101
|
Nath PC, Sharma R, Debnath S, Nayak PK, Roy R, Sharma M, Inbaraj BS, Sridhar K. Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. Int J Biol Macromol 2024; 259:129129. [PMID: 38181913 DOI: 10.1016/j.ijbiomac.2023.129129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Food Technology, Shri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Rupak Roy
- SHRM Biotechnologies Pvt Ltd., Kolkata 700155, India
| | | | | | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
102
|
Thaitirarot S, Shuwisitkul D, Udompataikul M, Kamanamool N, Kanokrungsee S. The efficacy of a transdermal hydrogel patch containing betamethasone dipropionate for treatment of chronic hand eczema: A single-blind, randomized and controlled trial. Contact Dermatitis 2024; 90:153-160. [PMID: 37828631 DOI: 10.1111/cod.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Topical corticosteroids under occlusion have been used to enhance the treatment of eczema. However, no study has investigated the efficacy of a steroid-containing transdermal patch for the treatment of chronic hand eczema. METHODS We conducted a randomized, controlled, assessor-blinded trial to determine the efficacy of a transdermal patch containing betamethasone dipropionate compared to topical betamethasone dipropionate ointment in the treatment of mild to moderate chronic hand eczema. The patients were included and assigned to receive either the transdermal patch once daily at night or the ointment twice daily for a period of 8 weeks. The outcomes were assessed using the Hand Eczema Severity Index (HECSI), Physical Global Assessment (PGA) score, self-reported compliance, level of patient satisfaction, quality of life, and side effects. RESULTS Fifty-six patients completed this study. At 8 weeks, there was a significant reduction in the HECSI scores in both the transdermal patch and topical ointment groups compared to those measured at baseline (14.61 to 1.86, p < 0.001; 18.46 to 3.43, p < 0.001, respectively) without a statistically significant difference between the two groups. Similarly, the two groups did not show any significant difference in the PGA scores, quality of life and side effects. However, the transdermal patch group reported better compliance and a higher level of patient satisfaction than the topical ointment group. CONCLUSION The transdermal corticosteroid patch has proven to be a safe and effective treatment, comparable to topical corticosteroids, after 8 weeks of use. Its sustained-release properties, along with once-daily use, can improve patient satisfaction and promote greater adherence to the treatment. TRIAL REGISTRATION This study was registered with the Thai Clinical Trials Registry (www. CLINICALTRIALS in.th) under registration number TCTR20220413003.
Collapse
Affiliation(s)
- Sirinan Thaitirarot
- Department of Dermatology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | | - Montree Udompataikul
- Department of Dermatology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Nanticha Kamanamool
- Department of Preventive and Social Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Silada Kanokrungsee
- Department of Dermatology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
103
|
Pegoraro NS, Gehrcke M, Camponogara C, Fialho MFP, Cruz L, Oliveira SM. The Association of Oleic Acid and Dexamethasone Acetate into Nanocapsules Enables a Reduction in the Effective Corticosteroid Dose in a UVB Radiation-Induced Sunburn Model in Mice. Pharmaceutics 2024; 16:176. [PMID: 38399236 PMCID: PMC10892665 DOI: 10.3390/pharmaceutics16020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.
Collapse
Affiliation(s)
- Natháli Schopf Pegoraro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Mailine Gehrcke
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
104
|
Limenh LW. A review on oral novel delivery systems of insulin through the novel delivery system formulations: A review. SAGE Open Med 2024; 12:20503121231225319. [PMID: 38249950 PMCID: PMC10798068 DOI: 10.1177/20503121231225319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Parenteral administration of insulin remains the most common route of administration, causing local hypertrophy at the injection sites because of multiple daily injections. Because of this, there is an interest and effort in oral insulin administration that is convenient and mimics the physiology of endogenous insulin secreted in the liver. However, oral insulin encountered different challenges due to abundant enzyme degradation, the presence of a mucus layer, and the underlying intestinal epithelial membrane barrier in the gastrointestinal tract. This narrative review reviewed the literature dealing with novel oral insulin delivery approaches. Various pieces of literature were searched, filtered, and reviewed from different sources, and the information obtained was organized, formulated, and finalized. Oral insulin has been formulated and extensively studied in various novel delivery approaches, such as nanoparticles, microspheres, mucoadhesive patches, encapsulations, hydrogels, ionic liquids, liposomes, and complexation. The efficiency of these formulations demonstrated improved efficiency and potency compared to free oral insulin delivery, but none of them have greater or equivalent potency to subcutaneous insulin. Future studies regarding dose-dependent therapeutic efficacy and the development of new novel formulations to produce comparable oral insulin to subcutaneous insulin are warranted to further support the suitability of the current platform for oral insulin delivery.
Collapse
Affiliation(s)
- Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
105
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
106
|
Kolipaka T, Pandey G, Abraham N, Srinivasarao DA, Raghuvanshi RS, Rajinikanth PS, Tickoo V, Srivastava S. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydr Polym 2024; 324:121537. [PMID: 37985111 DOI: 10.1016/j.carbpol.2023.121537] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Diabetes adversely affects wound-healing responses, leading to the development of chronic infected wounds. Such wound microenvironment is characterized by hyperglycaemia, hyperinflammation, hypoxia, variable pH, upregulation of matrix metalloproteinases, oxidative stress, and bacterial colonization. These pathological conditions pose challenges for the effective wound healing. Therefore, there is a paradigm shift in diabetic wound care management wherein abnormal pathological conditions of the wound microenvironment is used as a trigger for controlling the drug release or to improve properties of wound dressings. Hydrogels composed of natural polysaccharides showed tremendous potential as wound dressings as well as stimuli-responsive materials due to their unique properties such as biocompatibility, biodegradability, hydrophilicity, porosity, stimuli-responsiveness etc. Hence, polysaccharide-based hydrogels have emerged as advanced healthcare materials for diabetic wounds. In this review, we presented important aspects for the design of hydrogel-based wound dressings with an emphasis on biocompatibility, biodegradability, entrapment of therapeutic agents, moisturizing ability, swelling, and mechanical properties. Further, various crosslinking methods that enable desirable properties and stimuli responsiveness to the hydrogels have been mentioned. Subsequently, state-of-the-art developments in mono- and multi- stimuli-responsive hydrogels have been presented along with the case studies. Finally regulatory perspectives, challenges for the clinical translation and future prospects have been discussed.
Collapse
Affiliation(s)
- Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vidya Tickoo
- Department of Endocrinology, Yashoda Hospitals, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
107
|
Andze L, Vitolina S, Berzins R, Rizikovs J, Godina D, Teresko A, Grinberga S, Sevostjanovs E, Cirule H, Liepinsh E, Paze A. Innovative Approach to Enhance Bioavailability of Birch Bark Extracts: Novel Method of Oleogel Development Contrasted with Other Dispersed Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:145. [PMID: 38202453 PMCID: PMC10780823 DOI: 10.3390/plants13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Birch outer bark extract (BBE), containing pentacyclic triterpenes such as betulin, lupeol, and betulinic acid, is a widely recognized natural product renowned for its diverse pharmacological effects. However, its limited water solubility restricts its bioavailability. Therefore, the main objective is to enhance the bioavailability of BBE for pharmaceutical use. In this study, we aimed to develop a dispersion system utilizing a unique oleogel-producing method through the recrystallization of BBE from an ethanol solution in the oil phase. We generated an oleogel that demonstrates a notable 42-80-fold improvement in betulin and lupeol peroral bioavailability from BBE in Wistar rats, respectively. A physical paste-like BBE hydrogel developed with antisolvent precipitation showed a 16-56-fold increase in the bioavailability of betulin and lupeol from BBE in rat blood plasma, respectively. We also observed that the repeated administration of the BBE oleogel did not exhibit any toxicity at the tested dose (38.5 mg/kg betulin, 5.2 mg/kg lupeol, 1.5 mg/kg betulinic acid daily for 7 days). Betulin and betulinic acid were not detected in rat heart, liver, kidney, or brain tissues after the peroral administration of the oleogel daily for 7 days. Lupeol was found in rat heart, liver, and kidney tissues.
Collapse
Affiliation(s)
- Laura Andze
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
- ZS DOKTUS, 22 Pavila Street, LV-4101 Cesis, Latvia;
| | - Sanita Vitolina
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Rudolfs Berzins
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Janis Rizikovs
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Daniela Godina
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Aigars Paze
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| |
Collapse
|
108
|
Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, Sinha JK. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. Int J Biol Macromol 2024; 254:127708. [PMID: 37923043 DOI: 10.1016/j.ijbiomac.2023.127708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India; ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | | |
Collapse
|
109
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
110
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
111
|
Seifi S, Shamloo A, Tavoosi SN, Almasi-Jaf A, Shaygani H, Sayah MR. A novel multifunctional chitosan-gelatin/carboxymethyl cellulose-alginate bilayer hydrogel containing human placenta extract for accelerating full-thickness wound healing. Int J Biol Macromol 2023; 253:126929. [PMID: 37717877 DOI: 10.1016/j.ijbiomac.2023.126929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The replication of skin's dermal and epidermal morphology within a full-thickness wound using a bi-layer hydrogel to cater to their distinct needs is a compelling pursuit. Moreover, human placenta extract (HPE), containing a diverse array of bioactive agents, has proven to be effective in promoting the wound healing process and enhancing epidermal keratinocytes. This study presents a multifunctional bi-layer hydrogel incorporating HPE for accelerating full-thickness wound healing through sustained HPE release, inhibition of bacteria invasion, and promotion of cell proliferation. The upper layer of the scaffold, known as the dressing layer, is composed of carboxymethyl cellulose and sodium alginate, serving as a supportive layer for cell proliferation. The under layer, referred to as the regenerative layer, is composed of chitosan and gelatin, providing an extracellular matrix-like, porous, moist, and antibacterial environment for cell growth. The scaffold was optimized to replicate the morphology of the dermal and epidermal layers, with suitable fibroblast infiltration and a pore size of approximately 283μm. Furthermore, the degradation rate of the samples matched the wound healing rate and persisted throughout this period. The sustained HPE release rate, facilitated by the degradation rate, was optimized to reach ~98% after 28 days, covering the entire healing period. The samples demonstrated robust antibacterial capabilities, with bacterial inhibition zone diameters of and 2.63±0.12cm for S. aureus and E. coli, respectively. The biocompatibility of the samples remained at approximately 68.33±4.5% after 21 days of fibroblast cell culture. The in vivo experiment indicated that the HPE@Bilayer hydrogel promotes the formation of new blood vessels and fibroblasts during the early stages of healing, leading to the appropriate formation of granulation tissue and a wound contraction rate of (79.31±3.1)%. Additionally, it resulted in the formation of a thick epidermal layer (keratinization) that effectively covered all the impaired areas, achieving a wound contraction rate of 95.83±6.3% at the late stage of wound healing. Furthermore, immunohistochemistry staining for CD31 and TGF-β revealed that the HPE@Bilayer group had 22 blood vessels/field and 34%-66% immunoactive cells, respectively, after 14 days of healing. However, by day 21, angiogenesis and TGF-β expression had declined, demonstrating that the wounds had been successfully treated with minimal scarring.
Collapse
Affiliation(s)
- Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Sayed Navid Tavoosi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohammad Reza Sayah
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| |
Collapse
|
112
|
Steplewski A, Fertala J, Cheng L, Wang ML, Rivlin M, Beredjiklian P, Fertala A. Evaluating the Efficacy of a Thermoresponsive Hydrogel for Delivering Anti-Collagen Antibodies to Reduce Posttraumatic Scarring in Orthopedic Tissues. Gels 2023; 9:971. [PMID: 38131957 PMCID: PMC10742524 DOI: 10.3390/gels9120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive posttraumatic scarring in orthopedic tissues, such as joint capsules, ligaments, tendons, muscles, and peripheral nerves, presents a significant medical problem, resulting in pain, restricted joint mobility, and impaired musculoskeletal function. Current treatments for excessive scarring are often ineffective and require the surgical removal of fibrotic tissue, which can aggravate the problem. The primary component of orthopedic scars is collagen I-rich fibrils. Our research team has developed a monoclonal anti-collagen antibody (ACA) that alleviates posttraumatic scarring by inhibiting collagen fibril formation. We previously established the safety and efficacy of ACA in a rabbit-based arthrofibrosis model. In this study, we evaluate the utility of a well-characterized thermoresponsive hydrogel (THG) as a delivery vehicle for ACA to injury sites. Crucial components of the hydrogel included N-isopropylacrylamide, poly(ethylene glycol) diacrylate, and hyaluronic acid. Our investigation focused on in vitro ACA release kinetics, stability, and activity. Additionally, we examined the antigen-binding characteristics of ACA post-release from the THG in an in vivo context. Our preliminary findings suggest that the THG construct exhibits promise as a delivery platform for antibody-based therapeutics to reduce excessive scarring in orthopedic tissues.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lan Cheng
- Department of Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L. Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
113
|
Bercea M, Plugariu IA, Dinu MV, Pelin IM, Lupu A, Bele A, Gradinaru VR. Poly(Vinyl Alcohol)/Bovine Serum Albumin Hybrid Hydrogels with Tunable Mechanical Properties. Polymers (Basel) 2023; 15:4611. [PMID: 38232047 PMCID: PMC10708397 DOI: 10.3390/polym15234611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, a new strategy was adopted for obtaining polymer/protein hybrid hydrogels with shape stability and tunable mechanical or rheological characteristics by using non-toxic procedures. A chemical network was created using a poly(vinyl alcohol)(PVA)/bovine serum albumin (BSA) mixture in aqueous solution in the presence of genipin and reduced glutathione (GSH). Then, a second physical network was formed through PVA after applying freezing/thawing cycles. In addition, the protein macromolecules formed intermolecular disulfide bridges in the presence of GSH. In these conditions, multiple crosslinked networks were obtained, determining the strengthening and stiffening into relatively tough porous hydrogels with tunable viscoelasticity and a self-healing ability. A SEM analysis evidenced the formation of networks with interconnected pores of sizes between 20 μm and 50 μm. The mechanical or rheological investigations showed that the hydrogels' strength and response in different conditions of deformation were influenced by the composition and crosslinking procedure. Thus, the dynamics of the hybrid hydrogels can be adjusted to mimic the viscoelastic properties of the native tissues. The dynamic water vapor-sorption ability, swelling behavior in an aqueous environment, and bioadhesive properties were also investigated and are discussed in this paper. The hybrid hydrogels with tunable viscoelasticity can be designed on request, and they are promising candidates for tissue engineering, bioinks, and wound dressing applications.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.V.D.); (I.M.P.); (A.L.); (A.B.)
| | - Ioana-Alexandra Plugariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.V.D.); (I.M.P.); (A.L.); (A.B.)
| | - Maria Valentina Dinu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.V.D.); (I.M.P.); (A.L.); (A.B.)
| | - Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.V.D.); (I.M.P.); (A.L.); (A.B.)
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.V.D.); (I.M.P.); (A.L.); (A.B.)
| | - Adrian Bele
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.V.D.); (I.M.P.); (A.L.); (A.B.)
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania;
| |
Collapse
|
114
|
Vetter VC, Bouten CVC, van der Pol A. Hydrogels for Cardiac Restorative Support: Relevance of Gelation Mechanisms for Prospective Clinical Use. Curr Heart Fail Rep 2023; 20:519-529. [PMID: 37812347 PMCID: PMC10746579 DOI: 10.1007/s11897-023-00630-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Cardiac tissue regenerative strategies have gained much traction over the years, in particular those utilizing hydrogels. With our review, and with special focus on supporting post-myocardial infarcted tissue, we aim to provide insights in determining crucial design considerations of a hydrogel and the implications these could have for future clinical use. RECENT FINDINGS To date, two hydrogel delivery strategies are being explored, cardiac injection or patch, to treat myocardial infarction. Recent advances have demonstrated that the mechanism by which a hydrogel is gelated (i.e., physically or chemically cross-linked) not only impacts the biocompatibility, mechanical properties, and chemical structure, but also the route of delivery of the hydrogel and thus its effect on cardiac repair. With regard to cardiac regeneration, various hydrogels have been developed with the ability to function as a delivery system for therapeutic strategies (e.g., drug and stem cells treatments), as well as a scaffold to guide cardiac tissue regeneration following myocardial infarction. However, these developments remain within the experimental and pre-clinical realm and have yet to transition towards the clinical setting.
Collapse
Affiliation(s)
- Valentine C Vetter
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
115
|
Özliseli E, Şanlıdağ S, Süren B, Mahran A, Parikainen M, Sahlgren C, Rosenholm JM. Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery. Mater Today Bio 2023; 23:100865. [PMID: 38054034 PMCID: PMC10694759 DOI: 10.1016/j.mtbio.2023.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023] Open
Abstract
Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues.
Collapse
Affiliation(s)
- Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sami Şanlıdağ
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Behice Süren
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Alaa Mahran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Marjaana Parikainen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
116
|
Xu Y, Zhao M, Cao J, Fang T, Zhang J, Zhen Y, Wu F, Yu X, Liu Y, Li J, Wang D. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2023; 13:4417-4441. [PMID: 37969725 PMCID: PMC10638506 DOI: 10.1016/j.apsb.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 11/17/2023] Open
Abstract
Rheumatoid arthritis is a chronic, systemic autoimmune disease predominantly based on joint lesions with an extremely high disability and deformity rate. Several drugs have been used for the treatment of rheumatoid arthritis, but their use is limited by suboptimal bioavailability, serious adverse effects, and nonnegligible first-pass effects. In contrast, transdermal drug delivery systems (TDDSs) can avoid these drawbacks and improve patient compliance, making them a promising option for the treatment of rheumatoid arthritis (RA). Of course, TDDSs also face unique challenges, as the physiological barrier of the skin makes drug delivery somewhat limited. To overcome this barrier and maximize drug delivery efficiency, TDDSs have evolved in terms of the principle of transdermal facilitation and transdermal facilitation technology, and different generations of TDDSs have been derived, which have significantly improved transdermal efficiency and even achieved individualized controlled drug delivery. In this review, we summarize the different generations of transdermal drug delivery systems, the corresponding transdermal strategies, and their applications in the treatment of RA.
Collapse
Affiliation(s)
| | | | - Jinxue Cao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangling Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
117
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
118
|
Naeem A, Yu C, Wang X, Peng M, Liu Y, Liu Y. Hydroxyethyl Cellulose-Based Hydrogels as Controlled Release Carriers for Amorphous Solid Dispersion of Bioactive Components of Radix Paeonia Alba. Molecules 2023; 28:7320. [PMID: 37959739 PMCID: PMC10648136 DOI: 10.3390/molecules28217320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Radix Paeoniae Alba (RPA) has been used extensively in Chinese traditional medicine to treat gastrointestinal disorders, immune-modulating diseases, cancers, and numerous other conditions. A few of its active components include paeoniflorin, albiflorin, lactiflorin, and catechin. However, their therapeutic effectiveness is compromised by poor pharmacokinetic profiles, low oral bioavailability, short half-lives, and poor aqueous solubility. In this study, hydroxyethyl cellulose-grafted-2-acrylamido-2-methylpropane sulfonic acid (HEC-g-AMPS) hydrogels were successfully prepared for the controlled release of Radix Paeonia Alba-solid dispersion (RPA-SD). A total of 43 compounds were identified in RPA-SD using UHPLC-Q-TOF-MS analysis. The hydrogel network formation was confirmed by FTIR, TGA, DSC, XRD, and SEM. Hydrogels' swelling and drug release were slightly higher at pH 1.2 (43.31% swelling, 81.70% drug release) than at pH 7.4 (27.73% swelling, 72.46% drug release) after 48 h. The gel fraction, drug release time and mechanical strength of the hydrogels increased with increased polymer and monomer concentration. Furthermore, the hydrogels were porous (84.15% porosity) and biodegradable (8.9% weight loss per week). Moreover, the synthesized hydrogels exhibited excellent antimicrobial and antioxidative properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Mingyan Peng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yi Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
119
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
120
|
Kaspute G, Arunagiri BD, Alexander R, Ramanavicius A, Samukaite-Bubniene U. Development of Essential Oil Delivery Systems by 'Click Chemistry' Methods: Possible Ways to Manage Duchenne Muscular Dystrophy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6537. [PMID: 37834674 PMCID: PMC10573547 DOI: 10.3390/ma16196537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Recently, rare diseases have received attention due to the need for improvement in diagnosed patients' and their families' lives. Duchenne muscular dystrophy (DMD) is a rare, severe, progressive, muscle-wasting disease. Today, the therapeutic standard for treating DMD is corticosteroids, which cause serious adverse side effects. Nutraceuticals, e.g., herbal extracts or essential oils (EOs), are possible active substances to develop new drug delivery systems to improve DMD patients' lives. New drug delivery systems lead to new drug effects, improved safety and accuracy, and new therapies for rare diseases. Herbal extracts and EOs combined with click chemistry can lead to the development of safer treatments for DMD. In this review, we focus on the need for novel drug delivery systems using EOs as the therapy for DMD and the potential use of click chemistry for drug delivery systems. New EO complex drug delivery systems may offer a new approach for improving muscle conditions and mental health issues associated with DMD. However, further research should identify the potential of these systems in the context of DMD. In this review, we discuss possibilities for applying EOs to DMD before implementing expensive research in a theoretical way.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekis av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Bharani Dharan Arunagiri
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Rakshana Alexander
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekis av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Urte Samukaite-Bubniene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekis av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| |
Collapse
|
121
|
Sandoval-García K, Alvarado-Mendoza AG, Orozco-Guareño E, Olea-Rodríguez MA, Cajero-Zul LR, Nuño-Donlucas SM. Synthesis and Evaluation of Antifungal and Antibacterial Abilities of Carbon Nanotubes Grafted to Poly(2-hydroxyethyl methacrylate) Nanocomposites. Polymers (Basel) 2023; 15:3657. [PMID: 37765511 PMCID: PMC10534391 DOI: 10.3390/polym15183657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Developing nanomaterials with the capacity to restrict the growth of bacteria and fungus is of current interest. In this study, nanocomposites of poly(2-hydroxyethyl methacrylate) (PHEMA) and carbon nanotubes (CNTs) functionalized with primary amine, hydroxyl, and carboxyl groups were prepared and characterized. An analysis by Fourier-transform infrared (FT-IR) spectroscopy showed that PHEMA chains were grafted to the functionalized CNTs. X-ray photoelectron spectroscopy suggested that the grafting reaction was viable. The morphology of the prepared nanocomposites studied by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) showed significant changes with respect to the observed for pure PHEMA. The thermal behavior of the nanocomposites studied by differential scanning calorimetry (DSC) revealed that the functionalized CNTs strongly affect the mobility of the PHEMA chains. Tests carried out by thermogravimetric analysis (TGA) were used to calculate the degree of grafting of the PHEMA chains. The ability of the prepared nanocomposites to inhibit the growth of the fungus Candida albicans and the bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was evaluated. A reduced antifungal and antibacterial capacity of the prepared nanocomposites was determined.
Collapse
Affiliation(s)
- Karina Sandoval-García
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Abraham G. Alvarado-Mendoza
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (A.G.A.-M.); (E.O.-G.)
| | - Eulogio Orozco-Guareño
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (A.G.A.-M.); (E.O.-G.)
| | - María A. Olea-Rodríguez
- Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Leonardo R. Cajero-Zul
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Sergio M. Nuño-Donlucas
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| |
Collapse
|
122
|
Dwivedi K, Mandal AK, Afzal O, Altamimi ASA, Sahoo A, Alossaimi MA, Almalki WH, Alzahrani A, Barkat MA, Almeleebia TM, Mir Najib Ullah SN, Rahman M. Emergence of Nano-Based Formulations for Effective Delivery of Flavonoids against Topical Infectious Disorders. Gels 2023; 9:671. [PMID: 37623126 PMCID: PMC10453850 DOI: 10.3390/gels9080671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Flavonoids are hydroxylated phenolic substances in vegetables, fruits, flowers, seeds, wine, tea, nuts, propolis, and honey. They belong to a versatile category of natural polyphenolic compounds. Their biological function depends on various factors such as their chemical structure, degree of hydroxylation, degree of polymerization conjugation, and substitutions. Flavonoids have gained considerable attention among researchers, as they show a wide range of pharmacological activities, including coronary heart disease prevention, antioxidative, hepatoprotective, anti-inflammatory, free-radical scavenging, anticancer, and anti-atherosclerotic activities. Plants synthesize flavonoid compounds in response to pathogen attacks, and these compounds exhibit potent antimicrobial (antibacterial, antifungal, and antiviral) activity against a wide range of pathogenic microorganisms. However, certain antibacterial flavonoids have the ability to selectively target the cell wall of bacteria and inhibit virulence factors, including biofilm formation. Moreover, some flavonoids are known to reverse antibiotic resistance and enhance the efficacy of existing antibiotic drugs. However, due to their poor solubility in water, flavonoids have limited oral bioavailability. They are quickly metabolized in the gastrointestinal region, which limits their ability to prevent and treat various disorders. The integration of flavonoids into nanomedicine constitutes a viable strategy for achieving efficient cutaneous delivery owing to their favorable encapsulation capacity and diminished toxicity. The utilization of nanoparticles or nanoformulations facilitates drug delivery by targeting the drug to the specific site of action and exhibits excellent physicochemical stability.
Collapse
Affiliation(s)
- Khusbu Dwivedi
- Department of Pharmaceutics, Sambhunath Institute of Pharmacy Jhalwa, Prayagraj 211015, Uttar Pradesh, India;
| | - Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779, Saudi Arabia;
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin 39524, Saudi Arabia;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | | | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India;
| |
Collapse
|
123
|
Cirillo G, Curcio M, Oliviero Rossi C, De Filpo G, Baratta M, De Luca M, Iemma F, Nicoletta FP. Curcumin-Sodium Alginate and Curcumin-Chitosan Conjugates as Drug Delivery Systems: An Interesting Rheological Behaviour. Molecules 2023; 28:5893. [PMID: 37570862 PMCID: PMC10420803 DOI: 10.3390/molecules28155893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The conjugation of polyphenols is a valuable strategy with which to confer tailored properties to polymeric materials of biomedical interest. Within this investigation, we aim to explore the possibility to use this synthetic approach to increase the viscosity of conjugates, thus allowing the release of a loaded therapeutic to be better controlled over time than in neat polyphenols. Curcumin (CUR) was conjugated to sodium alginate (CA) and chitosan (CS) with functionalisation degrees of 9.2 (SA-CUR) and 15.4 (CS-CUR) mg g-1. Calorimetric analyses showed higher degrees of chain rigidity upon conjugation, with a shift of the degradation peaks to higher temperatures (from 239 to 245 °C and from 296 to 303 °C for SA-CUR and CS-CUR, respectively). Rheological analyses were used to prove the enhanced interconnection between the polymer chains in the conjugates, confirmed by the weak gel parameters, A and z. Moreover, the typical non-Newtonian behaviour of the high-molecular-weight polysaccharides was recorded, together with an enhancement of the activation energy, Ea, in CS-CUR vs. CS (opposite behaviour recorded for SA-CUR vs. SA). The evaluation of the delivery performance (of Doxorubicin as a model drug) showed sustained release profiles, opening opportunities for the development of controlled delivery systems.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (M.D.L.); (F.I.); (F.P.N.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (M.D.L.); (F.I.); (F.P.N.)
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy; (C.O.R.); (G.D.F.); (M.B.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy; (C.O.R.); (G.D.F.); (M.B.)
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy; (C.O.R.); (G.D.F.); (M.B.)
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (M.D.L.); (F.I.); (F.P.N.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (M.D.L.); (F.I.); (F.P.N.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (M.D.L.); (F.I.); (F.P.N.)
| |
Collapse
|
124
|
Adjei-Sowah E, Benoit DSW, Loiselle AE. Drug Delivery Approaches to Improve Tendon Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:369-386. [PMID: 36888543 PMCID: PMC10442691 DOI: 10.1089/ten.teb.2022.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Tendon injuries disrupt the transmission of forces from muscle to bone, leading to chronic pain, disability, and a large socioeconomic burden. Tendon injuries are prevalent; there are over 300,000 tendon repair procedures a year in the United States to address acute trauma or chronic tendinopathy. Successful restoration of function after tendon injury remains challenging clinically. Despite improvements in surgical and physical therapy techniques, the high complication rate of tendon repair procedures motivates the use of therapeutic interventions to augment healing. While many biological and tissue engineering approaches have attempted to promote scarless tendon healing, there is currently no standard clinical treatment to improve tendon healing. Moreover, the limited efficacy of systemic delivery of several promising therapeutic candidates highlights the need for tendon-specific drug delivery approaches to facilitate translation. This review article will synthesize the current state-of-the-art methods that have been used for tendon-targeted delivery through both systemic and local treatments, highlight emerging technologies used for tissue-specific drug delivery in other tissue systems, and outline future challenges and opportunities to enhance tendon healing through targeted drug delivery.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Materials Science Program, University of Rochester, Rochester, New York, USA
- Knight Campus Department of Bioengineering, University of Oregon, Eugene, Oregan, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
| |
Collapse
|
125
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
126
|
Meyer KV, Winkler S, Lienig P, Dräger G, Bahnemann J. 3D-Printed Microfluidic Perfusion System for Parallel Monitoring of Hydrogel-Embedded Cell Cultures. Cells 2023; 12:1816. [PMID: 37508481 PMCID: PMC10378615 DOI: 10.3390/cells12141816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The use of three-dimensional (3D) cell cultures has become increasingly popular in the contexts of drug discovery, disease modelling, and tissue engineering, as they aim to replicate in vivo-like conditions. To achieve this, new hydrogels are being developed to mimic the extracellular matrix. Testing the ability of these hydrogels is crucial, and the presented 3D-printed microfluidic perfusion system offers a novel solution for the parallel cultivation and evaluation of four separate 3D cell cultures. This system enables easy microscopic monitoring of the hydrogel-embedded cells and significantly reduces the required volumes of hydrogel and cell suspension. This cultivation device is comprised of two 3D-printed parts, which provide four cell-containing hydrogel chambers and the associated perfusion medium chambers. An interfacing porous membrane ensures a defined hydrogel thickness and prevents flow-induced hydrogel detachment. Integrated microfluidic channels connect the perfusion chambers to the overall perfusion system, which can be operated in a standard CO2-incubator. A 3D-printed adapter ensures the compatibility of the cultivation device with standard imaging systems. Cultivation and cell staining experiments with hydrogel-embedded murine fibroblasts confirmed that cell morphology, viability, and growth inside this cultivation device are comparable with those observed within standard 96-well plates. Due to the high degree of customization offered by additive manufacturing, this system has great potential to be used as a customizable platform for 3D cell culture applications.
Collapse
Affiliation(s)
- Katharina V Meyer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Steffen Winkler
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Pascal Lienig
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
127
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
128
|
Pușcașu C, Zanfirescu A, Negreș S. Recent Progress in Gels for Neuropathic Pain. Gels 2023; 9:gels9050417. [PMID: 37233008 DOI: 10.3390/gels9050417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. While several treatment options are available, they often have limited efficacy and are associated with adverse effects. In recent years, gels have emerged as a promising option for the treatment of neuropathic pain. Inclusion of various nanocarriers, such as cubosomes and niosomes, into gels results in pharmaceutical forms with higher drug stability and increased drug penetration into tissues compared to products currently marketed for the treatment of neuropathic pain. Furthermore, these compounds usually provide sustained drug release and are biocompatible and biodegradable, which makes them a safe option for drug delivery. The purpose of this narrative review was to provide a comprehensive analysis of the current state of the field and identify potential directions for future research in the development of effective and safe gels for the treatment of neuropathic pain, ultimately improving the quality of life for patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Simona Negreș
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
129
|
Sun Z, Xiong H, Lou T, Liu W, Xu Y, Yu S, Wang H, Liu W, Yang L, Zhou C, Fan C. Multifunctional Extracellular Matrix Hydrogel with Self-Healing Properties and Promoting Angiogenesis as an Immunoregulation Platform for Diabetic Wound Healing. Gels 2023; 9:gels9050381. [PMID: 37232972 DOI: 10.3390/gels9050381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Treating chronic wounds is a global challenge. In diabetes mellitus cases, long-time and excess inflammatory responses at the injury site may delay the healing of intractable wounds. Macrophage polarization (M1/M2 types) can be closely associated with inflammatory factor generation during wound healing. Quercetin (QCT) is an efficient agent against oxidation and fibrosis that promotes wound healing. It can also inhibit inflammatory responses by regulating M1-to-M2 macrophage polarization. However, its limited solubility, low bioavailability, and hydrophobicity are the main issues restricting its applicability in wound healing. The small intestinal submucosa (SIS) has also been widely studied for treating acute/chronic wounds. It is also being extensively researched as a suitable carrier for tissue regeneration. As an extracellular matrix, SIS can support angiogenesis, cell migration, and proliferation, offering growth factors involved in tissue formation signaling and assisting wound healing. We developed a series of promising biosafe novel diabetic wound repair hydrogel wound dressings with several effects, including self-healing properties, water absorption, and immunomodulatory effects. A full-thickness wound diabetic rat model was constructed for in vivo assessment of QCT@SIS hydrogel, in which hydrogels achieved a markedly increased wound repair rate. Their effect was determined by the promotion of the wound healing process, the thickness of granulation tissue, vascularization, and macrophage polarization during wound healing. At the same time, we injected the hydrogel subcutaneously into healthy rats to perform histological analyses of sections of the heart, spleen, liver, kidney, and lung. We then tested the biochemical index levels in serum to determine the biological safety of the QCT@SIS hydrogel. In this study, the developed SIS showed convergence of biological, mechanical, and wound-healing capabilities. Here, we focused on constructing a self-healing, water-absorbable, immunomodulatory, and biocompatible hydrogel as a synergistic treatment paradigm for diabetic wounds by gelling the SIS and loading QCT for slow drug release.
Collapse
Affiliation(s)
- Zhenghua Sun
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Tengfei Lou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Weixuan Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Yi Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Shiyang Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hui Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Wanjun Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Liang Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Cunyi Fan
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| |
Collapse
|
130
|
Egorikhina MN, Kobyakova II, Charykova IN, Linkova DD, Rubtsova YP, Farafontova EA, Aleynik DY. Application of hydrogel wound dressings in cell therapy-approaches to assessment in vitro. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2023; 13:13-32. [PMID: 37215513 PMCID: PMC10195216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/28/2023] [Indexed: 05/24/2023]
Abstract
Cell therapy is actively used to treat skin defects, particularly burn lesions. The effectiveness of its application may depend on the appropriate choice of wound dressings used together with any cellular material. The aim of the study was to investigate the interaction of 4 hydrogel dressings used in clinical practice with human cells in an in vitro model to determine if their use in combination with cell therapy is possible. The effect of the dressings on the growth medium was assessed by considering the changes caused in the medium's acid-base equilibrium (pH) and viscosity. Cytotoxicity was determined by applying an MTT-assay and by direct contact methods. Cell adhesion and viability on the dressing surfaces were analyzed using fluorescence microscopy. Proliferative and secretory cell activity were determined concurrently. Characterized human dermal fibroblast cultures were used as the test cultures. Results: The tested dressings interacted differently with the growth medium and the test cultures. 1-day extracts of all dressings had almost no effect on the acid-base balance, but, after 7 days, the pH of the dressing Type 2 extract had sharply acidified. The viscosity of the media under the influence of dressings of Types 2 and 3 had also markedly increased. MTT-assays showed nontoxicity of all the 1-day-incubated dressing extracts, while incubation for 7-days resulted in extracts with evident cytotoxicity, which was reduced upon dilution. Cell adhesion to the surfaces of the dressings differed, being observed occurring on dressings 2 and 3, and to a limited extent on dressing 4. Cells under dressing 1 showed evident proliferative and secretory activity whereas the other dressings impaired either proliferation or secretion processes. These effects indicate that, in general, comprehensive studies including a variety of methodological approaches at the in vitro stage are needed to allow the selection of appropriate dressings if they are to be used in combination with cell therapy to act as cell carriers. Of those investigated, the Type 1 dressing can be recommended as a protective dressing for use after transplantation of cells into a wound defect area by some other method.
Collapse
Affiliation(s)
- Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of The Ministry of Health of The Russian Federation Nizhny Novgorod 603005, Russia
| | - Irina I Kobyakova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of The Ministry of Health of The Russian Federation Nizhny Novgorod 603005, Russia
| | - Irina N Charykova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of The Ministry of Health of The Russian Federation Nizhny Novgorod 603005, Russia
| | - Daria D Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of The Ministry of Health of The Russian Federation Nizhny Novgorod 603005, Russia
| | - Yulia P Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of The Ministry of Health of The Russian Federation Nizhny Novgorod 603005, Russia
| | - Ekaterina A Farafontova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of The Ministry of Health of The Russian Federation Nizhny Novgorod 603005, Russia
| | - Diana Ya Aleynik
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of The Ministry of Health of The Russian Federation Nizhny Novgorod 603005, Russia
| |
Collapse
|
131
|
Deka R, Sarmah JK, Baruah S, Dutta RR. An okra polysaccharide (Abelmoschus esculentus) reinforced green hydrogel based on guar gum and poly-vinyl alcohol double network for controlled release of nanocurcumin. Int J Biol Macromol 2023; 234:123618. [PMID: 36780964 DOI: 10.1016/j.ijbiomac.2023.123618] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
A novel green hydrogel (PGCO) of Okra (Abelmoschus esculentus) mucilage-reinforced poly-vinyl alcohol-guar gum (PG) cross-linked by citric acid containing nanocurcumin (NC) as a model drug is reported. The citric acid (CA) cross-linked hydrogel (PGC) without okra is also prepared. The hydrogels are characterized using FTIR, XRD, FE-SEM, and TGA techniques. Okra reinforced green hydrogel (PGCO) provided comparable swelling behaviour with better mechanical and thermal properties compared to the neat PGC hydrogel. Network parameters of PGC and PGCO hydrogels are estimated using Flory-Rehner equation and strong correlation between the cross-link density and swelling behaviour is established. 45.68 % NC loading in the PGCO hydrogel is achieved. Release study in phosphate buffer (PB) of pH 7.4 provided sustained release of NC over a period of 100 h. The release study of NC followed primarily the Korsmeyer-Peppas model with less-Fickian diffusional character (n < 0.5). The average diffusion coefficients of NC and curcumin are found to be 3.52 × 10-5 cm2 s-1, and 3.43 × 10-5 cm2 s-1 respectively demonstrating the quick release of NC in early time, which is a pre-requisite in drug delivery. The study provides initial evidence of the usefulness of okra mucilage in green hydrogel development and drug delivery applications.
Collapse
Affiliation(s)
- Rishikesh Deka
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| | - Jayanta K Sarmah
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India.
| | - Sudeepta Baruah
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| | - Rekha Rani Dutta
- Department of Chemistry, School of Basic Sciences, The Assam Kaziranga University, Jorhat, Assam PIN 785006, India
| |
Collapse
|
132
|
Brown CP, Hughes MDG, Mahmoudi N, Brockwell DJ, Coletta PL, Peyman S, Evans SD, Dougan L. Structural and mechanical properties of folded protein hydrogels with embedded microbubbles. Biomater Sci 2023; 11:2726-2737. [PMID: 36815670 PMCID: PMC10088474 DOI: 10.1039/d2bm01918c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Globular folded proteins are powerful building blocks to create biomaterials with mechanical robustness and inherent biological functionality. Here we explore their potential as advanced drug delivery scaffolds, by embedding microbubbles (MBs) within a photo-activated, chemically cross-linked bovine serum albumin (BSA) protein network. Using a combination of circular dichroism (CD), rheology, small angle neutron scattering (SANS) and microscopy we determine the nanoscale and mesoscale structure and mechanics of this novel multi-composite system. Optical and confocal microscopy confirms the presence of MBs within the protein hydrogel, their reduced diffusion and their effective rupture using ultrasound, a requirement for burst drug release. CD confirms that the inclusion of MBs does not impact the proportion of folded proteins within the cross-linked protein network. Rheological characterisation demonstrates that the mechanics of the BSA hydrogels is reduced in the presence of MBs. Furthermore, SANS reveals that embedding MBs in the protein hydrogel network results in a smaller number of clusters that are larger in size (∼16.6% reduction in number of clusters, 17.4% increase in cluster size). Taken together, we show that MBs can be successfully embedded within a folded protein network and ruptured upon application of ultrasound. The fundamental insight into the impact of embedded MBs in protein scaffolds at the nanoscale and mesoscale is important in the development of future platforms for targeted and controlled drug delivery applications.
Collapse
Affiliation(s)
- Christa P Brown
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - P Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sally Peyman
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Stephen D Evans
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
133
|
Alkimavičienė E, Pušinskaitė R, Basevičienė N, Banienė R, Savickienė N, Pacauskienė IM. Efficacy of Proanthocyanidins in Nonsurgical Periodontal Therapy. Int Dent J 2023; 73:195-204. [PMID: 36167610 PMCID: PMC10023589 DOI: 10.1016/j.identj.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aim of this work was to evaluate the efficacy of proanthocyanidins (PACNs) as an adjunctive periodontal therapy in patients with periodontitis. METHODS Patients with periodontitis (stage III-IV) were included in this randomised clinical study. Patients with periodontitis received 2 different treatment modalities: minimally invasive nonsurgical therapy only (MINST group) or minimally invasive nonsurgical therapy and subgingival application of collagen hydrogels with PACNs (MINST + PACNs group). Clinical periodontal parameters, that is, pocket probing depth (PPD), clinical attachment level (CAL), bleeding on probing (BOP), plaque index (PI), were evaluated before treatment and after 8 weeks. Concentrations of immunologic markers, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in saliva were assessed at baseline and at 8-week follow-up. RESULTS Forty-six patients diagnosed with periodontitis were randomised into 2 groups: 23 patients in the MINST group and 23 patients in the MINST + PACNs group received the intended treatment. PACNs combined with MINST resulted in additional statistically significant PPD reduction and CAL gain in moderate periodontal pockets by 0.5 mm (P < .05) on average compared to MINST alone. Additional use of PACNs did not result in additional statistically significant improvement of BOP or PI values. Application of PACNs showed significant reduction of MMP-3 levels in saliva after 8 weeks (P < .05). CONCLUSIONS Adjunctive use of PACNs in MINST resulted in better clinical outcomes for moderate pockets. Additional use of PACNs improved MMP-3 concentration in saliva more than MINST alone. Biochemical analysis revealed that MMP-3 concentration in saliva reflected the periodontal health state.
Collapse
Affiliation(s)
- Evelina Alkimavičienė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Rasa Pušinskaitė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nomeda Basevičienė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Banienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nijolė Savickienė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
134
|
Koo YW, Lim CS, Darai A, Lee J, Kim W, Han I, Kim GH. Shape-memory collagen scaffold combined with hyaluronic acid for repairing intervertebral disc. Biomater Res 2023; 27:26. [PMID: 36991502 DOI: 10.1186/s40824-023-00368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of chronic low back pain (LBP) and a socioeconomic burden worldwide. Conservative therapies and surgical treatments provide only symptomatic pain relief without promoting intervertebral disc (IVD) regeneration. Therefore, the clinical demand for disc regenerative therapies for disc repair is high. METHODS In this study, we used a rat tail nucleotomy model to develop mechanically stable collagen-cryogel and fibrillated collagen with shape-memory for use in minimally invasive surgery for effective treatment of IVDD. The collagen was loaded with hyaluronic acid (HA) into a rat tail nucleotomy model. RESULTS The shape-memory collagen structures exhibited outstanding chondrogenic activities, having completely similar physical properties to those of a typical shape-memory alginate construct in terms of water absorption, compressive properties, and shape-memorability behavior. The treatment of rat tail nucleotomy model with shape-memory collagen-cryogel/HA alleviated mechanical allodynia, maintained a higher concentration of water content, and preserved the disc structure by restoring the matrix proteins. CONCLUSION According to these results, the collagen-based structure could effectively repair and maintain the IVD matrix better than the controls, including HA only and shape-memory alginate with HA.
Collapse
Affiliation(s)
- Young Won Koo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Chang Su Lim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea
| | - Anjani Darai
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea
| | - JiUn Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonjin Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea.
| | - Geun Hyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Institute of Quantum Biophysics , Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
135
|
Halligan E, Zhuo S, Colbert DM, Alsaadi M, Tie BSH, Bezerra GSN, Keane G, Geever LM. Modulation of the Lower Critical Solution Temperature of Thermoresponsive Poly( N-vinylcaprolactam) Utilizing Hydrophilic and Hydrophobic Monomers. Polymers (Basel) 2023; 15:polym15071595. [PMID: 37050207 PMCID: PMC10096650 DOI: 10.3390/polym15071595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
Four-dimensional printing is primarily based on the concept of 3D printing technology. However, it requires additional stimulus and stimulus-responsive materials. Poly-N-vinylcaprolactam is a temperature-sensitive polymer. Unique characteristics of poly-N-vinylcaprolactam -based hydrogels offer the possibility of employing them in 4D printing. The main aim of this study is to alter the phase transition temperature of poly-N-vinylcaprolactam hydrogels. This research focuses primarily on incorporating two additional monomers with poly-N-vinylcaprolactam: Vinylacetate and N-vinylpyrrolidone. This work contributes to this growing area of research by altering (increasing and decreasing) the lower critical solution temperature of N-vinylcaprolactam through photopolymerisation. Poly-N-vinylcaprolactam exhibits a lower critical solution temperature close to the physiological temperature range of 34-37 °C. The copolymers were analysed using various characterisation techniques, such as FTIR, DSC, and UV-spectrometry. The main findings show that the inclusion of N-vinylpyrrolidone into poly-N-vinylcaprolactam increased the lower critical solution temperature above the physiological temperature. By incorporating vinylacetate, the lower critical solution temperature dropped to 21 °C, allowing for potential self-assembly of 4D-printed objects at room temperature. In this case, altering the lower critical solution temperature of the material can potentially permit the transformation of the 4D-printed object at a particular temperature.
Collapse
Affiliation(s)
- Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Declan Mary Colbert
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Mohamad Alsaadi
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
- CONFIRM Centre for Smart Manufacturing, University of Limerick, V94 C928 Co. Limerick, Ireland
| | - Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gilberto S N Bezerra
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Luke M Geever
- Applied Polymer Technologies Gateway, Material Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| |
Collapse
|
136
|
Shafigh Kheljan F, Sheikhzadeh Hesari F, Aminifazl MS, Skurnik M, Goladze S, Zarrini G. Design of Phage-Cocktail-Containing Hydrogel for the Treatment of Pseudomonas aeruginosa-Infected Wounds. Viruses 2023; 15:803. [PMID: 36992511 PMCID: PMC10051971 DOI: 10.3390/v15030803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, the treatment of infected wounds has become a global problem due to increased antibiotic resistance in bacteria. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is often present in chronic skin infections, and it has become a threat to public health as it is increasingly multidrug resistant. Due to this, new measures to enable treatment of infections are necessary. Treatment of bacterial infections with bacteriophages, known as phage therapy, has been in use for a century, and has potential with its antimicrobial effect. The main purpose of this study was to create a phage-containing wound dressing with the ability to prevent bacterial infection and rapid wound healing without side effects. Several phages against P. aeruginosa were isolated from wastewater, and two polyvalent phages were used to prepare a phage cocktail. The phage cocktail was loaded in a hydrogel composed of polymers of sodium alginate (SA) and carboxymethyl cellulose (CMC). To compare the antimicrobial effects, hydrogels containing phages, ciprofloxacin, or phages plus ciprofloxacin were produced, and hydrogels without either. The antimicrobial effect of these hydrogels was investigated in vitro and in vivo using an experimental mouse wound infection model. The wound-healing process in different mouse groups showed that phage-containing hydrogels and antibiotic-containing hydrogels have almost the same antimicrobial effect. However, in terms of wound healing and pathological process, the phage-containing hydrogels performed better than the antibiotic alone. The best performance was achieved with the phage-antibiotic hydrogel, indicating a synergistic effect between the phage cocktail and the antibiotic. In conclusion, phage-containing hydrogels eliminate efficiently P. aeruginosa in wounds and may be a proper option for treating infectious wounds.
Collapse
Affiliation(s)
- Fatemeh Shafigh Kheljan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Farzam Sheikhzadeh Hesari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Mohammad Sadegh Aminifazl
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Sophia Goladze
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| |
Collapse
|
137
|
Cai Y, Xu X, Wu M, Liu J, Feng J, Zhang J. Multifunctional zwitterionic microneedle dressings for accelerated healing of chronic infected wounds in diabetic rat models. Biomater Sci 2023; 11:2750-2758. [PMID: 36876633 DOI: 10.1039/d2bm02101c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Diabetic infected wounds are one of the major threats to public health but traditional wound dressings always have poor therapeutic efficacy influenced by the single treatment principle and limited penetration depth. Herein, we developed a novel kind of multifunctional degradable and removable zwitterionic microneedle dressings that could achieve multi-effective treatment of diabetic chronic wounds with a single dressing application. The substrates of microneedle dressings are composed of zwitterionic polymer polysulfobetaine methacrylate (PSBMA) and photothermal hair particles (HMPs), which can absorb wound exudate, form a barrier to the bacterial environment for the wound and exhibit an excellent photothermal bactericidal effect to promote wound healing. By loading zinc oxide nanoparticles (ZnO NPs) and asiaticoside in needle tips, drugs could diffuse in the wound area as the tips degrade to achieve highly effective antibacterial and anti-inflammatory effects and promote deep wound healing and tissue regeneration. The microneedles (MNs) were applied in diabetic rats with Staphylococcus aureus-infected wounds to demonstrate that the combination of drug and photothermal multi-treatment has accelerated tissue regeneration and collagen deposition and significantly promoted wound healing.
Collapse
Affiliation(s)
- Yuqing Cai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Xiaodong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Minmin Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Jiaqi Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| |
Collapse
|
138
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
139
|
Laurano R, Boffito M, Cassino C, Midei L, Pappalardo R, Chiono V, Ciardelli G. Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different -Ene Moieties through a Green Chemistry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2024. [PMID: 36903139 PMCID: PMC10004734 DOI: 10.3390/ma16052024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Temperature and light responsiveness are widely exploited stimuli to tune the physico-chemical properties of double network hydrogels. In this work, new amphiphilic poly(ether urethane)s bearing photo-sensitive moieties (i.e., thiol, acrylate and norbornene functionalities) were engineered by exploiting the versatility of poly(urethane) chemistry and carbodiimide-mediated green functionalization procedures. Polymers were synthesized according to optimized protocols maximizing photo-sensitive group grafting while preserving their functionality (approx. 1.0 × 1019, 2.6 × 1019 and 8.1 × 1017 thiol, acrylate and norbornene groups/gpolymer), and exploited to prepare thermo- and Vis-light-responsive thiol-ene photo-click hydrogels (18% w/v, 1:1 thiol:ene molar ratio). Green light-induced photo-curing allowed the achievement of a much more developed gel state with improved resistance to deformation (ca. 60% increase in critical deformation, γL). Triethanolamine addition as co-initiator to thiol-acrylate hydrogels improved the photo-click reaction (i.e., achievement of a better-developed gel state). Differently, L-tyrosine addition to thiol-norbornene solutions slightly hindered cross-linking, resulting in less developed gels with worse mechanical performances (~62% γL decrease). In their optimized composition, thiol-norbornene formulations resulted in prevalent elastic behavior at lower frequency compared to thiol-acrylate gels due to the formation of purely bio-orthogonal instead of heterogeneous gel networks. Our findings highlight that exploiting the same thiol-ene photo-click chemistry, a fine tuning of the gel properties is possible by reacting specific functional groups.
Collapse
Affiliation(s)
- Rossella Laurano
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy
| | - Ludovica Midei
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Roberta Pappalardo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Department of Surgical Sciences, Università degli Studi di Torino, 10126 Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
140
|
Abpeikar Z, Safaei M, Akbar Alizadeh A, Goodarzi A, Hatam G. The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. Int J Pharm 2023; 633:122615. [PMID: 36657555 DOI: 10.1016/j.ijpharm.2023.122615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Cutaneous leishmaniasis (CL) is a global public health issue. Conventional treatments have substantial costs, side effects, and parasite resistance. Due to easy application and inexpensive cost, topical treatment is the optimal approach for CL. It could be used alone or with systemic treatments. Electrospun fibers as drug release systems in treating skin lesions have various advantages such as adjustable drug release rate, maintaining appropriate humidity and temperature, gas exchange, plasticity at the lesion site, similarity with the skin extracellular matrix (ECM) and drug delivery with high efficiency. Hydrogels are valuable scaffolds in the treatment of skin lesions. The important features of hydrogels include preserving unstable drugs from degradation, absorption of wound secretions, high biocompatibility, improving the re-epithelialization of the wound and preventing the formation of scars. One of the issues in local drug delivery systems for the skin is the low permeability of drugs in the skin. Polymeric scaffolds that are designed as microneedle patches can penetrate the skin and overcome this challenge. Also, drug delivery using nanocarriers increases the effectiveness of drugs in lower and more tolerable doses and reduces the toxicity of drugs. The application of cell therapy in the treatment of parasitic and infectious diseases has been widely investigated. The complexity of leishmaniasis treatment requires identifying new treatment options like cell therapy to overcome the disease. Topics investigated in this study include drug delivery systems based on tissue engineering scaffolds, nanotechnology and cell therapy-based studies to reduce the complications of CL.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohsen Safaei
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
141
|
Amrabadi T, Jalilnejad E, Ojagh SMA, Vahabzadeh F. Application of TOPSIS algorithm in describing bacterial cellulose-based composite hydrogel performance in incorporating methylene blue as a model drug. Sci Rep 2023; 13:2755. [PMID: 36797363 PMCID: PMC9935555 DOI: 10.1038/s41598-023-29865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
A multi-component hydrogel was developed using bacterial cellulose, alginate, and gelatin with the aid of glycerol as trihydric alcohol which participates in re-distribution of hydrogen bonds in the test system. FTIR, XRD, SEM, and TGA as instrumental techniques were used to structurally characterize the physical/chemical properties of the formed composite hydrogel. By using an exponential equation, swelling behavior of the hydrogel was evaluated. By incorporating a model drug (methylene blue-MB) in the formed hydrogel, experiments were directed to study release characteristics of the MB where the medium solution for the release was prepared at four different pHs. The maximum cumulative drug release at pH 2.8, 6, 7.4, and 9 were 42.8, 63, 80, and 84.5%, respectively. Data fitting process was carried out using five kinetic models (Korsmeyer-Peppas, Higuchi, Hopfenberg, zero-order, and first-order equations) and the preferred kinetic model at each pH was estimated by applying TOPSIS algorithmic technique. The adsorption capacity of the hydrogel in relation to MB was determined while thermodynamic properties of this relationship were quantified ([Formula: see text] and [Formula: see text]). The results of the present study were in favor of the potential usage of the developed composite hydrogel in drug delivery systems.
Collapse
Affiliation(s)
- Touraj Amrabadi
- grid.411368.90000 0004 0611 6995Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elham Jalilnejad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, West Azerbaijan, Iran.
| | - Seyed Mohammad Amin Ojagh
- grid.411368.90000 0004 0611 6995Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran ,grid.14709.3b0000 0004 1936 8649Department of Chemistry, McGill University, Montreal, QC Canada
| | - Farzaneh Vahabzadeh
- grid.411368.90000 0004 0611 6995Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
142
|
Bioactivity, Molecular Mechanism, and Targeted Delivery of Flavonoids for Bone Loss. Nutrients 2023; 15:nu15040919. [PMID: 36839278 PMCID: PMC9960663 DOI: 10.3390/nu15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Skeletal disabilities are a prominent burden on the present population with an increasing life span. Advances in osteopathy have provided various medical support for bone-related diseases, including pharmacological and prosthesis interventions. However, therapeutics and post-surgery complications are often reported due to side effects associated with modern-day therapies. Thus, therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements, and their pharmacological attributes have been well appreciated. Recently, flavonoids' role is gaining renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to play a pivotal role in the major bone signaling pathways, such as wingless-related integration site (Wnt)/β-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of flavonoids are the major limitations inhibiting their use against bone-related complications. Recent utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds, micelles) to target and control release can enhance the absorption and bioavailability of flavonoids. Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling mechanisms affecting bone remodeling and various delivery methods utilized to enhance their therapeutical potential in treating bone loss.
Collapse
|
143
|
Polymer-based biomaterials for pharmaceutical and biomedical applications: a focus on topical drug administration. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
144
|
A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact Mater 2023; 20:610-626. [PMID: 35846848 PMCID: PMC9256661 DOI: 10.1016/j.bioactmat.2022.06.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
A novel sprayable adhesive is established (ZnMet-PF127) by the combination of a thermosensitive hydrogel (Pluronic F127, PF127) and a coordination complex of zinc and metformin (ZnMet). Here we demonstrate that ZnMet-PF127 potently promotes the healing of traumatic skin defect and burn skin injury by promoting cell proliferation, angiogenesis, collagen formation. Furthermore, we find that ZnMet could inhibit reactive oxygen species (ROS) production through activation of autophagy, thereby protecting cell from oxidative stress induced damage and promoting healing of skin wound. ZnMet complex exerts better effects on promoting skin wound healing than ZnCl2 or metformin alone. ZnMet complex also displays excellent antibacterial activity against Staphylococcus aureus or Escherichia coli, which could reduce the incidence of skin wound infections. Collectively, we demonstrate that sprayable PF127 could be used as a new drug delivery system for treatment of skin injury. The advantages of this sprayable system are obvious: (1) It is convenient to use; (2) The hydrogel can cover irregular skin defect sites evenly in a liquid state. In combination with this system, we establish a novel sprayable adhesive (ZnMet-PF127) and demonstrate that it is a potential clinical treatment for traumatic skin defect and burn skin injury.
Collapse
|
145
|
Kulkarni N, Rao P, Jadhav GS, Kulkarni B, Kanakavalli N, Kirad S, Salunke S, Tanpure V, Sahu B. Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications. ACS OMEGA 2023; 8:3551-3570. [PMID: 36743055 PMCID: PMC9893456 DOI: 10.1021/acsomega.2c05601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Owing to their properties such as biocompatibility, tunable mechanical properties, permeability toward oxygen, nutrients, and the ability to hold a significant amount of water, hydrogels have wide applications in biomedical research. They have been engaged in drug delivery systems, 3D cell culture, imaging, and extracellular matrix (ECM) mimetics. Injectable hydrogels represent a major subset of hydrogels possessing advantages of site-specific conformation with minimal invasive techniques. It preserves the inherent properties of drug/biomolecules and is devoid of any side effects associated with surgery. Various polymeric materials utilized in developing injectable hydrogels are associated with the limitations of toxicity, immunogenicity, tedious manufacturing processes, and lack of easy synthetic tunability. Peptides are an important class of biomaterials that have interesting properties such as biocompatibility, stimuli responsiveness, shear thinning, self-healing, and biosignaling. They lack immunogenicity and toxicity. Therefore, numerous peptide-based injectable hydrogels have been explored in the past, and a few of them have reached the market. In recent years, minimalistic dipeptides have shown their ability to form stable hydrogels through cooperative noncovalent interactions. In addition to inherent properties of lengthy peptide-based injectable hydrogels, dipeptides have the unique advantages of low production cost, high synthetic accessibility, and higher stability. Given the instances of expanding significance of injectable peptide hydrogels in biomedical research and an emerging recent trend of dipeptide-based injectable hydrogels, a timely review on dipeptide-based injectable hydrogels shall highlight various aspects of this interesting class of biomaterials. This concise review that focuses on the dipeptide injectable hydrogel may stimulate the current trends of research on this class of biomaterial to translate its significance as interesting products for biomedical applications.
Collapse
Affiliation(s)
- Neeraj Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Prajakta Rao
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Quality
Operations, Novartis Healthcare Pvt. Ltd., Knowledge City, Raidurg, Hyderabad 500081, Telangana, India
| | - Govinda Shivaji Jadhav
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bhakti Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Springer
Nature Technology and Publishing Solutions, Hadapsar, Pune 411013, Maharashtra, India
| | - Nagaraju Kanakavalli
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Aragen
Life Sciences Pvt, Ltd., Madhapur, Hyderabad 500076, Telangana, India
| | - Shivani Kirad
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Sujit Salunke
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Vrushali Tanpure
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bichismita Sahu
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| |
Collapse
|
146
|
Design of Injectable Bioartificial Hydrogels by Green Chemistry for Mini-Invasive Applications in the Biomedical or Aesthetic Medicine Fields. Gels 2023; 9:gels9010059. [PMID: 36661825 PMCID: PMC9858130 DOI: 10.3390/gels9010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bioartificial hydrogels are hydrophilic systems extensively studied for regenerative medicine due to the synergic combination of features of synthetic and natural polymers. Injectability is another crucial property for hydrogel mini-invasive administration. This work aimed at engineering injectable bioartificial in situ cross-linkable hydrogels by implementing green and eco-friendly approaches. Specifically, the versatile poly(ether urethane) (PEU) chemistry was exploited for the development of an amphiphilic PEU, while hyaluronic acid was selected as natural component. Both polymers were functionalized to expose thiol and catechol groups through green water-based carbodiimide-mediated grafting reactions. Functionalization was optimized to maximize grafting yield while preserving group functionality. Then, polymer miscibility was studied at the macro-, micro-, and nano-scale, suggesting the formation of hydrogen bonds among polymeric chains. All hydrogels could be injected through G21 and G18 needles in a wide temperature range (4-25 °C) and underwent sol-to-gel transition at 37 °C. The addition of an oxidizing agent to polymer solutions did not improve the gelation kinetics, while it negatively affected hydrogel stability in an aqueous environment, suggesting the occurrence of oxidation-triggered polymer degradation. In the future, the bioartificial hydrogels developed herein could find application in the biomedical and aesthetic medicine fields as injectable formulations for therapeutic agent delivery.
Collapse
|
147
|
Development of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules. Acta Biomater 2023; 155:154-166. [PMID: 36435443 DOI: 10.1016/j.actbio.2022.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The development of biomaterials to improve wound healing is a critical clinical challenge and an active field of research. As it is well described that oxygen plays a critical role in almost each step of the wound healing process, in this work, an oxygen producing photosynthetic biomaterial was generated, characterized, and further modified to additionally release other bioactive molecules. Here, alginate hydrogels were loaded with the photosynthetic microalgae Chlamydomonas reinhardtii, showing high integration as well as immediate oxygen release upon illumination. Moreover, the photosynthetic hydrogel showed high biocompatibility in vitro and in vivo, and the capacity to sustain the metabolic oxygen requirements of zebrafish larvae and skin explants. In addition, the photosynthetic dressings were evaluated in 20 healthy human volunteers following the ISO-10993-10-2010 showing no skin irritation, mechanical stability of the dressings, and survival of the photosynthetic microalgae. Finally, hydrogels were also loaded with genetically engineered microalgae to release human VEGF, or pre-loaded with antibiotics, showing sustained release of both bioactive molecules. Overall, this work shows that photosynthetic hydrogels represent a feasible approach for the local delivery of oxygen and other bioactive molecules to promote wound healing. STATEMENT OF SIGNIFICANCE: As oxygen plays a key role in almost every step of the tissue regeneration process, the development of oxygen delivering therapies represents an active field of research, where photosynthetic biomaterials have risen as a promising approach for wound healing. Therefore, in this work a photosynthetic alginate hydrogel-based wound dressing containing C. reinhardtii microalgae was developed and validated in healthy skin of human volunteers. Moreover, hydrogels were modified to additionally release other bioactive molecules such as recombinant VEGF or antibiotics. The present study provides key scientific data to support the use of photosynthetic hydrogels as customizable dressings to promote wound healing.
Collapse
|
148
|
Alka, Verma A, Mishra N, Singh N, Singh P, Nisha R, Pal RR, Saraf SA. Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing. Curr Pharm Des 2023; 29:3221-3239. [PMID: 37584354 DOI: 10.2174/1381612829666230816100631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
149
|
Wang Y, Yuan K, Shang Z, Tan G, Zhong Q, He Y, Miao G, Lai K, Li Y, Wang X. Construction of nanohydrogels for enhanced delivery of hydrophilic and hydrophobic drugs and improving chemotherapy efficacy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
150
|
Liu Z, Wang D, Cao Q, Li J. The treatment efficacy of three-layered functional polymer materials as drug carrier for orthotopic colon cancer. Drug Deliv 2022; 29:2971-2983. [PMID: 36101475 PMCID: PMC9487963 DOI: 10.1080/10717544.2022.2122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide disease posing serious threats to people’s life. Surgery and postsurgical chemotherapy are still the first choices to control the rapid progression of cancer. However, tumor recurrence and even distant metastasis are prone to occur. As a result, it is in urgent demand to find a new method to control CRC progression while inhibiting distant metastasis. On this basis, this study developed the three-layered functionalized hydrogel-fibrous membrane-hydrogel composite materials. The Chinese traditional drugs 20 (S)-ginsenoside Rg3 (Rg3) and chemotherapeutic agent 5-fluorouracil (5-Fu) were loaded in the inner hydrogel and middle fibrous membrane and could be constantly released at the same time and space. The outer hydrogel was decorated with phenylboronic acid (PA) to interact with sialic acid expressed on the CRC cell surface. The composite materials possessed biocompatibility and showed no toxicity to normal human intestinal mucosa endothelial cells HIEC. According to the results, the cell viability of CT26 could be significantly decreased in vitro. The three-layered functionalized materials inhibited the original tumor progression and distant tumor metastasis to the liver in an orthotopic colon cancer mouse model by increasing the caspase3 expression and inhibiting the expressions of Bcl-2, Ki-67, and VEGF. In addition, the functions of major organs were not significantly damaged. Our study provides a safe and efficacious method of this three-layered functionalized hydrogel-fibrous membrane-hydrogel composite materials for CRC treatment.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastrointestinal Colorectal & Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|