101
|
Sang R, Yu Y, Ge B, Xu L, Wang Z, Zhang X. Taraxasterol from Taraxacum prevents concanavalin A-induced acute hepatic injury in mice via modulating TLRs/NF-κB and Bax/Bc1-2 signalling pathways. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3929-3937. [DOI: 10.1080/21691401.2019.1671433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Sang
- Department of Animal Medicine, Agricultural College of Yanbian University, Yanji, Jilin, China
| | - Yifan Yu
- Department of Animal Medicine, Agricultural College of Yanbian University, Yanji, Jilin, China
| | - Bingjie Ge
- Department of Animal Medicine, Agricultural College of Yanbian University, Yanji, Jilin, China
| | - Lu Xu
- Department of Animal Medicine, Agricultural College of Yanbian University, Yanji, Jilin, China
| | - Zheng Wang
- Department of Animal Medicine, Agricultural College of Yanbian University, Yanji, Jilin, China
| | - Xuemei Zhang
- Department of Animal Medicine, Agricultural College of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
102
|
Shi W, Shao T, Li JY, Fan DD, Lin AF, Xiang LX, Shao JZ. BTLA-HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2019; 203:2425-2442. [PMID: 31562209 DOI: 10.4049/jimmunol.1900458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
103
|
Elshal M, Abu-Elsaad N, El-Karef A, Ibrahim T. Retinoic acid modulates IL-4, IL-10 and MCP-1 pathways in immune mediated hepatitis and interrupts CD4+ T cells infiltration. Int Immunopharmacol 2019; 75:105808. [PMID: 31419710 DOI: 10.1016/j.intimp.2019.105808] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 08/04/2019] [Indexed: 12/11/2022]
Abstract
AIMS Immune mediated liver injury includes activation of different immune pathways that requires various modalities to control their consequences. The current study involves evaluation of retinoic acid (RA) modulatory effects on immune responses induced in concanavalin A (ConA) model of acute hepatitis. MAIN METHODS Mice were divided as follows: Control group; RA group: received 35 mg/kg RA; ConA group: received 15 mg/kg ConA; ConA + RA group: received ConA and RA as described. Liver function biomarkers were measured in addition to malondialdehyde as lipid peroxidation biomarker. Liver tissue sections were scored for necro-inflammation, neutrophils infiltration, CD4+ T cells infiltration and NF-κb positive cells. Effect on hepatic levels of TNF-α, IL-4, IL-10 and MCP-1 was evaluated as well. KEY FINDINGS Injection of RA before ConA significantly (p < 0.001) decreased ALT, AST and LDH levels compared to their levels in ConA group. Hepatic infiltration of neutrophils and CD4+ T cells was markedly (p < 0.001) reduced by RA. Hepatic injury, necrosis and expression of NF-κb were significantly decreased by RA when injected before ConA challenge. A significant decrease in the measured cytokines TNF-α and IL-4 was observed in ConA + RA group in addition to a decrease in MCP-1 level. On the other hand, IL-10 was significantly increased in the latter group compared to ConA group. SIGNIFICANCE RA can protect against ConA-induced hepatitis through: interrupting early inflammatory response as neutrophils, monocytes and CD4+ T cells infiltration, modulating IL-4 level and subsequent production of TNF-α and NF-κb activation, mitigating second inflammatory responses through increasing IL-10 liver production.
Collapse
Affiliation(s)
- Mahmoud Elshal
- Pharmacology and Toxicology Dep. Faculty of Pharmacy, Mansoura University, Egypt
| | - Nashwa Abu-Elsaad
- Pharmacology and Toxicology Dep. Faculty of Pharmacy, Mansoura University, Egypt.
| | - Amr El-Karef
- Pathology Dep. Faculty of Medicine, Mansoura University, Egypt
| | - Tarek Ibrahim
- Pharmacology and Toxicology Dep. Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
104
|
Liu Y, Liu H, Zhu J, Bian Z. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis. Pathol Res Pract 2019; 215:152493. [DOI: 10.1016/j.prp.2019.152493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/22/2019] [Accepted: 06/08/2019] [Indexed: 01/16/2023]
|
105
|
Magnesium isoglycyrrhizinate protects against concanavalin A-induced immunological liver injury in a mouse model. REV ROMANA MED LAB 2019. [DOI: 10.2478/rrlm-2019-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Background: To evaluate the protective effects of magnesium isoglycyrrhizinate on a mouse model of concanavalin A (ConA)-induced immunological liver injury. Materials and Methods: Forty-eight mice were randomly divided into a normal control group, a model group, three dose groups of magnesium isoglycyrrhizinate (12.5, 25, 50 mg/kg) and a dexamethasone group (2.5 mg/kg). Magnesium isoglycyrrhizinate was intraperitoneally injected for 5 consecutive days, and the model of immunological liver injury was established on the fifth day after caudal vein injection of ConA (20 mg/kg). Blood was collected to detect the activities of alanine transaminase (ALT) and aspartate transaminase (AST) as well as the levels of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). The levels of neopterin (NP) and malondialdehyde (MDA) and the activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) in liver tissues were measured, and histopathological changes were observed. Results: The serum levels of ALT and AST in the model group increased. Hepatic lobules had necrotic foci and inflammatory cell infiltration. The plasma levels of TNF-α and IFN-γ increased. In liver tissues, the levels of NP, MDA and MPO rose, but that of SOD decreased. Magnesium isoglycyrrhizinate significantly attenuated the activities of ALT and AST (P<0.05). Histopathological staining showed that inflammation of the liver was relieved significantly. Magnesium isoglycyrrhizinate also decreased the levels of NP, MDA and MPO in liver tissues (P<0.05), raised that of SOD and reduced the plasma levels of TNF-α and IFN-γ (P<0.05). Conclusion: Magnesium isoglycyrrhizinate protected against ConA-induced immunological liver injury in mice, probably through immune regulation and antioxidation.
Collapse
|
106
|
Elsaed WM. Amygdalin (Vitamin B17) pretreatment attenuates experimentally induced acute autoimmune hepatitis through reduction of CD4+ cell infiltration. Ann Anat 2019; 224:124-132. [DOI: 10.1016/j.aanat.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
107
|
Preclinical studies of a death receptor 5 fusion protein that ameliorates acute liver failure. J Mol Med (Berl) 2019; 97:1247-1261. [PMID: 31230087 DOI: 10.1007/s00109-019-01813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) is a life-threatening disease with a high mortality rate. There is an urgent need to develop new drugs with high efficacy and low toxicity. In this study, we produced a pharmaceutical-grade soluble death receptor 5 (sDR5)-Fc fusion protein for treating ALF and evaluated the pharmacology, safety, pharmacokinetics, efficacy, and mechanisms of sDR5-Fc in mice, rats, and cynomolgus monkeys. sDR5-Fc bound with high affinity to both human and monkey tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively blocked TRAIL-induced apoptosis in vitro and significantly ameliorated ALF induced by concanavalin A (Con A) in mice. Mechanistically, sDR5-Fc inhibited hepatocyte death and reduced inflammation in vivo. Furthermore, sDR5-Fc attenuated the production of inflammatory cytokines by splenocytes activated with Con A or an anti-CD3 antibody in vitro. Consistent with these results, splenocytes from TRAIL-/- mice produced much lower levels of inflammatory cytokines than those from TRAIL+/+ mice. In cynomolgus monkeys, sDR5-Fc was safe and well tolerated when intravenously administered as a single dose of up to 1200 mg/kg or multiple doses of 100 mg/kg. After treatment with a single dose, linear pharmacokinetics with a mean half-life of > 1.9 days were observed. After 12 weekly doses, sDR5-Fc exposure increased in an approximately dose-proportional manner, and the mean accumulation ratio ranged from 1.82- to 2.11-fold. These results support further clinical development of our sDR5-Fc protein as the first TRAIL-targeting drug for ALF treatment. KEY MESSAGES: sDR5-Fc binds with high affinity to TRAIL to effectively block TRAIL-induced apoptosis. sDR5-Fc ameliorates Con A-induced acute liver failure in mice by inhibiting hepatocyte death and inflammation. sDR5-Fc or TRAIL knockout attenuates the production of inflammatory cytokines by activated splenocytes in vitro. sDR5-Fc is safe and well tolerated in acute or long-term toxicity study.
Collapse
|
108
|
Zhao J, Tuersunmaimaiti M, Ji T, Liu T, Xu F. Hepatoprotective activity of isostrictiniin from Nymphaea candida on Con A-induced acute liver injury in mice. Nat Prod Res 2019; 35:1662-1666. [PMID: 31198052 DOI: 10.1080/14786419.2019.1622105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study is to investigate hepatoprotective activity of isostrictiniin from Nymphaea candida. Hepatic injury in mice was induced immunologically by caudal vein injecting Con A (20 mg/kg) on tenth day of isostrictiniin (25, 50, or 100 mg/kg) intragastric administration. The results demonstrated that pretreatment with isostrictiniin significantly and dose-dependently prevented increase of serum AST and ALT induced by Con A (P < 0.05). Isostrictiniin significantly reduced the levels of MDA and NO in the liver tissue and restored activities of antioxidant enzymes SOD and GSH compared with model group (P < 0.05). Furthermore, the increase of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-18 levels were significantly suppressed by isostrictiniin pretreatment compared with model group (P < 0.05). Histopathological analysis showed that isostrictiniin attenuated the hepatocellular necrosis and reduction of inflammatory cells infiltration. The results indicates that preventive effect of isostrictiniin on acute liver injury may be attributed to its antioxidative and immunomodulatory activities.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi, China
| | | | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- Department of Toxicology, School of Public Health, Xinjiang Medical Unversity, Urumqi, China
| | - Fang Xu
- Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi, China
| |
Collapse
|
109
|
Muneoka S, Goto M, Nishimura T, Enomoto K, Kadoshima-Yamaoka K, Tomimori Y. G Protein-Coupled Receptor 39 Agonist Improves Concanavalin A-Induced Hepatitis in Mice. Biol Pharm Bull 2019; 42:1415-1418. [PMID: 31167986 DOI: 10.1248/bpb.b18-00982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The protective effects of G protein-coupled receptor 39 (GPR39) on concanavalin A (Con A)-induced hepatitis in mice was examined. In a dose dependent manner and at 24 h after the elicitation by Con A, oral administration of TC-G 1008, a GPR39 agonist, reduced both, the glutamic-pyruvic transaminase levels (a marker for liver injury) and the necrosis area, as revealed by the histological analysis of tissues from mice with Con A-induced hepatitis. TC-G 1008 also suppressed serum interleukin (IL)-6 and tumor necrosis factor (TNF)-α significantly at 6 h after the elicitation, suggesting that the cells producing IL-6 and/or TNF-α are the targets of TC-G 1008. One potential target cell appears to be a monocyte-derived macrophages because TC-G 1008 treatment suppressed lipopolysaccharide-induced IL-6 production from U937 macrophages in vitro. Taken together, GPR39 agonist TC-G 1008 ameliorates liver injury in the Con A model by blocking pro-inflammatory cytokine production. Use of GPR39 agonists for monotherapy or in combination with immunosuppressants might prove to be beneficial in the treatment of autoimmune hepatitis.
Collapse
|
110
|
Ji W, Peng X, Lou T, Wang J, Qiu W. Total flavonoids from Tetrastigma hemsleyanum ameliorates inflammatory stress in concanavalin A-induced autoimmune hepatitis mice by regulating Treg/Th17 immune homeostasis. Inflammopharmacology 2019; 27:1297-1307. [DOI: 10.1007/s10787-019-00599-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
|
111
|
Yang J, Wang B, Zhang CF, Xu XH, Zhang M. A C 21-Steroidal Glycoside from Cynanchum atratum Attenuates Concanavalin A-Induced Liver Injury in Mice. Molecules 2019; 24:molecules24061087. [PMID: 30893870 PMCID: PMC6471381 DOI: 10.3390/molecules24061087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cynatratoside A (CyA) is a C21 Steroidal glycoside with pregnane skeleton isolated from the root of Cynanchum atratum Bunge (Asclepiadaceae). This study aimed to investigate the effects of CyA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) and the underlying mechanism. CyA was orally administered to mice at 10 and 40 mg/kg 8 h before and 1 h after Con A treatment. The effects of CyA on Con A-induced spleen and liver in mice were assessed via histopathological changes, T lymphocyte amounts and the expressions of IL-1β and ICAM-1. Con A-induced L-02 hepatocytes were used to evaluate whether CyA (0.1–10 μM) can directly protect hepatocytes from cytotoxicity and the possible mechanism. The results revealed that CyA treatment could significantly improve the histopathological changes of spleen and liver, reduce the proliferation of splenic T lymphocytes, and decrease the expressions of IL-1β and ICAM-1 in liver. The experiment in vitro showed that CyA inhibited Con A-induced hepatotoxicity in a concentration-dependent manner. CyA (10 μM) significantly increased/decreased the expression of Bcl-2/Bax and reduced the levels of cleaved caspases-9 and -3. Our study demonstrated for the first time that CyA has a significant protective effect on Con A-induced AIH by inhibiting the activation and adhesion of T lymphocytes and blocking hepatocyte apoptosis.
Collapse
Affiliation(s)
- Jian Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Bin Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chao-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiang-Hong Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Mian Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
112
|
Bi Y, Li J, Yang Y, Wang Q, Wang Q, Zhang X, Dong G, Wang Y, Duan Z, Shu Z, Liu T, Chen Y, Zhang K, Hong F. Human liver stem cells attenuate concanavalin A-induced acute liver injury by modulating myeloid-derived suppressor cells and CD4 + T cells in mice. Stem Cell Res Ther 2019; 10:22. [PMID: 30635035 PMCID: PMC6330470 DOI: 10.1186/s13287-018-1128-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a serious threat to the life of people all over the world. Finding an effective way to manage ALF is important. Human liver stem cells (HLSCs) are early undifferentiated cells that have been implicated in the regeneration and functional reconstruction of the liver. In this study, we aimed to evaluate the protective effects of the HLSC line HYX1 against concanavalin A (ConA)-induced acute liver injury. METHODS HYX1 cells were characterized by microscopy, functional assays, gene expression, and western blot analyses. We showed that HYX1 cells can differentiate into hepatocytes. We intraperitoneally injected HYX1 cells in mice and administered ConA via caudal vein injection 3, 6, 12, 24, and 48 h later. The effects of HYX1 cell transplantation were evaluated through blood tests, histology, and flow cytometry. RESULTS HYX1 cells reduced the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) in serum and dramatically decreased the severity of liver injuries. Mechanistically, HYX1 cells promoted myeloid-derived suppressor cell (MDSC) migration into the spleen and liver, while reducing CD4+ T cell levels in both tissues. In addition, HYX1 cells suppressed the secretion of proinflammatory cytokines, such as tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), but led to increased interleukin-10 (IL-10) production. CONCLUSIONS These results confirm the efficacy of HLSCs in the prevention of the ConA-induced acute liver injury through modulation of MDSCs and CD4+ T cell migration and cytokine secretion.
Collapse
Affiliation(s)
- Yanzhen Bi
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069 People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Yonghong Yang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Quanyi Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Quanquan Wang
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaobei Zhang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, People’s Republic of China
| | - Yibo Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069 People’s Republic of China
| | - Zhenfeng Shu
- Shanghai Meifeng Biotechnology Co., Ltd, Shanghai, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Yu Chen
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069 People’s Republic of China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| |
Collapse
|
113
|
Almishri W, Shaheen AA, Sharkey KA, Swain MG. The Antidepressant Mirtazapine Inhibits Hepatic Innate Immune Networks to Attenuate Immune-Mediated Liver Injury in Mice. Front Immunol 2019; 10:803. [PMID: 31031775 PMCID: PMC6474187 DOI: 10.3389/fimmu.2019.00803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Activation of the innate immune system, including tissue macrophages and associated neutrophil infiltration, is an important driver of subsequent adaptive immune responses in many autoimmune diseases, including autoimmune hepatitis (AIH). The antidepressant mirtazapine has a unique complex pharmacology, altering signaling through a number of serotonin and histamine receptors that can impact macrophage function; an effect potentially influencing AIH outcome. In the mouse model of concanavalin A (Con A) induced liver injury (mimics many aspects of human AIH), in which early innate immune activation (i.e., stimulated hepatic macrophages/monocytes recruit neutrophils and additional monocytes to the liver) critically drives immune-mediated hepatitis induction, mirtazapine strikingly and dose-dependently inhibited Con A-induced liver injury. This inflammation-suppressing effect of mirtazapine was linked to an attenuation of Con A-stimulated early innate immune responses within the liver, including inhibition of hepatic macrophage/monocyte activation, decreased hepatic macrophage/monocyte-derived pro-inflammatory cytokine (e.g., TNFα) and chemokine (e.g., CXCL1 and CXCL2) production, suppression of Con A-induced increases in the hepatic expression of the neutrophil relevant endothelial cell adhesion molecule ICAM-1, with the resultant significant reduction in neutrophil recruitment into the liver. Consistent with our findings in the Con A model, mirtazapine also significantly reduced activation-induced release of cytokine/chemokine mediators from human CD14+ monocytes in vitro. Conclusion: Our data suggest that mirtazapine can attenuate hepatic innate immune responses that critically regulate the subsequent development of autoimmune liver injury. Therefore, given that it is a safe and widely used medication, mirtazapine may represent a novel therapeutic approach to autoimmune liver disease.
Collapse
Affiliation(s)
- Wagdi Almishri
- Liver Unit, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada
| | - Abdel Aziz Shaheen
- Liver Unit, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada
| | - Keith A. Sharkey
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mark G. Swain
- Liver Unit, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada
- *Correspondence: Mark G. Swain
| |
Collapse
|
114
|
Wu J, Li M, He J, Lv K, Wang M, Guan W, Liu J, Tao Y, Li S, Ho CT, Zhao H. Protective effect of pterostilbene on concanavalin A-induced acute liver injury. Food Funct 2019; 10:7308-7314. [DOI: 10.1039/c9fo01405e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pterostilbene (PTE) is broadly found in berries and has antioxidant and anti-inflammatory properties.
Collapse
|
115
|
Lepidium meyenii Walp Exhibits Anti-Inflammatory Activity against ConA-Induced Acute Hepatitis. Mediators Inflamm 2018; 2018:8982756. [PMID: 30647537 PMCID: PMC6311815 DOI: 10.1155/2018/8982756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Strong inflammation is a prominent pathogenesis of acute hepatitis, which can induce hepatocyte death and lead to liver failure. Lepidium meyenii Walp (Maca) is a traditional herbal medicine mostly used in improving sperm motility and serum hormone levels, etc. However, there are no reports that showed Maca was designed for treating hepatitis so far. Therefore, the protective effects and pharmacological mechanisms of Maca are unknown in hepatitis. In this study, we found that the protective effects of Maca extract ameliorate ConA-induced acute hepatitis (CIH) and underlying mechanisms. We determined that pretreatment with Maca extract significantly suppressed the production of aminotransferases and inflammatory cytokines, including IFN-γ, TNF-α, IL-1β, IL-2, IL-6, IL-12, and IL-17a, and moderated acute liver injury in CIH. Maca recruited more myeloid-derived suppressor cells (MDSCs) to the liver and suppressed infiltration of natural killer T cells (NKT cells) and macrophages in the liver. Furthermore, our data indicated the molecular mechanism of the inhibitory inflammatory effects of Maca, which should suppress the activation of NF-κB, IFN-γ/STAT1, and IL-6/STAT3 signalings. Collectively, this present research explores Maca as an effective hepatoprotective medicine to inhibit inflammation and liver injury caused by acute hepatitis.
Collapse
|
116
|
Zhao X, Ding S, Geng C, Man Z, Pan M, Sun L, Hu B, Wang H. Anti-CD200 attenuates concanavalin A induced hepatitis via modulating the imbalance of CD4 + T lymphocyte differentiation in mice. Am J Transl Res 2018; 10:4202-4209. [PMID: 30662663 PMCID: PMC6325521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Hepatitis occurs in critical ill patients with bad morbidity and mortality. It is known that imbalance of Th1 and Th2 lymphocytes differentiations plays a key role in its mechanisms. Recent studies indicated that type 1 membrane glycoprotein CD200 serves as co-inhibitory molecule, negatively regulating the immune response. In regard of this, we used Concanavalin A (Con A) induced liver injury model to research the effect of CD200 on the differentiation of CD4+ T lymphocyte and found that the expression of CD200 on CD4+ T was significantly higher in hepatitis mouse. The apoptosis of CD4+ T cell in Con A induced liver injury was significantly attenuated by anti-CD200. The concentration of solube IL-2 and IFN-γ was reduced by anti-CD200, in addition, the expression of T-bet, GATA3 and FoxP3 mRNA were all attenuated by anti-CD200. The phosphorylation of SH-2 containing inositol 5' polyphosphatase 1 (SHIP1) was significantly increased in Con A induced liver injury and reduced by anti-CD200. We hypothesized that, anti-CD200 inhibited the phosphorylation of SHIP1, the expression of T-bet, GATA3 and FoxP3 mRNA and CD4+ T differentiation to protect the liver from autoimmune hepatitis.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China
| | - Shuo Ding
- Department of Intensive Care, Fengxian People’s Hospital51 West Renmin Rd, Fenxian, Xuzhou 221700, China
| | - Chuan Geng
- Department of Anesthesiology, Fengxian People’s Hospital51 West Renmin Rd, Fenxian, Xuzhou 221700, China
| | - Zhong Man
- Department of Anesthesiology, Fengxian People’s Hospital51 West Renmin Rd, Fenxian, Xuzhou 221700, China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China
| | - Leilei Sun
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China
| | - Hua Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University15 Lequn Rd, Guilin 541001, China
| |
Collapse
|
117
|
Yu Q, Liu T, Li S, Feng J, Wu L, Wang W, Chen K, Xia Y, Niu P, Xu L, Wang F, Dai W, Zhou Y, Guo C. The Protective Effects of Levo-Tetrahydropalmatine on ConA-Induced Liver Injury Are via TRAF6/JNK Signaling. Mediators Inflamm 2018; 2018:4032484. [PMID: 30622431 PMCID: PMC6304924 DOI: 10.1155/2018/4032484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Levo-tetrahydropalmatine (L-THP) is an active ingredient of Corydalis yanhusuo W. T. Wang, which has many bioactive properties. Herein, we investigated the protective effects of L-THP on concanavalin A- (ConA-) induced hepatitis in mice and explored its possible mechanisms of these effects. MAIN METHODS Balb/c mice were intravenously injected with 25 mg/kg ConA to generate a model of acute autoimmune hepatitis, and L-THP (20 or 40 mg/kg) was administered orally once daily for 5 d before the ConA injection. The liver enzyme levels, proinflammatory cytokine levels, and other marker protein levels were determined 2, 8, and 24 h after ConA injection. RESULTS L-THP could decrease serum liver enzymes and pathological damage by reducing the release of inflammatory factors like IL-6 and TNF-α. The results of Western Blot and PCR indicated that L-THP could ameliorate liver cell apoptosis and autophagy. L-THP could suppress T lymphocyte proliferation and the production of TNF-α and IL-6 induced by ConA in a dose-dependent manner in vitro. Additionally, the protective functions of L-THP depended on downregulating TRAF6/JNK signaling. Conclusion. The present study indicated that L-THP attenuated acute liver injury in ConA-induced autoimmune hepatitis by inhibiting apoptosis and autophagy via the TRAF6/JNK pathway.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Peiqin Niu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai 202157, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
118
|
Floreani A, Restrepo-Jiménez P, Secchi MF, De Martin S, Leung PS, Krawitt E, Bowlus CL, Gershwin ME, Anaya JM. Etiopathogenesis of autoimmune hepatitis. J Autoimmun 2018; 95:133-143. [DOI: 10.1016/j.jaut.2018.10.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
|
119
|
Tabet E, Gelu-Simeon M, Genet V, Lamontagne L, Piquet-Pellorce C, Samson M. Chlordecone potentiates auto-immune hepatitis and promotes brain entry of MHV3 during viral hepatitis in mouse models. Toxicol Lett 2018; 299:129-136. [PMID: 30287270 DOI: 10.1016/j.toxlet.2018.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023]
Abstract
Chlordecone is an organochlorine used in the 1970's as a pesticide in banana plantations. It has a long half-life in the soil and can potentially contaminate humans and animals through food. Chlordecone targets, and mainly accumulates in, the liver, leading to hepatomegaly and neurological signs in mammals. Chlordecone does not cause liver injuries or any inflammation by itself at low doses, but it can potentiate the hepatotoxic effects of other chemicals and drugs. We studied the impact of chlordecone on the progression of acute hepatitis in mouse models of co-exposure to chlordecone with Concanavalin A or murine hepatitis virus type 3. We examined the progression of these two types of hepatitis by measuring hepatic transaminase levels in the serum and inflammatory cells in the liver, liver histological studies. Amplified tremors presented in the MHV3- chlordecone mouse model had led us to study the expression of specific genes in the brain. We show that chlordecone amplifies the auto-immune hepatitis induced by Concanavalin A by increasing the number of liver NKT cells, which are involved in liver damage. Chlordecone also accelerated the death of mice infected by murine hepatitis virus and enhanced the entry of the virus into the cervical spinal cord in infected mice, leading to considerable neurological damage. In conclusion, chlordecone potentiates both the Concanavalin A-induced hepatitis and brain damage caused by an hepatotropic/neurotropic virus.
Collapse
Affiliation(s)
- Elise Tabet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France
| | - Moana Gelu-Simeon
- Univ Antilles, CHU Pointe-à-Pitre, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-97000, Pointe-à-Pitre, France
| | - Valentine Genet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France
| | - Lucie Lamontagne
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Claire Piquet-Pellorce
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F 35000, Rennes, France.
| |
Collapse
|
120
|
Thomazelli APFDS, Tomiotto-Pellissier F, Miranda-Sapla MM, da Silva SS, Alvarenga DS, Panis C, Cataneo AHD, Bordignon J, Silveira GF, Yamauchi LM, de Sá JPSR, Felipe I, Pavanelli WR, Conchon-Costa I. Concanavalin-A displays leishmanicidal activity by inducing ROS production in human peripheral blood mononuclear cells. Immunopharmacol Immunotoxicol 2018; 40:387-392. [DOI: 10.1080/08923973.2018.1510960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Fernanda Tomiotto-Pellissier
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | - Milena Menegazzo Miranda-Sapla
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | - Suelen Santos da Silva
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | - Daniele Sapede Alvarenga
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, University of Western Paraná, UNIOESTE, Francisco Beltrão, Paraná, Brasil
| | - Allan Henrique Depieri Cataneo
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | | | | | - Lucy Megumi Yamauchi
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | | | - Ionice Felipe
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| | - Ivete Conchon-Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brasil
| |
Collapse
|
121
|
Blaya D, Aguilar-Bravo B, Hao F, Casacuberta-Serra S, Coll M, Perea L, Vallverdú J, Graupera I, Pose E, Llovet L, Barquinero J, Cubero FJ, Caballería J, Ginès P, Sancho-Bru P. Expression of microRNA-155 in inflammatory cells modulates liver injury. Hepatology 2018; 68:691-706. [PMID: 29420849 PMCID: PMC6082738 DOI: 10.1002/hep.29833] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
UNLABELLED MicroRNA 155 (miR-155) is involved in immune and inflammatory diseases and is associated with liver fibrosis and steatohepatitis. However, the mechanisms involved in miR-155 regulation of liver injury are largely unknown. The role of miR-155 in acute liver injury was assessed in wild-type (WT), miR-155-/- , and miR-155-/- mice transplanted with WT bone marrow. Additionally, miR-155 expression was evaluated in liver tissue and peripheral blood mononuclear cells of patients with autoimmune hepatitis. Concanavalin A, but not acetaminophen, treatment increased the expression of miR-155 in liver tissue of WT mice. Concanavalin A induced increases in cell death, liver aminotransferases, and expression of proinflammatory cytokines (chemokine [C-X-C motif] ligands 1, 5, 9, 10, and 11; chemokine [C-C motif] ligands 2 and 20; and intercellular cell adhesion molecule 1) in miR-155-/- compared to WT mice. Importantly, these animals showed a significant decrease in cluster of differentiation 4-positive/chemokine (C-X-C motif) receptor 3-positive and forkhead box p3-positive cell recruitment but no changes in other inflammatory cell populations. Mechanistically, miR-155-deficient regulatory T cells showed increased SH2 domain-containing inositol 5-phosphatase 1 expression, a known target of miR-155. Inhibition of SH2 domain-containing inositol 5-phosphatase 1 in miR-155-/- mice restored forkhead box p3 recruitment and reduced liver cytokine expression. Transplantation of bone marrow from WT animals into miR-155-/- mice partially reversed the effect of concanavalin A on miR-155-/- mice as assessed by proinflammatory cytokines and cell death protein expression. Patients with autoimmune hepatitis showed a marked increase in miR-155 expression in the liver but reduced expression of miR-155 in peripheral blood mononuclear cells. CONCLUSION miR-155 expression is altered in both liver tissue and circulating inflammatory cells during liver injury, thus regulating inflammatory cell recruitment and liver damage; these results suggest that maintaining miR-155 expression in inflammatory cells might be a potential strategy to modulate liver injury. (Hepatology 2018).
Collapse
Affiliation(s)
- Delia Blaya
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Fengjie Hao
- Department of Immunology, Complutense University School of Medicine, Madrid, Spain,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Mar Coll
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Luis Perea
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Júlia Vallverdú
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Isabel Graupera
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Elisa Pose
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Laura Llovet
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Complutense University School of Medicine, Madrid, Spain,12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Juan Caballería
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Pere Ginès
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Pau Sancho-Bru
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
122
|
Chunli W, Liang Z, Meimei W, Yuntiao J, Xiaoping L, Song H, Xiaojun Z. Antioxidative and hepatoprotective activities of the ethyl acetate fraction separated from the fruit of Livistona chinensis. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30884-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
123
|
Lu X, Liu T, Chen K, Xia Y, Dai W, Xu S, Xu L, Wang F, Wu L, Li J, Li S, Wang W, Yu Q, Feng J, Fan X, Zhou Y, Niu P, Guo C. Isorhamnetin: A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed Pharmacother 2018; 103:800-811. [PMID: 29684859 DOI: 10.1016/j.biopha.2018.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin, a flavonoid compound extracted from plants' fruit or leaves, like sea buckthorn (Hippophae rhamnoides L.), has many biological functions, including anti-tumor, anti-oxidant and anti-inflammatory effect. The present study is in order to explore the hepatoprotective effect of isorhamnetin on concanavalin A (ConA)-induced acute fulminant hepatitis and the underlying mechanism. Mice were injected with ConA (25 mg/kg) to induce acute fulminant hepatitis, three doses of isorhamnetin (10/30/90 mg/kg) was intraperitoneally administrated about 1 h previously. The serum and liver tissues were harvested at 2, 8, and 24 h after ConA injection. The levels of serum liver enzymes and proinflammatory cytokines were significantly reduced in isorhamnetin administration groups. Besides, isorhamnetin improved pathological damage. Furthermore, isorhamnetin affected P38/PPAR-α pathway, and subsequently regulated the expression of apoptosis and autophagy related proteins. The present study investigated that isorhamnetin inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai Institute of Liver Diseases, Shanghai 200032, China.
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China.
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China.
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China.
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China.
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Peiqin Niu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai 202157, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
124
|
Feng J, Niu P, Chen K, Wu L, Liu T, Xu S, Li J, Li S, Wang W, Lu X, Yu Q, Liu N, Xu L, Wang F, Dai W, Xia Y, Fan X, Guo C. Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury. Exp Ther Med 2018; 15:4599-4614. [PMID: 29805476 PMCID: PMC5958679 DOI: 10.3892/etm.2018.6053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Salidroside (Sal) is a glycoside extract from Rhodiola rosea L. with anti-inflammatory, antioxidant, anticancer and cardioprotective properties. The present study explored the protective effects and the possible mechanisms of Sal on concanavalin A (ConA)-induced liver injury in mice. Balb/C mice were divided into five groups: Normal control (injected with normal saline), ConA (25 mg/kg), Sal (10 mg/kg) +ConA, Sal (20 mg/kg) + ConA (Sal injected 2 h prior to ConA injection) and Sal (20 mg/kg) only. The serum levels of liver enzymes, pro-inflammatory cytokines, and apoptosis- and autophagy-associated marker proteins were determined at 2, 8 and 24 h after ConA injection. LY294002 was further used to verify whether the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated. Primary hepatocytes were isolated to verify the effect of Sal in vitro. The results indicated that Sal was a safe agent to reduce pathological damage and serum liver enzymes in ConA-induced liver injury. Sal suppressed inflammatory reactions in serum and liver tissues, and activated the PI3K/Akt signaling pathway to inhibit apoptosis and autophagy in vivo and in vitro, which could be reversed by LY294002. In conclusion, Sal attenuated ConA-induced liver injury by modulating PI3K/Akt pathway-mediated apoptosis and autophagy in mice.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Peiqin Niu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai 202157, P.R. China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shizan Xu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Qiang Yu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Ning Liu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
125
|
Tang HH, Li HL, Li YX, You Y, Guan YY, Zhang SL, Liu LX, Bao WL, Zhou Y, Shen XY. Protective effects of a traditional Chinese herbal formula Jiang-Xian HuGan on Concanavalin A-induced mouse hepatitis via NF-κB and Nrf2 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:118-125. [PMID: 29421593 DOI: 10.1016/j.jep.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiang-Xian HuGan (JXHG) formulated by five natural products including Freshwater clam (Corbicula fluminea), Curcuma longa L., Ligustrum lucidum, Eclipta prostrata (L.) L. and Paeonia lactiflora Pall., has exhibited a great hepatoprotective effect. AIM OF THIS STUDY We investigated the effect of JXHG on concanavalin A (ConA)-induced acute live injury in mice, and to elucidate its underlying molecular mechanisms. MATERIALS AND METHODS Jiangkanling Capsule (900 mg/kg), low-dose JXHG (LJXHG, 700 mg/kg), high-dose JXHG (HJXHG, 1400 mg/kg) were administered to mice by oral gavage daily for 20 days prior to a single intravenous injection of ConA (20 mg/kg). Liver injury was evaluated by measuring the serum levels of enzymes and cytokines as well as liver histological analysis. We also measured the hepatic expression of cytokines at mRNA levels and the proteins related to NF-κB and Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways. RESULT Our results showed that JXHG pretreatment significantly alleviated ConA-induced live injury as evidenced by decreased serum levels of glutamic-pyruvic transaminase (ALT) and glutamic oxalacetic transaminase (AST), and reduced hepatocyte apoptosis and mortality. Furthermore, JXHG was able to significantly reduce the serum levels of proinflammatory cytokines, down-regulate the mRNA expression of interleukin-6 (IL-6) and interferon-γ (IFN-γ), and up-regulate IL-10 as well as superoxide-dimutase-1 (SOD1), glutathione reductase (GSR) and Glutathione peroxidase 2 (GPX2) mRNA in the liver tissues after Con A injection. In addition, JXHG pretreatment dramatically suppressed the phosphorylation of NF-κB p65 (p65), increased Nrf2 expression, and decreased the expression ratio of cleaved caspase-3/caspase-3 in liver tissues. CONCLUSION These results suggest that JXHG protects against ConA-induced acute live injury through inhibiting NF-κB mediated inflammatory pathway and promoting Nrf2 mediated anti-oxidative stress signaling pathway.
Collapse
Affiliation(s)
- Huan-Huan Tang
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China; Department of Pharmacology, School of Pharmacy, Guilin Medical University, No. 109 Huanchengbei Road Two, Guilin 541004, China
| | - Hai-Long Li
- Infinitus R&D Center, Infinitus (China) Company Ltd, No.19, Sicheng Road, The First Floor of HongTai Zhihui Valley, Tianhe Area, Guangzhou 510663, China
| | - Yue-Xuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Yun-Yun Guan
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Su-Lin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Li-Xin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Wei-Lian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Yong Zhou
- Infinitus R&D Center, Infinitus (China) Company Ltd, No.19, Sicheng Road, The First Floor of HongTai Zhihui Valley, Tianhe Area, Guangzhou 510663, China.
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
126
|
Luo Q, Ding J, Zhu L, Chen F, Xu L. Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:819-833. [PMID: 29737211 DOI: 10.1142/s0192415x1850043x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eclipta prostrata L. is a traditional Chinese herbal medicine that has been used in the treatment of liver diseases. However, its biological mechanisms remain elusive. The current study aimed to investigate the hepatoprotective effect of wedelolactone, a major coumarin ingredient of Eclipta prostrata L., on immune-mediated liver injury. Using the well-established animal model of Concanavalin A (ConA)-induced hepatitis (CIH), we found that pretreatment of mice with wedelolactone markedly reduced both the serum levels of transaminases and the severity of liver damage. We further investigated the mechanisms of the protective effect of wedelolactone. In mice treated with wedelolactone prior to the induction of CIH, increases of serum concentrations of tumor necrosis factor (TNF)-[Formula: see text], interferon (IFN)-[Formula: see text], and interleukin (IL)-6 were dramatically attenuated. Additionally, expressions of the interferon-inducible chemokine (C-X-C motif) ligand 10 gene CXCL10 and intercellular adhesion molecule 1 gene ICAM1 were lower in livers of the treated mice. Moreover, wedelolactone-treated CIH mice exhibited reduced leukocyte infiltration and T-cell activation in liver. Furthermore, wedelolactone suppressed the activity of nuclear factor-kappa B (NF-[Formula: see text]B), a critical transcriptional factor of the above-mentioned inflammatory cytokines by limiting the phosphorylation of I kappa B alpha (I[Formula: see text]B[Formula: see text] and p65. In conclusion, these findings demonstrate the inhibitory potential of wedelolactone in immune-mediated liver injury in vivo, and show that this protection is associated with modulation of the NF-[Formula: see text]B signaling pathway.
Collapse
Affiliation(s)
- Qingqiong Luo
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jieying Ding
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Liping Zhu
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Fuxiang Chen
- * Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Lili Xu
- † Division of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
127
|
Xu C, Zhang C, Ji J, Wang C, Yang J, Geng B, Zhao T, Zhou H, Mu X, Pan J, Hu S, Lv Y, Chen X, Wen H, You Q. CD36 deficiency attenuates immune-mediated hepatitis in mice by modulating the proapoptotic effects of CXC chemokine ligand 10. Hepatology 2018; 67:1943-1955. [PMID: 29220536 DOI: 10.1002/hep.29716] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/30/2017] [Accepted: 12/02/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED The scavenger receptor CD36 recognizes a diverse set of ligands and has been implicated in a wide variety of normal and pathological processes, including lipid metabolism, angiogenesis, atherosclerosis, and phagocytosis. In particular, recent findings have demonstrated its crucial functions in sterile inflammation and tumor metastasis. However, the role of CD36 in immune-mediated hepatitis remains unclear. Concanavalin A (ConA)-induced liver injury is a well-established experimental T cell-mediated hepatitis. To understand the role of CD36 in hepatitis, we tested the susceptibility of CD36-deficient (CD36-/- ) mice to this model, evaluated by a liver enzyme test, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, histological analysis, mononuclear cell (MNC) infiltration, and hepatic proinflammatory factor production. CD36-/- mice were less sensitive to ConA-induced hepatitis and had a significantly lower number of liver MNCs (LMNCs), including CD4+ cells, CD8+ T cells, natural killer cells, natural killer T cells, infiltrating macrophages, and neutrophils, as well as reduced expression of inflammatory mediators (tumor necrosis factor α, CXC chemokine ligand (CXCL) 10, interleukin (IL)-1α, monocyte chemotactic protein 1, and IL-6) compared with controls. Notably, we used bone marrow chimeric mice to demonstrate that CD36 expression on nonhematopoietic cells was required to drive ConA-induced liver injury. Furthermore, our data show that the CD36 receptor was essential for CXCL10-induced hepatocyte apoptosis and activation of IκB kinase, Akt, and Jun N-terminal kinase. Moreover, treatment of wild-type mice with genistein, a tyrosine kinase inhibitor that blocks CD36-Lyn signaling, attenuated ConA-induced liver injury and reduced the number of MNCs. CONCLUSIONS Our findings suggest that CD36 plays an important proinflammatory role in ConA-induced liver injury by promoting hepatic inflammation and mediating the proapoptotic effect of chemokine CXCL10, and therefore, may be a potential therapeutic target for immune-mediated hepatitis. (Hepatology 2018;67:1943-1955).
Collapse
Affiliation(s)
- Che Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Zhang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ji
- First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Wang
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Biao Geng
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Zhao
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianmin Mu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinshun Pan
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shi Hu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanfang Lv
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingguo Chen
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Wen
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
128
|
Gu Y, Ding X, Huang J, Xue M, Zhang J, Wang Q, Yu H, Wang Y, Zhao F, Wang H, Jin M, Wu Y, Zhang Y. The deubiquitinating enzyme UCHL1 negatively regulates the immunosuppressive capacity and survival of multipotent mesenchymal stromal cells. Cell Death Dis 2018; 9:459. [PMID: 29686406 PMCID: PMC5913136 DOI: 10.1038/s41419-018-0532-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
It is known that proinflammatory cytokines empower multipotent mesenchymal stromal cells (MSCs) the immunosuppressive capacity to treat various inflammatory diseases. Nevertheless, how the proinflammatory cytokines modulate the immunosuppressive capacity of MSCs is poorly understood. In the present study, we identified that the deubiquitinating enzyme ubiquitin C-terminal hydrolase 1 (UCHL1) was upregulated in MSCs upon stimulation of proinflammatory cytokines IFN-γ plus TNF-α. Interestingly, through intervening UCHL1 by shRNA knockdown or its inhibitor LDN57444 or overexpression, we found that UCHL1 played a critical role in suppressing cytokines-induced inducible nitric oxide synthase expression in murine MSCs and indoleamine 2,3-dioxygenase expression in human MSCs, thereby restrained their immunosuppressive capacity. This effect of UCHL1 was attributed to the negative role in regulating NF-κB and STAT1 signaling, as exhibited by promoting NF-κB and STAT1 activation upon inhibition of UCHL1. Besides, inhibition of UCHL1 suppressed cytokines-induced MSC apoptosis via upregulation of Bcl-2. As a consequence, UCHL1-inhibited MSCs effectively alleviated concanavalin A-induced inflammatory liver injury. Therefore, our study demonstrates a novel role of UCHL1 in regulating the immunosuppressive capacity and survival of MSCs, which further affects their immunotherapy for inflammatory diseases.
Collapse
Affiliation(s)
- Yuting Gu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiefang Huang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongshuang Yu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Wang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Fang Zhao
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hui Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Jin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. .,Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.
| |
Collapse
|
129
|
Luan J, Zhang X, Wang S, Li Y, Fan J, Chen W, Zai W, Wang S, Wang Y, Chen M, Meng G, Ju D. NOD-Like Receptor Protein 3 Inflammasome-Dependent IL-1β Accelerated ConA-Induced Hepatitis. Front Immunol 2018; 9:758. [PMID: 29692782 PMCID: PMC5902503 DOI: 10.3389/fimmu.2018.00758] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive inflammatory disorders of unknown etiology, characterized by immune-mediated destruction of hepatocytes and massive production of cytokines. Interleukin-1β is a pleiotropic proinflammatory cytokine and well known to be critical in a variety of autoimmune diseases. However, the role of interleukin-1β (IL-1β) in AIH is still indistinct. Here, we first investigated the significance of NOD-like receptor protein 3 (NLRP3) inflammasome-dependent IL-1β in the pathogenesis of AIH with a murine model of immune-mediated hepatitis induced by Concanavalin A (ConA). In ConA-treated mice, pathogenic elevated NLRP3, Cleaved caspase-1 and IL-1β levels, as well as an inflammatory cell death known as pyroptosis predominantly occurred in the livers. Strikingly, NLRP3−/− and caspase-1−/− mice were broadly protected from hepatitis as determined by decreased histological liver injury, serum aminotransferase (ALT)/aspartate transaminase levels, and pyroptosis. In vivo intervention with recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) strongly suppressed ConA-induced hepatitis by decreasing tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17) secretion, and inflammatory cell infiltration into livers. Additionally, rhIL-1Ra-pretreated mice developed significantly reduced NLRP3 inflammasome activation and reactive oxygen species (ROS) generation. Scavenging of ROS by N-acetyl-cysteine also attenuated NLRP3 inflammasome activation and liver inflammation, indicating that the essential role of ROS in mediating NLRP3 inflammasome activation in ConA-induced hepatitis. In conclusion, our results demonstrated that NLRP3 inflammasome-dependent IL-1β production was crucial in the pathogenesis of ConA-induced hepatitis, which shed light on the development of promising therapeutic strategies for AIH by blocking NLRP3 inflammasome and IL-1β.
Collapse
Affiliation(s)
- Jingyun Luan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuyao Zhang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shaofei Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yubin Li
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiajun Fan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenjing Zai
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Sijia Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Mingkuan Chen
- Unit of Innate Immunity, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangxun Meng
- Unit of Innate Immunity, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
130
|
Wang W, Chen K, Xia Y, Mo W, Wang F, Dai W, Niu P. The Hepatoprotection by Oleanolic Acid Preconditioning: Focusing on PPAR α Activation. PPAR Res 2018; 2018:3180396. [PMID: 29805439 PMCID: PMC5901823 DOI: 10.1155/2018/3180396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Previous studies have characterized the hepatoprotective and anti-inflammatory properties of oleanolic acid (OA). This study aimed to investigate the molecular mechanisms of OA hepatoprotection in concanavalin A- (ConA-) induced acute liver injury. MATERIALS AND METHODS ConA (20 mg/kg) was intravenously injected to induce acute liver injury in Balb/C mice. OA pretreatment (20, 40, and 80 mg/kg) was administered subcutaneously once daily for 3 consecutive days prior to treatment with ConA; 2, 8, and 24 h after ConA injection, the levels of serum liver enzymes and the histopathology of major factors and inflammatory cytokines were determined. RESULTS OA reduced the release of serum liver enzymes and inflammatory factors and prevented ConA mediated damage to the liver. OA elevated the expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and decreased the phosphorylation of c-Jun NH2-terminal kinase (JNK). CONCLUSION OA exhibits anti-inflammatory properties during ConA-induced acute liver injury by attenuating apoptosis and autophagy through activation of PPARα and downregulation of JNK signaling.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peiqin Niu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai 202157, China
| |
Collapse
|
131
|
El-Agamy DS, Shaaban AA, Almaramhy HH, Elkablawy S, Elkablawy MA. Pristimerin as a Novel Hepatoprotective Agent Against Experimental Autoimmune Hepatitis. Front Pharmacol 2018; 9:292. [PMID: 29643811 PMCID: PMC5883828 DOI: 10.3389/fphar.2018.00292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 01/09/2023] Open
Abstract
Pristimerin (Pris) is bioactive natural quinonoid triterpene that has anti-inflammatory and anti-cancer activities. Meanwhile, its effect against hepatitis needs to be elucidated. This investigation aimed to evaluate the ability of Pris to protect against autoimmune hepatitis (AIH). A mouse model of AIH was established using single concanavalin A (Con A) intravenous injection. Mice were treated with Pris at two different doses (0.4 and 0.8 mg/kg) for 5 days prior to Con A challenge. Markers of hepatic injury, oxidative, inflammatory, and apoptotic damage were estimated. Results have revealed that Pris pretreatment ameliorated Con A-induced hepatic damage. There was decrease in the elevated serum indices of hepatic damage (ALT, AST, ALP, and LDH) and improvement of the histopathological picture of the liver. Pris effectively decreased Con A-induced neutrophil infiltration into the hepatic tissue as presented by amelioration of the level and immuno-expression of myeloperoxidase (MPO). Additionally, Pris attenuated Con A-induced increase in CD4+ T-cells in hepatic tissue. Lipid peroxidation was significantly depressed simultaneously with enhancement of the antioxidant capacity in Pris pretreated animals. Pris also enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression and its binding capacity. In addition, Pris increased mRNA expression of heme-oxygenase-1 (HO-1) and restored its normal level. Furthermore, Pris decreased the level and immuno-expression of nuclear factor kappa-B (NF-κB) as well as the downstream inflammatory cascade (TNF-α, IL-6, and IL-1β). Finally, Pris showed inhibitory effect on Con A-induced apoptotic alteration in liver as it decreased the mRNA expression and levels the apoptotic markers (Bax and caspase-3) and increased mRNA expression and level of the anti-apoptotic protein (Bcl2). In conclusion, this study demonstrates the potent hepatoprotective efficacy of Pris against Con A-induced hepatitis which may be related to anti-oxidative, anti-inflammatory, and anti-apoptotic pathways. Pris could serve as a new candidate for the management of hepatitis.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Hamdi H Almaramhy
- Department of Surgery, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Sarah Elkablawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed A Elkablawy
- Department of Pathology, College of Medicine, Taibah University, Medina, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
132
|
Hines IN, Kremer M, Moore SM, Wheeler MD. Impaired T cell-mediated hepatitis in peroxisome proliferator activated receptor alpha (PPARα)-deficient mice. Biol Res 2018; 51:5. [PMID: 29448959 PMCID: PMC5815252 DOI: 10.1186/s40659-018-0153-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/06/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Peroxisome proliferator activated receptor alpha (PPARα), a regulator of enzymes involved in β oxidation, has been reported to influence lymphocyte activation. The purpose of this study was to determine whether PPARα plays a role in T cell-mediated hepatitis induced by Concanavalin A (ConA). METHODS Wild type (wt) or PPARα-deficient (PPARα-/-) mice were treated with ConA (15 mg/kg) by intravenous injection 0, 10 or 24 h prior to sacrifice and serum and tissue collection for analysis of tissue injury, cytokine response, T cell activation and characterization. RESULTS Ten and 24 h following ConA administration, wt mice had significant liver injury as demonstrated by serum transaminase levels, inflammatory cell infiltrate, hepatocyte apoptosis, and expression of several cytokines including interleukin 4 (IL4) and interferon gamma (IFNγ). In contrast, PPARα-/- mice were protected from ConA-induced liver injury with significant reductions in serum enzyme release, greatly reduced inflammatory cell infiltrate, hepatocellular apoptosis, and IFNγ expression, despite having similar levels of hepatic T cell activation and IL4 expression. This resistance to liver injury was correlated with reduced numbers of hepatic natural killer T (NKT) cells and their in vivo responsiveness to alpha-galactosylceramide. Interestingly, adoptive transfer of either wt or PPARα-/- splenocytes reconstituted ConA liver injury and cytokine production in lymphocyte-deficient, severe combined immunodeficient mice implicating PPARα within the liver, possibly through support of IL15 expression and/or suppression of IL12 production and not the lymphocyte as the key regulator of T cell activity and ConA-induced liver injury. CONCLUSION Taken together, these data suggest that PPARα within the liver plays an important role in ConA-mediated liver injury through regulation of NKT cell recruitment and/or survival.
Collapse
Affiliation(s)
- Ian N. Hines
- Department of Nutrition Science, College of Allied Health Sciences, East Carolina University, Health Sciences Bldg. Room 4165F, Greenville, NC 27834 USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Michael Kremer
- Department of General Surgery, University of Ulm, Ulm, Germany
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Sherri M. Moore
- Department of Nutrition Science, College of Allied Health Sciences, East Carolina University, Health Sciences Bldg. Room 4165F, Greenville, NC 27834 USA
| | - Michael D. Wheeler
- Department of Nutrition Science, College of Allied Health Sciences, East Carolina University, Health Sciences Bldg. Room 4165F, Greenville, NC 27834 USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
133
|
Noh JR, Kim YH, Kim DK, Hwang JH, Kim KS, Choi DH, Lee SJ, Lee HG, Lee TG, Weng HL, Dooley S, Choi HS, Lee CH. Small Heterodimer Partner Deficiency Increases Inflammatory Liver Injury Through C-X-C motif chemokine ligand 2-Driven Neutrophil Recruitment in Mice. Toxicol Sci 2018; 163:254-264. [DOI: 10.1093/toxsci/kfy030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, South Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, South Korea
- University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, South Korea
- University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, South Korea
- University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, South Korea
| | - Seon-Jin Lee
- University of Science and Technology (UST), Daejeon 34113, South Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Gu Lee
- University of Science and Technology (UST), Daejeon 34113, South Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tae Geol Lee
- Center for Nano Bio Measurement, Korea Research Institute of Standard and Science, Yuseong-gu, Daejeon 34113, South Korea
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, South Korea
- University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
134
|
Wang W, Guo H, Li H, Yan Y, Wu C, Wang X, He X, Zhao N. Interleukin-35 Gene-Modified Mesenchymal Stem Cells Protect Concanavalin A-Induced Fulminant Hepatitis by Decreasing the Interferon Gamma Level. Hum Gene Ther 2018; 29:234-241. [PMID: 29054137 DOI: 10.1089/hum.2017.171] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interleukin 35 (IL-35) is a relatively newly identified cytokine required for the regulatory and suppressive functions of regulatory T cells (Treg), playing an important role in the prevention of autoimmune diseases. This study used mesenchymal stem cells (MSCs) as the gene-delivery vehicles for IL-35 gene therapy and investigated their protective effects in Concanavalin A (Con A)-induced autoimmune hepatitis. Results showed that IL-35 gene modified MSCs (IL-35-MSCs) can specifically migrate to the injured liver tissues and significantly narrow the necrosis areas of injured livers. IL-35-MSCs prevented hepatocyte apoptosis by reducing the FASL expression by mononuclear cells. Although MSC treatment can alleviate liver injury to some extent, IL-35-MSCs showed a stronger protective effect, which means some novel mechanisms exist. The results show that IL-35-MSCs could decrease the level of interferon gamma secreted by liver mononuclear cells through the JAK1-STAT1/STAT4 signal pathway. In summary, this study thus demonstrates a novel and efficient treatment for Con A-induced fulminant hepatitis through negatively regulating the secretion of interferon gamma, thus providing a novel therapeutic approach for this devastating liver disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Hao Guo
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Hongyue Li
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Yongjia Yan
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Chao Wu
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Xiaodong Wang
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, China
| |
Collapse
|
135
|
Wang Y, Zhou L, Li Y, Guo L, Zhou Z, Xie H, Hou Y, Wang B. The Effects of Berberine on Concanavalin A-Induced Autoimmune Hepatitis (AIH) in Mice and the Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase (AMPK) Pathway. Med Sci Monit 2017; 23:6150-6161. [PMID: 29283990 PMCID: PMC5753750 DOI: 10.12659/msm.907377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Berberine, a herbal extract, has been reported to protect against inflammatory disorders. The adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway can be activated by berberine and inhibited by the synthetic, reversible AMP-competitive inhibitor, Compound C. The aim of this study was to investigate the effects of berberine on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) in mice via the AMPK pathway. Material/Methods BALB/c mice were treated with berberine, with or without Compound C, followed by treatment with Con A. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver tissue histology was performed to evaluate hepatic injury and AIH. Cytokine levels in serum and hepatic tissue were measured by enzyme-linked immunoassay (ELISA) and used quantitative polymerase chain reaction (qPCR). Levels of phosphorylated acetyl coenzyme-A carboxylase (ACC), representing AMPK activation, were detected by Western blotting. Results Serum ALT and AST levels were significantly reduced by berberine (100 and 200 mg/kg/day) in mice with Con A-induced hepatitis. Berberine also reduced Con A-induced hepatocyte swelling, cell death, and infiltration of leukocytes. Serum levels of tumor necrosis factor (TNF)-alpha, interferon (IF)-gamma, interleukin (IL)-2, and IL-1beta were reduced by berberine pre-treatment; levels of serum IL-10, an anti-inflammatory cytokine, was elevated. These protective effects of berberine on Con-A-induced AIH were reversed by treatment with Compound C. Conclusions In a murine model of Con A-induced AIH, berberine treatment reduced hepatic injury via activation of the AMPK pathway. Further studies are recommended to determine the potential therapeutic role for berberine in AIH.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Lu Zhou
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yanni Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Liping Guo
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhe Zhou
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Haoran Xie
- College of Medicine, Hebei University, Baoding, Hebei, China (mainland)
| | - Yingjian Hou
- College of Medicine, Hebei University, Baoding, Hebei, China (mainland)
| | - Bangmao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
136
|
Ko YE, Yoon SY, Ly SY, Kim JH, Sohn KY, Kim JW. 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) reduces hepatic injury in concanavalin A-treated mice. J Cell Biochem 2017; 119:1392-1405. [PMID: 28749086 DOI: 10.1002/jcb.26299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/18/2017] [Indexed: 11/10/2022]
Abstract
1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), a chemically synthesized monoacetyldiaglyceride, is one of the constituents in Sika deer antlers and has been known traditionally as having immunomodulatory effects. However, the mechanism by which PLAG controls neutrophil migration, which evokes liver injury in the hepatitis animal model, remains largely unknown. This study was designed to evaluate the immunomodulatory effects of PLAG on cytokine secretion and neutrophil migration in vivo and in vitro. Concanavalin A (Con A) induced leukocyte infiltration in the liver and increased plasma cytokine levels. Pretreatment with PLAG reduced the levels of interleukin (IL)-4, IL-6, IL-10, and CXCL2, but maintained interferon (IFN)-γ levels and modulated neutrophil recruitment toward the liver. Furthermore, the mRNA and protein levels of IL-4 and CXCL2 in liver tissue were also decreased in the Con A-treated mice. Liver histology analyses showed that PLAG reduced Con A-induced hepatic necrosis, which was accompanied by leukocyte infiltration. The in vitro studies revealed that PLAG reduced IL-4 secretion in Con A stimulated T cell and blocked signal transducer and activator of transcription 6 (STAT6) Con A induced hepatocyte. PLAG attenuated IL-4 induced activation of atypical protein kinase C (PKC)/STAT6 in hepatocytes and inhibited neutrophil migration toward the liver tissue through suppression of IL-8/vascular cell adhesion molecule (VCAM) expression. These results suggest that PLAG could mitigate excess neutrophil migration into liver tissue and potentially have a therapeutic effect on immune-mediated liver injury.
Collapse
Affiliation(s)
- Young E Ko
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Y Yoon
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Daejeon, Korea
| | - Sun Y Ly
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Joo H Kim
- Department of Pathology, EulJi University School of Medicine, Daejeon, Republic of Korea
| | - Ki Y Sohn
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Daejeon, Korea
| | - Jae W Kim
- Cell Factory Research Center, Division of Systems Biology and Bioengineering, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
137
|
Hsu MC, Liu SH, Wang CW, Hu NY, Wu ES, Shih YC, Chiu PJ. JKB-122 is effective, alone or in combination with prednisolone in Con A-induced hepatitis. Eur J Pharmacol 2017; 812:113-120. [DOI: 10.1016/j.ejphar.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022]
|
138
|
Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, Li Y, He X, Li L. Protective Effect of Akkermansia muciniphila against Immune-Mediated Liver Injury in a Mouse Model. Front Microbiol 2017; 8:1804. [PMID: 29033903 PMCID: PMC5626943 DOI: 10.3389/fmicb.2017.01804] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/05/2017] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence indicates that gut microbiota participates in the pathogenesis and progression of liver diseases. The severity of immune-mediated liver injury is associated with different microbial communities. Akkermansia muciniphila can regulate immunologic and metabolic functions. However, little is known about its effects on gut microbiota structure and function. This study investigated the effect of A. muciniphila on immune-mediated liver injury and potential underlying mechanisms. Twenty-two C57BL/6 mice were assigned to three groups (N = 7-8 per group) and continuously administrated A. muciniphila MucT or PBS by oral gavage for 14 days. Mouse feces were collected for gut microbiota analysis on the 15th day, and acute liver injury was induced by Concanavalin A (Con A, 15 mg/kg) injection through the tail vein. Samples (blood, liver, ileum, colon) were assessed for liver injury, systemic inflammation, and intestinal barrier function. We found that oral administration of A. muciniphila decreased serum ALT and AST and alleviated liver histopathological damage induced by Con A. Serum levels of pro-inflammatory cytokines and chemokines (IL-2, IFN-γ, IL-12p40, MCP-1, MIP-1a, MIP-1b) were substantially attenuated. A. muciniphila significantly decreased hepatocellular apoptosis; Bcl-2 expression increased, but Fas and DR5 decreased. Further investigation showed that A. muciniphila enhanced expression of Occludin and Tjp-1 and inhibited CB1 receptor, which strengthened intestinal barriers and reduced systemic LPS level. Fecal 16S rRNA sequence analysis indicated that A. muciniphila increased microbial richness and diversity. The community structure of the Akk group clustered distinctly from that of mice pretreated with PBS. Relative abundance of Firmicutes increased, and Bacteroidetes abundance decreased. Correlation analysis showed that injury-related factors (IL-12p40, IFN-γ, DR5) were negatively associated with specific genera (Ruminococcaceae_UCG_009, Lachnospiraceae_UCG_001, Akkermansia), which were enriched in mice pretreated with A. muciniphila. Our results suggested that A. muciniphila MucT had beneficial effects on immune-mediated liver injury by alleviating inflammation and hepatocellular death. These effects may be driven by the protective profile of the intestinal community induced by the bacteria. The results provide a new perspective on the immune function of gut microbiota in host diseases.
Collapse
Affiliation(s)
- Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Feifei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
139
|
Fahrner R, Möller A, Press AT, Kortgen A, Kiehntopf M, Rauchfuss F, Settmacher U, Mosig AS. Short-term treatment with taurolidine is associated with liver injury. BMC Pharmacol Toxicol 2017; 18:61. [PMID: 28800748 PMCID: PMC5553585 DOI: 10.1186/s40360-017-0168-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Taurolidine has been used for peritonitis, oncological and catheter-lock treatment because of its anti-inflammatory properties. It has been suggested that taurolidine has no severe side-effects, but after long-term use morphological and functional changes of the liver were reported. The aim of this study was to investigate the effect of short-term use of taurolidine on the liver. METHODS In HepaRG cell cultures and on a novel liver biochip dose-dependent effects of taurolidine treatment on hepatocyte adherence and cell viability was investigated. Furthermore, liver enzymes and interleukin- (IL-) 6 were measured in supernatants. Male rats were treated with low- or high-dose taurolidine, respectively, and compared to controls with physiological saline solution administration regarding blood serum parameters and histology. RESULTS In HepaRG cell cultures, hepatocyte adherence was significantly decreased, cell death and cleaved caspase-3 were significantly increased after administration of taurolidine in a dose-dependent manner. High-dose application of taurolidine led to elevated liver enzymes and IL-6 secretion in hepatic organoid. After 24 h a significant increase of serum GLDH and ASAT was observed in rats treated with high-dose taurolidine treatment. CONCLUSIONS Our results suggest that taurolidine caused liver injury after short-term use in in vitro and in vivo models probably due to direct toxic effects on hepatocytes. Therefore, the taurolidine dose should be titrated in further investigations regarding liver injury and inflammation.
Collapse
Affiliation(s)
- René Fahrner
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
| | - Anika Möller
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Adrian T. Press
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
- Department of Anesthesiology and Intensive Care Therapy, University Hospital Jena, 07747 Jena, Germany
| | - Andreas Kortgen
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
- Department of Anesthesiology and Intensive Care Therapy, University Hospital Jena, 07747 Jena, Germany
| | - Michael Kiehntopf
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, 07747 Jena, Germany
| | - Falk Rauchfuss
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
140
|
Zhao X, Liu M, Li J, Yin S, Wu Y, Wang A. Antimalarial agent artesunate protects Concanavalin A-induced autoimmune hepatitis in mice by inhibiting inflammatory responses. Chem Biol Interact 2017; 274:116-123. [DOI: 10.1016/j.cbi.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 01/28/2023]
|
141
|
Park J, Kim H, Lee IS, Kim KH, Kim Y, Na YC, Lee JH, Jang HJ. The therapeutic effects of Yongdamsagan-tang on autoimmune hepatitis models. Biomed Pharmacother 2017; 94:244-255. [PMID: 28763748 DOI: 10.1016/j.biopha.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immunity disorder that is the result of antibodies in the liver tissue of the patient that are attacked by activated immune cells due to an unknown cause. In this study, we aimed to investigate the anti-inflammatory effect of Yongdamsagan-tang (YST) extracts and confirm effects on autoimmune hepatitis models as the therapeutic agent using the YST extracted by various solvents. YST, a mixture of 11 herbal extracts, is known in traditional Korean medicine as a widely used treatment for inflammatory diseases. We proposed the AIH-condition in vitro model by the addition of recombinant IL-17A and then observed several markers linked to AIH symptoms, including an increase of IL-6 expression, lipid accumulation, and fibrosis. In AIH-condition hepatic cell model, YST reduced IL-6 expression and lipid accumulation caused by treatment of IL-17 combination in hepatocyte cells. Also, YST blocked several activated fibrosis factors including transforming growth factor-β (TGF- β1), collagen type 1 (Col-α1(I)), and α-smooth muscle actin (α-SMA) in liver stellate cells. Furthermore, pretreatment with YST protected hepatic damage and reduces histological injury by suppressing apoptosis mediator and inflammatory cytokines expression in concanavalin A (Con A)-induced autoimmune hepatitis mice model. The findings here improve our understanding of YST extracted by 80% ethanol, suggesting that YST can be used as a therapeutic treatment for AIH.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hayeon Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In-Seung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kang-Hoon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yumi Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yun-Cheol Na
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jang-Hoon Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| | - Hyeung-Jin Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 26, Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
142
|
Tikhonovich MV, Erdiakov AK, Gavrilova SA. Nonsteroid anti-inflammatory therapy suppresses the development of proliferative vitreoretinopathy more effectively than a steroid one. Int Ophthalmol 2017. [PMID: 28639085 DOI: 10.1007/s10792-017-0594-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE This study proves the possibility of targeted use of the nonsteroidal anti-inflammatory drug lornoxicam to prevent the development of proliferative vitreoretinopathy (PVR). Triamcinolone acetonide (TA) was selected as a reference substance. METHODS Wistar rats (N = 400) were used. PVR was modeled by intravitreal injection of dispase or concanavalin A. Lornoxicam or TA intravitreal administration was performed 20 min later. On the second and the third day, drugs were administrated systemic. Enucleation was performed on the first, third, seventh and 42nd or 56th day of the experiment. RESULTS Pro-inflammatory substances led to the development of sub- and epiretinal membranes. Lornoxicam decreased the incidence of membrane formation by 43 and 31% in dispase and concanavalin models, respectively. Membranes, formed during its use, were smaller and contained less fibrotic components. At the end of the experiment, the thickness of retinal and choroidal layers among the animals which had received the therapy was the same as the thickness of the retina and choroid of intact rats. Lornoxicam administration normalized the cyclooxygenases (COXs) expression in the retina and the choroid at the early stages of the experiment. TA application was less effective in both models. CONCLUSIONS COXs blocking during the development of PVR, overwhelming inflammation in the eye and reducing its consequences, is proved to be a much more effective and safe influence than the suppression of the entire cascade of arachidonic acid metabolism. Lornoxicam did not only improve the condition of the retina and the choroid but also significantly reduced the frequency of membrane formation.
Collapse
Affiliation(s)
- Marina V Tikhonovich
- Faculty of Medicine, M. V. Lomonosov Moscow State University, 27/1 Lomonosov Ave., Moscow, Russia, 119192
| | - Aleksei K Erdiakov
- Faculty of Medicine, M. V. Lomonosov Moscow State University, 27/1 Lomonosov Ave., Moscow, Russia, 119192.
| | - Svetlana A Gavrilova
- Faculty of Medicine, M. V. Lomonosov Moscow State University, 27/1 Lomonosov Ave., Moscow, Russia, 119192
| |
Collapse
|
143
|
Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Dis Int 2017; 16:245-256. [PMID: 28603092 PMCID: PMC7172563 DOI: 10.1016/s1499-3872(17)60014-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay of these inflammatory mediators and switching of immune responses during hepatotoxic, viral, drug-induced and immune cell-mediated hepatitis decide the fate of liver pathology. The present review aimed to describe the mechanisms of liver injury, its relevance to human liver pathology and insights for the future therapeutic interventions. DATA SOURCES The data of mouse hepatic models and relevant human liver diseases presented in this review are systematically collected from PubMed, ScienceDirect and the Web of Science databases published in English. RESULTS The hepatotoxic liver injury in mice induced by the metabolites of CCl4, acetaminophen or alcohol represent necrotic cell death with activation of cytochrome pathway, formation of reactive oxygen species (ROS) and mitochondrial damage. The Fas or TNF-alpha induced apoptotic liver injury was dependent on activation of caspases, release of cytochrome c and apoptosome formation. The ConA-hepatitis demonstrated the involvement of TRAIL-dependent necrotic/necroptotic cell death with activation of RIPK1/3. The alpha-GalCer-induced liver injury was mediated by TNF-alpha. The LPS-induced hepatitis involved TNF-alpha, Fas/FasL, and perforin/granzyme cell death pathways. The MHV3 or Poly(I:C) induced liver injury was mediated by natural killer cells and TNF-alpha signaling. The necrotic ischemia-reperfusion liver injury was mediated by hypoxia, ROS, and pro-inflammatory cytokines; however, necroptotic cell death was found in partial hepatectomy. The crucial role of immune cells and cell death mediators in viral hepatitis (HBV, HCV), drug-induced liver injury, non-alcoholic fatty liver disease and alcoholic liver disease in human were discussed. CONCLUSIONS The mouse animal models of hepatitis provide a parallel approach for the study of human liver pathology. Blocking or stimulating the pathways associated with liver cell death could unveil the novel therapeutic strategies in the management of liver diseases.
Collapse
|
144
|
Gao J, Wang S, Wang Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials 2017; 135:62-73. [PMID: 28494264 DOI: 10.1016/j.biomaterials.2017.05.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-formed compartments naturally secreted from cells, which are intercellular mediators regulating physiology and pathogenesis, therefore they could be a novel therapeutic carrier for targeted delivery. However, the translation of EVs is hindered by the heterogeneous composition, low yield, inefficient drug loading and unlikely scalability. Here we report a strategy to generate EVs using nitrogen cavitation (NC-EVs) that instantly disrupts neutrophils to form nanosized membrane vesicles. NC-EVs are similar to naturally secreted EVs (NS-EVs), but contain less subcellular organelles and nuclear acids. The production of NC-EVs was increased by 16 folds and is easy to scale up for clinical use compared to NS-EVs. To examine the usefulness of NC-EVs as a drug delivery platform, piceatannol (an anti-inflammation drug) was remotely loaded in NC-EVs via the pH gradient. We found that piceatannol-loaded NC-EVs dramatically alleviated acute lung inflammation/injury and sepsis induced by lipopolysaccharide (LPS). Our studies reveal that nitrogen cavitation is a novel approach to efficiently generate EVs from any cell type and could be exploited for personalized nanomedicine.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99202, USA
| | - Sihan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
145
|
Ben Ya'acov A, Meir H, Zolotaryova L, Ilan Y, Shteyer E. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice. BMC Gastroenterol 2017; 17:44. [PMID: 28330461 PMCID: PMC5363052 DOI: 10.1186/s12876-017-0600-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Background It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. Methods The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Results Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Conclusions Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.
Collapse
Affiliation(s)
- Ami Ben Ya'acov
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Hadar Meir
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Lydia Zolotaryova
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Eyal Shteyer
- Department of Pediatrics, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
146
|
Sang XX, Wang RL, Zhang CE, Liu SJ, Shen HH, Guo YM, Zhang YM, Niu M, Wang JB, Bai ZF, Xiao XH. Sophocarpine Protects Mice from ConA-Induced Hepatitis via Inhibition of the IFN-Gamma/STAT1 Pathway. Front Pharmacol 2017; 8:140. [PMID: 28377718 PMCID: PMC5359249 DOI: 10.3389/fphar.2017.00140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022] Open
Abstract
Sophocarpine is the major pharmacologically active compound of the traditional Chinese herbal medicine Radix Sophorae Subprostratae which has been used in treating hepatitis for years in China. It has been demonstrated that Sophocarpine exerts an activity in immune modulation and significantly decreases the production of inflammatory cytokines. However, the protective effects of Sophocarpine in T cell-dependent immune hepatitis remained unknown. The aim of this study was to determine the protective effects and pharmacological mechanisms of Sophocarpine on Concanavalin A (ConA)-induced hepatitis, an experimental model of T cell-mediated liver injury. BALB/C mice were pretreated with Sophocarpine or Bicyclol for five consecutive days. Thirty minutes after the final administration, the mice were injected with 15 mg⋅kg-1 of ConA intravenously. The results indicated that pretreatment with Sophocarpine significantly ameliorated liver inflammation and injury as evidenced by both biochemical and histopathological observations. Moreover, in Sophocarpine-pretreated mice, liver messenger RNA expression levels of chemokines and adhesion molecules, such as macrophage inflammatory protein-1α, CXC chemokine ligand 10, and Intercellular adhesion molecule-1, were markedly reduced. Further studies revealed that Sophocarpine significantly downregulated the expression of T-bet via inhibition of signal transducers and activators of transcription1 (STAT1) activation and overexpression of suppressor of cytokine signaling1, inhibiting the activation of Th1 cells and the expression of Interferon-γ (IFN-γ). Altogether, these results suggest new opportunities to use Sophocarpine in the treatment of T cell-mediated liver disease. In summary, Sophocarpine could attenuate ConA-induced liver injury, and the protective effect of Sophocarpine was associated with its inhibition effect of pro-inflammatory cytokines, chemokines, and the IFN-γ/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Xiu-Xiu Sang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Rui-Lin Wang
- Integrative Medical Center, 302 Military Hospital Beijing, China
| | - Cong-En Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Shi-Jing Liu
- Integrative Medical Center, 302 Military Hospital Beijing, China
| | - Hong-Hui Shen
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Yu-Ming Guo
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ya-Ming Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Zhao-Fang Bai
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| |
Collapse
|
147
|
Yuan Y, Gong X, Zhang L, Jiang R, Yang J, Wang B, Wan J. Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of Toll-like receptor 4 signaling in mice. Int Immunopharmacol 2017; 44:97-104. [DOI: 10.1016/j.intimp.2017.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 12/25/2016] [Accepted: 01/10/2017] [Indexed: 01/16/2023]
|
148
|
Zhou YQ, Weng XF, Dou R, Tan XS, Zhang TT, Fang JB, Wu XW. Betulin from Hedyotis hedyotidea ameliorates concanavalin A-induced and T cell-mediated autoimmune hepatitis in mice. Acta Pharmacol Sin 2017; 38:201-210. [PMID: 27796295 DOI: 10.1038/aps.2016.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/26/2016] [Indexed: 12/18/2022]
Abstract
Hedyotis hedyotidea has been used in traditional Chinese medicine for the treatment of autoimmune diseases. However, the mechanisms underlying for the effect remain unknown. We previously showed that, among 11 compounds extracted from H hedyotidea, betulin produced the strongest suppressive effect on T cell activation. Here, we examined the hepatoprotective effects of betulin against acute autoimmune hepatitis in mice and the mechanisms underlying the effects. Freshly isolated mouse splenocytes were stimulated with concanavalin A (Con A, 5 μg/mL) in the presence of betulin, the cell proliferation was assessed with CSFE-dilution assay. Mice were injected with betulin (10, 20 mg·kg-1·d-1, ip) for 3 d. One hour after the last injection, the mice were injected with Con A (15 mg/kg, iv) to induce acute hepatitis. Blood samples and liver tissues were harvested at 10 h after Con A injection, and serum transaminase levels and liver histopathology were detected; serum levels of proinflammatory cytokines, hepatic T lymphocyte ratios, and functional statuses of conventional T and NKT cells were also analyzed. Betulin (16 and 32 μmol/L) dose-dependently suppressed the proliferation of Con A-stimulated mouse splenocytes in vitro. In Con A-challenged mice, preinjection with betulin (20 mg·kg-1·d-1) significantly decreased the levels of proinflammatory cytokines IFN-γ, TNF-α and IL-6, and ameliorated liver injury. Furthermore, pretreatment with betulin (20 mg·kg-1·d-1) significantly inhibited the Con A-induced activation of NKT and conventional T cells, and decreased production of proinflammatory cytokines IFN-γ, TNF-α and IL-6 in these two cell populations. Betulin has immunomodulatory effect on overly activated conventional T and NKT cells and exerts hepatoprotective action in mouse autoimmune hepatitis. The findings provide evidence for the use of H hedyotidea and its constituent betulin in the treatment of autoimmune diseases.
Collapse
|
149
|
Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles. Toxicol Appl Pharmacol 2017; 317:63-72. [PMID: 28109817 DOI: 10.1016/j.taap.2017.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/07/2017] [Accepted: 01/16/2017] [Indexed: 12/24/2022]
Abstract
Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis.
Collapse
|
150
|
Wang J, Cao X, Zhao J, Zhao H, Wei J, Li Q, Qi X, Yang Z, Wang L, Zhang H, Bai L, Wu Z, Zhao L, Hong Z, Yin Z. Critical roles of conventional dendritic cells in promoting T cell-dependent hepatitis through regulating natural killer T cells. Clin Exp Immunol 2017; 188:127-137. [PMID: 27891589 DOI: 10.1111/cei.12907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) play critical roles in initiating and regulating innate immunity as well as adaptive immune responses. However, the role of conventional dendritic cells (cDCs) in concanavalin A (ConA)-induced fulminant hepatitis is unknown. In this study, we demonstrated that depletion of cDCs using either CD11c-diphtheria toxin receptor transgenic mice (DTR Tg) mice or anti-CD11c antibody reduced the severity of liver injury significantly, indicating a detrimental role of cDCs in ConA-induced hepatitis. We elucidated further the pathological role of cDCs as being the critical source of interleukin (IL)-12, which induced the secretion of interferon (IFN)-γ by natural killer (NK) T cells. Reconstitution of cDCs-depleted mice with IL-12 restored ConA-induced hepatitis significantly. Furthermore, we determined that NK T cells were the target of DC-derived IL-12, and NK T cells contributed to liver inflammation and injury through production of IFN-γ. In summary, our study demonstrated a novel function of cDCs in mediating ConA-induced hepatitis through regulating IFN-γ secretion of NK T cells in an IL-12-dependent fashion. Targeting cDCs might provide potentially therapeutic applications in treating autoimmune related liver diseases.
Collapse
Affiliation(s)
- J Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - X Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - J Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - H Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - J Wei
- The First Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Q Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - X Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Z Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - L Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - H Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - L Bai
- Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Z Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - L Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Z Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Z Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.,University of Science and Technology of China, Hefei City, Anhui, China
| |
Collapse
|