101
|
Wu L, Wang B. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time. Food Chem 2016; 202:149-55. [DOI: 10.1016/j.foodchem.2016.01.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
|
102
|
Palazzini JM, Dunlap CA, Bowman MJ, Chulze SN. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol Res 2016; 192:30-36. [PMID: 27664721 DOI: 10.1016/j.micres.2016.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/30/2016] [Accepted: 06/04/2016] [Indexed: 11/25/2022]
Abstract
Bacillus subtilis RC 218 was originally isolated from wheat anthers as a potential antagonist of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). It was demonstrated to have antagonist activity against the plant pathogen under in vitro and greenhouse assays. The current study extends characterizing B. subtilis RC 218 with a field study and genome sequencing. The field study demonstrated that B. subtilis RC 218 could reduce disease severity and the associated mycotoxin (deoxynivalenol) accumulation, under field conditions. The genome sequencing allowed us to accurately determine the taxonomy of the strain using a phylogenomic approach, which places it in the Bacillus velezensis clade. In addition, the draft genome allowed us to use bioinformatics to mine the genome for potential metabolites. The genome mining allowed us to identify 9 active secondary metabolites conserved by all B. velezensis strains and one additional secondary metabolite, the lantibiotic ericin, which is unique to this strain. This study represents the first confirmed production of ericin by a B. velezensis strain. The genome also allowed us to do a comparative genomics with its closest relatives and compare the secondary metabolite production of the publically available B. velezensis genomes. The results showed that the diversity in secondary metabolites of strains in the B. velezensis clade is driven by strains making different antibacterials.
Collapse
Affiliation(s)
- Juan M Palazzini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba, Argentina
| | - Christopher A Dunlap
- Crop Bioprotection, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Michael J Bowman
- Bioenergy Research Units, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Sofía N Chulze
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
103
|
Juan C, Covarelli L, Beccari G, Colasante V, Mañes J. Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
104
|
Wu W, Zhou HR, Bursian SJ, Link JE, Pestka JJ. Emetic responses to T-2 toxin, HT-2 toxin and emetine correspond to plasma elevations of peptide YY3-36 and 5-hydroxytryptamine. Arch Toxicol 2016; 90:997-1007. [PMID: 25855062 PMCID: PMC11331243 DOI: 10.1007/s00204-015-1508-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Trichothecene mycotoxins are a family of potent translational inhibitors that are associated with foodborne outbreaks of human and animal gastroenteritis in which vomiting is a clinical hallmark. Deoxynivalenol (DON, vomitoxin) and other Type B trichothecenes have been previously demonstrated to cause emesis in the mink (Neovison vison), and this response has been directly linked to secretion of both the satiety hormone peptide YY3-36 (PYY3-36) and neurotransmitter 5-hydroxytryptamine (5-HT). Here, we characterized the emetic responses in the mink to T-2 toxin (T-2) and HT-2 toxin (HT-2), two highly toxic Type A trichothecenes that contaminate cereals, and further compared these effects to those of emetine, a natural alkaloid that is used medicinally and also well known to block translation and cause vomiting. Following intraperitoneal (IP) and oral exposure, all three agents caused vomiting with evident dose-dependent increases in both duration and number of emetic events as well as decreases in latency to emesis. T-2 and HT-2 doses causing emesis in 50 % of treated animals (ED50s) were 0.05 and 0.02 mg/kg BW following IP and oral administration, respectively, whereas the ED50s for emetine were 2.0 and 1.0 mg/kg BW for IP and oral exposure, respectively. Importantly, oral administration of all three toxins elicited marked elevations in plasma concentrations of PYY3-36 and 5-HT that corresponded to emesis. Taken together, the results suggest that T-2 and HT-2 were much more potent than emetine and that emesis induction by all three translational inhibitors co-occurred with increases in circulating levels of PYY3-36 and 5-HT.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Building, East Lansing, MI, 48824-1224, USA
| | - Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Building, East Lansing, MI, 48824-1224, USA
| | - Steven J Bursian
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Building, East Lansing, MI, 48824-1224, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
105
|
Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin). Arch Toxicol 2016; 91:495-507. [PMID: 26979077 DOI: 10.1007/s00204-016-1687-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/24/2016] [Indexed: 12/26/2022]
Abstract
Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.
Collapse
|
106
|
Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins (Basel) 2015; 7:4706-29. [PMID: 26569307 PMCID: PMC4663529 DOI: 10.3390/toxins7114706] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Recently, deoxynivalenol-3-sulfate (DON-3-sulfate) was proposed as a major DON metabolite in poultry. In the present work, the first LC-MS/MS based method for determination of DON-3-sulfate, deepoxy-DON-3-sulfate (DOM-3-sulfate), DON, DOM, DON sulfonates 1, 2, 3, and DOM sulfonate 2 in excreta samples of chickens and turkeys was developed and validated. To this end, DOM-3-sulfate was chemically synthesized and characterized by NMR and LC-HR-MS/MS measurements. Application of the method to excreta and chyme samples of four feeding trials with turkeys, chickens, pullets, and roosters confirmed DON-3-sulfate as the major DON metabolite in all poultry species studied. Analogously to DON-3-sulfate, DOM-3-sulfate was formed after oral administration of DOM both in turkeys and in chickens. In addition, pullets and roosters metabolized DON into DOM-3-sulfate. In vitro transcription/translation assays revealed DOM-3-sulfate to be 2000 times less toxic on the ribosome than DON. Biological recoveries of DON and DOM orally administered to broiler chickens, turkeys, and pullets were 74%–106% (chickens), 51%–72% (roosters), and 131%–151% (pullets). In pullets, DON-3-sulfate concentrations increased from jejunum chyme samples to excreta samples by a factor of 60. This result, put into context with earlier studies, indicates fast and efficient absorption of DON between crop and jejunum, conversion to DON-3-sulfate in intestinal mucosa, liver, and possibly kidney, and rapid elimination into excreta via bile and urine.
Collapse
|
107
|
Matyjaszczyk E. Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. PEST MANAGEMENT SCIENCE 2015; 71:1201-1206. [PMID: 25652108 DOI: 10.1002/ps.3986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/20/2014] [Accepted: 01/27/2015] [Indexed: 05/29/2023]
Abstract
Products containing microorganisms (bacteria, fungi and viruses) can be used in plant production as an intervention as well as a prevention method for pest control. Their utilisation is strictly in line with the principles of integrated pest management, provided that they are effective and safe. The rules of registration of microorganisms for crop production in the European Union differ, depending on whether they are placed on the market as plant protection products or not. For over 20 years, uniform rules for registration of plant protection products have been in force. Currently, 36 microorganisms marked up to the strain are approved for use in pest control in the Community. The decision concerning market placement of plant protection products containing approved microorganisms is issued for each member state separately. The approaches to market placement of other products with microorganisms differ within the EU, ranging from a complete lack of requirements to long and costly registration procedures.
Collapse
Affiliation(s)
- Ewa Matyjaszczyk
- Plant Protection Institute - National Research Institute, Poznań, Poland
| |
Collapse
|
108
|
Kelly AC, Clear RM, O'Donnell K, McCormick S, Turkington TK, Tekauz A, Gilbert J, Kistler HC, Busman M, Ward TJ. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet Biol 2015; 82:22-31. [PMID: 26127017 DOI: 10.1016/j.fgb.2015.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Analyses of genetic diversity, trichothecene genotype composition, and population structure were conducted using 4086 Fusarium graminearum isolates collected from wheat in eight Canadian provinces over a three year period between 2005 and 2007. The results revealed substantial regional differences in Fusarium head blight pathogen composition and temporal population dynamics. The 3ADON trichothecene type consistently predominated in Maritime provinces (91%) over the sampled years, and increased significantly (P<0.05) between 2005 and 2007 in western Canada, accounting for 66% of the isolates in Manitoba by the end of the sampling period. In contrast, 3ADON frequency was lower (22%, P<0.001) in the eastern Canadian provinces of Ontario and Québec and did not change significantly between 2005 and 2007, resulting in two distinct longitudinal clines in 3ADON frequency across Canada. Overall, genetic structure was correlated with toxin type, as the endemic population (NA1) was dominated by 15ADON isolates (86%), whereas a second population (NA2) consisted largely of 3ADON isolates (88%). However, the percentage of isolates with trichothecene genotypes that were not predictive of their genetic population assignment (recombinant genotypes) increased from 10% in 2005 to 17% in 2007, indicating that trichothecene type became an increasingly unreliable marker of population identity over time. In addition, there were substantial regional differences in the composition of recombinant genotypes. In western and maritime provinces, NA2 isolates with 15ADON genotypes were significantly more common than NA1 isolates with 3ADON genotypes (P<0.001), and the reverse was true in the eastern provinces of Québec and Ontario. Temporal trends in recombinant genotype composition also varied regionally, as the percentage of 15ADON isolates with NA2 genetic backgrounds increased approximately three fold in western and Maritime provinces, while the opposite trends were observed in Québec and Ontario. The results indicate that F. graminearum population dynamics in Canada have been influenced by a complex adaptive landscape comprising different regional selective pressures, and do not reflect a simple model of dispersal and integration following the introduction of a novel pathogen population. In addition, we identified F. graminearum strains that produce the recently discovered A-trichothecene mycotoxin (NX-2) for the first time in Canada, representing a significant expansion of the known range of NX-2 producing strains in North America.
Collapse
Affiliation(s)
- Amy C Kelly
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA.
| | | | - Kerry O'Donnell
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA
| | - Susan McCormick
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA
| | - T Kelly Turkington
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Andy Tekauz
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba R3T 2M9, Canada
| | - Jeannie Gilbert
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba R3T 2M9, Canada
| | - H Corby Kistler
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Avenue, St. Paul, MN 55108, USA
| | - Mark Busman
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA
| | - Todd J Ward
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA
| |
Collapse
|
109
|
Wu L, Wang B. Evaluation on levels and conversion profiles of DON, 3-ADON, and 15-ADON during bread making process. Food Chem 2015; 185:509-16. [PMID: 25952900 DOI: 10.1016/j.foodchem.2015.03.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/24/2022]
Abstract
The present study investigated the changes and conversion profiles of DON, its conjugations 3-ADON, and 15-ADON during bread making process, by spiking targeted mycotoxin standards to Fusarium mycotoxins-free wheat flour. No significant (p < 0.05) changes of DON levels were observed during dough preparation stages, including kneading, fermentation, and proofing. A reduction of DON level ranged from 4% to 14% was observed during baking process. The main thermal degradation products of DON, namely norDON A, B, C, and F were detected in the bread crust. Regarding ADONs, decreases of 20-40% for 3-ADON and 28-60% for 15-ADON were found during fermentation stage, and further losses of ADONs were observed after proofing process. Although ADONs levels gained an increase after baking. This study demonstrated that ADONs were converted to DON, while no ADONs were detectable in DON spiked samples during bread making process. The mechanism that ADONs could be converted into DON is unclear so far.
Collapse
Affiliation(s)
- Li Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China
| | - Bujun Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
110
|
Comparison of Anorectic Potencies of the Trichothecenes T-2 Toxin, HT-2 Toxin and Satratoxin G to the Ipecac Alkaloid Emetine. Toxicol Rep 2015; 2:238-251. [PMID: 25932382 PMCID: PMC4410735 DOI: 10.1016/j.toxrep.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Anorectic effects of natural toxins were compared in the mouse. Parenteral and oral T-2 and HT-2 toxin exposure caused prolonged anorexia. Emetine was more potent when delivered orally as compared to parenterally. Emetine's effects were less than T-2 and HT-2 toxin and more transient. Parental and intranasal delivery satratoxin G caused transient anorectic effects.
Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON) and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin), airborne Type D trichothecenes (e.g., satratoxin G [SG]) or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP) administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs) being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral) and SG (intranasal) induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.
Collapse
|
111
|
Bianchini A, Horsley R, Jack MM, Kobielush B, Ryu D, Tittlemier S, Wilson WW, Abbas HK, Abel S, Harrison G, Miller JD, Shier WT, Weaver G. DON Occurrence in Grains: A North American Perspective. CEREAL FOOD WORLD 2015. [DOI: 10.1094/cfw-60-1-0032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andreia Bianchini
- The Food Processing Center, Food Science and Technology Department, University of Nebraska – Lincoln, NE, U.S.A
| | - Richard Horsley
- Department of Plant Sciences, North Dakota State University, ND, U.S.A
| | | | | | - Dojin Ryu
- Bi-State School of Food Science, University of Idaho/Washington State University, ID, U.S.A
| | - Sheryl Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, Canada
| | - William W. Wilson
- Department of Agribusiness and Applied Economics, North Dakota State University, ND, U.S.A
| | | | - Susan Abel
- Food & Consumer Products of Canada, Toronto, ON, Canada
| | | | - J. David Miller
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - W. Thomas Shier
- Department of Medicinal Chemistry, University of Minnesota, MN, U.S.A
| | | |
Collapse
|
112
|
Fast and sensitive LC–MS/MS method measuring human mycotoxin exposure using biomarkers in urine. Arch Toxicol 2014; 89:1993-2005. [DOI: 10.1007/s00204-014-1358-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/28/2014] [Indexed: 01/11/2023]
|
113
|
Wu W, Zhou HR, Bursian SJ, Pan X, Link JE, Berthiller F, Adam G, Krantis A, Durst T, Pestka JJ. Comparison of anorectic and emetic potencies of deoxynivalenol (vomitoxin) to the plant metabolite deoxynivalenol-3-glucoside and synthetic deoxynivalenol derivatives EN139528 and EN139544. Toxicol Sci 2014; 142:167-81. [PMID: 25173790 DOI: 10.1093/toxsci/kfu166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON) elicits robust anorectic and emetic effects in several animal species. However, less is known about the potential for naturally occurring and synthetic congeners of this trichothecene to cause analogous responses. Here we tested the hypothesis that alterations in DON structure found in the plant metabolite deoxynivalenol-3-glucoside (D3G) and two pharmacologically active synthetic DON derivatives, EN139528 and EN139544, differentially impact their potential to evoke food refusal and emesis. In a nocturnal mouse food consumption model, oral administration with DON, D3G, EN139528, or EN139544 at doses from 2.5 to 10 mg/kg BW induced anorectic responses that lasted up to 16, 6, 6, and 3 h, respectively. Anorectic potency rank orders were EN139544>DON>EN139528>D3G from 0 to 0.5 h but DON>D3G>EN139528>EN139544 from 0 to 3 h. Oral exposure to each of the four compounds at a common dose (2.5 mg/kg BW) stimulated plasma elevations of the gut satiety peptides cholecystokinin and to a lesser extent, peptide YY3-36 that corresponded to reduced food consumption. In a mink emesis model, oral administration of increasing doses of the congeners differentially induced emesis, causing marked decreases in latency to emesis with corresponding increases in both the duration and number of emetic events. The minimum emetic doses for DON, EN139528, D3G, and EN139544 were 0.05, 0.5, 2, and 5 mg/kg BW, respectively. Taken together, the results suggest that although all three DON congeners elicited anorectic responses that mimicked DON over a narrow dose range, they were markedly less potent than the parent mycotoxin at inducing emesis.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| | - Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| | - Steven J Bursian
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Xiao Pan
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Anthony Krantis
- Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Tony Durst
- Department of Chemistry, University of Ottawa, Canada
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824 Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
114
|
Piotrowska M, Sliżewska K, Nowak A, Zielonka L, Zakowska Z, Gajęcka M, Gajęcki M. The effect of experimental fusarium mycotoxicosis on microbiota diversity in porcine ascending colon contents. Toxins (Basel) 2014; 6:2064-81. [PMID: 25025709 PMCID: PMC4113742 DOI: 10.3390/toxins6072064] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
The objective of the study was to determine the effect of exposure of pigs to the Fusarium mycotoxins zearalenone (ZEN) and deoxynivalenol (DON), administered together and separately, on the colon microbiota. An experiment was conducted for 42 days on gilts, randomly assigned to four groups and administered either ZEN, DON, ZEN+DON, or a placebo. The number of aerobic mesophilic bacteria, yeasts, molds, anaerobic Clostridium perfringens, fecal streptococci, Enterobacteriaceae, Escherichia coli, and lactic acid bacteria (LAB) were determined in the contents of the ascending colon. The influence of mycotoxins on the functional diversity of the colonic microbiota was assessed using EcoPlate tests (Biolog). Analysis revealed the predominance of LAB in all groups of pigs. Zearalenone, administered separately and together with DON, was found to have an adverse effect on mesophilic aerobic bacteria, but only after long exposure to this mycotoxin. During the six weeks of the experiment, the concentration of C. perfringens, E. coli, and other bacteria in the family Enterobacteriaceae was most considerably reduced in the experimental groups exposed to zearalenone, both separately and together with DON. Mycotoxins also affected the functional biodiversity of microorganisms. Both Shannon’s diversity index and the number of catabolized substrates in Biolog plate (the R index) were much higher in the group subjected to mixed mycotoxicosis.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Katarzyna Sliżewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Lukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| | - Zofia Zakowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| | - Maciej Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/19, Olsztyn 10-717, Poland.
| |
Collapse
|
115
|
Stability of DON and OTA during the breadmaking process and determination of process and performance criteria. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.11.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
116
|
Maragos CM. Production of anti-idiotype antibodies for deoxynivalenol and their evaluation with three immunoassay platforms. Mycotoxin Res 2014; 30:103-11. [PMID: 24526340 DOI: 10.1007/s12550-014-0190-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 11/25/2022]
Abstract
Immunoassays for deoxynivalenol (DON) that involve binding to DON-specific antibodies have been widely developed. In such assays, the responses of samples are generally compared with calibration curves generated by using DON in competition with labeled reagents such as enzymatic or fluorescent conjugates of the toxin. However, materials that mimic the toxin can also be used, provided that they compete effectively with the labeled reagents for the DON-specific antibodies. Examples include certain types of anti-idiotype antibodies, obtained by the immunization of animals with toxin-specific antibodies. In the present work, anti-idiotype antibodies were developed which mimicked DON in the ability to bind to a DON-specific monoclonal antibody (Mab). Fab fragments of the Mab (Ab1) were used to immunize rabbits. Sera were screened by competitive direct enzyme linked immunosorbent assay (CD-ELISA) for the presence of anti-idiotype antibodies (Ab2). In order to determine the most effective screening format and also the potential efficacy in various forms of biosensors, the sera were further evaluated in biolayer interferometry (BLI) and fluorescence polarization immunoassay (FPIA) formats. All three formats were used to demonstrate the presence of anti-idiotypes capable of binding to the paratope of the DON antibody (subtypes Ab2β or Ab2γ). Such materials have the potential to replace DON as calibrants in immunoassays for this toxin.
Collapse
Affiliation(s)
- C M Maragos
- Bacterial Foodborne Pathogens & Mycology Research Unit, National Center for Agricultural Utilization Research, ARS, USDA, 1815 N. University Street, Peoria, IL, 61604, USA,
| |
Collapse
|
117
|
Ezekiel CN, Warth B, Ogara IM, Abia WA, Ezekiel VC, Atehnkeng J, Sulyok M, Turner PC, Tayo GO, Krska R, Bandyopadhyay R. Mycotoxin exposure in rural residents in northern Nigeria: a pilot study using multi-urinary biomarkers. ENVIRONMENT INTERNATIONAL 2014; 66:138-145. [PMID: 24583186 DOI: 10.1016/j.envint.2014.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
A pilot, cross-sectional, correlational study was conducted in eight rural communities in northern Nigeria to investigate mycotoxin exposures in 120 volunteers (19 children, 20 adolescents and 81 adults) using a modern LC-MS/MS based multi-biomarker approach. First morning urine samples were analyzed and urinary biomarker levels correlated with mycotoxin levels in foods consumed the day before urine collection. A total of eight analytes were detected in 61/120 (50.8%) of studied urine samples, with ochratoxin A, aflatoxin M1 and fumonisin B1 being the most frequently occurring biomarkers of exposure. These mycotoxin biomarkers were present in samples from all age categories, suggestive of chronic (lifetime) exposures. Rough estimates of mycotoxin intake suggested some exposures were higher than the tolerable daily intake. Overall, rural consumer populations from Nasarawa were more exposed to several mixtures of mycotoxins in their diets relative to those from Kaduna as shown by food and urine biomarker data. This study has shown that mycotoxin co-exposure may be a major public health challenge in rural Nigeria; this calls for urgent intervention.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Nigeria; Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria.
| | - Benedikt Warth
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Isaac M Ogara
- Faculty of Agriculture, Nasarawa State University Keffi, Lafia Campus, Nasarawa State, Nigeria
| | - Wilfred A Abia
- Laboratory of Pharmacology and Toxicology, University of Yaounde I, Yaounde, Cameroon; Department of Food Technology, Faculty of Science, University of Johannesburg, South Africa
| | | | - Joseph Atehnkeng
- Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Grace O Tayo
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Ranajit Bandyopadhyay
- Pathology/Mycotoxin Laboratory, International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
| |
Collapse
|
118
|
Wu W, He K, Zhou HR, Berthiller F, Adam G, Sugita-Konishi Y, Watanabe M, Krantis A, Durst T, Zhang H, Pestka JJ. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol Appl Pharmacol 2014; 278:107-15. [PMID: 24793808 DOI: 10.1016/j.taap.2014.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kaiyu He
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Hui-Ren Zhou
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Gerhard Adam
- Dept. of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yoshiko Sugita-Konishi
- Food and Life Sciences, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara, Kanagawa Pref., 252-5201, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Anthony Krantis
- Dept. of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Tony Durst
- Dept. of Chemistry, University of Ottawa, Canada
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - James J Pestka
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
119
|
Distribution of mycotoxins and risk assessment of maize consumers in five agro-ecological zones of Nigeria. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2221-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
120
|
Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Res 2014; 30:89-102. [PMID: 24643458 DOI: 10.1007/s12550-014-0194-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/27/2022]
Abstract
Seventy composite samples of maize grains stored in five agro-ecological zones (AEZs) of Nigeria where maize is predominantly produced were evaluated for the presence of microbial metabolites with the LC-MS/MS technique. The possible relationships between the storage structures and levels of mycotoxin contamination were also evaluated. Sixty-two fungal and four bacterial metabolites were extracted from the grains, 54 of which have not been documented for maize in Nigeria. Aflatoxin B1 and fumonisin B1 were quantified in 67.1 and 92.9% of the grains, while 64.1 and 57.1% exceeded the European Union Commission maximum acceptable limit (MAL) for aflatoxin B1 and fumonisins, respectively. The concentration of deoxynivalenol was, however, below the MAL with occurrence levels of 100 and 10% for its masked metabolite, deoxynivalenol glucoside. The bacterial metabolites had low concentrations and were not a source of concern. The storage structures significantly correlated positively or negatively (p < 0.01 and p < 0.05), respectively with the levels of grain contamination. Consumption of maize grains, a staple Nigerian diet, may therefore expose the population to mycotoxin contamination. There is need for an immediate action plan for mycotoxin mitigation in Nigeria, especially in the Derived Savannah zone, in view of the economic and public health importance of the toxins.
Collapse
|
121
|
Vidal A, Marín S, Morales H, Ramos AJ, Sanchis V. The fate of deoxynivalenol and ochratoxin A during the breadmaking process, effects of sourdough use and bran content. Food Chem Toxicol 2014; 68:53-60. [PMID: 24607819 DOI: 10.1016/j.fct.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/10/2014] [Accepted: 03/02/2014] [Indexed: 11/29/2022]
Abstract
Deoxynivalenol (DON) and ochratoxin A (OTA) are mycotoxins produced by fungal species which can contaminate, alone or simultaneously, cereal-based products such as bread. Due to the increasing interest in the beneficial effects of dietary bran, bran bread has attained high consumption. Usually, the higher mycotoxin concentrations in cereals are found in the external layers of the grain (bran), leading to higher concentration of DON and OTA in breads with added bran. Moreover, the use of sourdough in breadmaking is increasing, but no studies about its effect in the mycotoxins content exist. The objective of this study was to determine the variation of concentration of these mycotoxins during the breadmaking process including the following factors: two initial mycotoxin concentrations in the initial mix of ingredients, four different bran contents, and use of sourdough. OTA was confirmed to be quite stable during the breadmaking process, regardless of the assayed factors. DON concentration during breadmaking was not significantly affected by bran content of bread. However, it was significantly affected by kneading and fermentation steps in opposite way depending on sourdough use and flour contamination level: if DON reduction occurs during fermentation, this leads to a safer situation, but the possible increase in DON should be considered with care, as it can compensate the expected dilution effect by recipe. Finally, the results on deoxynivalenol-3-glucoside (DON-3-G), although preliminar, suggest an increase of this toxin during fermentation, but mainly during baking.
Collapse
Affiliation(s)
- A Vidal
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, 25198 Lleida, Spain
| | - S Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, 25198 Lleida, Spain.
| | - H Morales
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - A J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, 25198 Lleida, Spain
| | - V Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, 25198 Lleida, Spain
| |
Collapse
|
122
|
Affiliation(s)
- Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824; ,
| | - John D. Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205;
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824; ,
| |
Collapse
|
123
|
van der Fels-Klerx HJ. Evaluation of performance of predictive models for deoxynivalenol in wheat. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2014; 34:380-390. [PMID: 23901939 DOI: 10.1111/risa.12103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to evaluate the performance of two predictive models for deoxynivalenol contamination of wheat at harvest in the Netherlands, including the use of weather forecast data and external model validation. Data were collected in a different year and from different wheat fields than data used for model development. The two models were run for six preset scenarios, varying in the period for which weather forecast data were used, from zero-day (historical data only) to a 13-day period around wheat flowering. Model predictions using forecast weather data were compared to those using historical data. Furthermore, model predictions using historical weather data were evaluated against observed deoxynivalenol contamination of the wheat fields. Results showed that the use of weather forecast data rather than observed data only slightly influenced model predictions. The percent of correct model predictions, given a threshold of 1,250 μg/kg (legal limit in European Union), was about 95% for the two models. However, only three samples had a deoxynivalenol concentration above this threshold, and the models were not able to predict these samples correctly. It was concluded that two- week weather forecast data can reliable be used in descriptive models for deoxynivalenol contamination of wheat, resulting in more timely model predictions. The two models are able to predict lower deoxynivalenol contamination correctly, but model performance in situations with high deoxynivalenol contamination needs to be further validated. This will need years with conducive environmental conditions for deoxynivalenol contamination of wheat.
Collapse
|
124
|
Wu W, Zhou HR, He K, Pan X, Sugita-Konishi Y, Watanabe M, Zhang H, Pestka JJ. Role of cholecystokinin in anorexia induction following oral exposure to the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. Toxicol Sci 2014; 138:278-89. [PMID: 24385417 DOI: 10.1093/toxsci/kft335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY₃₋₃₆ (PYY₃₋₃₆), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY₃₋₃₆ concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY₃₋₃₆ was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY₃₋₃₆ might play a lesser, congener-dependent role in this response.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Foroud NA, Chatterton S, Reid LM, Turkington TK, Tittlemier SA, Gräfenhan T. Fusarium Diseases of Canadian Grain Crops: Impact and Disease Management Strategies. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
126
|
Wu W, Zhang H. Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. J Toxicol Sci 2014; 39:875-86. [DOI: 10.2131/jts.39.875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, China
| |
Collapse
|
127
|
Audenaert K, Vanheule A, Höfte M, Haesaert G. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins (Basel) 2013; 6:1-19. [PMID: 24451843 PMCID: PMC3920246 DOI: 10.3390/toxins6010001] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON), produced by several Fusarium spp., acts as a virulence factor and is essential for symptom development after initial wheat infection. Accumulating evidence shows that the production of this secondary metabolite can be triggered by diverse environmental and cellular signals, implying that it might have additional roles during the life cycle of the fungus. Here, we review data that position DON in the saprophytic fitness of Fusarium, in defense and in the primary C and N metabolism of the plant and the fungus. We combine the available information in speculative models on the role of DON throughout the interaction with the host, providing working hypotheses that await experimental validation. We also highlight the possible impact of control measures in the field on DON production and summarize the influence of abiotic factors during processing and storage of food and feed matrices. Altogether, we can conclude that DON is a very important compound for Fusarium to cope with a changing environment and to assure its growth, survival, and production of toxic metabolites in diverse situations.
Collapse
Affiliation(s)
- Kris Audenaert
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, 1, Ghent 9000, Belgium.
| | - Adriaan Vanheule
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, 1, Ghent 9000, Belgium.
| | - Monica Höfte
- Department of Crop Protection, Laboratory of Phytopathology, Faculty Bioscience Engineering, Ghent University, Coupure links 653, Ghent 9000, Belgium.
| | - Geert Haesaert
- Department of Applied BioSciences, Faculty Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, 1, Ghent 9000, Belgium.
| |
Collapse
|
128
|
Peigné J, Messmer M, Aveline A, Berner A, Mäder P, Carcea M, Narducci V, Samson MF, Thomsen IK, Celette F, David C. Wheat yield and quality as influenced by reduced tillage in organic farming. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13165-013-0055-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
129
|
Evaluation of beauvericin and enniatins in Italian cereal products and multicereal food by liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem 2013; 140:755-62. [DOI: 10.1016/j.foodchem.2012.08.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 11/16/2022]
|
130
|
Impact of climate change effects on contamination of cereal grains with deoxynivalenol. PLoS One 2013; 8:e73602. [PMID: 24066059 PMCID: PMC3774692 DOI: 10.1371/journal.pone.0073602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/30/2013] [Indexed: 11/19/2022] Open
Abstract
Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards.
Collapse
|
131
|
Umpiérrez-Failache M, Garmendia G, Pereyra S, Rodríguez-Haralambides A, Ward T, Vero S. Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. Int J Food Microbiol 2013; 166:135-40. [DOI: 10.1016/j.ijfoodmicro.2013.06.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 11/30/2022]
|
132
|
Valenzano S, Lippolis V, Pascale M, De Marco A, Maragos CM, Suman M, Visconti A. Determination of Deoxynivalenol in Wheat Bran and Whole-Wheat Flour by Fluorescence Polarization Immunoassay. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9684-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
133
|
Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ. Early phosphoproteomic changes in the mouse spleen during deoxynivalenol-induced ribotoxic stress. Toxicol Sci 2013; 135:129-43. [PMID: 23811945 DOI: 10.1093/toxsci/kft145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) targets the innate immune system and is of public health significance because of its frequent presence in human and animal food. DON-induced proinflammatory gene expression and apoptosis in the lymphoid tissue have been associated with a ribotoxic stress response (RSR) that involves rapid phosphorylation of mitogen-activated protein kinases (MAPKs). To better understand the relationship between protein phosphorylation and DON's immunotoxic effects, stable isotope dimethyl labeling-based proteomics in conjunction with titanium dioxide chromatography was employed to quantitatively profile the immediate (≤ 30min) phosphoproteome changes in the spleens of mice orally exposed to 5mg/kg body weight DON. A total of 90 phosphoproteins indicative of novel phosphorylation events were significantly modulated by DON. In addition to critical branches and scaffolds of MAPK signaling being affected, DON exposure also altered phosphorylation of proteins that mediate phosphatidylinositol 3-kinase/AKT pathways. Gene ontology analysis revealed that DON exposure affected biological processes such as cytoskeleton organization, regulation of apoptosis, and lymphocyte activation and development, which likely contribute to immune dysregulation associated with DON-induced RSR. Consistent with these findings, DON impacted phosphorylation of proteins within diverse immune cell populations, including monocytes, macrophages, T cells, B cells, dendritic cells, and mast cells. Fuzzy c-means clustering analysis further indicated that DON evoked several distinctive temporal profiles of regulated phosphopeptides. Overall, the findings from this investigation can serve as a template for future focused exploration and modeling of cellular responses associated with the immunotoxicity evoked by DON and other ribotoxins.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
134
|
Determination of Deoxynivalenol and Nivalenol in Wheat by Ultra-Performance Liquid Chromatography/Photodiode-Array Detector and Immunoaffinity Column Cleanup. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9653-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
135
|
Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chem 2013; 141:1747-55. [PMID: 23870887 DOI: 10.1016/j.foodchem.2013.04.061] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 11/23/2022]
Abstract
In the present study, the occurrence of eighteen mycotoxins, nine trichothecenes (deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, neosolaniol, diacetoxyscirpenol, fusarenon-X, T-2 toxin and HT-2 toxin), three zearalenones (zearalenone, α-zearalenol and β-zearalenol), and six emergent mycotoxins, beauvericin and five enniatins (A, A1, B, B1 and B4), was monitored in different Italian organic cereals and cereal products by using a liquid chromatography coupled to triple quadrupole mass spectrometry method. A total of 93 organic cereal samples (wheat, barley, rye and oat) were collected from Italy. Limits of quantification ranged from 5 to 15 μg/kg. 80% of analyzed samples contained mycotoxins. The occurrence was 33%, 6.5%, 2%, 27%, 7%, 10% and 43% for deoxynivalenol, HT-2, T-2, nivalenol, zearalenone, beauvericin and enniatins, respectively. The major mycotoxin found was enniatin B4; it was detected in 40% of all analyzed samples and its levels ranged from 5.7 to 284.2 μg/kg. Risk assessment was evaluated by EDI calculations which were lower than TDI for all legislated Fusarium mycotoxins.
Collapse
|
136
|
Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 2013; 220:88-94. [PMID: 23623764 DOI: 10.1016/j.toxlet.2013.04.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 11/16/2022]
Abstract
This study reports on the detailed investigation of human deoxynivalenol (DON) and zearalenone (ZEN) in vivo metabolism through the analysis of urine samples obtained from one volunteer following a naturally contaminated diet containing 138μg DON and 10μg ZEN over a period of four days. Based on the mycotoxin intake and the concentrations of mycotoxin conjugates in urine, a mass balance was established. The average rates of DON excretion and glucuronidation were determined to be 68 and 76%, respectively. The investigation of formed glucuronides revealed DON-15-glucuronide as main conjugation product besides DON-3-glucuronide. Furthermore, for the first time in human urine a third DON-glucuronide was detected and the fate of ingested masked DON forms (3-acetyl-DON and DON-3-glucoside) was preliminary assessed. The mean excretion rate of ZEN was determined to be 9.4%. ZEN was mainly present in its glucuronide form and in some samples ZEN-14-glucuronide was directly determined 3-10h after exposure. For the first time concrete figures have become available for the excretion pattern of DON and ZEN-glucuronides throughout a day, the comparison of total DON in 24h and first morning urine samples and the urinary excretion rate of total ZEN in humans following exposure through naturally contaminated food. Therefore, valuable preliminary information has been obtained through the chosen experimental approach although the study involved only one single individual and needs to be confirmed in larger monitoring studies. The presented experiment contributes to a better understanding of human DON and ZEN in vivo metabolism and thereby supports advanced exposure and risk assessment to increase food safety and examine the relationship between these mycotoxins and potentially associated chronic diseases in the future.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | | | | | | |
Collapse
|
137
|
Vidal A, Marín S, Ramos AJ, Cano-Sancho G, Sanchis V. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food Chem Toxicol 2013. [DOI: 10.1016/j.fct.2012.11.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
138
|
Wu W, Bates MA, Bursian SJ, Flannery B, Zhou HR, Link JE, Zhang H, Pestka JJ. Peptide YY3-36 and 5-hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin). Toxicol Sci 2013; 133:186-95. [PMID: 23457120 DOI: 10.1093/toxsci/kft033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3-36 (PYY3-36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15-30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3-36 (30-60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON's emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3-36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3-36 and 5-HT play contributory roles in DON-induced emesis.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Berthiller F, Crews C, Dall'Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. Masked mycotoxins: a review. Mol Nutr Food Res 2013; 57:165-86. [PMID: 23047235 PMCID: PMC3561696 DOI: 10.1002/mnfr.201100764] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/13/2012] [Accepted: 06/27/2012] [Indexed: 11/17/2022]
Abstract
The aim of this review is to give a comprehensive overview of the current knowledge on plant metabolites of mycotoxins, also called masked mycotoxins. Mycotoxins are secondary fungal metabolites, toxic to human and animals. Toxigenic fungi often grow on edible plants, thus contaminating food and feed. Plants, as living organisms, can alter the chemical structure of mycotoxins as part of their defence against xenobiotics. The extractable conjugated or non-extractable bound mycotoxins formed remain present in the plant tissue but are currently neither routinely screened for in food nor regulated by legislation, thus they may be considered masked. Fusarium mycotoxins (deoxynivalenol, zearalenone, fumonisins, nivalenol, fusarenon-X, T-2 toxin, HT-2 toxin, fusaric acid) are prone to metabolisation or binding by plants, but transformation of other mycotoxins by plants (ochratoxin A, patulin, destruxins) has also been described. Toxicological data are scarce, but several studies highlight the potential threat to consumer safety from these substances. In particular, the possible hydrolysis of masked mycotoxins back to their toxic parents during mammalian digestion raises concerns. Dedicated chapters of this article address plant metabolism as well as the occurrence of masked mycotoxins in food, analytical aspects for their determination, toxicology and their impact on stakeholders.
Collapse
Affiliation(s)
- Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department for Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Modified use of a commercial ELISA kit for deoxynivalenol determination in rice and corn silage. Mycotoxin Res 2012; 29:79-88. [DOI: 10.1007/s12550-012-0155-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
|
141
|
Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 2012; 217:149-58. [PMID: 23274714 DOI: 10.1016/j.toxlet.2012.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/24/2023]
Abstract
Trichothecenes are sesquiterpenoid mycotoxins commonly found as contaminants in cereal grains and are a major health and food safety concern due to their toxicity to humans and farm animals. Trichothecenes are predominantly produced by the phytopathogenic Fusarium fungus, and in plants they act as a virulence factor aiding the spread of the fungus during disease development. Known for their inhibitory effect on eukaryotic protein synthesis, trichothecenes also induce oxidative stress, DNA damage and cell cycle arrest and affect cell membrane integrity and function in eukaryotic cells. In animals, trichothecenes can be either immunostimulatory or immunosuppressive and induce apoptosis via mitochondria-mediated or -independent pathway. In plants, trichothecenes induce programmed cell death via production of reactive oxygen species. Recent advances in molecular techniques have led to the elucidation of signal transduction pathways that manifest trichothecene toxicity in eukaryotes. In animals, trichothecenes induce mitogen-activated protein kinase (MAPK) signalling cascades via ribotoxic stress response and/or endoplasmic reticulum stress response. The upstream signalling events that lead to the activation trichothecene-induced ribotoxic stress response are discussed. In plants, trichothecenes exhibit elicitor-like activity leading to the inductions MAPKs and genes involved in oxidative stress, cell death and plant defence response. Trichothecenes might also modulate hormone-mediated defence signalling and abiotic stress signalling in plants.
Collapse
|
142
|
Katika MR, Hendriksen PJ, Shao J, van Loveren H, Peijnenburg A. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights. Toxicol Appl Pharmacol 2012; 264:51-64. [DOI: 10.1016/j.taap.2012.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/30/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022]
|
143
|
Van Asselt E, Azambuja W, Moretti A, Kastelein P, De Rijk T, Stratakou I, Van Der Fels-Klerx H. A Dutch field survey on fungal infection and mycotoxin concentrations in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1556-65. [DOI: 10.1080/19440049.2012.689997] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
144
|
Wu W, Bates MA, Bursian SJ, Link JE, Flannery BM, Sugita-Konishi Y, Watanabe M, Zhang H, Pestka JJ. Comparison of emetic potencies of the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. Toxicol Sci 2012; 131:279-91. [PMID: 22997060 DOI: 10.1093/toxsci/kfs286] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the acute toxic effects of trichothecene mycotoxin deoxynivalenol (DON or vomitoxin), a known cause of human food poisoning, have been well characterized in several animal species, much less is known about closely related 8-ketotrichothecenes that similarly occur in cereal grains colonized by toxigenic fusaria. To address this, we compared potencies of DON, 15-acetyldeoxynivalenol (15-ADON), 3-acetyldeoxynivalenol (3-ADON), fusarenon X (FX), and nivalenol (NIV) in the mink emesis model following intraperitoneal (ip) and oral administration. All five congeners dose-dependently induced emesis by both administration methods. With increasing doses, there were marked decreases in latency to emesis with corresponding increases in emesis duration and number of emetic events. The effective doses resulting in emetic events in 50% of the animals for ip exposure to DON, 15-ADON, 3-ADON, FX, and NIV were 80, 170, 180, 70, and 60 µg/kg bw, respectively, and for oral exposure, they were 30, 40, 290, 30, and 250 µg/kg bw, respectively. The emetic potency of DON determined here was comparable to that reported in analogous studies conducted in pigs and dogs, suggesting that the mink is a suitable small animal model for investigating acute trichothecene toxicity. The use of a mouse pica model, based on the consumption of kaolin, was also evaluated as a possible surrogate for studying emesis but was found unsuitable. From a public health perspective, comparative emetic potency data derived from small animal models such as the mink should be useful for establishing toxic equivalency factors for DON and other trichothecenes.
Collapse
Affiliation(s)
- Wenda Wu
- Department of Preventive Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Comparison of murine anorectic responses to the 8-ketotrichothecenes 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon X and nivalenol. Food Chem Toxicol 2012; 50:2056-61. [DOI: 10.1016/j.fct.2012.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/19/2022]
|
146
|
van der Fels-Klerx HJ, Goedhart PW, Elen O, Börjesson T, Hietaniemi V, Booij CJH. Modeling deoxynivalenol contamination of wheat in northwestern Europe for climate change assessments. J Food Prot 2012; 75:1099-106. [PMID: 22691478 DOI: 10.4315/0362-028x.jfp-11-435] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Climate change will affect mycotoxin contamination of feed and food. Mathematical models for predicting mycotoxin concentrations in cereal grains are useful for estimating the impact of climate change on these toxins. The objective of the current study was to construct a descriptive model to estimate climate change impacts on deoxynivalenol (DON) contamination of mature wheat grown in northwestern Europe. Observational data from 717 wheat fields in Norway, Sweden, Finland, and The Netherlands were analyzed, including the DON concentrations in mature wheat, agronomical practices, and local weather. Multiple regression analyses were conducted, and the best set of explanatory variables, mainly including weather factors, was selected. The final model included the following variables: flowering date, length of time between flowering and harvest, wheat resistance to Fusarium infection, and several climatic variables related to relative humidity, temperature, and rainfall during critical stages of wheat cultivation. The model accounted for 50 % of the variance, which was sufficient to make this model useful for estimating the trends of climate change on DON contamination of wheat in northwestern Europe. Application of the model in possible climate change scenarios is illustrated.
Collapse
Affiliation(s)
- H J van der Fels-Klerx
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, P. O. Box 230, NL-6700 AE Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
147
|
van der Fels-Klerx HJ, de Rijk TC, Booij CJH, Goedhart PW, Boers EAM, Zhao C, Waalwijk C, Mol HGJ, van der Lee TAJ. Occurrence of Fusarium Head Blight species and Fusarium mycotoxins in winter wheat in the Netherlands in 2009. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1716-26. [PMID: 22624849 DOI: 10.1080/19440049.2012.685891] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Most recent information on the occurrence of Fusarium Head Blight species and related mycotoxins in wheat grown in the Netherlands dates from 2001. This aim of this study was to investigate the incidence and levels of Fusarium Head Blight species and Fusarium mycotoxins, as well as their possible relationships, in winter wheat cultivated in the Netherlands in 2009. Samples were collected from individual fields of 88 commercial wheat growers. Samples were collected at harvest from 86 fields, and 2 weeks before the expected harvest date from 21 fields. In all, 128 samples, the levels of each of seven Fusarium Head Blight species and of 12 related mycotoxins were quantified. The results showed that F. graminearum was the most frequently observed species at harvest, followed by F. avenaceum and M. nivale. In the pre-harvest samples, only F. graminearum and M. nivale were relevant. The highest incidence and concentrations of mycotoxins were found for deoxynivalenol, followed by zearalenone and beauvericin, both pre-harvest and at harvest. Other toxins frequently found--for the first time in the Netherlands--included T-2 toxin, HT-2 toxin, and moniliformin. The levels of deoxynivalenol were positively related to F. graminearum levels, as well as to zearalenone levels. Other relationships could not be established. The current approach taken in collecting wheat samples and quantifying the presence of Fusarium Head Blight species and related mycotoxins is an efficient method to obtain insight into the occurrence of these species and toxins in wheat grown under natural environmental conditions. It is recommended that this survey be repeated for several years to establish inter-annual variability in both species composition and mycotoxin occurrence.
Collapse
Affiliation(s)
- H J van der Fels-Klerx
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, NL-6700 AE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicol Lett 2012; 211:85-90. [DOI: 10.1016/j.toxlet.2012.02.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/18/2022]
|
149
|
Fruhmann P, Warth B, Hametner C, Berthiller F, Horkel E, Adam G, Sulyok M, Krska R, Fröhlich J. Synthesis of deoxynivalenol-3-ß-D-O-glucuronide for its use as biomarker for dietary deoxynivalenol exposure. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2011.1366] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trichothecene mycotoxins are prevalent toxic secondary metabolic products of several fungal species and pose a serious threat to human and animal health. Deoxynivalenol (DON) is known to undergo rapid metabolisation after uptake. The formed glucuronides are urinary excreted and could therefore serve as possible biomarkers for daily uptake measurement. So far human exposure to the major toxin DON was estimated from dietary average intake or by measurement of the parent toxin after hydrolysis. These approaches are indirect and time-consuming. Due to the clear demand for a direct determination method and lack of an available reference substance we synthesised DON-3-O-ö-D-glucuronide. The Königs-Knorr procedure using acetobromo-α-D-glucuronic acid methyl ester as glucuronyl-donor was optimised to produce the target compound in mg scale allowing subsequent characterisation via nuclear magnetic resonance and LC-MS/MS.
Collapse
Affiliation(s)
- P. Fruhmann
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9, 1060 Vienna, Austria;
| | - B. Warth
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Hametner
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9, 1060 Vienna, Austria;
| | - F. Berthiller
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - E. Horkel
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9, 1060 Vienna, Austria;
| | - G. Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 24, 3430 Tulln, Austria
| | - M. Sulyok
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - R. Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - J. Fröhlich
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9, 1060 Vienna, Austria;
| |
Collapse
|
150
|
Maragos CM. Signal amplification using colloidal gold in a biolayer interferometry-based immunosensor for the mycotoxin deoxynivalenol. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1108-17. [PMID: 22489824 DOI: 10.1080/19440049.2012.671789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deoxynivalenol (DON) is a toxin produced by certain species of Fusarium fungi that can infest wheat, barley and corn. The fungi cause diseases in crops worldwide and some of the secondary metabolites, such as DON, can adversely affect animal health and food safety. To monitor DON in wheat rapidly, a biosensor using the principle of biolayer interferometry (BLI) was developed. The signal from the sensor was substantially amplified through the use of a primary antibody-colloidal gold conjugate. The amplification was much greater in the presence of wheat matrix than in buffered solution, suggesting matrix components may have contributed to the enhancement. The improved signal provided by the amplification allowed for the development of rapid qualitative and quantitative assays. The limit of detection of the method was 0.09 mg kg(-1); the limit of quantitation was 0.35 mg kg(-1). Recovery from wheat spiked over the range from 0.2 to 5 mg kg(-1) averaged 103% (RSD = 12%). The quantitative assay compared favourably (r(2) = 0.9698) with a reference chromatographic method for 40 naturally contaminated wheats. The qualitative assay was able to classify accurately the same group of 40 samples as either above or below a 0.5 mg kg(-1) threshold. These results suggest that the BLI technique can be used to measure DON in wheat rapidly.
Collapse
Affiliation(s)
- C M Maragos
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA.
| |
Collapse
|