101
|
da Silva-Souza HA, de Lira MN, Patel NK, Spray DC, Persechini PM, Scemes E. Inhibitors of the 5-lipoxygenase pathway activate pannexin1 channels in macrophages via the thromboxane receptor. Am J Physiol Cell Physiol 2014; 307:C571-9. [PMID: 25080488 DOI: 10.1152/ajpcell.00087.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multitude of environmental signaling molecules influence monocyte and macrophage innate and adaptive immune responses, including ATP and prostanoids. Interestingly, purinergic (P2) and eicosanoid receptor signaling interact such that the activation of P2 receptors leads to prostanoid production, which can then interfere with P2Y-mediated macrophage migration. Recent studies suggest that blockade of 5-lipoxygenase (5-LOX) in macrophages can activate a permeation pathway involved in the influx of dye and the release of ATP. Here, we provide evidence that pannexin1 (Panx1) is a component of this pathway and present the intracellular signaling molecules linking the thromboxane (TP) receptor to Panx1-mediated dye influx and ATP release. Using pharmacological tools and transgenic mice deficient in Panx1, we show that two 5-LOX pathway inhibitors induce ATP release and influx of dye in a Panx1-dependent manner. Electrophysiological recordings performed in wild-type and Panx1-deficient macrophages confirmed that these 5-LOX pathway inhibitors activate currents characteristic of Panx1 channels. We found that the mechanism by which Panx1 channels are activated under this condition involves activation of the TP receptor that is mediated by the cAMP/PKA pathway. This is to our knowledge the first evidence for the involvement of Panx1 in the TP receptor signaling pathway. Future studies aimed to clarify the contribution of this TP-Panx1 signaling network to macrophage immune responses are likely to be important for targeting inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hercules A da Silva-Souza
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e Ambiente da Região Amazônica-INPeTAm, Rio de Janeiro, Brazil; and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Maria Nathália de Lira
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naman K Patel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Pedro Muanis Persechini
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e Ambiente da Região Amazônica-INPeTAm, Rio de Janeiro, Brazil; and
| | - Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
102
|
Zhu X, Mose E, Hogan SP, Zimmermann N. Differential eosinophil and mast cell regulation: mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65. Am J Physiol Gastrointest Liver Physiol 2014; 306:G974-82. [PMID: 24742990 PMCID: PMC4042114 DOI: 10.1152/ajpgi.00341.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65.
Collapse
Affiliation(s)
| | | | | | - Nives Zimmermann
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
103
|
Hardin M, Cho M, McDonald ML, Beaty T, Ramsdell J, Bhatt S, van Beek EJR, Make BJ, Crapo JD, Silverman EK, Hersh CP. The clinical and genetic features of COPD-asthma overlap syndrome. Eur Respir J 2014; 44:341-50. [PMID: 24876173 DOI: 10.1183/09031936.00216013] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Individuals with chronic obstructive pulmonary disease (COPD) and asthma are an important but poorly characterised group. The genetic determinants of COPD and asthma overlap have not been studied. The aim of this study was to identify clinical features and genetic risk factors for COPD and asthma overlap. Subjects were current or former smoking non-Hispanic whites or African-Americans with COPD. Overlap subjects reported a history of physician-diagnosed asthma before the age of 40 years. We compared clinical and radiographic features between COPD and overlap subjects. We performed genome-wide association studies (GWAS) in the non-Hispanic whites and African-American populations, and combined these results in a meta-analysis. More females and African-Americans reported a history of asthma. Overlap subjects had more severe and more frequent respiratory exacerbations, less emphysema and greater airway wall thickness compared to subjects with COPD alone. The non-Hispanic white GWAS identified single nucleotide polymorphisms in the genes CSMD1 (rs11779254, p=1.57 × 10(-6)) and SOX5 (rs59569785, p=1.61 × 10(-6)) and the meta-analysis identified single nucleotide polymorphisms in the gene GPR65 (rs6574978, p=1.18 × 10(-7)) associated with COPD and asthma overlap. Overlap subjects have more exacerbations, less emphysema and more airway disease for any degree of lung function impairment compared to COPD alone. We identified novel genetic variants associated with this syndrome. COPD and asthma overlap is an important syndrome and may require distinct clinical management.
Collapse
Affiliation(s)
- Megan Hardin
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Merry-Lynn McDonald
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Terri Beaty
- Dept of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Joe Ramsdell
- Dept of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Surya Bhatt
- Dept of Pulmonary, Allergy and Critical Care Medicine, University of Alabama, Birmingham, AL, USA
| | - Edwin J R van Beek
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Barry J Make
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - James D Crapo
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
104
|
Jin Y, Sato K, Tobo A, Mogi C, Tobo M, Murata N, Ishii S, Im DS, Okajima F. Inhibition of interleukin-1β production by extracellular acidification through the TDAG8/cAMP pathway in mouse microglia. J Neurochem 2014; 129:683-95. [PMID: 24447140 DOI: 10.1111/jnc.12661] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/16/2014] [Indexed: 12/23/2022]
Abstract
Interleukin-1β (IL-1β) is released from activated microglia and involved in the neurodegeneration of acute and chronic brain disorders, such as stroke and Alzheimer's disease, in which extracellular acidification has been shown to occur. Here, we examined the extracellular acidic pH regulation of IL-1β production, especially focusing on TDAG8, a major proton-sensing G-protein-coupled receptor, in mouse microglia. Extracellular acidification inhibited lipopolysaccharide -induced IL-1β production, which was associated with the inhibition of IL-1β cytoplasmic precursor and mRNA expression. The IL-1β mRNA and protein responses were significantly, though not completely, attenuated in microglia derived from TDAG8-deficient mice compared with those from wild-type mice. The acidic pH also stimulated cellular cAMP accumulation, which was completely inhibited by TDAG8 deficiency. Forskolin and a cAMP derivative, which specifically stimulates protein kinase A (PKA), mimicked the proton actions, and PKA inhibitors reversed the acidic pH-induced IL-1β mRNA expression. The acidic pH-induced inhibitory IL-1β responses were accompanied by the inhibition of extracellular signal-related kinase and c-Jun N-terminal kinase activities. The inhibitory enzyme activities in response to acidic pH were reversed by the PKA inhibitor and TDAG8 deficiency. We conclude that extracellular acidic pH inhibits lipopolysaccharide-induced IL-1β production, at least partly, through the TDAG8/cAMP/PKA pathway, by inhibiting extracellular signal-related kinase and c-Jun N-terminal kinase activities, in mouse microglia.
Collapse
Affiliation(s)
- Ye Jin
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Effect of low extracellular pH on NF-κB activation in macrophages. Atherosclerosis 2014; 233:537-544. [PMID: 24530961 PMCID: PMC3989994 DOI: 10.1016/j.atherosclerosis.2014.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/12/2013] [Accepted: 01/08/2014] [Indexed: 02/02/2023]
Abstract
Objective Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Methods Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0–7.4 and inflammatory cytokine secretion and NF-κB activity were measured. Results A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. Conclusion A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans. Low extracellular pH decreased cytokine secretion by mouse macrophages. IκBα, which inhibits NF-κB, fell but low pH prevented its later increase. Low pH prolonged anti-inflammatory p50:p50 homodimer binding to an NF-κB promoter. Overexpression of p50 increased p50:p50 DNA-binding and inhibited TNF secretion. A modest decrease in pH can have marked effects on NF-κB activation.
Collapse
|
106
|
Mogi C, Nakakura T, Okajima F. Role of extracellular proton-sensing OGR1 in regulation of insulin secretion and pancreatic β-cell functions. Endocr J 2014; 61:101-10. [PMID: 24088601 DOI: 10.1507/endocrj.ej13-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insulin secretion with respect to pH environments has been investigated for a long time but its mechanism remains largely unknown. Extracellular pH is usually maintained at around 7.4 and, its change has been thought to occur in non-physiological situations. Acidification takes place under ischemic and inflammatory microenvironments, where stimulation of anaerobic glycolysis results in the production of lactic acid. In addition to ionotropic ion channels, such as transient receptor potential V1 (TRPV1) and acid-sensing ion channels (ASICs), metabotropic proton-sensing G protein-coupled receptors (GPCRs) have also been identified recently as proton-sensing machineries. While ionotropic ion channels usually sense strong acidic pH, proton-sensing GPCRs sense pH of 7.6 to 6.0 and have been shown to mediate a variety of biological actions in neutral and mildly acidic pH environments. Studies with receptor knockout mice have revealed that proton-sensing receptors, including ovarian cancer G protein-coupled receptor 1 (OGR1), a proton-sensing GPCRs, play a role in the regulation of insulin secretion and glucose metabolism under physiological conditions. Small molecule 3,5-disubstituted isoxazoles have recently been identified as OGR1 agonists working at neutral pH and have been shown to stimulate pancreatic β-cell differentiation and insulin synthesis. Thus, proton-sensing OGR1 may be an important player for insulin secretion and a potential target for improving β-cell function.
Collapse
Affiliation(s)
- Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | |
Collapse
|
107
|
Justus CR, Dong L, Yang LV. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol 2013; 4:354. [PMID: 24367336 PMCID: PMC3851830 DOI: 10.3389/fphys.2013.00354] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 01/02/2023] Open
Abstract
The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Oncology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Lixue Dong
- Department of Oncology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Li V Yang
- Department of Oncology, Brody School of Medicine, East Carolina University Greenville, NC, USA ; Department of Internal Medicine, Brody School of Medicine, East Carolina University Greenville, NC, USA ; Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
108
|
Hikiji H, Endo D, Horie K, Harayama T, Akahoshi N, Igarashi H, Kihara Y, Yanagida K, Takeda J, Koji T, Shimizu T, Ishii S. TDAG8 activation inhibits osteoclastic bone resorption. FASEB J 2013; 28:871-9. [DOI: 10.1096/fj.13-233106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hisako Hikiji
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Endo
- Department of Histology and Cell BiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kyoji Horie
- Department of Social and Environmental MedicineGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Takeshi Harayama
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Noriyuki Akahoshi
- Department of ImmunologyGraduate School of MedicineAkita UniversityAkitaJapan
| | - Hidemitsu Igarashi
- Department of ImmunologyGraduate School of MedicineAkita UniversityAkitaJapan
| | - Yasuyuki Kihara
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Keisuke Yanagida
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Junji Takeda
- Department of Social and Environmental MedicineGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Takehiko Koji
- Department of Histology and Cell BiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Takao Shimizu
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Satoshi Ishii
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
- Department of ImmunologyGraduate School of MedicineAkita UniversityAkitaJapan
| |
Collapse
|
109
|
Aoki H, Mogi C, Hisada T, Nakakura T, Kamide Y, Ichimonji I, Tomura H, Tobo M, Sato K, Tsurumaki H, Dobashi K, Mori T, Harada A, Yamada M, Mori M, Ishizuka T, Okajima F. Proton-sensing ovarian cancer G protein-coupled receptor 1 on dendritic cells is required for airway responses in a murine asthma model. PLoS One 2013; 8:e79985. [PMID: 24244587 PMCID: PMC3823589 DOI: 10.1371/journal.pone.0079985] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/07/2013] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer G protein-coupled receptor 1 (OGR1) stimulation by extracellular protons causes the activation of G proteins and subsequent cellular functions. However, the physiological and pathophysiological roles of OGR1 in airway responses remain largely unknown. In the present study, we show that OGR1-deficient mice are resistant to the cardinal features of asthma, including airway eosinophilia, airway hyperresponsiveness (AHR), and goblet cell metaplasia, in association with a remarkable inhibition of Th2 cytokine and IgE production, in an ovalbumin (OVA)-induced asthma model. Intratracheal transfer to wild-type mice of OVA-primed bone marrow-derived dendritic cells (DCs) from OGR1-deficient mice developed lower AHR and eosinophilia after OVA inhalation compared with the transfer of those from wild-type mice. Migration of OVA-pulsed DCs to peribronchial lymph nodes was also inhibited by OGR1 deficiency in the adoption experiments. The presence of functional OGR1 in DCs was confirmed by the expression of OGR1 mRNA and the OGR1-sensitive Ca2+ response. OVA-induced expression of CCR7, a mature DC chemokine receptor, and migration response to CCR7 ligands in an in vitro Transwell assay were attenuated by OGR1 deficiency. We conclude that OGR1 on DCs is critical for migration to draining lymph nodes, which, in turn, stimulates Th2 phenotype change and subsequent induction of airway inflammation and AHR.
Collapse
Affiliation(s)
- Haruka Aoki
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chihiro Mogi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takeshi Hisada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Nakakura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yosuke Kamide
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Isao Ichimonji
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hideaki Tomura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masayuki Tobo
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroaki Tsurumaki
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kunio Dobashi
- Gunma University School of Health Sciences, Maebashi, Japan
| | - Tetsuya Mori
- Laboratory of Allergy and Immunology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- * E-mail: (FO); (TI)
| | - Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail: (FO); (TI)
| |
Collapse
|
110
|
Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal 2013; 25:2263-71. [PMID: 23917207 DOI: 10.1016/j.cellsig.2013.07.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
Under ischemic and inflammatory circumstances, such as allergic airway asthma, rheumatoid arthritis, atherosclerosis, and tumors, extracellular acidification occurs due to the stimulation of anaerobic glycolysis. An acidic microenvironment has been shown to modulate pro-inflammatory or anti-inflammatory responses, including cyclooxygenase-2 (COX-2) expression, prostaglandin synthesis, and cytokine expression, in a variety of cell types, and thereby to exacerbate or ameliorate inflammation. However, molecular mechanisms underlying extracellular acidic pH-induced actions have not been fully understood. Recent studies have shown that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors (GPCRs) can sense extracellular pH or protons, which in turn stimulates intracellular signaling pathways and subsequent diverse cellular responses. In the present review, I discuss extracellular acidic pH-induced inflammatory responses and related responses in inflammatory cells, such as macrophages and neutrophils, and non-inflammatory cells, such as smooth muscle cells and endothelial cells, focusing especially on proton-sensing GPCRs.
Collapse
|
111
|
Goris A, Pauwels I, Dubois B. Progress in multiple sclerosis genetics. Curr Genomics 2013; 13:646-63. [PMID: 23730204 PMCID: PMC3492804 DOI: 10.2174/138920212803759695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/06/2023] Open
Abstract
A genetic component in the susceptibility to multiple sclerosis (MS) has long been known, and the first and major genetic risk factor, the HLA region, was identified in the 1970’s. However, only with the advent of genome-wide association studies in the past five years did the list of risk factors for MS grow from 1 to over 50. In this review, we summarize the search for MS risk genes and the latest results. Comparison with data from other autoimmune and neurological diseases and from animal models indicates parallels and differences between diseases. We discuss how these translate into an improved understanding of disease mechanisms, and address current challenges such as genotype-phenotype correlations, functional mechanisms of risk variants and the missing heritability.
Collapse
Affiliation(s)
- An Goris
- Laboratory for Neuroimmunology, Section of Experimental Neurology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
112
|
Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K, Ito Y, Inoue N. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int J Cancer 2013; 133:1107-18. [PMID: 23420584 DOI: 10.1002/ijc.28114] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
The activation of oncogenic signaling pathways induces the reprogramming of glucose metabolism in tumor cells and increases lactic acid secretion into the tumor microenvironment. This is a well-known characteristic of tumor cells, termed the Warburg effect, and is a candidate target for antitumor therapy. Previous reports show that lactic acid secreted by tumor cells is a proinflammatory mediator that activates the IL-23/IL-17 pathway, thereby inducing inflammation, angiogenesis and tissue remodeling. Here, we show that lactic acid, or more specifically the acidification it causes, increases arginase I (ARG1) expression in macrophages to inhibit T-cell proliferation and activation. Accordingly, we hypothesized that counteraction of the immune effects by lactic acid might suppress tumor development. We show that dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinases, targets macrophages to suppress activation of the IL-23/IL-17 pathway and the expression of ARG1 by lactic acid. Furthermore, lactic acid-pretreated macrophages inhibited CD8+ T-cell proliferation, but CD8+ T-cell proliferation was restored when macrophages were pretreated with lactic acid and DCA. DCA treatment decreased ARG1 expression in tumor-infiltrating immune cells and increased the number of IFN-γ-producing CD8+ T cells and NK cells in tumor-bearing mouse spleen. Although DCA treatment alone did not suppress tumor growth, it increased antitumor immunotherapeutic activity of Poly(IC) in both CD8+ T cell- and NK cell-sensitive tumor models. Therefore, DCA acts not only on tumor cells to suppress glycolysis but also on immune cells to improve the immune status modulated by lactic acid and to increase the effectiveness of antitumor immunotherapy.
Collapse
Affiliation(s)
- Toshimitsu Ohashi
- Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
113
|
Identification of macrophage genes responsive to extracellular acidification. Inflamm Res 2013; 62:399-406. [PMID: 23417272 DOI: 10.1007/s00011-013-0591-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/06/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE A low pH microenvironment is a characteristic feature of inflammation loci and affects the functions of immune cells. In this study, we investigated the effect of extracellular acidification on macrophage gene expression. METHODS RAW264.7 macrophages were incubated in neutral (pH 7.4) or acidic (pH 6.8) medium for 4 h. Global mRNA expression levels were determined using Affymetrix genechips. RESULTS The mRNA expressions of 353 macrophage genes were significantly modified after incubation in acidic medium; 193 were up-regulated and 160 down-regulated. Differentially regulated genes were grouped into 13 classes based on the functions of the corresponding protein products. Pathway analysis revealed that differentially expressed genes are enriched in pathways related to inflammation and immune responses. Quantitative real-time PCR analysis confirmed that the expressions of CXCL10, CXCL14, IL-18, IL-4RA, ABCA1, CCL4, IL-7R, CXCR4, TLR7, and CCL3 mRNAs were regulated by extracellular acidification. CONCLUSION The results of this study provide insights into the effects of acidic extracellular environments on macrophage gene expression.
Collapse
|
114
|
Kong X, Tang X, Du W, Tong J, Yan Y, Zheng F, Fang M, Gong F, Tan Z. Extracellular acidosis modulates the endocytosis and maturation of macrophages. Cell Immunol 2013; 281:44-50. [PMID: 23435349 DOI: 10.1016/j.cellimm.2012.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Extracellular acidosis is involved in various pathological situations of central nervous system and the effects are largely mediated by acid sensing ion channels (ASICs). However, it remains unclear whether extracellular acidosis affects immune cells. Macrophages are immune cells that play important role in immune reactions. In this study we investigated the impact of extracellular acidosis on the function of bone marrow derived macrophages (BMMs). The results showed that extracellular acidosis upregulated the endocytosis, surface molecular expression and interleukin-10 secretion of BMMs, in which the expression of ASIC1 and ASIC3 was detected. Notably, extracellular acidosis stimulated endocytosis and upregulation of surface molecules expression in BMMs could be abolished by amiloride, a blocker of ASICs, and nonsteroid anti-inflammatory drugs. Our findings provide new insight into the role of extracellular acidosis in the regulation of immune function and suggest ASICs as new targets for the modulation of immune response.
Collapse
Affiliation(s)
- Xiaoling Kong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Ryder CB, McColl K, Distelhorst CW. Acidosis blocks CCAAT/enhancer-binding protein homologous protein (CHOP)- and c-Jun-mediated induction of p53-upregulated mediator of apoptosis (PUMA) during amino acid starvation. Biochem Biophys Res Commun 2012; 430:1283-8. [PMID: 23261451 DOI: 10.1016/j.bbrc.2012.11.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 01/21/2023]
Abstract
Cancer cells must avoid succumbing to a variety of noxious conditions within their surroundings. Acidosis is one such prominent feature of the tumor microenvironment that surprisingly promotes tumor survival and progression. We recently reported that acidosis prevents apoptosis of starved or stressed lymphoma cells through regulation of several Bcl-2 family members (Ryder et al., JBC, 2012). Mechanistic studies in that work focused on the acid-mediated upregulation of anti-apoptotic Bcl-2 and Bcl-xL, while additionally showing inhibition of glutamine starvation-induced expression of pro-apoptotic PUMA by acidosis. Herein we report that amino acid (AA) starvation elevates PUMA, an effect that is blocked by extracellular acidity. Knockdown studies confirm that PUMA induction during AA starvation requires expression of both CHOP and c-Jun. Interestingly, acidosis strongly attenuates AA starvation-mediated c-Jun expression, which correlates with PUMA repression. As c-Jun exerts a tumor suppressive function in this and other contexts, its inhibition by acidosis has broader implications for survival of cancer cells in the acidic tumor milieu.
Collapse
Affiliation(s)
- Christopher B Ryder
- Department of Pharmacology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
116
|
Oh YC, Cho WK, Jeong YH, Im GY, Lee KJ, Yang HJ, Ma JY. Anti-inflammatory effect of Sosihotang via inhibition of nuclear factor-κB and mitogen-activated protein kinases signaling pathways in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Food Chem Toxicol 2012; 53:343-51. [PMID: 23246826 DOI: 10.1016/j.fct.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
Sosihotang (SO) is an herbal medication, which has been widely used to treat fever, chill and vomiting due to common cold in east-Asian countries. In this study, to provide insight into the effects of SO on inflammation, we investigated its effect on pro-inflammatory mediator production in RAW 264.7 cells and mouse peritoneal macrophages using lipopolysaccharide (LPS) stimulation. SO significantly inhibited the production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6 as well as gene expression of inducible nitric oxide synthase (iNOS), its synthesizing enzyme. In addition, SO inhibited nuclear factor (NF)-κB activation and suppressed extracellular signal-regulated kinase (ERK), p38 and c- Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) phosphorylation. Furthermore, we found SO suppresses the production of NO and IL-6 in LPS-stimulated peritoneal macrophage cells. High performance liquid chromatography (HPLC) analysis showed SO contains many active anti-inflammatory constituents such as liquiritigenin, baicalin, baicalein, glycyrrhizin and wogonin. We first elucidated the inhibitory mechanism of SO on inflammation induced by LPS in macrophage cells. Our results suggest SO has potential to be developed as a therapeutic agent for various inflammatory diseases.
Collapse
Affiliation(s)
- You-Chang Oh
- Korean Medicine (KM)-Based Herbal Drug Research Group, Korea Institute of Oriental Medicine, 461-24, Jeonmin-dong, Yuseong, Daejeon 305-811, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
117
|
Saxena H, Deshpande DA, Tiegs BC, Yan H, Battafarano RJ, Burrows WM, Damera G, Panettieri RA, Dubose TD, An SS, Penn RB. The GPCR OGR1 (GPR68) mediates diverse signalling and contraction of airway smooth muscle in response to small reductions in extracellular pH. Br J Pharmacol 2012; 166:981-90. [PMID: 22145625 DOI: 10.1111/j.1476-5381.2011.01807.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have linked a reduction in pH in airway, caused by either environmental factors, microaspiration of gastric acid or inflammation, with airway smooth muscle (ASM) contraction and increased airway resistance. Neural mechanisms have been shown to mediate airway contraction in response to reductions in airway pH to < 6.5; whether reduced extracellular pH (pHo) has direct effects on ASM is unknown. EXPERIMENTAL APPROACH Intracellular signalling events stimulated by reduced pHo in human cultured ASM cells were examined by immunoblotting, phosphoinositide hydrolysis and calcium mobilization assays. ASM cell contractile state was examined using magnetic twisting cytometry. The expression of putative proton-sensing GPCRs in ASM was assessed by real-time PCR. The role of ovarian cancer G protein-coupled receptor 1 (OGR1 or GPR68) in acid-induced ASM signalling and contraction was assessed in cultures subjected to siRNA-mediated OGR1 knockdown. KEY RESULTS ASM cells responded to incremental reductions in pHo (from pH 8.0 to pH 6.8) by activating multiple signalling pathways, involving p42/p44, PKB, PKA and calcium mobilization. Coincidently, ASM cells contracted in response to decreased pHo with similar 'dose'-dependence. Real-time PCR suggested OGR1 was the only proton-sensing GPCR expressed in ASM cells. Both acid-induced signalling (with the exception of PKB activation) and contraction were significantly attenuated by knockdown of OGR1. CONCLUSIONS AND IMPLICATIONS These studies reveal OGR1 to be a physiologically relevant GPCR in ASM cells, capable of pleiotropic signalling and mediating contraction in response to small reductions in extracellular pH. Accordingly, ASM OGR1 may contribute to asthma pathology and represent a therapeutic target in obstructive lung diseases.
Collapse
Affiliation(s)
- H Saxena
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Nakakura T, Mogi C, Tobo M, Tomura H, Sato K, Kobayashi M, Ohnishi H, Tanaka S, Wayama M, Sugiyama T, Kitamura T, Harada A, Okajima F. Deficiency of proton-sensing ovarian cancer G protein-coupled receptor 1 attenuates glucose-stimulated insulin secretion. Endocrinology 2012; 153:4171-80. [PMID: 22733973 DOI: 10.1210/en.2012-1164] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown as a receptor for protons. In the present study, we aimed to know whether OGR1 plays a role in insulin secretion and, if so, the manner in which it does. To this end, we created OGR1-deficient mice and examined insulin secretion activity in vivo and in vitro. OGR1 deficiency reduced insulin secretion induced by glucose administered ip, although it was not associated with glucose intolerance in vivo. Increased insulin sensitivity and reduced plasma glucagon level may explain, in part, the unusual normal glucose tolerance. In vitro islet experiments revealed that glucose-stimulated insulin secretion was dependent on extracellular pH and sensitive to OGR1; insulin secretion at pH 7.4 to 7.0, but not 8.0, was significantly suppressed by OGR1 deficiency and inhibition of G(q/11) proteins. Insulin secretion induced by KCl and tolbutamide was also significantly inhibited, whereas that induced by several insulin secretagogues, including vasopressin, a glucagon-like peptide 1 receptor agonist, and forskolin, was not suppressed by OGR1 deficiency. The inhibition of insulin secretion was associated with the reduction of glucose-induced increase in intracellular Ca(2+) concentration. In conclusion, the OGR1/G(q/11) protein pathway is activated by extracellular protons existing under the physiological extracellular pH of 7.4 and further stimulated by acidification, resulting in the enhancement of insulin secretion in response to high glucose concentrations and KCl.
Collapse
Affiliation(s)
- Takashi Nakakura
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Onozawa Y, Fujita Y, Kuwabara H, Nagasaki M, Komai T, Oda T. Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro. Eur J Pharmacol 2012; 683:325-31. [DOI: 10.1016/j.ejphar.2012.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
120
|
Anti-inflammatory effect of Lycium Fruit water extract in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Int Immunopharmacol 2012; 13:181-9. [PMID: 22483979 DOI: 10.1016/j.intimp.2012.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 11/22/2022]
Abstract
Lycium Fruit has been used as a traditional drug for low back pain and chronic cough in east-Asian countries. However, inhibitory effects of Lycium Fruit water extract (LFWE) on inflammation remain unknown. In this study, we investigated the inhibitory effects of LFWE on pro-inflammatory mediator production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. LFWE inhibited LPS-induced nitric oxide (NO), prostaglandin (PG) E₂, tumor necrosis factor (TNF)-α and interleukin (IL)-6 production as well as their synthesizing enzyme inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 gene expression. Furthermore, LFWE inhibited phosphorylations of extracellular signal-regulated kinase (ERK), p38 and c-Jun NH₂-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) as well as suppression of IκBα degradation and nuclear translocation of nuclear factor (NF)-κB upon LPS stimulation. In addition, LFWE suppressed NO, PGE₂, TNF-α and IL-6 production in LPS-stimulated peritoneal macrophage cells. Taken together, our results suggest that LFWE inhibits the production of various inflammatory mediators via blockade on the MAPKs and NF-κB pathways. This finding first explains the mechanism of anti-inflammatory effect by LFWE in LPS-stimulated macrophage cells.
Collapse
|
121
|
Park SY, Bae DJ, Kim MJ, Piao ML, Kim IS. Extracellular low pH modulates phosphatidylserine-dependent phagocytosis in macrophages by increasing stabilin-1 expression. J Biol Chem 2012; 287:11261-71. [PMID: 22334667 DOI: 10.1074/jbc.m111.310953] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microenvironmental acidosis is a common feature of inflammatory loci, in which clearance of apoptotic cells is necessary for the resolution of inflammation. Although it is known that a low pH environment affects immune function, its effect on apoptotic cell clearance by macrophages has not been fully investigated. Here, we show that treatment of macrophages with low pH medium resulted in increased expression of stabilin-1 out of several receptors, which are known to be involved in PS-dependent removal of apoptotic cells. Reporter assays showed that the -120/-1 region of the mouse stabilin-1 promoter was a low pH-responsive region and provided evidence that extracellular low pH mediated transcriptional activation of stabilin-1 via Ets-2. Furthermore, extracellular low pH activated JNK, thereby inducing translocation of Ets-2 into the nucleus. When macrophages were preincubated with low pH medium, phagocytosis of phosphatidylserine-exposed red blood cells and phosphatidylserine-coated beads by macrophages was enhanced. Blockade of stabilin-1 in macrophages abolished the enhancement of phagocytic activity by low pH. Thus, our results demonstrate that a low pH microenvironment up-regulates stabilin-1 expression in macrophages, thereby modulating the phagocytic capacity of macrophages, and suggest roles for stabilin-1 and Ets-2 in the maintenance of tissue homeostasis by the immune system.
Collapse
Affiliation(s)
- Seung-Yoon Park
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
122
|
Jancic CC, Cabrini M, Gabelloni ML, Rodríguez Rodrigues C, Salamone G, Trevani AS, Geffner J. Low extracellular pH stimulates the production of IL-1β by human monocytes. Cytokine 2011; 57:258-68. [PMID: 22154780 DOI: 10.1016/j.cyto.2011.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 10/06/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
The development of acidic environments is a hallmark of inflammatory processes of different etiology. We have previously shown that transient exposure to acidic conditions, similar to those encountered in vivo, induces the activation of neutrophils and the phenotypic maturation of dendritic cells. We here report that extracellular acidosis (pH 6.5) selectively stimulates the production and the secretion of IL-1β by human monocytes without affecting the production of TNF-α, IL-6 and the expression of CD40, CD80, CD86, and HLA-DR. Stimulation of IL-1β production by pH 6.5-treated monocytes was shown to be dependent on caspase-1 activity, and it was also observed using peripheral blood mononuclear cells instead of isolated monocytes. Contrasting with the results in monocytes, we found that pH 6.5 did not stimulate any production of IL-1β by macrophages. Changes in intracellular pH seem to be involved in the stimulation of IL-1β production. In fact, monocytes cultured at pH 6.5 undergo a fall in the values of intracellular pH while the inhibitor of the Na+/H+ exchanger, 5-(N-ethyl-N-isopropyl)amiloride induced both, a decrease in the values of intracellular pH and the stimulation of IL-1β production. Real time quantitative PCR assays indicated that monocytes cultured either at pH 6.5 or in the presence of 5-(N-ethyl-N-isopropyl)amiloride expressed higher levels of pro-IL-1β mRNA suggesting that low values of intracellular pH enhance the production of IL-1β, at least in part, by stimulating the synthesis of its precursor.
Collapse
Affiliation(s)
- Carolina Cristina Jancic
- Instituto de Investigaciones Hematológicas (IIHEMA), Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
123
|
He XD, Tobo M, Mogi C, Nakakura T, Komachi M, Murata N, Takano M, Tomura H, Sato K, Okajima F. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages. Biochem Biophys Res Commun 2011; 415:627-31. [DOI: 10.1016/j.bbrc.2011.10.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 11/29/2022]
|
124
|
Chen A, Dong L, Leffler NR, Asch AS, Witte ON, Yang LV. Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS One 2011; 6:e27586. [PMID: 22110680 PMCID: PMC3217975 DOI: 10.1371/journal.pone.0027586] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/20/2011] [Indexed: 01/11/2023] Open
Abstract
Endothelium-leukocyte interaction is critical for inflammatory responses. Whereas the tissue microenvironments are often acidic at inflammatory sites, the mechanisms by which cells respond to acidosis are not well understood. Using molecular, cellular and biochemical approaches, we demonstrate that activation of GPR4, a proton-sensing G protein-coupled receptor, by isocapnic acidosis increases the adhesiveness of human umbilical vein endothelial cells (HUVECs) that express GPR4 endogenously. Acidosis in combination with GPR4 overexpression further augments HUVEC adhesion with U937 monocytes. In contrast, overexpression of a G protein signaling-defective DRY motif mutant (R115A) of GPR4 does not elicit any increase of HUVEC adhesion, indicating the requirement of G protein signaling. Downregulation of GPR4 expression by RNA interference reduces the acidosis-induced HUVEC adhesion. To delineate downstream pathways, we show that inhibition of adenylate cyclase by inhibitors, 2',5'-dideoxyadenosine (DDA) or SQ 22536, attenuates acidosis/GPR4-induced HUVEC adhesion. Consistently, treatment with a cAMP analog or a G(i) signaling inhibitor increases HUVEC adhesiveness, suggesting a role of the G(s)/cAMP signaling in this process. We further show that the cAMP downstream effector Epac is important for acidosis/GPR4-induced cell adhesion. Moreover, activation of GPR4 by acidosis increases the expression of vascular adhesion molecules E-selectin, VCAM-1 and ICAM-1, which are functionally involved in acidosis/GPR4-mediated HUVEC adhesion. Similarly, hypercapnic acidosis can also activate GPR4 to stimulate HUVEC adhesion molecule expression and adhesiveness. These results suggest that acidosis/GPR4 signaling regulates endothelial cell adhesion mainly through the G(s)/cAMP/Epac pathway and may play a role in the inflammatory response of vascular endothelial cells.
Collapse
Affiliation(s)
- Aishe Chen
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Lixue Dong
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Nancy R. Leffler
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Adam S. Asch
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, United States of America
| | - Owen N. Witte
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Li V. Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
125
|
Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells. Biochem Biophys Res Commun 2011; 413:499-503. [PMID: 21907704 DOI: 10.1016/j.bbrc.2011.08.087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/20/2022]
Abstract
Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G(q/11) protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP(3)) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G(q/11) protein and inositol-1,4,5-trisphosphate-induced Ca(2+) mobilization in human ASMCs.
Collapse
|
126
|
Khor B, Gardet A, Xavier RJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [PMID: 21677747 DOI: 10.1038/nature] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances have provided substantial insight into the maintenance of mucosal immunity and the pathogenesis of inflammatory bowel disease. Cellular programs responsible for intestinal homeostasis use diverse intracellular and intercellular networks to promote immune tolerance, inflammation or epithelial restitution. Complex interfaces integrate local host and microbial signals to activate appropriate effector programs selectively and even drive plasticity between these programs. In addition, genetic studies and mouse models have emphasized the role of genetic predispositions and how they affect interactions with microbial and environmental factors, leading to pro-colitogenic perturbations of the host-commensal relationship.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Recent advances have provided substantial insight into the maintenance of mucosal immunity and the pathogenesis of inflammatory bowel disease. Cellular programs responsible for intestinal homeostasis use diverse intracellular and intercellular networks to promote immune tolerance, inflammation or epithelial restitution. Complex interfaces integrate local host and microbial signals to activate appropriate effector programs selectively and even drive plasticity between these programs. In addition, genetic studies and mouse models have emphasized the role of genetic predispositions and how they affect interactions with microbial and environmental factors, leading to pro-colitogenic perturbations of the host-commensal relationship.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
128
|
Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
129
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
130
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
131
|
Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
132
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
133
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
134
|
Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
135
|
Onozawa Y, Komai T, Oda T. Activation of T cell death-associated gene 8 attenuates inflammation by negatively regulating the function of inflammatory cells. Eur J Pharmacol 2011; 654:315-9. [PMID: 21238451 DOI: 10.1016/j.ejphar.2011.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/21/2010] [Accepted: 01/04/2011] [Indexed: 12/13/2022]
Abstract
T cell death-associated gene 8 (TDAG8) is a G-protein-coupled receptor identified by differential mRNA display during thymocyte apoptosis induced by T cell receptor engagement. To examine the physiological role of an orphan G-protein-coupled receptor TDAG8 in inflammation, we studied various immune-mediated inflammatory disease models using TDAG8-deficient mice. We found that TDAG8-deficient mice showed significant exacerbation of anti-type II collagen antibody-induced arthritis and delayed-type hypersensitivity, and showed a slight exacerbation of collagen-induced arthritis. These results suggest that TDAG8 acts as a negative regulator of inflammation.
Collapse
Affiliation(s)
- Yoshiko Onozawa
- Biological Research Laboratories III, Daiichi Sankyo Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | | | | |
Collapse
|
136
|
Promotion of interferon-gamma production by natural killer cells via suppression of murine peritoneal macrophage prostaglandin E2 production using intravenous anesthetic propofol. Int Immunopharmacol 2010; 10:1200-8. [DOI: 10.1016/j.intimp.2010.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/10/2010] [Accepted: 06/26/2010] [Indexed: 01/24/2023]
|
137
|
The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc Natl Acad Sci U S A 2010; 107:17309-14. [PMID: 20855608 DOI: 10.1073/pnas.1001165107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tumors often are associated with a low extracellular pH, which induces a variety of cellular events. However, the mechanisms by which tumor cells recognize and react to the acidic environment have not been fully elucidated. T-cell death-associated gene 8 (TDAG8) is an extracellular pH-sensing G protein-coupled receptor that is overexpressed in various tumors and tumor cell lines. In this report, we show that TDAG8 on the surface of tumor cells facilitates tumor development by sensing the acidic environment. Overexpression of TDAG8 in mouse Lewis lung carcinoma (LLC) cells enhanced tumor development in animal models and rendered LLC cells resistant to acidic culture conditions by increasing activation of protein kinase A and extracellular signal-regulated kinase in vitro. Moreover, shRNA-mediated knockdown of endogenous TDAG8 in NCI-H460 human non-small cell lung cancer cells reduced cell survival in an acidic environment in vitro as well as tumor development in vivo. Microarray analyses of tumor-containing lung tissues of mice injected with TDAG8-expressing LLC cells revealed up-regulation of genes related to cell growth and glycolysis. These results support the hypothesis that TDAG8 enhances tumor development by promoting adaptation to the acidic environment to enhance cell survival/proliferation. TDAG8 may represent a therapeutic target for arresting tumor growth.
Collapse
|
138
|
Tomura H, Mogi C, Sato K, Okajima F. [Proton-sensing G-protein-coupled receptors and their physiological roles]. Nihon Yakurigaku Zasshi 2010; 135:240-4. [PMID: 20543514 DOI: 10.1254/fpj.135.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
139
|
Ichimonji I, Tomura H, Mogi C, Sato K, Aoki H, Hisada T, Dobashi K, Ishizuka T, Mori M, Okajima F. Extracellular acidification stimulates IL-6 production and Ca(2+) mobilization through proton-sensing OGR1 receptors in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L567-77. [PMID: 20656891 DOI: 10.1152/ajplung.00415.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The asthmatic airway has been shown to be an acidic environment that may be involved in the pathophysiological features of asthma. However, the mechanism by which an acidic pH modulates the cellular activities involved in the asthmatic airway remains elusive. Here, we characterized acidic pH-induced actions in human airway smooth muscle cells (ASMCs). Extracellular acidification stimulates the mRNA expression and protein production of IL-6, a proinflammatory cytokine, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and p38MAPK, reflecting the activation of the enzymes. Acidification-induced cytokine production was inhibited by inhibitors of ERK and p38MAPK. Acidification also increased intracellular Ca(2+) concentration, which was accompanied by cell rounding, most likely reflecting contraction. In ASMCs, OGR1 is expressed at by far the highest levels among proton-sensing G protein-coupled receptors. The knockdown of OGR1 and G(q/11) protein with their specific small interfering RNAs and an inhibition of G(q/11) protein with YM-254890 attenuated the acidification-induced actions. We conclude that extracellular acidification stimulates IL-6 production and Ca(2+) mobilization through proton-sensing OGR1 receptors/G(q/11) proteins in human ASMCs.
Collapse
Affiliation(s)
- Isao Ichimonji
- Institute for Molecular and Cellular Regulation, Gunma Univ., Maebashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
The conserved histidine in epidermal growth factor-like domains of stabilin-2 modulates pH-dependent recognition of phosphatidylserine in apoptotic cells. Int J Biochem Cell Biol 2010; 42:1154-63. [PMID: 20382256 DOI: 10.1016/j.biocel.2010.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/12/2010] [Accepted: 03/31/2010] [Indexed: 11/21/2022]
Abstract
Clearance of apoptotic cells is involved in the resolution of inflammation, and this mechanism is controlled by the regulation of pro- and anti-inflammatory cytokine production during the ingestion of apoptotic cells. Inflamed areas show extracellular acidity, and low pH stimulates cellular functions of immune cells. However, little is known about the influence of extracellular acidic pH on the function of phagocytic cells. In this study, we showed that stabilin-2-mediated phagocytosis is activated in low pH media (pH 6.8) and examined the molecular mechanisms underlying this pH-dependent enhancement of phagocytic activity. Stabilin-2, which is expressed in human monocyte derived macrophages (HMDM), is a phosphatidylserine (PS) receptor that mediates phagocytosis of apoptotic cells, and releases the anti-inflammatory cytokine, TGF-beta. The PS binding activity of stabilin-2 is enhanced in low pH, and a conserved histidine(1403) in close proximity to the PS binding loop is critical for pH-dependent activity. We propose that protonation of His(1403) may rearrange the PS binding loop to enhance binding affinity in low pH, indicating that acidic pH might act as a danger signal to stimulate stabilin-2-mediated phagocytosis to resolve inflammation. Considering that phosphatidylserine is an important target molecule for apoptotic cells in the acidic microenvironment of inflammation and tumors, our results also have implications for pH sensitive targeting of apoptotic cells.
Collapse
|
141
|
Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R, Watada H. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 2010; 59:1030-7. [PMID: 20068138 PMCID: PMC2844811 DOI: 10.2337/db09-1694] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Exogenous administration of glucagon-like peptide-1 (GLP-1) or GLP-1 receptor agonists such as an exendin-4 has direct beneficial effects on the cardiovascular system. However, their effects on atherosclerogenesis have not been elucidated. The aim of this study was to investigate the effects of GLP-1 on accumulation of monocytes/macrophages on the vascular wall, one of the earliest steps in atherosclerogenesis. RESEARCH DESIGN AND METHODS After continuous infusion of low (300 pmol . kg(-1) . day(-1)) or high (24 nmol . kg(-1) . day(-1)) dose of exendin-4 in C57BL/6 or apolipoprotein E-deficient mice (apoE(-/-)), we evaluated monocyte adhesion to the endothelia of thoracic aorta and arteriosclerotic lesions around the aortic valve. The effects of exendin-4 were investigated in mouse macrophages and human monocytes. RESULTS Treatment with exendin-4 significantly inhibited monocytic adhesion in the aortas of C57BL/6 mice without affecting metabolic parameters. In apoE(-/-) mice, the same treatment reduced monocyte adhesion to the endothelium and suppressed atherosclerogenesis. In vitro treatment of mouse macrophages with exendin-4 suppressed lipopolysaccharide-induced mRNA expression of tumor necrosis factor-alpha and monocyte chemoattractant protein-1, and suppressed nuclear translocation of p65, a component of nuclear factor-kappaB. This effect was reversed by either MDL-12330A, a cAMP inhibitor or PKI(14-22), a protein kinase A-specific inhibitor. In human monocytes, exendin-4 reduced the expression of CD11b. CONCLUSIONS Our data suggested that GLP-1 receptor agonists reduced monocyte/macrophage accumulation in the arterial wall by inhibiting the inflammatory response in macrophages, and that this effect may contribute to the attenuation of atherosclerotic lesion by exendin-4.
Collapse
Affiliation(s)
- Masayuki Arakawa
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoya Mita
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Corresponding author: Tomoya Mita, , or Hirotaka Watada,
| | - Kosuke Azuma
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chie Ebato
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromasa Goto
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Nomiyama
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahisa Hirose
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Beta Cell Biology and Regeneration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
142
|
Liu JP, Nakakura T, Tomura H, Tobo M, Mogi C, Wang JQ, He XD, Takano M, Damirin A, Komachi M, Sato K, Okajima F. Each one of certain histidine residues in G-protein-coupled receptor GPR4 is critical for extracellular proton-induced stimulation of multiple G-protein-signaling pathways. Pharmacol Res 2010; 61:499-505. [PMID: 20211729 DOI: 10.1016/j.phrs.2010.02.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 01/11/2023]
Abstract
GPR4, previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways, including the G(s)-protein/cAMP, G(12/13)-protein/Rho, and G(q)-protein/phospholipase C pathways. In the present study, we examined whether extracellularly located histidine residues of GPR4 sense extracellular protons and, if so, whether a certain histidine residue is critical for coupling to the single or multiple signaling pathway(s). We found that the mutation of histidine residue at 79, 165, or 269 from the N-terminal of GPR4 to phenylalanine shifted the half-maximal effective concentration (EC(50)) of proton-induced signaling activities to the right, including cAMP accumulation, SRE promoter activity reflecting Rho activity, and NFAT promoter activity reflecting phospholipase C signaling activity, without an appreciable change in the maximal activities. These results suggest that the protonation of each one of histidine residues at 79, 165, and 269 in GPR4 may be critical for conformational change of the receptor for coupling to multiple intracellular signaling pathways through G-proteins.
Collapse
Affiliation(s)
- Jin-Peng Liu
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner. Blood 2009; 114:2774-82. [PMID: 19641187 DOI: 10.1182/blood-2009-05-220681] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The microenvironment of the lung in asthma is acidic, yet the effect of acidity on inflammatory cells has not been well established. We now demonstrate that acidity inhibits eosinophil apoptosis and increases cellular viability in a dose-dependent manner between pH 7.5 and 6.0. Notably, acidity induced eosinophil cyclic adenosine 5'-monophosphate (cAMP) production and enhanced cellular viability in an adenylate cyclase-dependent manner. Furthermore, we identify G protein-coupled receptor 65 (GPR65) as the chief acid-sensing receptor expressed by eosinophils, as GPR65-deficient eosinophils were resistant to acid-induced eosinophil cAMP production and enhanced viability. Notably, GPR65(-/-) mice had attenuated airway eosinophilia and increased apoptosis in 2 distinct models of allergic airway disease. We conclude that eosinophil viability is increased in acidic microenvironments in a cAMP- and GPR65-dependent manner.
Collapse
|
144
|
Li H, Wang D, Singh LS, Berk M, Tan H, Zhao Z, Steinmetz R, Kirmani K, Wei G, Xu Y. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One 2009; 4:e5705. [PMID: 19479052 PMCID: PMC2684630 DOI: 10.1371/journal.pone.0005705] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/05/2009] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Dongmei Wang
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Lisam Shanjukumar Singh
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biotechnology, Manipur University, Canchipur, Manipur, India
| | - Michael Berk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Haiyan Tan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Zhenwen Zhao
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Rosemary Steinmetz
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kashif Kirmani
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gang Wei
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
145
|
Murata N, Mogi C, Tobo M, Nakakura T, Sato K, Tomura H, Okajima F. Inhibition of superoxide anion production by extracellular acidification in neutrophils. Cell Immunol 2009; 259:21-6. [PMID: 19539899 DOI: 10.1016/j.cellimm.2009.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 01/23/2023]
Abstract
Extracellular acidification inhibited formyl-Met-Leu-Phe- or C5a-induced superoxide anion (O(2)(-)) production in differentiated HL-60 neutrophil-like cells and human neutrophils. A cAMP-increasing agonist, prostaglandin E(1), also inhibited the formyl peptide-induced O(2)(-) production. The inhibitory action on the O(2)(-) production by extracellular acidic pH was associated with cAMP accumulation and partly attenuated by H89, a protein kinase A inhibitor. A significant amount of mRNAs for T-cell death-associated gene 8 (TDAG8) and other proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1)-family receptors is expressed in these cells. These results suggest that cAMP/protein kinase A, possibly through proton-sensing G-protein-coupled receptors, may be involved in extracellular acidic pH-induced inhibition of O(2)(-) production.
Collapse
Affiliation(s)
- Naoya Murata
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation Gunma University, Showa-machi, Maebashi, Japan
| | | | | | | | | | | | | |
Collapse
|