101
|
Hermal F, Frisch B, Specht A, Bourel-Bonnet L, Heurtault B. Development and characterization of layer-by-layer coated liposomes with poly(L-lysine) and poly(L-glutamic acid) to increase their resistance in biological media. Int J Pharm 2020; 586:119568. [PMID: 32592900 DOI: 10.1016/j.ijpharm.2020.119568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Multilayered coated liposomes were prepared using the layer-by-layer (LbL) technique in an effort to improve their stability in biological media. The formulation strategy was based on the alternate deposition of two biocompatible and biodegradable polyelectrolytes - poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) - on negatively charged small unilamellar vesicles (SUVs). Some parameters of the formulation process were optimized such as the polyelectrolyte concentration and the purification procedure. This optimized procedure has allowed the development of very homogeneous formulations of liposomes coated with up to 6 layers of polymers (so-called layersomes). The coating was characterized by dynamic light scattering (DLS), zeta potential measurements and Förster resonance energy transfer (FRET) between two fluorescently labeled polyelectrolytes. Studies on the stability of the formulations at 4 °C in a buffered solution have shown that most structures are stable over 1 month without impacting their encapsulation capacity. In addition, fluorophore release experiments have demonstrated a better resistance of the layersomes in the presence of a non-ionic detergent (Triton™ X-100) as well as in the presence of phospholipase A2 and human plasma. In conclusion, new multilayered liposomes have been developed to increase the stability of conventional liposomes in biological environments.
Collapse
Affiliation(s)
- Florence Hermal
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Benoît Frisch
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Alexandre Specht
- CNM Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Line Bourel-Bonnet
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Béatrice Heurtault
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|
102
|
Metformin-loaded chitosomes for treatment of malignant pleural mesothelioma - A rare thoracic cancer. Int J Biol Macromol 2020; 160:128-141. [PMID: 32445818 DOI: 10.1016/j.ijbiomac.2020.05.146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to design and evaluate chitosan dispersed lipid vesicles (chitosomes) as potential delivery carriers for repurposing metformin (Met) against malignant pleural mesothelioma. Chitosomes were prepared by directly hydrating the thin lipid film using chitosan solution as hydration medium, instead of using it as a coating agent. Developed chitosomes demonstrated spherical morphology, positive surface charge (~30 mV) and ~60% encapsulation efficiency. The calorimetric studies and X-ray diffraction pattern of Met-loaded chitosomes confirmed the successful encapsulation of Met inside the chitosome vesicles. Optimized chitosome formulation showed ~70% drug release in 72 h, displaying prolonged and controlled release of drug. Results demonstrated that Met encapsulated chitosomes possessed enhanced cellular internalization and improved cytotoxic potential. Our findings also supported inhibitory activity of chitosomes against metastatic property of pleural mesothelioma cells. The in-vitro tumor simulation studies further established anti-tumor activity of Met encapsulated chitosomes as supported by reduction in tumor volume and presence of minimal viable cells in tumor mass. The obtained results establish the effectiveness of chitosomes as delivery carrier for Met as treatment alternative for malignant pleural mesothelioma.
Collapse
|
103
|
Madamsetty VS, Pal K, Dutta SK, Wang E, Mukhopadhyay D. Targeted Dual Intervention-Oriented Drug-Encapsulated (DIODE) Nanoformulations for Improved Treatment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12051189. [PMID: 32397114 PMCID: PMC7281578 DOI: 10.3390/cancers12051189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Despite recent advancements, effective treatment for pancreatic ductal adenocarcinoma (PDAC) has remained elusive. The overall survival rate in PDAC patients has been dismally low due to resistance to standard therapies. In fact, the failure of monotherapies to provide long-term survival benefits in patients led to ascension of several combination therapies for PDAC treatment. However, these combination therapies provided modest survival improvements while increasing treatment-related adverse side effects. Hence, recent developments in drug delivery methods hold the potential for enhancing therapeutic benefits by offering cocktail drug loading and minimizing chemotherapy-associated side effects. Nanoformulations-aided deliveries of anticancer agents have been a success in recent years. Yet, improving the tumor-targeted delivery of drugs to PDAC remains a major hurdle. In the present paper, we developed several new tumor-targeted dual intervention-oriented drug-encapsulated (DIODE) liposomes. We successfully formulated liposomes loaded with gemcitabine (G), paclitaxel (P), erlotinib (E), XL-184 (c-Met inhibitor, X), and their combinations (GP, GE, and GX) and evaluated their in vitro and in vivo efficacies. Our novel DIODE liposomal formulations improved median survival in comparison with gemcitabine-loaded liposomes or vehicle. Our findings are suggestive of the importance of the targeted delivery for combination therapies in improving pancreatic cancer treatment.
Collapse
|
104
|
Khan S, McCabe J, Hill K, Beales PA. Biodegradable hybrid block copolymer – lipid vesicles as potential drug delivery systems. J Colloid Interface Sci 2020; 562:418-428. [DOI: 10.1016/j.jcis.2019.11.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022]
|
105
|
Einfalt T, Garni M, Witzigmann D, Sieber S, Baltisberger N, Huwyler J, Meier W, Palivan CG. Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901923. [PMID: 32099756 PMCID: PMC7029636 DOI: 10.1002/advs.201901923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Indexed: 05/28/2023]
Abstract
Despite huge need in the medical domain and significant development efforts, artificial cells to date have limited composition and functionality. Although some artificial cells have proven successful for producing therapeutics or performing in vitro specific reactions, they have not been investigated in vivo to determine whether they preserve their architecture and functionality while avoiding toxicity. Here, these limitations are overcome and customizable cell mimic is achieved-molecular factories (MFs)-by supplementing giant plasma membrane vesicles derived from donor cells with nanometer-sized artificial organelles (AOs). MFs inherit the donor cell's natural cytoplasm and membrane, while the AOs house reactive components and provide cell-like architecture and functionality. It is demonstrated that reactions inside AOs take place in a close-to-nature environment due to the unprecedented level of complexity in the composition of the MFs. It is further demonstrated that in a zebrafish vertebrate animal model, these cell mimics show no apparent toxicity and retain their integrity and function. The unique advantages of highly varied composition, multicompartmentalized architecture, and preserved functionality in vivo open new biological avenues ranging from the study of biorelevant processes in robust cell-like environments to the production of specific bioactive compounds.
Collapse
Affiliation(s)
- Tomaž Einfalt
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Martina Garni
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Dominik Witzigmann
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Sandro Sieber
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Niklaus Baltisberger
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Jörg Huwyler
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Wolfgang Meier
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| |
Collapse
|
106
|
Mastrotto F, Brazzale C, Bellato F, De Martin S, Grange G, Mahmoudzadeh M, Magarkar A, Bunker A, Salmaso S, Caliceti P. In Vitro and in Vivo Behavior of Liposomes Decorated with PEGs with Different Chemical Features. Mol Pharm 2020; 17:472-487. [PMID: 31789523 DOI: 10.1021/acs.molpharmaceut.9b00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The colloidal stability, in vitro toxicity, cell association, and in vivo pharmacokinetic behavior of liposomes decorated with monomethoxy-poly(ethylene glycol)-lipids (mPEG-lipids) with different chemical features were comparatively investigated. Structural differences of the mPEG-lipids used in the study included: (a) surface-anchoring moiety [1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), cholesterol (Chol), and cholane (Chln)]; (b) mPEG molecular weight (2 kDa mPEG45 and 5 kDa mPEG114); and (c) mPEG shape (linear and branched PEG). In vitro results demonstrated that branched (mPEG114)2-DSPE confers the highest stealth properties to liposomes (∼31-fold lower cell association than naked liposomes) with respect to all PEGylating agents tested. However, the pharmacokinetic studies showed that the use of cholesterol as anchoring group yields PEGylated liposomes with longer permeance in the circulation and higher systemic bioavailability among the tested formulations. Liposomes decorated with mPEG114-Chol had 3.2- and ∼2.1-fold higher area under curve (AUC) than naked liposomes and branched (mPEG114)2-DSPE-coated liposomes, respectively, which reflects the high stability of this coating agent. By comparing the PEGylating agents with same size, namely, linear 5 kDa PEG derivatives, linear mPEG114-DSPE yielded coated liposomes with the best in vitro stealth performance. Nevertheless, the in vivo AUC of liposomes decorated with linear mPEG114-DSPE was lower than that obtained with liposomes decorated with linear mPEG114-Chol. Computational molecular dynamics modeling provided additional insights that complement the experimental results.
Collapse
Affiliation(s)
- Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Chiara Brazzale
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Guillaume Grange
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Mohamad Mahmoudzadeh
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Aniket Magarkar
- Institute of Organic Chemistry and Biochemistry , Academy of the Sciences of the Czech Republic , 166 10 Prague , Czech Republic
| | - Alex Bunker
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| |
Collapse
|
107
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
108
|
Fandzloch M, Jaromin A, Zaremba-Czogalla M, Wojtczak A, Lewińska A, Sitkowski J, Wiśniewska J, Łakomska I, Gubernator J. Nanoencapsulation of a ruthenium(ii) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans 2020; 49:1207-1219. [PMID: 31903475 DOI: 10.1039/c9dt03464a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two types of ruthenium(ii) complexes containing 1,2,4-triazolo[1,5-a]pyrimidines of the general formulas [RuCl2(dmso)3(L)] ((1)-(3)) and [RuCl2(dmso)2(L)2] ((4)-(6)), where L represents 1,2,4-triazolo[1,5-a]pyrimidine (tp for (1)), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp for (2)), 7-isobutyl-5-methyl-1,2,4-trizolo[1,5-a]pyrimidine (ibmtp for (3)), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for (4)), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for (5)) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for (6)), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, and 15N), and X-ray (for (3), (4), and (5)). All these complexes have been thoroughly screened for their in vitro cytotoxicity against melanoma cell lines A375 and Hs294T, indicating cis,cis,cis-[RuCl2(dbtp)2(dmso)2] (5) as the most active representative, in addition to being non-toxic to normal human fibroblasts (NHDF) and not inducing hemolysis of human erythrocytes. In order to develop an intravenous formulation for (5), liposomes composed of soybean phosphatidylcholine (SPC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) were prepared and subsequently characterized. (5)-Loaded liposomes, with spherical morphology, assessed by transmission electron microscope (TEM), exhibited satisfactory encapsulation efficiency and stability. In in vitro experiments, PEG-modified (5)-loaded liposomes were more effective (10-fold) than free (5) for growth inhibition of both human melanoma cell lines. Furthermore, such an approach resulted in the reduction of cancer cell viability that was even 10-fold greater than that observed for free cisplatin.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland and Institute of Low Temperature and Structure Research, PAS, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland and Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
109
|
Bleher S, Buck J, Muhl C, Sieber S, Barnert S, Witzigmann D, Huwyler J, Barz M, Süss R. Poly(Sarcosine) Surface Modification Imparts Stealth-Like Properties to Liposomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904716. [PMID: 31722126 DOI: 10.1002/smll.201904716] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Circulation lifetime is a crucial parameter for a successful therapy with nanoparticles. Reduction and alteration of opsonization profiles by surface modification of nanoparticles is the main strategy to achieve this objective. In clinical settings, PEGylation is the most relevant strategy to enhance blood circulation, yet it has drawbacks, including hypersensitivity reactions in some patients treated with PEGylated nanoparticles, which fuel the search for alternative strategies. In this work, lipopolysarcosine derivatives (BA-pSar, bisalkyl polysarcosine) with precise chain lengths and low polydispersity indices are synthesized, characterized, and incorporated into the bilayer of preformed liposomes via a post insertion technique. Successful incorporation of BA-pSar can be realized in a clinically relevant liposomal formulation. Furthermore, BA-pSar provides excellent surface charge shielding potential for charged liposomes and renders their surface neutral. Pharmacokinetic investigations in a zebrafish model show enhanced circulation properties and reduction in macrophage recognition, matching the behavior of PEGylated liposomes. Moreover, complement activation, which is a key factor in hypersensitivity reactions caused by PEGylated liposomes, can be reduced by modifying the surface of liposomes with an acetylated BA-pSar derivative. Hence, this study presents an alternative surface modification strategy with similar benefits as the established PEGylation of nanoparticles, but with the potential of reducing its drawbacks.
Collapse
Affiliation(s)
- Stefan Bleher
- Department of Pharmaceutical Technology and Biopharmacy and Freiburger Materialforschungszentrum (FMF), Institute of Pharmaceutical Sciences, Albert Ludwig University of Freiburg, 79104, Freiburg, Germany
| | - Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland
| | - Christian Muhl
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland
| | - Sabine Barnert
- Department of Pharmaceutical Technology and Biopharmacy and Freiburger Materialforschungszentrum (FMF), Institute of Pharmaceutical Sciences, Albert Ludwig University of Freiburg, 79104, Freiburg, Germany
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, V6T 1Z3, British Columbia, Canada
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy and Freiburger Materialforschungszentrum (FMF), Institute of Pharmaceutical Sciences, Albert Ludwig University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
110
|
Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102112. [PMID: 31669083 DOI: 10.1016/j.nano.2019.102112] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 10/03/2019] [Indexed: 01/31/2023]
Abstract
Combination therapy has emerged as an efficient way to deliver chemotherapeutics for treatment of glioblastoma. It provides collaborative approach of targeting cancer cells by acting via multiple mechanisms, thereby reducing drug resistance. However, the presence of impermeable blood brain barrier (BBB) restricts the delivery of chemotherapeutic drugs into the brain. To overcome this limitation, we designed a dual functionalized liposomes by modifying their surface with transferrin (Tf) and a cell penetrating peptide (CPP) for receptor and adsorptive mediated transcytosis, respectively. In this study, we used two different CPPs (based on physicochemical properties) and investigated the influence of insertion of CPP to Tf-liposomes on biocompatibility, cellular uptake, and transport across the BBB both in vitro and in vivo. The biodistribution profile of Tf-CPP liposomes showed more than 10 and 2.7 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively as compared to free drugs with no signs of toxicity.
Collapse
Affiliation(s)
- Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
111
|
El-Hammadi MM, Arias JL. An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opin Ther Pat 2019; 29:891-907. [DOI: 10.1080/13543776.2019.1679767] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain
| |
Collapse
|
112
|
Nag OK, Delehanty JB. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics 2019; 11:E543. [PMID: 31635367 PMCID: PMC6836276 DOI: 10.3390/pharmaceutics11100543] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer's disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
113
|
Anilmis NM, Kara G, Kilicay E, Hazer B, Denkbas EB. Designing siRNA-conjugated plant oil-based nanoparticles for gene silencing and cancer therapy. J Microencapsul 2019; 36:635-648. [PMID: 31509450 DOI: 10.1080/02652048.2019.1665117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, the anticancer activities of two siRNA carriers were compared using a human lung adenocarcinoma epithelial cell line (A549). Firstly, poly(styrene)-graft-poly(linoleic acid) (PS-g-PLina) and poly(styrene)-graft-poly(linoleic acid)-graft-poly(ethylene glycol) (PS-g-PLina-g-PEG) graft copolymers were synthesized by free-radical polymerization. PS-PLina and PS-PLina-PEG nanoparticles (NPs) were prepared by solvent evaporation method and were then characterized. The size was found as 150 ± 10 nm for PS-PLina and 184 ± 6 nm for PS-PLina-PEG NPs. The NPs were functionalized with poly(l-lysine) (PLL) for c-myc siRNA conjugation. siRNA entrapment efficiencies were found in the range of 4-63% for PS-PLina-PLL and 6-42% for PS-PLina-PEG-PLL NPs. The short-term stability test was realised for 1 month. siRNA release profiles were also investigated. In vitro anticancer activity of siRNA-NPs was determined by MTT, flow cytometry, and fluorescence microscopy analyses. Obtained findings showed that both NPs systems were promising as siRNA delivery tool for lung cancer therapy.
Collapse
Affiliation(s)
- Nur Merve Anilmis
- Nanotechnology Engineering Division, Institute of Science and Technology, Bulent Ecevit University , Zonguldak , Turkey
| | - Goknur Kara
- Department of Chemistry, Biochemistry Division,Hacettepe University , Ankara , Turkey
| | - Ebru Kilicay
- Vocational School of Higher Education, Programme of Biomedical Device Technology, Bulent Ecevit University , Zonguldak , Turkey
| | - Baki Hazer
- Department of Aircraft Mechanic-Engine Maintenance, Cappadocia University , Urgup , Nevsehir , Turkey.,Department of Chemistry, Bulent Ecevit University, Universite Caddes , Zonguldak , Turkey.,Department of Nanotechnology Engineering, Bulent Ecevit University , Zonguldak , Turkey.,Department of Biomedical Engineering, Baskent, University , Ankara , Turkey
| | - Emir Baki Denkbas
- Department of Chemistry, Biochemistry Division,Hacettepe University , Ankara , Turkey.,Department of Biomedical Engineering, Baskent, University , Ankara , Turkey
| |
Collapse
|
114
|
Abstract
The poor pharmacokinetic parameters and low solubility of many anticancer therapeutics have warranted the use of drug-delivery systems such as liposomes. Overcoming some drawbacks of the conventional liposomes, targeted liposomal delivery by longer circulation time by addition of poly(ethylene glycol) to the liposomal surface and further adding specific ligands to achieve ligand selective retention and uptake has been introduced. PEGylated liposomes are the only second-generation liposomal formulations in clinical use and are now being challenged with the allergenic response they pose even in the treatment of naive patients. This article will review the challenges and hindrances in the use of long circulating liposomes and explore the opportunities to overcome this issue.
Collapse
|
115
|
Tai K, Rappolt M, He X, Wei Y, Zhu S, Zhang J, Mao L, Gao Y, Yuan F. Effect of β-sitosterol on the curcumin-loaded liposomes: Vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food Chem 2019; 293:92-102. [DOI: 10.1016/j.foodchem.2019.04.077] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
|
116
|
Abstract
Early researchers focussed on developing stimuli-responsive liposomes in order to manipulate drug release at the site of action or under certain conditions. In recent times, a great deal of efforts has been made to modify the surface of liposomes with ligands for the purpose of achieving targeted drug delivery. Due to the morphology of liposomes, their surfaces can be engineered by attaching molecules such as oligosaccharides, peptides, antibodies, antigens and oligonucleotides to the bilayer structure. Over the years, a number of techniques including the use of covalent and non-covalent linkages have been utilised in designing ligand-liposome conjugates. In this review, various strategies for the functionalisation of liposomes as well as the different types of ligand-liposome conjugates have been discussed. Finally, the pros and cons of conjugation in liposomes are concisely summarised.
Collapse
Affiliation(s)
- İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Mamudu İbrahim
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
117
|
Kanamala M, Palmer BD, Jamieson SM, Wilson WR, Wu Z. Dual pH-sensitive liposomes with low pH-triggered sheddable PEG for enhanced tumor-targeted drug delivery. Nanomedicine (Lond) 2019; 14:1971-1989. [PMID: 31355712 DOI: 10.2217/nnm-2018-0510] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: pH-sensitive liposomes (pSL) have emerged as promising nanocarriers due to their endo/lysosome-escape abilities, however, their pH sensitivity is compromised by poly(ethylene glycol) (PEG) coating. This study investigates whether an intracellular PEG-detachment strategy can overcome this PEG dilemma. Materials & methods: First, PEG2000 was conjugated with a phospholipid via an acid-labile hydrazide-hydrazone bond (-CO-NH-N = CH-), which was postinserted into pSL, forming PEG-cleavable pSL (CL-PEG-pSL). Their endo/lysosomal-escape abilities in MIA PaCa-2 cells, pharmacokinetics and tumor accumulation abilities were studied using PEG-pSL as reference. Results: CL-PEG-pSL showed rapid endo/lysosome-escape abilities in the cancer cells and higher tumor accumulation in MIA PaCa-2 xenograft model in contrast to PEG-pSL. Conclusion: Cleavable PEGylation is an efficient strategy to ameliorate the PEG dilemma of pSL for cancer drug delivery.
Collapse
Affiliation(s)
- Manju Kanamala
- School of Pharmacy, Auckland Cancer Society Research Centre, Faculty of Medical & Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, Faculty of Medical & Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Stephen Mf Jamieson
- Auckland Cancer Society Research Centre, Faculty of Medical & Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, Faculty of Medical & Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Zimei Wu
- School of Pharmacy, Auckland Cancer Society Research Centre, Faculty of Medical & Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
118
|
Xiao Y, Liu Q, Clulow AJ, Li T, Manohar M, Gilbert EP, de Campo L, Hawley A, Boyd BJ. PEGylation and surface functionalization of liposomes containing drug nanocrystals for cell-targeted delivery. Colloids Surf B Biointerfaces 2019; 182:110362. [PMID: 31351271 DOI: 10.1016/j.colsurfb.2019.110362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/04/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
Liposomal formulations have important therapeutic applications in anti-cancer treatments but current formulations suffer from serious side effects, high dosage requirements and prolonged treatment. In this study, PEGylated azide-functionalized liposomes containing drug nanocrystals were investigated with the aim of increasing the drug payload and achieving functionalization for targeted delivery. Liposomes were characterized using cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small and ultra-small angle neutron scattering (SANS/USANS) and small and wide angle X-ray scattering (SAXS/WAXS). Cryo-TEM experiments revealed the dimensions of the nanocrystal-loaded liposomes and the change of shape from spherical to elongated after the formation of nanocrystals. Results from SANS/USANS experiments confirmed the asymmetric particle shape. SAXS/WAXS experiments confirmed that the crystalline drug only occurred in freeze-thawed samples and correlated with a new unidentified polymorphic form of ciprofloxacin. Using a small molecule dye, dibenzocyclooctyne (DBCO)-cy5, specific conjugation between DBCO groups and surface azide groups on the liposomes was confirmed; this indicates the promise of this system for tumour-targeted delivery.
Collapse
Affiliation(s)
- Yunxin Xiao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Tang Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Madhura Manohar
- National Deuteration Facility (NDF), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Adrian Hawley
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia.
| |
Collapse
|
119
|
Awad NS, Paul V, Mahmoud MS, Al Sawaftah NM, Kawak PS, Al Sayah MH, Husseini GA. Effect of Pegylation and Targeting Moieties on the Ultrasound-Mediated Drug Release from Liposomes. ACS Biomater Sci Eng 2019; 6:48-57. [PMID: 33463192 DOI: 10.1021/acsbiomaterials.8b01301] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of targeted liposomes encapsulating chemotherapy drugs enhances the specific targeting of cancer cells, thus reducing the side effects of these drugs and providing patient-friendly chemotherapy treatment. Targeted pegylated (stealth) liposomes have the ability to safely deliver their loaded drugs to the cancer cells by targeting specific receptors overly expressed on the surface of these cells. Applying ultrasound as an external stimulus will safely trigger drug release from these liposomes in a controlled manner. In this study, we investigated the release kinetics of the model drug "calcein" from targeted liposomes sonicated with low-frequency ultrasound (20 kHz). Our results showed that pegylated liposomes were more sonosensitive compared to nonpegylated liposomes. A comparison of the effect of three targeting moieties conjugated to the surface of pegylated liposomes, namely human serum albumin (HSA), transferrin (Tf) and arginylglycylaspartic acid (RGD), on calcein release kinetics was conducted. The fluorescent results showed that HSA-PEG and Tf-PEG liposomes were more sonosensitive (showing higher calcein release following the exposure to pulsed LFUS) compared to the control pegylated liposomes, thus adding more acoustic benefits to their targeting efficacy.
Collapse
|
120
|
Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J Control Release 2019; 307:247-260. [PMID: 31252036 DOI: 10.1016/j.jconrel.2019.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
Abstract
Glioblastoma is a hostile brain tumor associated with high infiltration leading to poor prognosis. Anti-cancer chemotherapeutic agents have limited access into the brain due to the presence of the blood brain barrier (BBB). In this study, we designed a dual functionalized liposomal delivery system, surface modified with transferrin (Tf) for receptor mediated transcytosis and a cell penetrating peptide-penetratin (Pen) for enhanced cell penetration. We loaded doxorubicin and erlotinib into liposomes to enhance their translocation across the BBB to glioblastoma tumor. In vitro cytotoxicity and hemocompatibility studies demonstrated excellent biocompatibility for in vivo administration. Co-delivery of doxorubicin and erlotinib loaded Tf-Pen liposomes revealed significantly (p < 0.05) higher translocation (~15%) across the co-culture endothelial barrier resulting in regression of tumor in the in vitro brain tumor model. The biodistribution of Tf-Pen liposomes demonstrated ~12 and 3.3 fold increase in doxorubicin and erlotinib accumulation in mice brain, respectively compared to free drugs. In addition, Tf-Pen liposomes showed excellent antitumor efficacy by regressing ~90% of tumor in mice brain with significant increase in the median survival time (36 days) along with no toxicity. Thus, we believe that this study would have high impact for treating patients with glioblastoma.
Collapse
Affiliation(s)
- Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
121
|
Foteini P, Pippa N, Naziris N, Demetzos C. Physicochemical study of the protein–liposome interactions: influence of liposome composition and concentration on protein binding. J Liposome Res 2019; 29:313-321. [DOI: 10.1080/08982104.2018.1468774] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Papageorgiou Foteini
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Naziris
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
122
|
Gomes FO, Maia LB, Loureiro JA, Pereira MC, Delerue-Matos C, Moura I, Moura JJ, Morais S. Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite. Bioelectrochemistry 2019; 127:76-86. [DOI: 10.1016/j.bioelechem.2019.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
123
|
Gaspar R, Pallbo J, Weininger U, Linse S, Sparr E. Reprint of “Ganglioside lipids accelerate α-synuclein amyloid formation”. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:508-518. [DOI: 10.1016/j.bbapap.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/05/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
|
124
|
Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019; 160:61-75. [DOI: 10.1016/j.biochi.2019.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
|
125
|
Moosavian SA, Sahebkar A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett 2019; 448:144-154. [PMID: 30763718 DOI: 10.1016/j.canlet.2019.01.045] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Accumulation of chemotherapeutic agents in the tumor tissue while reducing adverse effects and drug resistance are among the major goals in cancer therapy. Among nanocarriers, liposomes have been found to be more effective in the passive targeting of cancer cells. A promising recent development in targeted drug delivery is the use of aptamer-functionalized liposomes for cancer therapy. Aptamer-targeted liposomes have enhanced uptake in tumor cells as shown in vitro and in vivo. Here, we discuss the aptamer-functionalized liposome platforms and review functionalization approaches as well as the factors affecting antitumor efficiency of aptamer-targeted liposomal systems. Finally, we provide a comprehensive overview of aptamer-targeted liposomes based on the molecular targets on the surface of cancer cells.
Collapse
Affiliation(s)
- Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
126
|
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2019; 37:107-124. [PMID: 29243000 DOI: 10.1007/s10555-017-9717-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
127
|
|
128
|
Pashirova TN, Zhukova NA, Lukashenko SS, Valeeva FG, Burilova EA, Sapunova AS, Voloshina AD, Mirgorodskaya AB, Zakharova LY, Sinyashin OG, Mamedov VA. Multi-targeted approach by 2-benzimidazolylquinoxalines-loaded cationic arginine liposomes against сervical cancer cells in vitro. Colloids Surf B Biointerfaces 2019; 178:317-328. [PMID: 30884347 DOI: 10.1016/j.colsurfb.2019.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
Multi-targeted approaches for inhibition of сervical cancer cells in vitro were developed by implementing two different strategies and drug combination for creation of new therapeutic target agents and for nanotechnological-enhancement of intracellular delivery. New 2-benzimidazolylquinoxalines derivatives were synthesized and characterized by combining two different pharmacophores - benzimidazole and quinoxaline rings directly bonded in their structures. Spectrophotometric technique for determination of content of compounds in various media was developed to evaluate their solubility in water and micellar solutions of surfactants. The bioavailability of poorly water-soluble 2-benzimidazolylquinoxalines was improved by PEGylated liposomes as antitumor drug delivery carriers. 2-benzimidazolylquinoxalines-loaded PEGylated liposomes, with size close to 100 nm and negative zeta potential ranging from -13 mV to -27 mV, were time-stable at room temperature. The design of liposomal formulations for improving cellular uptake and in vitro antitumor efficacy was performed by modification of liposome surface with the new arginine surfactant. The cell viability of 2-benzimidazolylquinoxalines-loaded arginine liposomes on human cancer M-Hela cells was 16% at the concentration 0.15 mg/ml. Moreover, these liposomes showed a lower toxicity (40%) against normal human Gang liver cells both at the lowest and highest tested concentrations.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation.
| | - Nataliya A Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Vakhid A Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
129
|
Yari H, Nkepang G, Awasthi V. Surface Modification of Liposomes by a Lipopolymer Targeting Prostate Specific Membrane Antigen for Theranostic Delivery in Prostate Cancer. MATERIALS 2019; 12:ma12050756. [PMID: 30841602 PMCID: PMC6427334 DOI: 10.3390/ma12050756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023]
Abstract
Prostate specific membrane antigen (PSMA) is a marker for diagnosis and targeted delivery of therapeutics to advanced/metastasized prostate cancer. We report a liposome-based system for theranostic delivery to PSMA-expressing (PSMA+) LNCaP cells. A lipopolymer (P3) comprising of PSMA ligand (PSMAL), polyethylene glycol (PEG2000), and palmitate was synthesized and post-inserted into the surface of preformed liposomes. These P3-liposomes were loaded with doxorubicin and radiolabeled with 99mTc radionuclide to study their theranostic characteristics. Differential expression of PSMA on LNCaP and PC3 cells was confirmed by immunoblotting as well as by uptake of PSMAL labeled with 18F radionuclide. We found that the uptake of 99mTc-labeled P3-liposomes by LNCaP cells was >3-fold higher than 99mTc-labeled Plain-liposomes; the amount of doxorubicin delivered to LNCaP cells was also found to be >3-fold higher by P3-liposomes. Cell-based cytotoxicity assay results showed that doxorubicin-loaded P3-liposomes were significantly more toxic to LNCaP cells (p < 0.05), but not to PSMA-negative PC3 cells. Compared to doxorubicin-loaded Plain-liposomes, the IC50 value of doxorubicin-loaded P3-liposomes was reduced by ~5-fold in LNCaP cells. Together, these results suggest that surface functionalization of liposomes with small PSMA-binding motifs, such as PSMAL, can provide a viable platform for specific delivery of theranostics to PSMA+ prostate cancer.
Collapse
Affiliation(s)
- Hooman Yari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Gregory Nkepang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| |
Collapse
|
130
|
Guan J, Jiang Z, Wang M, Liu Y, Liu J, Yang Y, Ding T, Lu W, Gao C, Qian J, Zhan C. Short Peptide-Mediated Brain-Targeted Drug Delivery with Enhanced Immunocompatibility. Mol Pharm 2019; 16:907-913. [PMID: 30666875 DOI: 10.1021/acs.molpharmaceut.8b01216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptide ligands have been exploited as versatile tools to facilitate targeted delivery of nanocarriers. However, the effects of peptide ligands on immunocompatibility and therapeutic efficacy of liposomes remain intricate. Here, a short and stable brain targeted peptide ligand D8 was modified on the surface of doxorubicin-loaded liposomes (D8-sLip/DOX), demonstrating prolonged blood circulation and lower liver distribution in comparison to the long and stable D-peptide ligand DCDX-modified doxorubicin-loaded liposomes (DCDX-sLip/DOX) by mitigating natural IgM absorption. Despite the improved pharmacokinetic profiles, D8-sLip/DOX exhibited comparable brain targeting capacity in ICR mice and antiglioblastoma efficacy to DCDX-sLip/DOX in nude mice bearing intracranial glioblastoma. However, dramatic accumulation of DCDX-sLip/DOX in liver (especially during the first 8 h after intravenous injection) resulted in pathological symptoms, including nuclei swelling, necrosis of liver cells, and inflammation. These results suggest that short peptide ligand-mediated brain-targeted drug delivery systems possessing enhanced immunocompatibility are promising to facilitate efficient brain transport with improved biosafety.
Collapse
Affiliation(s)
- Juan Guan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Zhuxuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Mengke Wang
- School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences , Fudan University , Shanghai 200032 , P.R. China
| | - Jican Liu
- Department of Pathology, Affiliated Zhongshan Hospital Qingpu Branch , Fudan University , Shanghai 201700 , P.R. China
| | - Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Weiyue Lu
- School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| | - Chunli Gao
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital , Fudan University , Shanghai 200032 , P.R. China
| | - Jun Qian
- School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China.,School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| |
Collapse
|
131
|
Adriouach S, Vorobiev V, Trefalt G, Allémann E, Lange N, Babič A. Squalene-PEG: Pyropheophorbide-a nanoconstructs for tumor theranostics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 15:243-251. [DOI: 10.1016/j.nano.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
132
|
Arévalo LM, Yarce CJ, Oñate-Garzón J, Salamanca CH. Decrease of Antimicrobial Resistance through Polyelectrolyte-Coated Nanoliposomes Loaded with β-Lactam Drug. Pharmaceuticals (Basel) 2018; 12:E1. [PMID: 30583595 PMCID: PMC6469175 DOI: 10.3390/ph12010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/04/2022] Open
Abstract
Currently, one of the greatest health challenges worldwide is the resistance to antibiotic drugs, which has led to the pursuit of new alternatives for the recovery of biological activity, where the use of different types of nano-systems has shown an interesting potential. In this study, we evaluated the antibiotic activity of a model drug (ampicillin) encapsulated within coated-nanoliposomes on strains of Staphylococcus aureus with different antibiotic-resistance degrees. Hence, liposomes were elaborated by the ethanol injection method and were coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterization, such as size, polydispersity, zeta potential, and encapsulation efficiency were determined using dynamic light scattering and ultrafiltration/centrifugation techniques. Although biological activity was evaluated using three ATCC strains of S. aureus corresponding to ATCC 25923 (sensitive), ATCC 29213 (resistant) and ATCC 43300 (very resistant). The results showed changes in size (from ~150 to 220 nm), polydispersity (from 0.20 to 0.45) and zeta potential (from -37 to +45 mV) for the coating process. In contrast, encapsulation efficiency of approximately 70% and an increase in antibiotic activity of 4 and 18 times more on those S. aureus-resistant strains have been observed.
Collapse
Affiliation(s)
- Lina M Arévalo
- Maestría en Formulación de Productos Químicos y Derivados, Facultad de Ciencias Naturales, Universidad Icesi, Calle 18 No. 122⁻135, Cali 760031, Colombia.
| | - Cristhian J Yarce
- Maestría en Formulación de Productos Químicos y Derivados, Facultad de Ciencias Naturales, Universidad Icesi, Calle 18 No. 122⁻135, Cali 760031, Colombia.
| | - José Oñate-Garzón
- Grupo de investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760031, Colombia.
| | - Constain H Salamanca
- Maestría en Formulación de Productos Químicos y Derivados, Facultad de Ciencias Naturales, Universidad Icesi, Calle 18 No. 122⁻135, Cali 760031, Colombia.
| |
Collapse
|
133
|
Münter R, Kristensen K, Pedersbæk D, Larsen JB, Simonsen JB, Andresen TL. Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. NANOSCALE 2018; 10:22720-22724. [PMID: 30488936 DOI: 10.1039/c8nr07755j] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Within nanomedicine, liposomes are investigated for their ability to deliver drug cargoes specifically into subcellular compartments of target cells. Such studies are often based on flow cytometry or microscopy, where researchers rely on fluorescently labeled lipids (FLLs) incorporated into the liposomal membrane to determine the localization of the liposomes within cells. These studies assume that the FLLs stay embedded in the liposomal membrane throughout the duration of the experiment. Here, we used size exclusion chromatography (SEC) to investigate the validity of this assumption by quantitatively determining the propensity of various widely used FLLs to dissociate from liposomes during incubation in human plasma. For certain commonly used off-the-shelf FLLs, up to 75% of the dye dissociated from the liposomes, while others dissociated less than 10%. To investigate the implications of this finding, we measured the peripheral blood leukocyte uptake of liposomes formulated with different FLLs using flow cytometry, and observed a significant difference in uptake correlating with the FLL's dissociation tendencies. Consequently, the choice of FLL can dramatically influence the conclusions drawn from liposome uptake and localization studies due to uptake of dissociated FLLs. The varying dissociation propensities for the FLLs were not reflected when incubating in buffer, showing that non-biological environments are unsuitable to mimic liposomal stability in a drug delivery context. Overall, our findings suggest that it is crucial for researchers to evaluate the stability of their FLL-labeled liposomes in biological environments, and the simplicity of the SEC assay put forward here makes it very applicable for the purpose.
Collapse
Affiliation(s)
- Rasmus Münter
- Department of Micro- and Nanotechnology (DTU Nanotech), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
134
|
Role of oligo(malic acid) on the formation of unilamellar vesicles. J Colloid Interface Sci 2018; 532:782-789. [DOI: 10.1016/j.jcis.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 11/22/2022]
|
135
|
Yaroslavov AA, Sybachin AV, Sandzhieva AV, Zaborova OV. Multifunctional Containers from Anionic Liposomes and Cationic Polymers/Colloids. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
136
|
Kobauri S, Otinashvili G, Kantaria T, Tugushi D, Kharadze D, Kutsiava N, Puiggali J, Katsarava R. New amino acid based biodegradable poly(ester amide)s via bis-azlactone chemistry. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1513776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sophio Kobauri
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
- Centre for Medical Biotechnology and Bioengineering, Georgian Technical University, Tbilisi, Georgia
| | - Giuli Otinashvili
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Tengiz Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - David Tugushi
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Darejan Kharadze
- Centre for Medical Biotechnology and Bioengineering, Georgian Technical University, Tbilisi, Georgia
| | - Nazi Kutsiava
- Centre for Medical Biotechnology and Bioengineering, Georgian Technical University, Tbilisi, Georgia
| | - Jordi Puiggali
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
- Centre for Medical Biotechnology and Bioengineering, Georgian Technical University, Tbilisi, Georgia
| |
Collapse
|
137
|
Wang L, Niu M, Zheng C, Zhao H, Niu X, Li L, Hu Y, Zhang Y, Shi J, Zhang Z. A Core-Shell Nanoplatform for Synergistic Enhanced Sonodynamic Therapy of Hypoxic Tumor via Cascaded Strategy. Adv Healthc Mater 2018; 7:e1800819. [PMID: 30303621 DOI: 10.1002/adhm.201800819] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Indexed: 01/01/2023]
Abstract
Sonodynamic therapy (SDT) always causes tumor hypoxia aggravation which can induce malignant cell proliferation and drug resistance. To overcome these disadvantages, a cascaded drug delivery system (Lipo/HMME/ACF@MnO2 -AS1411) is constructed for synergistic enhanced sonodynamic therapy. First, hematoporphyrin monomethyl ether (HMME) and acriflavine (ACF) are encapsulated in the lipid layers and the inner aqueous cores of the liposomes, respectively. Then the ultrathin manganese dioxide (MnO2 ) nanosheets are coated on the surface of the liposomes by using KMnO4 and polyethylene glycol through "one step reduction and modification" method. Furthermore, the nanoparticles are decorated with tumor-targeting AS1411 aptamer through the phosphate groups on the DNA strand which can bind to Mn sites to obtain Lipo/HMME/ACF@MnO2 -AS1411 delivery system. Herein, HMME can act as a sonosensitizer, and ACF is used to prevent the formation of HIF-1α/HIF-1β dimerization to overcome the negative effects after SDT. The Lipo/HMME/ACF@MnO2 -AS1411 delivery system has multiple functions, including codelivery of HMME and ACF, pH/glutathione/ultrasound triple responses, synergistic cascaded enhancement of SDT, precise tumor-targeting, and magnetic resonance imaging. The in vitro and in vivo results suggest that the Lipo/HMME/ACF@MnO2 -AS1411 delivery system is a promising core-shell nanoplatform for synergistic enhancement of sonodynamic therapy, which can provide a new approach in the related research fields.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Cuixia Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiuxiu Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Li Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yujie Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yingjie Zhang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
138
|
Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci 2018; 260:65-84. [PMID: 30177214 DOI: 10.1016/j.cis.2018.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Blood transfusions, which usually consist in the administration of isolated red blood cells (RBCs), are crucial in traumatic injuries, pre-surgical conditions and anemias. Although RBCs transfusion from donors is a safe procedure, donor RBCs can only be stored for a maximum of 42 days under refrigerated conditions and, therefore, stockpiles of RBCs for use in acute disasters do not exist. With a worldwide shortage of donor blood that is expected to increase over time, the creation of oxygen-carriers with long storage life and compatibility without typing and cross-matching, persists as one of the foremost important challenges in biomedicine. However, research has so far failed to produce FDA approved RBCs substitutes (RBCSs) for human usage. As such, due to unacceptable toxicities, the first generation of oxygen-carriers has been withdrawn from the market. Being hemoglobin (Hb) the main component of RBCs, a lot of effort is being devoted in assembling semi-synthetic RBCS utilizing Hb as the oxygen-carrier component, the so-called Hb-based oxygen carriers (HBOCs). However, a native RBC also contains a multi-enzyme system to prevent the conversion of Hb into non-functional methemoglobin (metHb). Thus, the challenge for the fabrication of next-generation HBOCs relies in creating a system that takes advantage of the excellent oxygen-carrying capabilities of Hb, while preserving the redox environment of native RBCs that prevents or reverts the conversion of Hb into metHb. In this review, we feature the most recent advances in the assembly of the new generation of HBOCs with emphasis in two main approaches: the chemical modification of Hb either by cross-linking strategies or by conjugation to other polymers, and the Hb encapsulation strategies, usually in the form of lipidic or polymeric capsules. The applications of the aforementioned HBOCs as blood substitutes or for oxygen-delivery in tissue engineering are highlighted, followed by a discussion of successes, challenges and future trends in this field.
Collapse
|
139
|
Li T, Cipolla D, Rades T, Boyd BJ. Drug nanocrystallisation within liposomes. J Control Release 2018; 288:96-110. [DOI: 10.1016/j.jconrel.2018.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/01/2018] [Accepted: 09/01/2018] [Indexed: 12/29/2022]
|
140
|
Dos Santos Rodrigues B, Oue H, Banerjee A, Kanekiyo T, Singh J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release 2018; 286:264-278. [PMID: 30071253 PMCID: PMC6138570 DOI: 10.1016/j.jconrel.2018.07.043] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022]
Abstract
Gene therapy has become a promising approach for neurodegenerative disease treatment, however there is an urgent need to develop an efficient gene carrier to transport gene across the blood brain barrier (BBB). In this study, we strategically designed dual functionalized liposomes for efficient neuronal transfection by combining transferrin (Tf) receptor targeting and enhanced cell penetration utilizing penetratin (Pen). A triple cell co-culture model of BBB confirmed the ability of the liposomes to cross the barrier layer and transfect primary neuronal cells. In vivo quantification of PenTf-liposomes demonstrated expressive accumulation in the brain (12%), without any detectable cellular damage or morphological change. The efficacy of these nanoparticles containing plasmid β-galactosidase in modulating transfection was assessed by β-galactosidase expression in vivo. As a consequence of accumulation in the brain, PenTf-liposomes significantly induced gene expression in mice. Immunofluorescence studies of brain sections of mice after tail vein injection of liposomes encapsulating pDNA encoding GFP (pGFP) illustrate the superior ability of dual-functionalized liposomes to accumulate in the brain and transfect neurons. Taken together, the multifunctional liposomes provide an excellent gene delivery platform for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
141
|
Schuh RS, Bidone J, Poletto E, Pinheiro CV, Pasqualim G, de Carvalho TG, Farinon M, da Silva Diel D, Xavier RM, Baldo G, Matte U, Teixeira HF. Nasal Administration of Cationic Nanoemulsions as Nucleic Acids Delivery Systems Aiming at Mucopolysaccharidosis Type I Gene Therapy. Pharm Res 2018; 35:221. [PMID: 30259180 DOI: 10.1007/s11095-018-2503-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE This study demonstrates the nasal administration (NA) of nanoemulsions complexed with the plasmid encoding for IDUA protein (pIDUA) as an attempt to reach the brain aiming at MPS I gene therapy. METHODS Formulations composed of DOPE, DOTAP, MCT (NE), and DSPE-PEG (NE-PEG) were prepared by high-pressure homogenization, and assessed in vitro on human fibroblasts from MPS I patients and in vivo on MPS I mice for IDUA production and gene expression. RESULTS The physicochemical results showed that the presence of DSPE-PEG in the formulations led to smaller and more stable droplets even when submitted to dilution in simulated nasal medium (SNM). In vitro assays showed that pIDUA/NE-PEG complexes were internalized by cells, and led to a 5% significant increase in IDUA activity, besides promoting a two-fold increase in IDUA expression. The NA of pIDUA/NE-PEG complexes to MPS I mice demonstrated the ability to reach the brain, promoting increased IDUA activity and expression in this tissue, as well as in kidney and spleen tissues after treatment. An increase in serum IL-6 was observed after treatment, although with no signs of tissue inflammatory infiltrate according to histopathology and CD68 assessments. CONCLUSIONS These findings demonstrated that pIDUA/NE-PEG complexes could efficiently increase IDUA activity in vitro and in vivo after NA, and represent a potential treatment for the neurological impairment present in MPS I patients.
Collapse
Affiliation(s)
- Roselena Silvestri Schuh
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.,Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Juliana Bidone
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Edina Poletto
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | | | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Talita Giacomet de Carvalho
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Mirian Farinon
- Reumathology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Dirnete da Silva Diel
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | | | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.,Genetics and Molecular Biology Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Pharmaceutical Sciences Graduate Program, UFRGS, Avenida Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
142
|
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 2018; 9:2066. [PMID: 30298054 PMCID: PMC6160567 DOI: 10.3389/fmicb.2018.02066] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | | | | |
Collapse
|
143
|
Intra-articular nonviral gene therapy in mucopolysaccharidosis I mice. Int J Pharm 2018; 548:151-158. [DOI: 10.1016/j.ijpharm.2018.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 11/23/2022]
|
144
|
Antes TJ, Middleton RC, Luther KM, Ijichi T, Peck KA, Liu WJ, Valle J, Echavez AK, Marbán E. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology 2018; 16:61. [PMID: 30165851 PMCID: PMC6116387 DOI: 10.1186/s12951-018-0388-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and exosomes are nano-sized, membrane-bound vesicles shed by most eukaryotic cells studied to date. EVs play key signaling roles in cellular development, cancer metastasis, immune modulation and tissue regeneration. Attempts to modify exosomes to increase their targeting efficiency to specific tissue types are still in their infancy. Here we describe an EV membrane anchoring platform termed "cloaking" to directly embed tissue-specific antibodies or homing peptides on EV membrane surfaces ex vivo for enhanced vesicle uptake in cells of interest. The cloaking system consists of three components: DMPE phospholipid membrane anchor, polyethylene glycol spacer and a conjugated streptavidin platform molecule, to which any biotinylated molecule can be coupled for EV decoration. RESULTS We demonstrate the utility of membrane surface engineering and biodistribution tracking with this technology along with targeting EVs for enhanced uptake in cardiac fibroblasts, myoblasts and ischemic myocardium using combinations of fluorescent tags, tissue-targeting antibodies and homing peptide surface cloaks. We compare cloaking to a complementary approach, surface display, in which parental cells are engineered to secrete EVs with fusion surface targeting proteins. CONCLUSIONS EV targeting can be enhanced both by cloaking and by surface display; the former entails chemical modification of preformed EVs, while the latter requires genetic modification of the parent cells. Reduction to practice of the cloaking approach, using several different EV surface modifications to target distinct cells and tissues, supports the notion of cloaking as a platform technology.
Collapse
Affiliation(s)
- Travis J. Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Ryan C. Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Kristin M. Luther
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Takeshi Ijichi
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Kiel A. Peck
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Weixin Jane Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Jackie Valle
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Antonio K. Echavez
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Los Angeles, CA 90048 USA
| |
Collapse
|
145
|
Gaspar R, Pallbo J, Weininger U, Linse S, Sparr E. Ganglioside lipids accelerate α-synuclein amyloid formation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:S1570-9639(18)30116-X. [PMID: 30077783 PMCID: PMC6121081 DOI: 10.1016/j.bbapap.2018.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/05/2018] [Accepted: 07/20/2018] [Indexed: 11/26/2022]
Abstract
The deposition of α-synuclein fibrils is one hallmark of Parkinson's disease. Here, we investigate how ganglioside lipids, present in high amounts in neurons and exosomes, influence the aggregation kinetics of α-synuclein. Gangliosides, as well as, other anionic lipid species with small or large headgroups were found to induce conformational changes of α-synuclein monomers and catalyse their aggregation at mildly acidic conditions. Although the extent of this catalytic effect was slightly higher for gangliosides, the results imply that charge interactions are more important than headgroup chemistry in triggering aggregation. In support of this idea, uncharged lipids with large headgroups were not found to induce any conformational change and only weakly catalyse aggregation. Intriguingly, aggregation was also triggered by free ganglioside headgroups, while these caused no conformational change of α-synuclein monomers. Our data reveal that partially folded α-synuclein helical intermediates are not required species in triggering of α-synuclein aggregation.
Collapse
Affiliation(s)
- Ricardo Gaspar
- Departments of Physical-Chemistry, Lund University, Sweden; Biochemistry and Structural Biology, Lund University, Sweden
| | - Jon Pallbo
- Departments of Physical-Chemistry, Lund University, Sweden
| | - Ulrich Weininger
- Institute of Physics, Martin-Luther-University Halle-Wittenberg, Germany
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Sweden
| | - Emma Sparr
- Departments of Physical-Chemistry, Lund University, Sweden.
| |
Collapse
|
146
|
Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption. Nat Commun 2018; 9:2982. [PMID: 30061672 PMCID: PMC6065320 DOI: 10.1038/s41467-018-05384-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Targeting ligands are anticipated to facilitate the precise delivery of therapeutic agents to diseased tissues; however, they may also severely affect the interaction of nanocarriers with plasma proteins. Here, we study the immunocompatibility of brain-targeted liposomes, which inversely correlates with absorbed natural IgM. Modification of long, stable positively charged peptide ligands on liposomes is inclined to absorb natural IgM, leading to rapid clearance and enhanced immunogenicity. Small peptidomimetic D8 developed by computer-aided peptide design exhibits improved immunocompatibility by attenuating natural IgM absorption. The present study highlights the effects of peptide ligands on the formed protein corona and in vivo fate of liposomes. Stable positively charged peptide ligands play double-edged roles in targeted delivery, preserving in vivo bioactivities for binding receptors and long-term unfavorable interactions with the innate immune system. The development of D8 provides insights into how to rationally design immunocompatible drug delivery systems by modulating the protein corona composition. Targeting ligands on drug carriers can trigger immune responses. Here, the authors modify liposomes with a peptidomimetic that preserves bioactivity of the nanocarrier in blood circulation and attenuates IgM absorption, thereby improving the immunocompatibility of brain-targeted liposomes.
Collapse
|
147
|
Lakkadwala S, Singh J. Dual Functionalized 5-Fluorouracil Liposomes as Highly Efficient Nanomedicine for Glioblastoma Treatment as Assessed in an In Vitro Brain Tumor Model. J Pharm Sci 2018; 107:2902-2913. [PMID: 30055226 DOI: 10.1016/j.xphs.2018.07.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Drug delivery to the brain has been a major challenge due to the presence of the blood-brain barrier, which limits the uptake of most chemotherapeutics into brain. We developed a dual-functionalized liposomal delivery system, conjugating cell penetrating peptide penetratin to transferrin-liposomes (Tf-Pen-conjugated liposomes) to enhance the transport of an anticancer chemotherapeutic drug, 5-fluorouracil (5-FU), across the blood-brain barrier into the tumor cells. The in vitro cellular uptake study showed that the dual-functionalized liposomes are capable of higher cellular uptake in glioblastoma (U87) and brain endothelial (bEnd.3) cells monolayer. In addition, dual-functionalized liposomes demonstrated significantly higher apoptosis in U87 cells. The liposomal nanoparticles showed excellent blood compatibility and in vitro cell viability, as studied by hemolysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. The 5-FU-loaded dual-functionalized liposomes demonstrated higher transport across the brain endothelial barrier and delivered 5-FU to tumor cells inside poly(lactic-co-glycolic acid)-chitosan scaffold (an in vitro brain tumor model), resulting in significant tumor regression.
Collapse
Affiliation(s)
- Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105.
| |
Collapse
|
148
|
Abraham T, Mao M, Tan C. Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys Biol 2018; 15:061001. [DOI: 10.1088/1478-3975/aac7a2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
149
|
Schuh RS, Poletto É, Fachel FNS, Matte U, Baldo G, Teixeira HF. Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: Implications for CRISPR/Cas technology. J Colloid Interface Sci 2018; 530:243-255. [PMID: 29982016 DOI: 10.1016/j.jcis.2018.06.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the effects of the association of a single plasmid or its co-complexation along with an oligonucleotide on the physicochemical properties of cationic nanoemulsions and liposomes intended for gene editing. Formulations composed of DOPE, DOTAP, DSPE-PEG (liposomes), MCT (nanoemulsions), and water were obtained by microfluidization. DSPE-PEG was found to play a crucial role on the size and polydispersity index of nanocarriers. Nucleic acids were complexated by adsorption at different charge ratios. No significant differences were noticed in the physicochemical properties of nanocarriers (i.e. droplet size, polydispersity index, or zeta potential) when a single plasmid or both plasmid and oligonucleotide were adsorbed to the formulations. Transmission electron microscopy photomicrographs suggested round nanostructures with the nucleic acids and DSPE-PEG enfolding the surface. Complexes at +4/-1 charge ratio protected nucleic acids against DNase I degradation. The oligonucleotide seemed to be released from the liposomal complexes, while nanoemulsions only released the plasmid after 24 and 48 h of incubation in DMEM supplemented or not. In vitro experiments demonstrated that complexes were highly tolerable to human fibroblasts, Hep-G2, and HEK-293 cells, demonstrating also an uptake ability of about 30%, 30%, and 90%, respectively, no matter what the formulation or the combination of nucleic acids used. Transfection efficiency of the formulations was around 25% in human fibroblasts, 32% in HEK-293, and 15% in Hep-G2 cells. The overall results demonstrated the behavior of liposomes and nanoemulsions complexed with a plasmid or a mixture of a plasmid and an oligonucleotide, and demonstrated that the association with one or two nucleic acids sequences of different length does not seem to interfere in the physicochemical characteristics of complexes or in the uptake capacity by three different types of cells.
Collapse
Affiliation(s)
- Roselena S Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Édina Poletto
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Flávia N S Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil; Centro de Terapia Gênica - Hospital de Clinicas de Porto Alegre, R. Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Helder F Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
150
|
Barattin M, Mattarei A, Balasso A, Paradisi C, Cantù L, Del Favero E, Viitala T, Mastrotto F, Caliceti P, Salmaso S. pH-Controlled Liposomes for Enhanced Cell Penetration in Tumor Environment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17646-17661. [PMID: 29737834 DOI: 10.1021/acsami.8b03469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An innovative pH-switchable colloidal system that can be exploited for site-selective anticancer drug delivery has been generated by liposome decoration with a new novel synthetic non-peptidic oligo-arginine cell-penetration enhancer (CPE) and a quenching PEGylated counterpart that detaches from the vesicle surface under the acidic conditions of tumors. The CPE module ( Arg4- DAG) is formed by four arginine units conjugated to a first-generation (G1) 2,2-bis(hydroxymethyl)propionic acid (bis-MPA)/2,2-bis(aminomethyl)propionic acid (bis-AMPA) polyester dendron terminating with 1,2-distearoyl-3-azidopropane for liposome bilayer insertion. The zeta potential of the Arg4- DAG-decorated liposomes increased up to +32 mV as the Arg4- DAG/lipids molar ratio increased. The Arg4- DAG liposome shielding at pH 7.4 was provided by methoxy-PEG5 kDa-polymethacryloyl sulfadimethoxine (mPEG5 kDa-SDM8) with 7.1 apparent p Ka. Zeta potential, surface plasmon resonance and synchrotron small-angle X-ray scattering analyses showed that at pH 7.4 mPEG5 kDa-SDM8 associates with polycationic Arg4- DAG-decorated liposomes yielding liposomes with neutral zeta potential. At pH 6.5, which mimics the tumor environment, mPEG5 kDa-SDM8 detaches from the liposome surface yielding Arg4- DAG exposure. Flow cytometry and confocal microscopy showed a 30-fold higher HeLa cancer cell association of the Arg4- DAG-decorated liposomes compared to non-decorated liposomes. At pH 7.4, the mPEG5 kDa-SDM8-coated liposomes undergo low cell association while remarkable cell association occurred at pH 6.5, which allowed for the controlled intracellular delivery of model macromolecules and small molecules loaded in the liposome under tumor conditions.
Collapse
Affiliation(s)
- Michela Barattin
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Andrea Mattarei
- Department of Chemical Sciences , University of Padova , Via F. Marzolo 1 , Padova 35131 , Italy
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Cristina Paradisi
- Department of Chemical Sciences , University of Padova , Via F. Marzolo 1 , Padova 35131 , Italy
| | - Laura Cantù
- Department of Medical Biotechnologies and Traslational Medicine , University of Milano , LITA, Via F.lli Cervi, 93 , Segrate 20090 , Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Traslational Medicine , University of Milano , LITA, Via F.lli Cervi, 93 , Segrate 20090 , Italy
| | - Tapani Viitala
- Centre for Drug Research and Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , Viikinkaari 5 , Helsinki FI-00014 , Finland
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| |
Collapse
|