulations containing 12-15% w/w P407 met the requirements of intranasal administration. The Z-average (in the range of 180-304 nm), the narrow polydispersity index (PdI, from 0.193 to 0.328), the zeta potential (between -9.4 and -7.0 mV) and the hypotonic osmolality (200-278 mOsmol/L) of MEL-HSA nanoparticles predict enhanced drug absorption through the nasal mucosa. Based on the rheological, muco-adhesion, drug release and permeability studies, the 14% w/w P407 containing formulation (MEL-HSA-P14%) was considered as the optimized formulation, which allows enhanced permeability of MEL through blood-brain barrier-specific lipid fraction. Cell line studies showed no cell damage after 1-h treatment with MEL-HSA-P14% on RPMI 2650 human endothelial cells' moreover, enhanced permeation (four-fold) of MEL from MEL-HSA-P14% was observed in comparison to pure MEL. Overall, MEL-HSA-P14% can be promising for overcoming the challenges of nasal drug delivery.
Collapse
Affiliation(s)
- Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.S.); (M.B.-S.); (P.S.-R.); (I.C.)
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.S.); (M.B.-S.); (P.S.-R.); (I.C.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.S.); (M.B.-S.); (P.S.-R.); (I.C.)
| | - György Tibor Balogh
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary;
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem Quay 3, H-1111 Budapest, Hungary
| | - Szilvia Veszelka
- Biological Research Centre, Institute of Biophysics, Temesvári Blvd. 62, H-6726 Szeged, Hungary; (S.V.); (I.G.); (M.A.D.)
| | - Ilona Gróf
- Biological Research Centre, Institute of Biophysics, Temesvári Blvd. 62, H-6726 Szeged, Hungary; (S.V.); (I.G.); (M.A.D.)
| | - Mária A. Deli
- Biological Research Centre, Institute of Biophysics, Temesvári Blvd. 62, H-6726 Szeged, Hungary; (S.V.); (I.G.); (M.A.D.)
| | - Balázs Volk
- Egis Pharmaceuticals Plc., Keresztúri Str. 30–38, H-1106 Budapest, Hungary;
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.S.); (M.B.-S.); (P.S.-R.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.S.); (M.B.-S.); (P.S.-R.); (I.C.)
| |
Collapse
|
143
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
144
|
Bostan LE, Clarkin CE, Mousa M, Worsley PR, Bader DL, Dawson JI, Evans ND. Synthetic Nanoclay Gels Do Not Cause Skin Irritation in Healthy Human Volunteers. ACS Biomater Sci Eng 2021; 7:2716-2722. [PMID: 33825442 DOI: 10.1021/acsbiomaterials.0c01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic clays are promising biomaterials for delivery of therapeutic molecules in regenerative medicine. However, before their use can be translated into clinical applications, their safety must be assessed in human volunteers. The aim of this study was to test the hypothesis that a synthetic nanoclay (LAPONITE) does not cause irritation to the human skin. To achieve this, a nanoclay gel at two different concentrations (1.5 and 3% w/v) was applied on the forearm of healthy volunteers for 24 h. 1% sodium lauryl sulfate (SLS) and 3% (w/v) polyacrylic acid were used as the positive and negative controls, respectively. The compromise in the skin barrier function was measured by trans-epidermal water loss (TEWL), erythema by spectroscopic measurements, and skin inflammatory biomarkers (IL-1α and IL-1RA) by the enzyme-linked immunosorbent assay. We found that the nanoclay caused no prolonged increase in TEWL, erythema, or induction of inflammatory cytokines. This was in contrast to 1% SLS, a known irritant, which induced significant increases in both skin erythema and TEWL. We conclude that the nanoclay is not an irritant and is thus suitable for therapeutic interventions at the skin surface.
Collapse
Affiliation(s)
- Luciana E Bostan
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| | - Claire E Clarkin
- School of Biological Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, Hampshire, U.K
| | - Mohamed Mousa
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| | - Peter R Worsley
- Faculty of Health Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, U.K
| | - Daniel L Bader
- Faculty of Health Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, U.K
| | - Jonathan I Dawson
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| |
Collapse
|
145
|
Cassano R, Servidio C, Trombino S. Biomaterials for Drugs Nose-Brain Transport: A New Therapeutic Approach for Neurological Diseases. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1802. [PMID: 33917404 PMCID: PMC8038678 DOI: 10.3390/ma14071802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
In the last years, neurological diseases have resulted in a global health issue, representing the first cause of disability worldwide. Current therapeutic approaches against neurological disorders include oral, topical, or intravenous administration of drugs and more invasive techniques such as surgery and brain implants. Unfortunately, at present, there are no fully effective treatments against neurodegenerative diseases, because they are not associated with a regeneration of the neural tissue but rather act on slowing the neurodegenerative process. The main limitation of central nervous system therapeutics is related to their delivery to the nervous system in therapeutic quantities due to the presence of the blood-brain barrier. In this regard, recently, the intranasal route has emerged as a promising administration site for central nervous system therapeutics since it provides a direct connection to the central nervous system, avoiding the passage through the blood-brain barrier, consequently increasing drug cerebral bioavailability. This review provides an overview of the nose-to-brain route: first, we summarize the anatomy of this route, focusing on the neural mechanisms responsible for the delivery of central nervous system therapeutics to the brain, and then we discuss the recent advances made on the design of intranasal drug delivery systems of central nervous system therapeutics to the brain, focusing in particular on stimuli-responsive hydrogels.
Collapse
Affiliation(s)
| | | | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (C.S.)
| |
Collapse
|
146
|
Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur J Pharm Biopharm 2021; 161:100-119. [PMID: 33639254 DOI: 10.1016/j.ejpb.2021.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
|
147
|
Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021; 7:33. [PMID: 33804970 PMCID: PMC8103278 DOI: 10.3390/gels7020033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery of paclitaxel (PTX) has been a milestone in anti-cancer therapy and has promoted the development and marketing of various formulations that have revolutionized the therapeutic approach towards several malignancies. Despite its peculiar anti-cancer activity, the physico-chemical properties of PTX compromise the administration of the compound in polar media. Because of this, since the development of the first Food and Drug Administration (FDA)-approved formulation (Taxol®), consistent efforts have been made to obtain suitable delivery systems able to preserve/increase PTX efficacy and to overcome the side effects correlated to the presence of some excipients. The exploitation of natural polymers as potential materials for drug delivery purposes has favored the modulation of the bioavailability and the pharmacokinetic profiles of the drug, and in this regard, several formulations have been developed that allow the controlled release of the active compound. In this mini-review, the recent advances concerning the design and applications of natural polymer-based hydrogels containing PTX-loaded biocompatible nanocarriers are discussed. The technological features of these formulations as well as the therapeutic outcome achieved following their administration will be described, demonstrating their potential role as innovative systems to be used in anti-tumor therapy.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | | | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
148
|
Patil P, Killedar S. Chitosan and glyceryl monooleate nanostructures containing gallic acid isolated from amla fruit: targeted delivery system. Heliyon 2021; 7:e06526. [PMID: 33851042 PMCID: PMC8024605 DOI: 10.1016/j.heliyon.2021.e06526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 03/11/2021] [Indexed: 12/03/2022] Open
Abstract
Gallic acid, active constituent of amla fruit its natural abundance with beneficial multi actions in body make them attractive for clinical applications. In present study, we focused on extracting, separating and characterizing gallic acid from amla and further formulated into chitosan nanoparticles, so bring it to increase its aqueous solubility and thereby bioactivity. Gallic acid nanoparticles were prepared by using poloxamer 407, chitosan and Glyceryl Monooleate (GMO) using probe sonicator and high pressure homogenization method. Prepared nanoparticles were characterized by particle size, zeta potential, DSC, XRD, SEM, entrapment efficiency, loading content, in-vitro release and stability study. They showed approximately 76.80% encapsulation of gallic acid with average size of 180.8 ± 0.21 nm, and zeta potential +24.2 mV. The cumulative in vitro drug release upto 24 hrs 77.16% was achieved suggesting that from all our findings, it can be concluded that work will facilitate extraction, design and fabrication of nanoparticles for protection and sustained release of gallic acid particularly to colonic region.
Collapse
Affiliation(s)
- Poournima Patil
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur Maharashtra, India
| | - Suresh Killedar
- Department of Pharmacognosy, Shree Sant Gajanan Maharaj College of Pharmacy, Gadhiglaj Mahagaon Maharashtra, India
| |
Collapse
|
149
|
Nair AB, Shah J, Jacob S, Al-Dhubiab BE, Sreeharsha N, Morsy MA, Gupta S, Attimarad M, Shinu P, Venugopala KN. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLoS One 2021; 16:e0248857. [PMID: 33739996 PMCID: PMC7978349 DOI: 10.1371/journal.pone.0248857] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/06/2021] [Indexed: 12/30/2022] Open
Abstract
In situ gels have been extensively explored as ocular drug delivery system to enhance bioavailability and efficacy. The objective of present study was to design, formulate and evaluate ion-activated in situ gel to enhance the ocular penetration and therapeutic performance of moxifloxacin in ophthalmic delivery. A simplex lattice design was utilized to examine the effect of various factors on experimental outcomes of the in situ gel system. The influence of polymers (independent variables) such as gellan gum (X1), sodium alginate (X2), and HPMC (X3) on gel strength, adhesive force, viscosity and drug release after 10 h (Q10) were assessed. Selected formulation (MH7) was studied for ex vivo permeation, in vivo irritation and pharmacokinetics in rabbits. Data revealed that increase in concentration of polymers led to higher gel strength, adhesive force and viscosity, however, decreases the drug release. MH7 exhibited all physicochemical properties within acceptable limits and was stable for 6 months. Release profile of moxifloxacin from MH7 was comparable to the check point batches and followed Korsmeyer-Peppas matrix diffusion-controlled mechanism. Ocular irritation study signifies that selected formulation is safe and non-irritant for ophthalmic administration. In vivo pharmacokinetics data indicates significant improvement of moxifloxacin bioavailability (p < 0.0001) from MH7, as evidenced by higher Cmax (727 ± 56 ng/ml) and greater AUC (2881 ± 108 ng h/ml), when compared with commercial eye drops (Cmax; 503 ± 85 ng/ml and AUC; 978 ± 86 ng h/ml). In conclusion, developed in situ gel system (MH7) could offers a more effective and extended ophthalmic therapy of moxifloxacin in ocular infections when compared to conventional eye drops.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- * E-mail:
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Faculty of Medicine, Department of Pharmacology, Minia University, El-Minia, Egypt
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
150
|
Vanderstraeten MCM, Gutermuth J, Grosber M. Contact anaphylaxis to poloxamer 188 and 407 in a periodontal gel. Contact Dermatitis 2021; 85:253-255. [PMID: 33728670 DOI: 10.1111/cod.13834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | - Jan Gutermuth
- Dermatology, University Hospital Brussels, Brussels, Belgium
| | - Martine Grosber
- Dermatology, University Hospital Brussels, Brussels, Belgium
| |
Collapse
|