101
|
Carmona-Rocha E, Rusiñol L, Puig L. New and Emerging Oral/Topical Small-Molecule Treatments for Psoriasis. Pharmaceutics 2024; 16:239. [PMID: 38399292 PMCID: PMC10892104 DOI: 10.3390/pharmaceutics16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research is focused on the development of oral therapies with improved efficacy and safety compared with available alternatives, as exemplified by deucravacitinib, the first oral allosteric Tyk2 inhibitor approved for the treatment of moderate to severe psoriasis in adults. Recent advances in our knowledge of psoriasis pathogenesis have also led to the development of targeted topical molecules, mostly focused on intracellular signaling pathways such as AhR, PDE-4, and Jak-STAT. Tapinarof (an AhR modulator) and roflumilast (a PDE-4 inhibitor) have exhibited favorable efficacy and safety outcomes and have been approved by the FDA for the topical treatment of plaque psoriasis. This revision focuses on the most recent oral and topical therapies available for psoriasis, especially those that are currently under evaluation and development for the treatment of psoriasis.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
102
|
Taylor PC, Choy E, Baraliakos X, Szekanecz Z, Xavier RM, Isaacs JD, Strengholt S, Parmentier JM, Lippe R, Tanaka Y. Differential properties of Janus kinase inhibitors in the treatment of immune-mediated inflammatory diseases. Rheumatology (Oxford) 2024; 63:298-308. [PMID: 37624925 PMCID: PMC10836981 DOI: 10.1093/rheumatology/kead448] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Janus kinases (JAKs) are a family of cytosolic tyrosine kinases that regulate cytokine signal transduction, including cytokines involved in a range of inflammatory diseases, such as RA, psoriasis, atopic dermatitis and IBD. Several small-molecule JAK inhibitors (JAKis) are now approved for the treatment of various immune-mediated inflammatory diseases. There are, however, key differences between these agents that could potentially translate into unique clinical profiles. Each JAKi has a unique chemical structure, resulting in a distinctive mode of binding within the catalytic cleft of the target JAK, and giving rise to distinct pharmacological characteristics. In addition, the available agents have differing selectivity for JAK isoforms, as well as off-target effects against non-JAKs. Other differences include effects on haematological parameters, DNA damage repair, reproductive toxicity and metabolism/elimination. Here we review the pharmacological profiles of the JAKis abrocitinib, baricitinib, filgotinib, peficitinib, tofacitinib and upadacitinib.
Collapse
Affiliation(s)
- Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ernest Choy
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Zoltan Szekanecz
- Faculty of Medicine, Department of Rheumatology, University of Debrecen, Debrecen, Hungary
| | - Ricardo M Xavier
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Julie M Parmentier
- Immunology Precision Medicine, AbbVie Bioresearch Center, Worcester, MA, USA
| | - Ralph Lippe
- AbbVie Deutschland GmbH & Co. KG, Wiesbaden, Germany
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
103
|
Zhao R, Hu Z, Zhang X, Huang S, Yu G, Wu Z, Yu W, Lu J, Ruan B. The oncogenic mechanisms of the Janus kinase-signal transducer and activator of transcription pathway in digestive tract tumors. Cell Commun Signal 2024; 22:68. [PMID: 38273295 PMCID: PMC10809652 DOI: 10.1186/s12964-023-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Digestive tract tumors are heterogeneous and involve the dysregulation of multiple signaling pathways. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway plays a notable role in the oncogenesis of digestive tract tumors. Typically activated by pro-inflammatory cytokines, it regulates important biological processes, such as cell growth, differentiation, apoptosis, immune responses, and inflammation. The aberrant activation of this pathway manifests in different forms, including mutations in JAKs, overexpression of cytokine receptors, and sustained STAT activation, and contributes to promoting the malignant characteristics of cancer cells, including uncontrolled proliferation, resistance to apoptosis, enhanced invasion and metastasis, angiogenesis, acquisition of stem-like properties, and drug resistance. Numerous studies have shown that aberrant activation of the JAK-STAT pathway is closely related to the development and progression of digestive tract tumors, contributing to tumor survival, angiogenesis, changes in the tumor microenvironment, and even immune escape processes. In addition, this signaling pathway also affects the sensitivity of digestive tract tumors to chemotherapy and targeted therapy. Therefore, it is crucial to comprehensively understand the oncogenic mechanisms underlying the JAK-STAT pathway in order to develop effective therapeutic strategies against digestive tract tumors. Currently, several JAK-STAT inhibitors are undergoing clinical and preclinical trials as potential treatments for various human diseases. However, further investigation is required to determine the role of this pathway, as well as the effectiveness and safety of its inhibitors, especially in the context of digestive tract tumors. In this review, we provide an overview of the structure, classic activation, and negative regulation of the JAK-STAT pathway. Furthermore, we discuss the pathogenic mechanisms of JAK-STAT signaling in different digestive tract tumors, with the aim of identifying potential novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ruihong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhangmin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Shujuan Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
104
|
Cheemalavagu N, Shoger KE, Cao YM, Michalides BA, Botta SA, Faeder JR, Gottschalk RA. Predicting gene-level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework. Cell Syst 2024; 15:37-48.e4. [PMID: 38198893 PMCID: PMC10812086 DOI: 10.1016/j.cels.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational framework to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to interleukin (IL)-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified cytokine-specific genes associated with late pSTAT3 time frames and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Neha Cheemalavagu
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karsen E Shoger
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuqi M Cao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon A Michalides
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel A Botta
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
105
|
Wei XH, Liu YY. Potential applications of JAK inhibitors, clinically approved drugs against autoimmune diseases, in cancer therapy. Front Pharmacol 2024; 14:1326281. [PMID: 38235120 PMCID: PMC10792058 DOI: 10.3389/fphar.2023.1326281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Disturbances in immunoregulation may lead to both cancer and autoimmune diseases. Many therapeutic drugs for autoimmune diseases also display anti-tumor efficacy. The Janus kinase/signal transducer and activator of transcription signaling pathways are involved in the secretion of more than 50 distinct cytokines, which have critical roles in inducing autoimmune diseases and tumorigenesis. Thus, Janus kinases have become classical immunotherapeutic targets for immune disease. More than 70 Janus kinase inhibitors have been approved as immunomodulatory drugs for clinical use, of which 12 are used in the treatment of autoimmune diseases. This systematic review aims to elucidate the anti-tumor role of clinically approved Janus kinase inhibitors that were primarily designed for the treatment of autoimmune diseases and their potential for clinical translation as cancer treatments.
Collapse
Affiliation(s)
- Xiao-Huan Wei
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Oncology Department, People’s Hospital of Peixian, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Liu
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
106
|
Katamanin O, Ch’en PY, Song EJ. Exploring the efficacy of baricitinib in treating alopecia areata after failed Janus kinase inhibitor therapy. JAAD Case Rep 2024; 43:36-39. [PMID: 38125968 PMCID: PMC10731593 DOI: 10.1016/j.jdcr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Olivia Katamanin
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois
| | | | | |
Collapse
|
107
|
Schuitema A, Anjie SI, van Eeghen AM, Tas SW, Löwenberg M. Symptomatic creatine phosphokinase elevation in a Crohn's disease patient caused by upadacitinib. Clin Case Rep 2024; 12:e8227. [PMID: 38250091 PMCID: PMC10799215 DOI: 10.1002/ccr3.8227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 01/23/2024] Open
Abstract
We present a Crohn's disease patient receiving high dose upadacitinib treatment with elevated CPK levels and myopathy, and provide the reader with practical tips on stopping and restarting upadacitinib, emphasizing the need for adequate monitoring.
Collapse
Affiliation(s)
- Anna Schuitema
- Department of Gastroenterology and HepatologyAmsterdam UMC, Location Academic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Suzanne I. Anjie
- Department of Gastroenterology and HepatologyAmsterdam UMC, Location Academic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Agnies M. van Eeghen
- 's Heeren LooAmersfoortThe Netherlands
- Department of Pediatrics, Emma Center for Personalized MedicineAmsterdam UMC, Location Academic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Sander W. Tas
- Department of RheumatologyAmsterdam UMC, Location Academic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and HepatologyAmsterdam UMC, Location Academic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
108
|
Choi K. Structure-property Relationships Reported for the New Drugs Approved in 2022. Mini Rev Med Chem 2024; 24:330-340. [PMID: 37211842 DOI: 10.2174/1389557523666230519162803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The structure-property relationship illustrates how modifying the chemical structure of a pharmaceutical compound influences its absorption, distribution, metabolism, excretion, and other related properties. Understanding structure-property relationships of clinically approved drugs could provide useful information for drug design and optimization strategies. METHOD Among new drugs approved around the world in 2022, including 37 in the US, structure- property relationships of seven drugs were compiled from medicinal chemistry literature, in which detailed pharmacokinetic and/or physicochemical properties were disclosed not only for the final drug but also for its key analogues generated during drug development. RESULTS The discovery campaigns for these seven drugs demonstrate extensive design and optimization efforts to identify suitable candidates for clinical development. Several strategies have been successfully employed, such as attaching a solubilizing group, bioisosteric replacement, and deuterium incorporation, resulting in new compounds with enhanced physicochemical and pharmacokinetic properties. CONCLUSION The structure-property relationships hereby summarized illustrate how proper structural modifications could successfully improve the overall drug-like properties. The structure-property relationships of clinically approved drugs are expected to continue to provide valuable references and guides for the development of future drugs.
Collapse
Affiliation(s)
- Kihang Choi
- Department of Chemistry, Korea University, Seoul, 02841, Korea (ROK)
| |
Collapse
|
109
|
Zhang JY, Sun JF, Nie P, Herdewijn P, Wang YT. Synthesis and clinical application of small-molecule inhibitors of Janus kinase. Eur J Med Chem 2023; 261:115848. [PMID: 37793326 DOI: 10.1016/j.ejmech.2023.115848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Janus kinase (JAK) plays a crucial role in intracellular signaling pathways, particularly in cytokine-mediated signal transduction, making them attractive therapeutic targets for a wide range of diseases, including autoimmune disorders, myeloproliferative neoplasms, and inflammatory conditions. The review provides a comprehensive overview of the development and therapeutic potential of small-molecule inhibitors targeting JAK family of proteins in various clinical trials. It also discusses the mechanisms of action, specificity, and selectivity of these inhibitors, shedding light on the challenges associated with achieving target selectivity while minimizing off-target effects. Moreover, the review offers insights into the clinical applications of JAK inhibitors, summarizing the ongoing clinical trials and the Food and Drug Administration (FDA)-approved JAK inhibitors currently available for various diseases. Overall, this review provides a thorough examination of the synthesis and clinical use of typical small-molecule JAK inhibitors in different clinical stages and offers a bright future for the development of novel small-molecule JAK inhibitors.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
110
|
Martinez J, Manjaly C, Manjaly P, Ly S, Zhou G, Barbieri J, Mostaghimi A. Janus Kinase Inhibitors and Adverse Events of Acne: A Systematic Review and Meta-Analysis. JAMA Dermatol 2023; 159:1339-1345. [PMID: 37851459 PMCID: PMC10585588 DOI: 10.1001/jamadermatol.2023.3830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 10/19/2023]
Abstract
Importance Janus kinase (JAK) inhibitors are increasingly used across a range of dermatologic conditions. Adverse events of acne have been noted in some studies in clinical practice, but the scope of this outcome across JAK inhibitors has not been established. Objective To systematically analyze all published phase 2 and 3 placebo-controlled randomized clinical trials (RCTs) of JAK inhibitors for the risk of acne as an adverse effect of these medications. Data Sources Comprehensive search of Ovid MEDLINE and PubMed databases through January 31, 2023. Study Selection Inclusion criteria were phase 2 and 3 placebo-controlled RCTs of JAK inhibitors published in English with reported adverse events of acne. Data Extraction and Synthesis Two reviewers independently reviewed and extracted information from all included studies. Main Outcomes and Measures The primary outcome of interest was the incidence of acne following JAK inhibitor use. A meta-analysis was conducted using random-effects models. Results A total of 25 unique studies (10 839 unique participants; 54% male and 46% female) were included in the final analysis. The pooled odds ratio (OR) was calculated to be 3.83 (95% CI, 2.76-5.32) with increased ORs for abrocitinib (13.47 [95% CI, 3.25-55.91]), baricitinib (4.96 [95% CI, 2.52-9.78]), upadacitinib (4.79 [95% CI, 3.61-6.37]), deucravacitinib (2.64 [95% CI, 1.44-4.86]), and deuruxolitinib (3.30 [95% CI, 1.22-8.93]). Estimated ORs were higher across studies investigating the use of JAK inhibitors for the management of dermatologic compared with nondermatologic conditions (4.67 [95% CI, 3.10-7.05]) as well as for JAK1-specific inhibitors (4.69 [95% CI, 3.56-6.18]), combined JAK1 and JAK2 inhibitors (3.43 [95% CI, 2.14-5.49]), and tyrosine kinase 2 inhibitors (2.64 [95% CI, 1.44-4.86]). Conclusions and Relevance In this systematic review and meta-analysis, JAK inhibitor use was associated with an elevated odds of acne. Patients should be properly counseled on this potential adverse effect of these medications before treatment initiation. Future studies are needed to further elucidate the pathophysiology of this association.
Collapse
Affiliation(s)
- Jeremy Martinez
- Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Priya Manjaly
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- Boston University School of Medicine, Boston, Massachusetts
| | - Sophia Ly
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock
| | - Guohai Zhou
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - John Barbieri
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Arash Mostaghimi
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
111
|
Sapountzi E, Fotis L, Kotanidou E, Fidani L, Galli-Tsinopoulou A. Janus Kinase Inhibitors and Interstitial Lung Disease Associated With Pediatric Rheumatic Diseases: An Unexplored Field. Cureus 2023; 15:e50928. [PMID: 38143732 PMCID: PMC10739229 DOI: 10.7759/cureus.50928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 12/26/2023] Open
Abstract
Rheumatic diseases are often complicated by lung disease, commonly presenting as interstitial lung disease (ILD), with potentially detrimental consequences for patient survival. Although less frequent in pediatric patients, pulmonary involvement may be observed in almost all childhood-onset rheumatic conditions. The development of biological disease-modifying anti-rheumatic drugs has significantly improved clinical outcomes. However, disease remission is not always complete or long-lasting, and treatment may need to be discontinued due to adverse effects. A novel class of drugs, namely Janus kinase inhibitors (JAKis), has been proposed to provide a significant survival benefit for patients with rheumatic diseases. Despite the ample literature on the efficacy and safety of JAKis in rheumatic disease, only a few studies have investigated the effectiveness of these drugs in patients with pulmonary involvement, and only two case reports have presented results in pediatric patients. We provide an overview of the rationale for using JAKis in ILDs associated with rheumatic disease and summarize the main studies evaluating their efficacy in both adult and pediatric patients. The present review highlights the need for controlled long-term studies to assess the efficacy and safety of JAKis in pediatric rheumatic disease complicated by lung disease.
Collapse
Affiliation(s)
- Evdoxia Sapountzi
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Lampros Fotis
- Department of Pediatrics, Attikon General University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Eleni Kotanidou
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Liana Fidani
- Department of Medical Biology Genetics, Aristotle University of Thessaloniki, Thessaloniki, GRC
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
112
|
Li X, Han B, Li S. Treatment of Netherton syndrome with upadacitinib. Clin Exp Dermatol 2023; 48:1379-1381. [PMID: 37477382 DOI: 10.1093/ced/llad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/18/2023] [Indexed: 07/22/2023]
Abstract
We reported the case of a patient with Netherton syndrome (NS) who showed remarkable cutaneous improvement using upadacitinib in the short term, but the efficacy decreased long term. This patient’s case demonstrates that Janus kinase inhibitors have reduced long-term clinical efficacy, which is the same as other biologic therapies used to treat patients with NS. This shows that NS is a complex skin disorder and more studies and clinical trials are required focusing on the long-term efficacy of these drugs.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Dermatology and Venereology, 1st Hospital of Jilin University, Changchun city, Jilin Province, China
| | - Bing Han
- Department of Dermatology and Venereology, 1st Hospital of Jilin University, Changchun city, Jilin Province, China
| | - Shanshan Li
- Department of Dermatology and Venereology, 1st Hospital of Jilin University, Changchun city, Jilin Province, China
| |
Collapse
|
113
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
114
|
Carter-Su C, Argetsinger LS, Svezhova N. 2022 Cannon lecture: an ode to signal transduction: how the growth hormone pathway revealed insight into height, malignancy, and obesity. Am J Physiol Endocrinol Metab 2023; 325:E425-E437. [PMID: 37672248 PMCID: PMC10874654 DOI: 10.1152/ajpendo.00265.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Walter Cannon was a highly regarded American neurologist and physiologist with extremely broad interests. In the tradition of Cannon and his broad interests, we discuss our laboratory's multifaceted work in signal transduction over the past 40+ years. We show how our questioning of how growth hormone (GH) in the blood communicates with cells throughout the body to promote body growth and regulate body metabolism led to insight into not only body height but also important regulators of malignancy and body weight. Highlights include finding that 1) A critical initiating step in GH signal transduction is GH activating the GH receptor-associated tyrosine kinase JAK2; 2) GH activation of JAK2 leads to activation of a number of signaling proteins, including STAT transcription factors; 3) JAK2 is autophosphorylated on multiple tyrosines that regulate the activity of JAK2 and recruit signaling proteins to GH/GH receptor/JAK2 complexes; 4) Constitutively activated STAT proteins are associated with cancer; 5) GH activation of JAK2 recruits the adapter protein SH2B1 to GH/GH receptor/JAK2 complexes where it facilitates GH regulation of the actin cytoskeleton and motility; and 6) SH2B1 is recruited to other receptors in the brain, where it enhances satiety, most likely in part by regulating leptin action and neuronal connections of appetite-regulating neurons. These findings have led to increased understanding of how GH functions, as well as therapeutic interventions for certain cancer and obese individuals, thereby reinforcing the great importance of supporting basic research since one never knows ahead of time what important insight it can provide.
Collapse
Affiliation(s)
- Christin Carter-Su
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | | - Nadezhda Svezhova
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
115
|
Weidle UH, Nopora A. Hepatocellular Carcinoma: Up-regulated Circular RNAs Which Mediate Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:500-521. [PMID: 37889063 PMCID: PMC10614070 DOI: 10.21873/cgp.20401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranges as number two with respect to the incidence of tumors and is associated with a dismal prognosis. The therapeutic efficacy of approved multi-tyrosine kinase inhibitors and checkpoint inhibitors is modest. Therefore, the identification of new therapeutic targets and entities is of paramount importance. We searched the literature for up-regulated circular RNAs (circRNAs) which mediate efficacy in preclinical in vivo models of HCC. Our search resulted in 14 circRNAs which up-regulate plasma membrane transmembrane receptors, while 5 circRNAs induced secreted proteins. Two circRNAs facilitated replication of Hepatitis B or C viruses. Three circRNAs up-regulated high mobility group proteins. Six circRNAs regulated components of the ubiquitin system. Seven circRNAs induced GTPases of the family of ras-associated binding proteins (RABs). Three circRNAs induced redox-related proteins, eight of them up-regulated metabolic enzymes and nine circRNAs induced signaling-related proteins. The identified circRNAs up-regulate the corresponding targets by sponging microRNAs. Identified circRNAs and their targets have to be validated by standard criteria of preclinical drug development. Identified targets can potentially be inhibited by small molecules or antibody-based moieties and circRNAs can be inhibited by small-interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) for therapeutic purposes.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
116
|
Liu L, Na R, Yang L, Liu J, Tan Y, Zhao X, Huang X, Chen X. A Workflow Combining Machine Learning with Molecular Simulations Uncovers Potential Dual-Target Inhibitors against BTK and JAK3. Molecules 2023; 28:7140. [PMID: 37894618 PMCID: PMC10608827 DOI: 10.3390/molecules28207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The drug development process suffers from low success rates and requires expensive and time-consuming procedures. The traditional one drug-one target paradigm is often inadequate to treat multifactorial diseases. Multitarget drugs may potentially address problems such as adverse reactions to drugs. With the aim to discover a multitarget potential inhibitor for B-cell lymphoma treatment, herein, we developed a general pipeline combining machine learning, the interpretable model SHapley Additive exPlanation (SHAP), and molecular dynamics simulations to predict active compounds and fragments. Bruton's tyrosine kinase (BTK) and Janus kinase 3 (JAK3) are popular synergistic targets for B-cell lymphoma. We used this pipeline approach to identify prospective potential dual inhibitors from a natural product database and screened three candidate inhibitors with acceptable drug absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Ultimately, the compound CNP0266747 with specialized binding conformations that exhibited potential binding free energy against BTK and JAK3 was selected as the optimum choice. Furthermore, we also identified key residues and fingerprint features of this dual-target inhibitor of BTK and JAK3.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130061, China; (L.L.); (J.L.); (Y.T.)
| | - Risong Na
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China;
| | - Lianjuan Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China;
| | - Jixiang Liu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130061, China; (L.L.); (J.L.); (Y.T.)
| | - Yingjia Tan
- Institute of Theoretical Chemistry, Jilin University, Changchun 130061, China; (L.L.); (J.L.); (Y.T.)
| | - Xi Zhao
- Institute of Theoretical Chemistry, Jilin University, Changchun 130061, China; (L.L.); (J.L.); (Y.T.)
| | - Xuri Huang
- Institute of Theoretical Chemistry, Jilin University, Changchun 130061, China; (L.L.); (J.L.); (Y.T.)
| | - Xuecheng Chen
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin Piastów Ave. 42, 71-065 Szczecin, Poland;
| |
Collapse
|
117
|
Nilsson M, Berggren K, Berglund S, Cerboni S, Collins M, Dahl G, Elmqvist D, Grimster NP, Hendrickx R, Johansson JR, Kettle JG, Lepistö M, Rhedin M, Smailagic A, Su Q, Wennberg T, Wu A, Österlund T, Naessens T, Mitra S. Discovery of the Potent and Selective Inhaled Janus Kinase 1 Inhibitor AZD4604 and Its Preclinical Characterization. J Med Chem 2023; 66:13400-13415. [PMID: 37738648 DOI: 10.1021/acs.jmedchem.3c00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
JAK-STAT cytokines are critical in regulating immunity. Persistent activation of JAK-STAT signaling pathways by cytokines drives chronic inflammatory diseases such as asthma. Herein, we report on the discovery of a highly JAK1-selective, ATP-competitive series of inhibitors having a 1000-fold selectivity over other JAK family members and the approach used to identify compounds suitable for inhaled administration. Ultimately, compound 16 was selected as the clinical candidate, and upon dry powder inhalation, we could demonstrate a high local concentration in the lung as well as low plasma concentrations, suggesting no systemic JAK1 target engagement. Compound 16 has progressed into clinical trials. Using 16, we found JAK1 inhibition to be more efficacious than JAK3 inhibition in IL-4-driven Th2 asthma.
Collapse
Affiliation(s)
- Magnus Nilsson
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Kristina Berggren
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Susanne Berglund
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Silvia Cerboni
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Mia Collins
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Göran Dahl
- Structure and Biophysics, Research and Early Development, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - David Elmqvist
- Early Product Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Neil P Grimster
- Oncology R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Ramon Hendrickx
- DMPK, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Johan R Johansson
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Jason G Kettle
- Oncology R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Matti Lepistö
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Magdalena Rhedin
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Amir Smailagic
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Qibin Su
- Oncology R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Tiiu Wennberg
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Allan Wu
- Discovery Sciences, R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Torben Österlund
- Mechanistic Biology & Profiling, Research and Early Development, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Thomas Naessens
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Suman Mitra
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| |
Collapse
|
118
|
Abboud R, Kim S, Staser K, Jayasinghe RG, Lim S, Amatya P, Frye CC, Kopecky B, Ritchey J, Gao F, Lavine K, Kreisel D, DiPersio JF, Choi J. Baricitinib with cyclosporine eliminates acute graft rejection in fully mismatched skin and heart transplant models. Front Immunol 2023; 14:1264496. [PMID: 37744381 PMCID: PMC10511772 DOI: 10.3389/fimmu.2023.1264496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Solid organ transplant represents a potentially lifesaving procedure for patients suffering from end-stage heart, lung, liver, and kidney failure. However, rejection remains a significant source of morbidity and immunosuppressive medications have significant toxicities. Janus kinase (JAK) inhibitors are effective immunosuppressants in autoimmune diseases and graft versus host disease after allogeneic hematopoietic cell transplantation. Here we examine the role of JAK inhibition in preclinical fully major histocompatibility mismatched skin and heart allograft models. Baricitinib combined with cyclosporine A (CsA) preserved fully major histocompatibility mismatched skin grafts for the entirety of a 111-day experimental period. In baricitinib plus CsA treated mice, circulating CD4+T-bet+ T cells, CD8+T-bet+ T cells, and CD4+FOXP3+ regulatory T cells were reduced. Single cell RNA sequencing revealed a unique expression profile in immune cells in the skin of baricitinib plus CsA treated mice, including decreased inflammatory neutrophils and increased CCR2- macrophages. In a fully major histocompatibility mismatched mismatched heart allograft model, baricitinib plus CsA prevented graft rejection for the entire 28-day treatment period compared with 9 days in controls. Our findings establish that the combination of baricitinib and CsA prevents rejection in allogeneic skin and heart graft models and supports the study of JAK inhibitors in human solid organ transplantation.
Collapse
Affiliation(s)
- Ramzi Abboud
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sena Kim
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Karl Staser
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sora Lim
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Parmeshwar Amatya
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - C. Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Kopecky
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Julie Ritchey
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory Lavine
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jaebok Choi
- Division of Oncology, Section of Leukemia and Stem Cell Transplantation, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
119
|
Miot HA, Criado PR, de Castro CCS, Ianhez M, Talhari C, Ramos PM. JAK-STAT pathway inhibitors in dermatology. An Bras Dermatol 2023; 98:656-677. [PMID: 37230920 PMCID: PMC10404561 DOI: 10.1016/j.abd.2023.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 05/27/2023] Open
Abstract
The JAK-STAT signaling pathway mediates important cellular processes such as immune response, carcinogenesis, cell differentiation, division and death. Therefore, drugs that interfere with different JAK-STAT signaling patterns have potential indications for various medical conditions. The main dermatological targets of JAK-STAT pathway inhibitors are inflammatory or autoimmune diseases such as psoriasis, vitiligo, atopic dermatitis and alopecia areata; however, several dermatoses are under investigation to expand this list of indications. As JAK-STAT pathway inhibitors should gradually occupy a relevant space in dermatological prescriptions, this review presents the main available drugs, their immunological effects, and their pharmacological characteristics, related to clinical efficacy and safety, aiming to validate the best dermatological practice.
Collapse
Affiliation(s)
- Hélio Amante Miot
- Department of Dermatology, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | - Paulo Ricardo Criado
- Centro Universitário Faculdade de Medicina do ABC, Santo André, SP, Brazil; Faculdade de Ciências Médicas de Santos, Santos, SP, Brazil
| | - Caio César Silva de Castro
- Hospital de Dermatologia Sanitária do Paraná, Curitiba, PR, Brazil; Escola de Medicina, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Mayra Ianhez
- Department of Tropical Medicine and Dermatology, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Carolina Talhari
- Department of Dermatology, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Paulo Müller Ramos
- Department of Dermatology, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
120
|
Li T, Yang X, Zhu J, Liu Y, Jin X, Chen G, Ye L. Current application status and structure-activity relationship of selective and non-selective JAK inhibitors in diseases. Int Immunopharmacol 2023; 122:110660. [PMID: 37478665 DOI: 10.1016/j.intimp.2023.110660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
JAK kinase includes four family members: JAK1, JAK2, JAK3, and TYK2. It forms the JAK-STAT pathway with signal transmitters and activators of subscription (STAT). This pathway is one of the main mechanisms by which many cytokine receptors transduce intracellular signals, it is associated with the occurrence of various immune, inflammatory, and tumor diseases. JAK inhibitors block the signal transduction of the JAK-STAT pathway by targeting JAK kinase. Based on whether they target multiple subtypes of JAK kinase, JAK inhibitors are categorized into pan-JAK inhibitors and selective JAK inhibitors. Compared with pan JAK inhibitors, selective JAK inhibitors are associated with a specific member, thus more targeted in therapy, with improved efficacy and reduced side effects. Currently, a number of JAK inhibitors have been approval for disease treatment. This review summarized the current application status of JAK inhibitors that have been marketed, advances of JAK inhibitors currently in phase Ш clinical trials, and the structure-activity relationship of them, with an intention to provide references for the development of novel JAK inhibitors.
Collapse
Affiliation(s)
- Tong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianjing Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Juan Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Liu
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
121
|
Zajac KK, Malla S, Babu RJ, Raman D, Tiwari AK. Ethnic disparities in the immune microenvironment of triple negative breast cancer and its role in therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1779. [PMID: 36632988 PMCID: PMC10440847 DOI: 10.1002/cnr2.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In 2020, newly diagnosed breast cancer (BC) cases surpassed that of lung cancer among women, making it the most common female cancer globally. In spite of recent increases in incidence rates, mortality due to BC has declined since 1989. These declines have been attributed to advancements in treatment modalities as well as increased mammography surveillance. Despite these advances, African American (AA) women are 40% more likely to die from BC than Caucasian women. Multifactorial etiology has been implicated in the disparity of BC mortality rates among AA women. As an example, AA women have a disproportionate incidence of triple negative breast cancer (TNBC), which has a poor prognosis and marginal treatment options. Increasingly, the tumor microenvironment (TME) has gained relevance as it relates to primary tumor progression, metastasis and treatment possibilities. The treatment outcomes or pathological complete response (pCR) in TNBC among AA women are affected by differences in TME. The TME of AA women exhibit several variances in acellular and cellular components associated with pro-tumorigenic effects. For example, increased levels of the adipocyte-related hormone, resistin, the pro-inflammatory cytokine, IL-6, and the CC chemokine, CCL2, within the TME of AA women gives rise to an increased density of M2 macrophages, also known as tumor-associated macrophages. Elevated levels of vascular endothelial growth factor in the TME of AA women increase the vascular density or vascularity, which facilitate aggressive tumor growth and metastasis. Furthermore, a pro-tumorigenic TME is supported by increased levels of the CXC chemokine, CXCL12 that results in the recruitment of regulatory T lymphocytes (Tregs ). Due to these and other differences in the TME of AA women, precision oncology can target specific aspects of the TME that may contribute to a poorer prognosis. In addition to the discrepancies in the TME, AA women face socio-economic barriers that limit their ability to access state-of-the-art, novel therapies against metastatic TNBC. In this review, we will provide a brief overview of the tumor immune microenvironment, immune-based treatment options for TNBC and their potential to decrease health disparities due to ethnicity.
Collapse
Affiliation(s)
- Kelsee K. Zajac
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Saloni Malla
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Ramapuram Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dayanidhi Raman
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| |
Collapse
|
122
|
Wang Z, Sun L, Xu Y, Liang P, Xu K, Huang J. Discovery of novel JAK1 inhibitors through combining machine learning, structure-based pharmacophore modeling and bio-evaluation. J Transl Med 2023; 21:579. [PMID: 37641144 PMCID: PMC10464202 DOI: 10.1186/s12967-023-04443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Janus kinase 1 (JAK1) plays a critical role in most cytokine-mediated inflammatory, autoimmune responses and various cancers via the JAK/STAT signaling pathway. Inhibition of JAK1 is therefore an attractive therapeutic strategy for several diseases. Recently, high-performance machine learning techniques have been increasingly applied in virtual screening to develop new kinase inhibitors. Our study aimed to develop a novel layered virtual screening method based on machine learning (ML) and pharmacophore models to identify the potential JAK1 inhibitors. METHODS Firstly, we constructed a high-quality dataset comprising 3834 JAK1 inhibitors and 12,230 decoys, followed by establishing a series of classification models based on a combination of three molecular descriptors and six ML algorithms. To further screen potential compounds, we constructed several pharmacophore models based on Hiphop and receptor-ligand algorithms. We then used molecular docking to filter the recognized compounds. Finally, the binding stability and enzyme inhibition activity of the identified compounds were assessed by molecular dynamics (MD) simulations and in vitro enzyme activity tests. RESULTS The best performance ML model DNN-ECFP4 and two pharmacophore models Hiphop3 and 6TPF 08 were utilized to screen the ZINC database. A total of 13 potentially active compounds were screened and the MD results demonstrated that all of the above molecules could bind with JAK1 stably in dynamic conditions. Among the shortlisted compounds, the four purchasable compounds demonstrated significant kinase inhibition activity, with Z-10 being the most active (IC50 = 194.9 nM). CONCLUSION The current study provides an efficient and accurate integrated model. The hit compounds were promising candidates for the further development of novel JAK1 inhibitors.
Collapse
Affiliation(s)
- Zixiao Wang
- Department of Pharmacy, Honghui Hospital, Xi' an Jiaotong University, Xi' an, 710054, China.
| | - Lili Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Xu
- State Key Laboratory of Natural Medicines,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery,China Pharmaceutical University, Nanjing, 210009, China
| | - Peida Liang
- Department of Pharmacy, Honghui Hospital, Xi' an Jiaotong University, Xi' an, 710054, China
| | - Kaiyan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jing Huang
- Department of Pharmacy, Honghui Hospital, Xi' an Jiaotong University, Xi' an, 710054, China.
| |
Collapse
|
123
|
Abstract
The Janus kinases (JAKs) are key components of the JAK-STAT signaling pathway and are involved in myriad physiological processes. Though they are the molecular targets of many FDA-approved drugs, these drugs manifest adverse effects due in part to their inhibition of the requisite JAK kinase activity. However, the JAKs uniquely possess an integrated pseudokinase domain (JH2) that regulates the adjacent kinase domain (JH1). The therapeutic targeting of JH2 domains has been less thoroughly explored and may present an avenue to modulate the JAKs without the adverse effects associated with targeting the adjacent JH1 domain. The potential of this strategy was recently demonstrated with the FDA approval of the TYK2 JH2 ligand deucravacitinib for treating plaque psoriasis. In this light, the structure and targetability of the JAK pseudokinases are discussed, in conjunction with the state of development of ligands that bind to these domains.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
124
|
Collotta D, Franchina MP, Carlucci V, Collino M. Recent advances in JAK inhibitors for the treatment of metabolic syndrome. Front Pharmacol 2023; 14:1245535. [PMID: 37701031 PMCID: PMC10494544 DOI: 10.3389/fphar.2023.1245535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
With an epidemic spread, metabolic syndrome represents an increasingly emerging risk for the population globally, and is currently recognized as a pathological entity. It is represented by a cluster of different conditions including increased blood pressure, high blood sugar, excess body fat around the waist and abnormal cholesterol or triglyceride levels. These conditions lead directly to several disorders, including obesity, dyslipidemia, hyperglycaemia, insulin resistance, impaired glucose tolerance and hypertension causing an increase in cardiovascular risk and in particular atherosclerotic disease. Despite efforts to promote healthier lifestyles through exercise, reduced caloric intake, and improved dietary choices, the incidence and prevalence of metabolic syndrome continue to rise worldwide. Recent research has highlighted the involvement of signaling pathways in chronic inflammatory conditions like obesity and type 2 diabetes mellitus, revealing the significance of the JAK/STAT pathway in atherosclerotic events. This pathway serves as a rapid membrane-to-nucleus signaling module that regulates the expression of critical mediators. Consequently, JAK inhibitors (JAKi) have emerged as potential therapeutic options for metabolic diseases, offering a promising avenue for intervention. The aim of this review is to shed light on the emerging indications of JAK inhibitors in metabolic syndrome, emphasizing their potential role in attenuating associated inflammatory processes, improving insulin sensitivity, and addressing cross-talk with the insulin pathway, with the intention of contributing to efforts in the field of inflammation pharmacology.
Collapse
Affiliation(s)
- Debora Collotta
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Maria Paola Franchina
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| |
Collapse
|
125
|
Xia J, Jiang G. A Report of Eruptive Pruritic Papular Porokeratosis Treated with Abrocitinib. Clin Cosmet Investig Dermatol 2023; 16:2223-2227. [PMID: 37601417 PMCID: PMC10437098 DOI: 10.2147/ccid.s424310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Eruptive pruritic papular porokeratosis (EPPP) is a subtype of porokeratosis (PK). EPPP is characterized by intense itching and challenging to treat in some cases. Herein, for the first time, a case of successful relief of EPPP treated with abrocitinib was reported. A 75-year-old male with a 60-year history of PK suddenly experienced severe itching in the past 6 months. The patient's use of antihistamines, prednisone, vitamin A derivatives, vitamin D derivatives, and tripterygium wilfordii showed poor efficacy. Abrocitinib is a highly selective JAK1 inhibitor, and JAK1 appears to play a crucial role in pruritic diseases. Abrocitinib can quickly relieve itching within 24 hours. Before abrocitinib treatment, the visual analog scale (VAS) score was 10, the 12-item pruritus severity scale (12-PSS) score was 19, and the dermatology life quality index (DLQI) score was 18. Abrocitinib (100 mg) was taken orally once a day. After 1 month of oral administration of abrocitinib, the skin lesions gradually subsided, pruritus was relieved, and no adverse side effects occurred. The VAS, 12-PSS, and DLQI scores of the patient decreased to 2, 3, and 4, respectively. This report suggests a potential therapeutic benefit of abrocitinib in managing EPPP. However further investigations with larger sample sizes and controlled studies are necessary to validate its efficacy as a clinical therapy.
Collapse
Affiliation(s)
- Jiali Xia
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People’s Republic of China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People’s Republic of China
| |
Collapse
|
126
|
Kincaid CM, Sharma AN, Mesinkovska NA. Alopecia areata is associated with risk of inflammatory arthritis. J Am Acad Dermatol 2023; 89:422-423. [PMID: 37121482 DOI: 10.1016/j.jaad.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Colin M Kincaid
- Department of Dermatology, University of California, Irvine, Irvine, California
| | - Ajay N Sharma
- Department of Dermatology, University of California, Irvine, Irvine, California
| | | |
Collapse
|
127
|
Li Y, Zhao J, Yin Y, Zhang C, Zhang Z, Zheng Y. The Role of STAT3 Signaling Pathway Activation in Subconjunctival Scar Formation after Glaucoma Filtration Surgery. Int J Mol Sci 2023; 24:12210. [PMID: 37569586 PMCID: PMC10419097 DOI: 10.3390/ijms241512210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation resulting from overly active wound healing is a critical factor in the success rate of glaucoma filtration surgery (GFS). IL-6 and TGF-β have been implicated in the pathogenesis of fibrogenesis. In addition, the signal transducer and activator of transcription 3 (STAT3) can be activated by numerous cytokines and growth factors, including IL-6 and TGF-β1. Thus, STAT3 activation may integrate common profibrotic pathways to promote fibrosis. In this study, an increase in p-STAT3 was observed in activated HTFs. Inhibiting STAT3 in cultured HTFs by pharmacological inactivation reversed the fibrotic responses, such as fibroblast migration, the differentiation of resting fibroblasts into myofibroblasts and the deposition of ECM, mediated by IL-6 and TGF-β1. Moreover, the expression of suppressor of cytokine signaling 3 (SOCS3) was decreased in HTFs cultured with IL-6 and TGF-β1, and SOCS3 overexpression rescued ECM deposition, α-SMA expression and migration in IL-6- and TGF-β1-stimulated HTFs by inactivating STAT3. Finally, S3I-201 treatment inhibited profibrotic gene expression and subconjunctival fibrosis in a rat model of GFS. In conclusion, our data suggests that STAT3 plays a central role in fibrosis induced by different profibrotic pathways and that STAT3 is a potential target for antifibrotic therapies following GFS.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China; (Y.L.); (J.Z.); (Y.Y.); (C.Z.); (Z.Z.)
| |
Collapse
|
128
|
Saemann L, Naujoks P, Hartrumpf L, Pohl S, Simm A, Szabó G. Sex-Specific Protection of Endothelial Function after Vascular Ischemia/Reperfusion Injury by the Senomorphic Agent Ruxolitinib. Int J Mol Sci 2023; 24:11727. [PMID: 37511486 PMCID: PMC10381013 DOI: 10.3390/ijms241411727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemia/reperfusion (I/R)-induced endothelial dysfunction occurs in various cardiovascular disorders. I/R injury is partially driven by the release of cytokines. Known for its use in senotherapy, the JAK inhibitor ruxolitinib is able to block the release of cytokines. We investigated the effect of ruxolitinib on the cytokine release and endothelial-dependent vasorelaxation in an in vitro model of I/R. Aortic segments of C57BL/6J mice (N = 12/group) were divided into three groups: control, in vitro I/R (I/R group), and in vitro I/R with ruxolitinib during ischemic incubation (I/R+Ruxo group). We determined cytokine expression. In organ bath chambers, we investigated the maximal endothelial-dependent relaxation to acetylcholine (RmaxACh) and maximal endothelial-independent relaxation to sodium-nitroprusside (RmaxSNP). RmaxACh was decreased in I/R compared to the control (83.6 ± 2.4 vs. 48.6 ± 3.4%; p < 0.05) and I/R+Ruxo (74.4 ± 2.6 vs. 48.6 ± 3.4%; p < 0.05). RmaxSNP was comparable between all groups. IL-10 was detectable only in I/R+Ruxo. CXCL5, CCL2, CCL3, CCL8, CCL11, ICAM-1, IL-1α, IL-7, TNF-α, and G-CSF were decreased or not detectable in I/R+Ruxo. In I/R+Ruxo, ICAM-1 was reduced in rings only from male mice. Treatment of the aorta from mice during in vitro ischemia with the senomorphic agent ruxolitinib reduces cytokine release and protects the endothelium from I/R-mediated dysfunction.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Paula Naujoks
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Lotta Hartrumpf
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Sabine Pohl
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
129
|
Yang J, Li Y, Bhalla A, Maienschein-Cline M, Fukuchi KI. A novel co-culture model for investigation of the effects of LPS-induced macrophage-derived cytokines on brain endothelial cells. PLoS One 2023; 18:e0288497. [PMID: 37440496 PMCID: PMC10343049 DOI: 10.1371/journal.pone.0288497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In order to study effects of macrophage-derived inflammatory mediators associated with systemic inflammation on brain endothelial cells, we have established a co-culture system consisting of bEnd.3 cells and LPS-activated Raw 264.7 cells and performed its cytokine profiling. The cytokine profile of the co-culture model was compared to that of mice treated with intraperitoneal LPS injection. We found that, among cytokines profiled, eight cytokines/chemokines were similarly upregulated in both in vivo mouse and in vitro co-culture model. In contrast to the co-culture model, the cytokine profile of a common mono-culture system consisting of only LPS-activated bEnd.3 cells had little similarity to that of the in vivo mouse model. These results indicate that the co-culture of bEnd.3 cells with LPS-activated Raw 264.7 cells is a better model than the common mono-culture of LPS-activated bEnd.3 cells to investigate the molecular mechanism in endothelial cells, by which systemic inflammation induces neuroinflammation. Moreover, fibrinogen adherence both to bEnd.3 cells in the co-culture and to brain blood vessels in a LPS-treated animal model of Alzheimer's disease increased. To the best of our knowledge, this is the first to utilize bEnd.3 cells co-cultured with LPS-activated Raw 264.7 cells as an in vitro model to investigate the consequence of macrophage-derived inflammatory mediators on brain endothelial cells.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United states of America
| | - Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Ambuj Bhalla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United states of America
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Ken-ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United states of America
| |
Collapse
|
130
|
Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023; 28:5359. [PMID: 37513232 PMCID: PMC10385367 DOI: 10.3390/molecules28145359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.
Collapse
Affiliation(s)
| | | | | | - Georgiana Nitulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (G.M.N.)
| | | | | | | | | |
Collapse
|
131
|
Tokareva K, Reid P, Yang V, Liew D, Peterson AC, Baraff A, Giles J, Singh N. JAK inhibitors and black box warnings: what is the future for JAK inhibitors? Expert Rev Clin Immunol 2023; 19:1385-1397. [PMID: 37596779 PMCID: PMC10615860 DOI: 10.1080/1744666x.2023.2249237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION Janus kinase inhibitors (JAKi) have dramatically improved the treatment of various autoimmune and myeloproliferative disorders. Recently, concern has arisen regarding their safety in patients with rheumatoid arthritis. AREAS COVERED Here, we provide a comprehensive summary of the major current and emerging JAKi and their indications, address recent studies on comparative safety, and provide insight into their future and use. We emphasize that the application of the research findings on a case-by-case basis should consider a patient's age, comorbidities, disease for which JAKi is being considered, disease activity, the JAKi target(s), alternate treatment options available for the patient, and the planned duration of JAKi. EXPERT OPINION Rheumatologists are used to prescribing therapies in which a risk-to-benefit assessment is required as well as to screening and monitoring the safety of medications. Thus, rheumatologists are already practiced in applying specific criteria to effectively screen and monitor patients who are candidates for JAKi therapy. Ongoing research will help to clarify any mechanisms underlying differential safety signals between JAK and other therapies, what the balance between risk and efficacy is, who the susceptible subpopulations are, and whether safety signals are shared between different JAKis and across indications.
Collapse
Affiliation(s)
- Kate Tokareva
- Medical Student, University of Washington, Seattle, WA, USA
| | - Pankti Reid
- Division of Rheumatology and Committee on Clinical Pharmacology and Pharmacogenomics, Department of Medicine, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Victor Yang
- Department of Rheumatology, Austin Health, Melbourne, Victoria, Australia
| | - David Liew
- Department of Rheumatology, Austin Health, Melbourne, Victoria, Australia
- Department of Clinical Pharmacology and Therapeutics, Austin Health, Melbourne, Victoria, Australia
| | | | - Aaron Baraff
- VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Jon Giles
- Columbia University, New York, NY, USA
| | - Namrata Singh
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
132
|
Wei Y, Braunstein Z, Chen J, Min X, Yang H, Duan L, Dong L, Zhong J. JAK2/STAT5 inhibition protects mice from experimental autoimmune encephalomyelitis by modulating T cell polarization. Int Immunopharmacol 2023; 120:110382. [PMID: 37269741 DOI: 10.1016/j.intimp.2023.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Multiple sclerosis (MS) has been considered as a T cell-mediated autoimmune disease. However, the signaling pathways regulating effector T cells in MS have yet to be elucidated. Janus kinase 2 (JAK2) plays a crucial role in hematopoietic/immune cytokine receptor signal transduction. Here, we tested the mechanistic regulation of JAK2 and the therapeutic potential of pharmacological JAK2 inhibition in MS. Both inducible whole-body JAK2 knockout and T cell-specific JAK2 knockout completely prevented the onset of experimental autoimmune encephalomyelitis (EAE), a widely used MS animal model. Mice with JAK2 deficiency in T cells exhibited minimal demyelination and minimal CD45+ leukocyte infiltration in the spinal cord, accompanied by a remarkable reduction of T helper cell type 1 (TH1) and type 17 (TH17) in the draining lymph nodes and spinal cord. In vitro experiments showed that disruption of JAK2 markedly suppressed TH1 differentiation and IFNγ production. The phosphorylation of signal transducer and activator of transcription 5 (STAT5) was reduced in JAK2 deficient T cells, while STAT5 overexpression significantly increased TH1 and IFNγ production in STAT5 transgenic mice. Consistent with these results, JAK1/2 inhibitor baricitinib or selective JAK2 inhibitor fedratinib attenuated the frequencies of TH1 as well as TH17 in the draining lymph nodes and alleviated the EAE disease activity in mice. Our findings suggest that overactive JAK2 signaling in T lymphocytes is the culprit in EAE, which may serve as a potent therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zachary Braunstein
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lihua Duan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Rheumatology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
133
|
Rusiñol L, Carmona-Rocha E, Puig L. Psoriasis: a focus on upcoming oral formulations. Expert Opin Investig Drugs 2023; 32:583-600. [PMID: 37507233 DOI: 10.1080/13543784.2023.2242767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Targeted therapies have greatly improved the quality of life of patients with psoriasis. Despite the extensive list of treatments available, multiple new drugs are being developed, especially oral therapies with potential advantages as regards comfort of administration. However, the efficacy and safety of these new oral therapies need to be improved to match those of novel biologics. AREAS COVERED We provide a narrative review of the oral therapies for psoriasis that are currently under development, from Jak inhibitors to oral IL-17 and IL-23 inhibitors, among others. A literature search was performed for articles published from 1 January 2020, to 6 June 2023. EXPERT OPINION The approval of deucravacitinib, the first Jak inhibitor for the treatment of moderate-to-severe plaque psoriasis, heralds a bright therapeutic future with multiple new oral formulations. A great number of oral treatments with singular mechanism of action, like A3AR agonists, HSP90 inhibitors, ROCK-2 inhibitors, oral TNF inhibitors, oral IL-23 inhibitors, oral IL-17 inhibitors, PD4 inhibitors (orismilast) and several Tyk2 inhibitors, are currently being evaluated in clinical trials and could be suitable for approval in the future. Growing variation in treatment modes of administration will allow dermatologists to better integrate patient preferences in the therapeutic decision process.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Elena Carmona-Rocha
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
134
|
Galbraith MD, Rachubinski AL, Smith KP, Araya P, Waugh KA, Enriquez-Estrada B, Worek K, Granrath RE, Kinning KT, Paul Eduthan N, Ludwig MP, Hsieh EW, Sullivan KD, Espinosa JM. Multidimensional definition of the interferonopathy of Down syndrome and its response to JAK inhibition. SCIENCE ADVANCES 2023; 9:eadg6218. [PMID: 37379383 PMCID: PMC10306300 DOI: 10.1126/sciadv.adg6218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Individuals with Down syndrome (DS) display chronic hyperactivation of interferon signaling. However, the clinical impacts of interferon hyperactivity in DS are ill-defined. Here, we describe a multiomics investigation of interferon signaling in hundreds of individuals with DS. Using interferon scores derived from the whole blood transcriptome, we defined the proteomic, immune, metabolic, and clinical features associated with interferon hyperactivity in DS. Interferon hyperactivity associates with a distinct proinflammatory phenotype and dysregulation of major growth signaling and morphogenic pathways. Individuals with the highest interferon activity display the strongest remodeling of the peripheral immune system, including increased cytotoxic T cells, B cell depletion, and monocyte activation. Interferon hyperactivity accompanies key metabolic changes, most prominently dysregulated tryptophan catabolism. High interferon signaling stratifies a subpopulation with elevated rates of congenital heart disease and autoimmunity. Last, a longitudinal case study demonstrated that JAK inhibition normalizes interferon signatures with therapeutic benefit in DS. Together, these results justify the testing of immune-modulatory therapies in DS.
Collapse
Affiliation(s)
- Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P. Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Belinda Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross E. Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kohl T. Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Division of Allergy/Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
135
|
Daoud A, Magrey MN. Efficacy and safety of Janus kinase inhibitors in axial spondyloarthritis. Indian J Dermatol Venereol Leprol 2023; 0:1-9. [PMID: 37436016 DOI: 10.25259/ijdvl_161_2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/26/2023] [Indexed: 07/13/2023]
Abstract
Skin manifestations are common in axial spondyloarthritis (axSpA) and may precede axial involvement. Multidisciplinary management of patients with spondyloarthritis (SpA) is essential. Combined dermatology-rheumatology clinics are established for early recognition of the disease, comorbidities and a comprehensive treatment approach. Treatment options for axSpA are limited because conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and glucocorticoids are ineffective for axial symptoms. Janus kinase inhibitors (JAKi) are targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs) that decrease transduction signalling to the nucleus, resulting in a reduced inflammatory response. Currently, tofacitinib and upadacitinib are approved for treating axSpA in patients with inadequate response to TNF inhibitors (TNFi). Upadacitinib has shown efficacy in non-radiographic axSpA (nr-axSpA), suggesting that JAKi are efficacious across the spectrum of axSpA. The availability of JAKi has opened more options for patients with active axSpA based on the efficacy data and the ease of administration.
Collapse
Affiliation(s)
- Ansaam Daoud
- Department of Rheumatology, Case Western Reserve University School of Medicine, University Hospitals, Cleveland, OH, United States
| | - Marina N Magrey
- Department of Rheumatology, Case Western Reserve University School of Medicine, University Hospitals, Cleveland, OH, United States
| |
Collapse
|
136
|
Criado PR, Lorenzini D, Miot HA, Bueno-Filho R, Carneiro FRO, Ianhez M. New small molecules in dermatology: for the autoimmunity, inflammation and beyond. Inflamm Res 2023:10.1007/s00011-023-01744-w. [PMID: 37212867 DOI: 10.1007/s00011-023-01744-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVE AND DESIGN The discovery of new inflammatory pathways and the mechanism of action of inflammatory, autoimmune, genetic, and neoplastic diseases led to the development of immunologically driven drugs. We aimed to perform a narrative review regarding the rising of a new class of drugs capable of blocking important and specific intracellular signals in the maintenance of these pathologies: the small molecules. MATERIALS/METHODS A total of 114 scientific papers were enrolled in this narrative review. RESULTS We describe in detail the families of protein kinases-Janus Kinase (JAK), Src kinase, Syk tyrosine kinase, Mitogen-Activated Protein Kinase (MAPK), and Bruton Tyrosine Kinase (BTK)-their physiologic function and new drugs that block these pathways of intracellular signaling. We also detail the involved cytokines and the main metabolic and clinical implications of these new medications in the field of dermatology. CONCLUSIONS Despite having lower specificity compared to specific immunobiological therapies, these new drugs are effective in a wide variety of dermatological diseases, especially diseases that had few therapeutic options, such as psoriasis, psoriatic arthritis, atopic dermatitis, alopecia areata, and vitiligo.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Faculdade de Medicina Do ABC, Post-Graduation Program, Full Researcher, Santo André, Rua Carneiro Leão 33, Vila Scarpelli, Santo André, São Paulo, Brazil.
| | - Daniel Lorenzini
- Santa Casa de Misericórida de Porto Alegre, Porto Alegre, RS, Brazil
| | - Hélio Amante Miot
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, São Paulo, Brazil
| | - Roberto Bueno-Filho
- Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | | | - Mayra Ianhez
- Universidade Federal de Goiás (UFG) E Hospital de Doenças Tropicais (HDT-GO), Goiânia, Goiás, Brazil
| |
Collapse
|
137
|
Cheemalavagu N, Shoger KE, Cao YM, Michalides BA, Botta SA, Faeder JR, Gottschalk RA. Predicting gene level sensitivity to JAK-STAT signaling perturbation using a mechanistic-to-machine learning framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541151. [PMID: 37292918 PMCID: PMC10245690 DOI: 10.1101/2023.05.19.541151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The JAK-STAT pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational workflow to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to IL-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified select cytokine-induced gene sets associated with late pSTAT3 timeframes and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying dynamically regulated genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems.
Collapse
Affiliation(s)
- Neha Cheemalavagu
- University of Pittsburgh, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- University of Pittsburgh, Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Karsen E. Shoger
- University of Pittsburgh, Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Yuqi M. Cao
- University of Pittsburgh, Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Brandon A. Michalides
- University of Pittsburgh, Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Samuel A. Botta
- University of Pittsburgh, Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - James R. Faeder
- University of Pittsburgh, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Rachel A. Gottschalk
- University of Pittsburgh, Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
138
|
Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2023; 56:704-722. [PMID: 37044061 PMCID: PMC10120575 DOI: 10.1016/j.immuni.2023.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
139
|
Wang DP, Wu LH, Li R, He N, Zhang QY, Zhao CY, Jiang T. A Novel Aldisine Derivative Exhibits Potential Antitumor Effects by Targeting JAK/STAT3 Signaling. Mar Drugs 2023; 21:md21040218. [PMID: 37103357 PMCID: PMC10141377 DOI: 10.3390/md21040218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The JAK/STAT3 signaling pathway is aberrantly hyperactivated in many cancers, promoting cell proliferation, survival, invasiveness, and metastasis. Thus, inhibitors targeting JAK/STAT3 have enormous potential for cancer treatment. Herein, we modified aldisine derivatives by introducing the isothiouronium group, which can improve the antitumor activity of the compounds. We performed a high-throughput screen of 3157 compounds and identified compounds 11a, 11b, and 11c, which contain a pyrrole [2,3-c] azepine structure linked to an isothiouronium group through different lengths of carbon alkyl chains and significantly inhibited JAK/STAT3 activities. Further results showed that compound 11c exhibited the optimal antiproliferative activity and was a pan-JAKs inhibitor capable of inhibiting constitutive and IL-6-induced STAT3 activation. In addition, compound 11c influenced STAT3 downstream gene expression (Bcl-xl, C-Myc, and Cyclin D1) and induced the apoptosis of A549 and DU145 cells in a dose-dependent manner. The antitumor effects of 11c were further demonstrated in an in vivo subcutaneous tumor xenograft experiment with DU145 cells. Taken together, we designed and synthesized a novel small molecule JAKs inhibitor targeting the JAK/STAT3 signaling pathway, which has predicted therapeutic potential for JAK/STAT3 overactivated cancer treatment.
Collapse
Affiliation(s)
- Dong-Ping Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li-Hong Wu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Rui Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Na He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Qian-Yue Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Chen-Yang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Cancer Biology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
- Correspondence: (C.-Y.Z.); (T.J.)
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (C.-Y.Z.); (T.J.)
| |
Collapse
|
140
|
Muddebihal A, Khurana A, Sardana K. JAK inhibitors in dermatology: the road travelled and path ahead, a narrative review. Expert Rev Clin Pharmacol 2023; 16:279-295. [PMID: 36946306 DOI: 10.1080/17512433.2023.2193682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Numerous cutaneous dermatoses mediated by cytokines depend on the JAK STAT pathway for intracellular signaling. JAK inhibitors form a useful therapeutic approach in treating these conditions. The literature on effectiveness of JAK inhibitors in treatment of alopecia areata, vitiligo, atopic dermatitis, psoriasis and several other inflammatory and autoimmune diseases is growing, although very few conditions have sufficiently well performed studies to their credit and barring a few indications, their use in rest remains empirical as yet. AREAS COVERED A search of the PubMed database was made using the keywords Janus kinase inhibitors OR JAK inhibitors AND dermatology with the time duration limited to the last 5 years. Here, we review the JAK STAT pathway and the various conditions in which JAK inhibitors are currently used in dermatology and other conditions their use is being explored in. EXPERT OPINION The pathology of a large number of dermatological disorders is mediated via inflammatory cytokines which signal via the JAK STAT pathway. JAKinibs have shown great promise in treating cutaneous disorders refractory to conventional therapy. Their current clinical use in dermatology is based on robust evidence (for some), and anecdotal evidence for most other dermatoses.
Collapse
Affiliation(s)
- Aishwarya Muddebihal
- Department of Dermatology, Venereology and Leprosy, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, Malka Ganj, Delhi, 110007, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi 110001, India
| | - Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi 110001, India
| |
Collapse
|
141
|
Convertino I, Lorenzoni V, Gini R, Turchetti G, Fini E, Giometto S, Bartolini C, Paoletti O, Ferraro S, Cappello E, Valdiserra G, Bonaso M, Blandizzi C, Tuccori M, Lucenteforte E. Drug-Utilization, Healthcare Facilities Accesses and Costs of the First Generation of JAK Inhibitors in Rheumatoid Arthritis. Pharmaceuticals (Basel) 2023; 16:ph16030465. [PMID: 36986565 PMCID: PMC10058541 DOI: 10.3390/ph16030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
This study is aimed at describing tofacitinib and baricitinib users by characterizing their prescription and healthcare histories, drug and healthcare utilization patterns, and direct costs from a healthcare system perspective. This retrospective cohort study was performed using Tuscan administrative healthcare databases, which selected two groups of Janus kinase inhibitors (JAKi) incident users (index date) from 1st January 2018 to 31 December 2019 and from 1 January 2018 to 30 June 2019. We included patients ≥18 years old, at least 10 years of data, and six months of follow-up. In the first analysis, we describe mean time, standard deviation (SD), from the first-ever disease-modifying antirheumatic drug (DMARD) to the JAKi, and costs of healthcare facilities and drugs in the 5 years preceding the index date. In the second analysis, we assessed Emergency Department (ED) accesses and hospitalizations for any causes, visits, and costs in the follow-up. In the first analysis, 363 incident JAKi users were included (mean age 61.5, SD 13.6; females 80.7%, baricitinib 78.5%, tofacitinib 21.5%). The time to the first JAKi was 7.2 years (SD 3.3). The mean costs from the fifth to the second year before JAKi increased from 4325 € (0; 24,265) to 5259 € (0; 41,630) per patient/year, driven by hospitalizations. We included 221 incident JAKi users in the second analysis. We observed 109 ED accesses, 39 hospitalizations, and 64 visits. Injury and poisoning (18.3%) and skin (13.8%) caused ED accesses, and cardiovascular (69.2%) and musculoskeletal (64.1%) caused hospitalizations. The mean costs were 4819 € (607.5; 50,493) per patient, mostly due to JAKi. In conclusion, the JAKi introduction in therapy occurred in compliance with RA guidelines and the increase in costs observed could be due to a possible selective prescription.
Collapse
Affiliation(s)
- Irma Convertino
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Rosa Gini
- Tuscan Regional Healthcare Agency, 50100 Florence, Italy
| | | | - Elisabetta Fini
- Medical Specialization School of Pharmacology, University of Pisa, 56126 Pisa, Italy
| | - Sabrina Giometto
- Unit of Medical Statistics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Olga Paoletti
- Tuscan Regional Healthcare Agency, 50100 Florence, Italy
| | - Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Emiliano Cappello
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Valdiserra
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Marco Bonaso
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Unit of Adverse Drug Reactions Monitoring, University Hospital of Pisa, 56126 Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Unit of Adverse Drug Reactions Monitoring, University Hospital of Pisa, 56126 Pisa, Italy
| | - Ersilia Lucenteforte
- Unit of Medical Statistics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
142
|
Roskoski R. Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol Res 2023; 189:106642. [PMID: 36754102 DOI: 10.1016/j.phrs.2022.106642] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 02/09/2023]
Abstract
Psoriasis is a heterogeneous, inflammatory, autoimmune skin disease that affects up to 2% of the world's population. There are many treatment modalities including topical medicines, ultraviolet light therapy, monoclonal antibodies, and several oral medications. Cytokines play a central role in the pathogenesis of this disorder including TNF-α, (tumor necrosis factor-α) IL-17A (interleukin-17A), IL-17F, IL-22, and IL-23. Cytokine signaling involves transduction mediated by the JAK-STAT pathway. There are four JAKS (JAK1/2/3 and TYK2) and six STATS (signal transducer and activators of transcription). Janus kinases contain an inactive JH2 domain that is aminoterminal to the active JH1 domain. Under basal conditions, the JH2 domain inhibits the activity of the JH1 domain. Deucravacitinib is an orally effective N-trideuteromethyl-pyridazine derivative that targets and stabilizes the TYK2 JH2 domain and thereby blocks TYK2 JH1 activity. Seven other JAK inhibitors, which target the JAK family JH1 domain, are prescribed for the treatment of neoplastic and other inflammatory diseases. The use of deuterium in the trimethylamide decreases the rate of demethylation and slows the production of a metabolite that is active against a variety of targets in addition to TYK2. A second unique aspect in the development of deucravacitinib is the targeting of a pseudokinase domain. Deucravacitinib is rather specific for TYK2 and its toxic effects are much less than those of the other FDA-approved JAK inhibitors. The successful development of deucravacitinib may stimulate the development of additional pseudokinase ligands for the JAK family and for other kinase families as well.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
143
|
Coletto LA, Rizzo C, Guggino G, Caporali R, Alivernini S, D’Agostino MA. The Role of Neutrophils in Spondyloarthritis: A Journey across the Spectrum of Disease Manifestations. Int J Mol Sci 2023; 24:4108. [PMID: 36835520 PMCID: PMC9959122 DOI: 10.3390/ijms24044108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Spondyloarthritis (SpA) contemplates the inflammatory involvement of the musculoskeletal system, gut, skin, and eyes, delineating heterogeneous diseases with a common pathogenetic background. In the framework of innate and adaptive immune disruption in SpA, neutrophils are arising, across different clinical domains, as pivotal cells crucial in orchestrating the pro-inflammatory response, both at systemic and tissue levels. It has been suggested they act as key players along multiple stages of disease trajectory fueling type 3 immunity, with a significant impact in the initiation and amplification of inflammation as well as in structural damage occurrence, typical of long-standing disease. The aim of our review is to focus on neutrophils' role within the spectrum of SpA, dissecting their functions and abnormalities in each of the relevant disease domains to understand their rising appeal as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lavinia Agra Coletto
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90127 Palermo, Italy
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90127 Palermo, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Stefano Alivernini
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| | - Maria Antonietta D’Agostino
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
144
|
Rusiñol L, Puig L. Tyk2 Targeting in Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2023; 24:3391. [PMID: 36834806 PMCID: PMC9959504 DOI: 10.3390/ijms24043391] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The Janus kinase (Jak)/signal transducer and activating protein (STAT) pathways mediate the intracellular signaling of cytokines in a wide spectrum of cellular processes. They participate in physiologic and inflammatory cascades and have become a major focus of research, yielding novel therapies for immune-mediated inflammatory diseases (IMID). Genetic linkage has related dysfunction of Tyrosine kinase 2 (Tyk2)-the first member of the Jak family that was described-to protection from psoriasis. Furthermore, Tyk2 dysfunction has been related to IMID prevention, without increasing the risk of serious infections; thus, Tyk2 inhibition has been established as a promising therapeutic target, with multiple Tyk2 inhibitors under development. Most of them are orthosteric inhibitors, impeding adenosine triphosphate (ATP) binding to the JH1 catalytic domain-which is highly conserved across tyrosine kinases-and are not completely selective. Deucravacitinib is an allosteric inhibitor that binds to the pseudokinase JH2 (regulatory) domain of Tyk2; this unique mechanism determines greater selectivity and a reduced risk of adverse events. In September 2022, deucravacitinib became the first Tyk2 inhibitor approved for the treatment of moderate-to-severe psoriasis. A bright future can be expected for Tyk2 inhibitors, with newer drugs and more indications to come.
Collapse
Affiliation(s)
| | - Luis Puig
- Department of Dermatology IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
145
|
Efficacy and Safety of JAK1 Inhibitor Abrocitinib in Atopic Dermatitis. Pharmaceutics 2023; 15:pharmaceutics15020385. [PMID: 36839707 PMCID: PMC9960033 DOI: 10.3390/pharmaceutics15020385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Abrocitinib is a JAK1 selective inhibitor recently approved for the treatment of moderate-to-severe atopic dermatitis in adults. It has demonstrated efficacy and safety in several clinical trials, both in children and adults, in monotherapy, and compared with dupilumab. The expected EASI-75 response rate estimates at week 12 are 62.9% (95% CrI 42.5-79.9%) for abrocitinib 200 mg and 43.0% (95% CrI 24.8-64.0%) for abrocitinib 100 mg. Abrocitinib has shown a faster effect than dupilumab as regards early alleviation of itch. Because of the incomplete target selectivity of JAK inhibitors, when abrocitinib treatment is considered, laboratory screening is necessary, latent tuberculosis must be screened for, active infections are a contraindication, and special caution must be exerted in treating elderly patients and those predisposed to thromboembolic events. Even though recent meta-analyses of clinical trials have not shown that atopic dermatitis, or its treatment with JAK inhibitors or dupilumab, modify the risk of deep venous thrombosis or pulmonary embolism, long-term follow-up studies will better define the safety profile of abrocitinib.
Collapse
|
146
|
Zhang H, He F, Gao G, Lu S, Wei Q, Hu H, Wu Z, Fang M, Wang X. Approved Small-Molecule ATP-Competitive Kinases Drugs Containing Indole/Azaindole/Oxindole Scaffolds: R&D and Binding Patterns Profiling. Molecules 2023; 28:molecules28030943. [PMID: 36770611 PMCID: PMC9920796 DOI: 10.3390/molecules28030943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Kinases are among the most important families of biomolecules and play an essential role in the regulation of cell proliferation, apoptosis, metabolism, and other critical physiological processes. The dysregulation and gene mutation of kinases are linked to the occurrence and development of various human diseases, especially cancer. As a result, a growing number of small-molecule drugs based on kinase targets are being successfully developed and approved for the treatment of many diseases. The indole/azaindole/oxindole moieties are important key pharmacophores of many bioactive compounds and are generally used as excellent scaffolds for drug discovery in medicinal chemistry. To date, 30 ATP-competitive kinase inhibitors bearing the indole/azaindole/oxindole scaffold have been approved for the treatment of diseases. Herein, we summarize their research and development (R&D) process and describe their binding models to the ATP-binding sites of the target kinases. Moreover, we discuss the significant role of the indole/azaindole/oxindole skeletons in the interaction of their parent drug and target kinases, providing new medicinal chemistry inspiration and ideas for the subsequent development and optimization of kinase inhibitors.
Collapse
Affiliation(s)
- Haofan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guiping Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Sheng Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qiaochu Wei
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Zhen Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Meijuan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (M.F.); (X.W.)
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (M.F.); (X.W.)
| |
Collapse
|
147
|
Jain NK, Tailang M, Jain HK, Chandrasekaran B, Sahoo BM, Subramanian A, Thangavel N, Aldahish A, Chidambaram K, Alagusundaram M, Kumar S, Selvam P. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Front Pharmacol 2023; 14:1135145. [PMID: 37021053 PMCID: PMC10067607 DOI: 10.3389/fphar.2023.1135145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India
| | - Anandhalakshmi Subramanian
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Santosh Kumar
- School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Palani Selvam
- School of Medicine, College of Medicine and Health Sciences, Jijiga University, Jijiga, Ethiopia
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| |
Collapse
|
148
|
Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol Res 2023; 187:106552. [PMID: 36403719 DOI: 10.1016/j.phrs.2022.106552] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 72 FDA-approved therapeutic agents that target about two dozen different protein kinases and three of these drugs were approved in 2022. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), sixteen block nonreceptor protein-tyrosine kinases, and 40 target receptor protein-tyrosine kinases. The data indicate that 62 of these drugs are prescribed for the treatment of neoplasms (57 against solid tumors including breast, lung, and colon, ten against nonsolid tumors such as leukemia, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Four drugs (abrocitinib, baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, psoriatic arthritis, rheumatoid arthritis, Crohn disease, and ulcerative colitis). Of the 72 approved drugs, eighteen are used in the treatment of multiple diseases. The following three drugs received FDA approval in 2022 for the treatment of these specified diseases: abrocitinib (atopic dermatitis), futibatinib (cholangiocarcinomas), pacritinib (myelofibrosis). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 72 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.
Collapse
|
149
|
Zhou S, Mao W, Su Y, Zheng X, Qian W, Shen M, Shan N, Li Y, Wang D, Wu S, Sun T, Mu L. Identification of TUL01101: A Novel Potent and Selective JAK1 Inhibitor for the Treatment of Rheumatoid Arthritis. J Med Chem 2022; 65:16716-16740. [PMID: 36512734 DOI: 10.1021/acs.jmedchem.2c01550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Janus kinase 1 (JAK1) is a potential target for the treatment of rheumatoid arthritis (RA). In this study, the introduction of a spiro ring with a difluoro-substituted cyclopropionamide resulted in the identification of TUL01101 (compound 36) based on a triazolo[1,5-a]pyridine core of filgotinib. It showed excellent potency on JAK1 with an IC50 value of 3 nM and exhibited more than 12-fold selectivity for JAK2 and TYK2. Whole blood assay also demonstrated the high activity and selectivity (37-fold for JAK2). At the same time, TUL01101 also demonstrated excellent metabolic stability and pharmacokinetics (PK) profiles were assayed in three species (mouse, rat, and dog). Moreover, it has been validated for effective activity in the treatment of RA both in collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) models, with low dose and low toxicity. Now, TUL01101 has progressed into phase I clinical trials.
Collapse
Affiliation(s)
- Shuhao Zhou
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Weiwei Mao
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Yuan Su
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Xuejian Zheng
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Wenyuan Qian
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Meiyue Shen
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Ningli Shan
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Yaoshuang Li
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Degang Wang
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Shouting Wu
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Liwei Mu
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| |
Collapse
|
150
|
Gai C, Harnor SJ, Zhang S, Cano C, Zhuang C, Zhao Q. Advanced approaches of developing targeted covalent drugs. RSC Med Chem 2022; 13:1460-1475. [PMID: 36561076 PMCID: PMC9749957 DOI: 10.1039/d2md00216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
In recent years, the development of targeted covalent inhibitors has gained popularity around the world. Specific groups (electrophilic warheads) form irreversible bonds with the side chain of nucleophilic amino acid residues, thus changing the function of biological targets such as proteins. Since the first targeted covalent inhibitor was disclosed in the 1990s, great efforts have been made to develop covalent ligands from known reversible leads or drugs by addition of tolerated electrophilic warheads. However, high reactivity and "off-target" toxicity remain challenging issues. This review covers the concept of targeted covalent inhibition to diseases, discusses traditional and interdisciplinary strategies of cysteine-focused covalent drug discovery, and exhibits newly disclosed electrophilic warheads majorly targeting the cysteine residue. Successful applications to address the challenges of designing effective covalent drugs are also introduced.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Suzannah J Harnor
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Shihao Zhang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Chunlin Zhuang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| |
Collapse
|