101
|
Adoptive transfer of lymphocytes isolated from simian immunodeficiency virus SIVmac239Δnef-vaccinated macaques does not affect acute-phase viral loads but may reduce chronic-phase viral loads in major histocompatibility complex-matched recipients. J Virol 2013; 87:7382-92. [PMID: 23616658 DOI: 10.1128/jvi.00348-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The live attenuated simian immunodeficiency virus (SIV) SIVmac239Δnef is the most effective SIV/human immunodeficiency virus (HIV) vaccine in preclinical testing. An understanding of the mechanisms responsible for protection may provide important insights for the development of HIV vaccines. Leveraging the uniquely restricted genetic diversity of Mauritian cynomolgus macaques, we performed adoptive transfers between major histocompatibility complex (MHC)-matched animals to assess the role of cellular immunity in SIVmac239Δnef protection. We vaccinated and mock vaccinated donor macaques and then harvested between 1.25 × 10(9) and 3.0 × 10(9) mononuclear cells from multiple tissues for transfer into 12 naive recipients, followed by challenge with pathogenic SIVmac239. Fluorescently labeled donor cells were detectable for at least 7 days posttransfer and trafficked to multiple tissues, including lung, lymph nodes, and other mucosal tissues. There was no difference between recipient macaques' peak or postpeak plasma viral loads. A very modest difference in viral loads during the chronic phase between vaccinated animal cell recipients and mock-vaccinated animal cell recipients did not reach significance (P = 0.12). Interestingly, the SIVmac239 challenge virus accumulated escape mutations more rapidly in animals that received cells from vaccinated donors. These results may suggest that adoptive transfers influenced the course of infection despite the lack of significant differences in the viral loads among animals that received cells from vaccinated and mock-vaccinated donor animals.
Collapse
|
102
|
Cruz LJ, Rueda F, Tacken P, Albericio F, Torensma R, Figdor CG. Enhancing immunogenicity and cross-reactivity of HIV-1 antigens by in vivo targeting to dendritic cells. Nanomedicine (Lond) 2013; 7:1591-610. [PMID: 23148541 DOI: 10.2217/nnm.12.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current retroviral treatments have reduced AIDS to a chronic disease for most patients. However, given drug-related side effects, the emergence of drug-resistant strains and the persistence of viral replication, the development of alternative treatments is a pressing need. This review focuses on recent developments in HIV immunotherapy treatments, with particular emphasis on current vaccination strategies for optimizing the induction of an effective immune response by the recruitment of dendritic cells. In addition to cell-based therapies, targeted strategies aiming to deliver synthetic HIV peptides to dendritic cell-specific receptors in vivo will be discussed.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
103
|
Freer G, Rindi L. Intracellular cytokine detection by fluorescence-activated flow cytometry: basic principles and recent advances. Methods 2013; 61:30-8. [PMID: 23583887 DOI: 10.1016/j.ymeth.2013.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 01/24/2023] Open
Abstract
Intracellular cytokine staining is a flow cytometric technique consisting of culturing stimulated cytokine-producing cells in the presence of a protein secretion inhibitor, followed by fixation, permeabilization and staining of intracellular cytokines and cell markers (surface or cytoplasmic) with fluorescent antibodies. Up to 18 different colors can be detected by modern flow cytometers, making it the only immunological technique allowing simultaneous determination of antigen-specific T cell function and phenotype. In addition, cell proliferation and viability can be also measured. For this reason, it is probably the most popular method to measure antigenicity during vaccine trials and in the study of infectious diseases, along with ELISPOT. In this review, we will summarize its features, provide the protocol used by most laboratories and review its most recent applications.
Collapse
Affiliation(s)
- Giulia Freer
- Department of Experimental Pathology, University of Pisa, Via San Zeno, I-56127 Pisa, Italy.
| | | |
Collapse
|
104
|
Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31:4247-51. [PMID: 23523407 DOI: 10.1016/j.vaccine.2013.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.
Collapse
Affiliation(s)
- Matthew G Cottingham
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, UK.
| | | |
Collapse
|
105
|
Streeck H, D'Souza MP, Littman DR, Crotty S. Harnessing CD4⁺ T cell responses in HIV vaccine development. Nat Med 2013; 19:143-9. [PMID: 23389614 DOI: 10.1038/nm.3054] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/05/2012] [Indexed: 02/07/2023]
Abstract
CD4(+) T cells can perform a panoply of tasks to shape an effective response against a pathogen. Limited attention has been paid to the potential importance of functional CD4(+) T cell responses in the context of the development of next-generation vaccines, including HIV vaccines. Many CD4(+) T cell functions are newly appreciated and only partially understood. A workshop was held as a forum to bring together a small group of experts to exchange ideas on the role of CD4(+) T cells in developing durable functional antibody responses, via follicular helper T cells, as well as on the roles of CD4(+) T cells in other aspects of protective immunity. Here we discuss whether CD4(+) T cell responses may represent a beneficial component of an efficacious HIV vaccine.
Collapse
Affiliation(s)
- Hendrik Streeck
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| | | | | | | |
Collapse
|
106
|
Vicenzi E, Liò P, Poli G. The puzzling role of CXCR4 in human immunodeficiency virus infection. Theranostics 2013; 3:18-25. [PMID: 23382782 PMCID: PMC3563077 DOI: 10.7150/thno.5392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/26/2012] [Indexed: 11/05/2022] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) is the etiological agent of the acquired immunodeficiency syndrome (AIDS), a disease highly lethal in the absence of combination antiretroviral therapy. HIV infects CD4(+) cells of the immune system (T cells, monocyte-macrophages and dendritic cells) via interaction with a universal primary receptor, the CD4 molecule, followed by a mandatory interaction with a second receptor (co-receptor) belonging to the chemokine receptor family. Apart from some rare cases, two chemokine receptors have been evolutionarily selected to accomplish this need for HIV-1: CCR5 and CXCR4. Yet, usage of these two receptors appears to be neither casual nor simply explained by their levels of cell surface expression. While CCR5 use is the universal rule at the start of every infection regardless of the transmission route (blood-related, sexual or mother to child), CXCR4 utilization emerges later in disease coinciding with the immunological deficient phase of infection. Moreover, in most instances CXCR4 use as viral entry co-receptor is associated with maintenance of CCR5 use. Since antiviral agents preventing CCR5 utilization by the virus are already in use, while others targeting either CCR5 or CXCR4 (or both) are under investigation, understanding the biological correlates of this "asymmetrical" utilization of HIV entry co-receptors bears relevance for the clinical choice of which therapeutics should be administered to infected individuals. We will here summarize the basic knowledge and the hypotheses underlying the puzzling and yet unequivocal role of CXCR4 in HIV-1 infection.
Collapse
|
107
|
|
108
|
Sanou MP, De Groot AS, Murphey-Corb M, Levy JA, Yamamoto JK. HIV-1 Vaccine Trials: Evolving Concepts and Designs. Open AIDS J 2012; 6:274-88. [PMID: 23289052 PMCID: PMC3534440 DOI: 10.2174/1874613601206010274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
Abstract
An effective prophylactic HIV-1 vaccine is needed to eradicate the HIV/AIDS pandemic but designing such a vaccine is a challenge. Despite many advances in vaccine technology and approaches to generate both humoral and cellular immune responses, major phase-II and -III vaccine trials against HIV/AIDS have resulted in only moderate successes. The modest achievement of the phase-III RV144 prime-boost trial in Thailand re-emphasized the importance of generating robust humoral and cellular responses against HIV. While antibody-directed approaches are being pursued by some groups, others are attempting to develop vaccines targeting cell-mediated immunity, since evidence show CTLs to be important for the control of HIV replication. Phase-I and -IIa multi-epitope vaccine trials have already been conducted with vaccine immunogens consisting of known CTL epitopes conserved across HIV subtypes, but have so far fallen short of inducing robust and consistent anti-HIV CTL responses. The concepts leading to the development of T-cell epitope-based vaccines, the outcomes of related clinical vaccine trials and efforts to enhance the immunogenicity of cell-mediated approaches are summarized in this review. Moreover, we describe a novel approach based on the identification of SIV and FIV antigens which contain conserved HIV-specific T-cell epitopes and represent an alternative method for developing an effective HIV vaccine against global HIV isolates.
Collapse
Affiliation(s)
- Missa P Sanou
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - Anne S De Groot
- EpiVax Inc., University of Rhode Island, Providence, RI 02903, USA
| | - Michael Murphey-Corb
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, E1252 Biomedical Science Tower 200, Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jay A Levy
- Department of Medicine, University of California San Francisco, S-1280, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| |
Collapse
|
109
|
Burwitz BJ, Giraldo-Vela JP, Reed J, Newman LP, Bean AT, Nimityongskul FA, Castrovinci PA, Maness NJ, Leon EJ, Rudersdorf R, Sacha JB. CD8+ and CD4+ cytotoxic T cell escape mutations precede breakthrough SIVmac239 viremia in an elite controller. Retrovirology 2012; 9:91. [PMID: 23131037 PMCID: PMC3496649 DOI: 10.1186/1742-4690-9-91] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/14/2012] [Indexed: 02/05/2023] Open
Abstract
Background Virus-specific T cells are critical components in the containment of immunodeficiency virus infections. While the protective role of CD8+ T cells is well established by studies of CD8+ T cell-mediated viral escape, it remains unknown if CD4+ T cells can also impose sufficient selective pressure on replicating virus to drive the emergence of high-frequency escape variants. Identifying a high frequency CD4+ T cell driven escape mutation would provide compelling evidence of direct immunological pressure mediated by these cells. Results Here, we studied a SIVmac239-infected elite controller rhesus macaque with a 1,000-fold spontaneous increase in plasma viral load that preceded disease progression and death from AIDS-related complications. We sequenced the viral genome pre- and post-breakthrough and demonstrate that CD8+ T cells drove the majority of the amino acid substitutions outside of Env. However, within a region of Gag p27CA targeted only by CD4+ T cells, we identified a unique post-breakthrough mutation, Gag D205E, which abrogated CD4+ T cell recognition. Further, we demonstrate that the Gag p27CA-specific CD4+ T cells exhibited cytolytic activity and that SIV bearing the Gag D205E mutation escapes this CD4+ T cell effector function ex vivo. Conclusions Cumulatively, these results confirm the importance of virus specific CD8+ T cells and demonstrate that CD4+ T cells can also exert significant selective pressure on immunodeficiency viruses in vivo during low-level viral replication. These results also suggest that further studies of CD4+ T cell escape should focus on cases of elite control with spontaneous viral breakthrough.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Karasavvas N, Billings E, Rao M, Williams C, Zolla-Pazner S, Bailer RT, Koup RA, Madnote S, Arworn D, Shen X, Tomaras GD, Currier JR, Jiang M, Magaret C, Andrews C, Gottardo R, Gilbert P, Cardozo TJ, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Paris R, Greene K, Gao H, Gurunathan S, Tartaglia J, Sinangil F, Korber BT, Montefiori DC, Mascola JR, Robb ML, Haynes BF, Ngauy V, Michael NL, Kim JH, de Souza, for the MOPH TAVEG Collab MS. The Thai Phase III HIV Type 1 Vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120. AIDS Res Hum Retroviruses 2012; 28:1444-57. [PMID: 23035746 DOI: 10.1089/aid.2012.0103] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Thai Phase III clinical trial (RV144) showed modest efficacy in preventing HIV-1 acquisition. Plasma collected from HIV-1-uninfected trial participants completing all injections with ALVAC-HIV (vCP1521) prime and AIDSVAX B/E boost were tested for antibody responses against HIV-1 gp120 envelope (Env). Peptide microarray analysis from six HIV-1 subtypes and group M consensus showed that vaccination induced antibody responses to the second variable (V2) loop of gp120 of multiple subtypes. We further evaluated V2 responses by ELISA and surface plasmon resonance using cyclic (Cyc) and linear V2 loop peptides. Thirty-one of 32 vaccine recipients tested (97%) had antibody responses against Cyc V2 at 2 weeks postimmunization with a reciprocal geometric mean titer (GMT) of 1100 (range: 200-3200). The frequency of detecting plasma V2 antibodies declined to 19% at 28 weeks post-last injection (GMT: 110, range: 100-200). Antibody responses targeted the mid-region of the V2 loop that contains conserved epitopes and has the amino acid sequence KQKVHALFYKLDIVPI (HXB2 Numbering sequence 169-184). Valine at position 172 was critical for antibody binding. The frequency of V3 responses at 2 weeks postimmunization was modest (18/32, 56%) with a GMT of 185 (range: 100-800). In contrast, naturally infected HIV-1 individuals had a lower frequency of antibody responses to V2 (10/20, 50%; p=0.003) and a higher frequency of responses to V3 (19/20, 95%), with GMTs of 400 (range: 100-3200) and 3570 (range: 200-12,800), respectively. RV144 vaccination induced antibodies that targeted a region of the V2 loop that contains conserved epitopes. Early HIV-1 transmission events involve V2 loop interactions, raising the possibility that anti-V2 antibodies in RV144 may have contributed to viral inhibition.
Collapse
Affiliation(s)
- Nicos Karasavvas
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Erik Billings
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Mangala Rao
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Constance Williams
- Department of Pathology and Pharmacology, NYU School of Medicine, New York, New York
| | - Susan Zolla-Pazner
- Department of Pathology and Pharmacology, NYU School of Medicine, New York, New York
- Veterans Affairs Harbor Healthcare System, New York, New York
| | - Robert T. Bailer
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sirinan Madnote
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Duangnapa Arworn
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey R. Currier
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Mike Jiang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Craig Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charla Andrews
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Timothy J. Cardozo
- Department of Pathology and Pharmacology, NYU School of Medicine, New York, New York
| | | | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Center and Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Robert Paris
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | | | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, California
| | - Bette T. Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - John R. Mascola
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Merlin L. Robb
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Viseth Ngauy
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nelson L. Michael
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jerome H. Kim
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | |
Collapse
|
111
|
Baalwa J, Wang S, Parrish NF, Decker JM, Keele BF, Learn GH, Yue L, Ruzagira E, Ssemwanga D, Kamali A, Amornkul PN, Price MA, Kappes JC, Karita E, Kaleebu P, Sanders E, Gilmour J, Allen S, Hunter E, Montefiori DC, Haynes BF, Cormier E, Hahn BH, Shaw GM. Molecular identification, cloning and characterization of transmitted/founder HIV-1 subtype A, D and A/D infectious molecular clones. Virology 2012; 436:33-48. [PMID: 23123038 DOI: 10.1016/j.virol.2012.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/25/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022]
Abstract
We report the molecular identification, cloning and initial biological characterization of 12 full-length HIV-1 subtype A, D and A/D recombinant transmitted/founder (T/F) genomes. T/F genomes contained intact canonical open reading frames and all T/F viruses were replication competent in primary human T-cells, although subtype D virus replication was more efficient (p<0.05). All 12 viruses utilized CCR5 but not CXCR4 as a co-receptor for entry and exhibited a neutralization profile typical of tier 2 primary virus strains, with significant differences observed between subtype A and D viruses with respect to sensitivity to monoclonal antibodies VRC01, PG9 and PG16 and polyclonal subtype C anti-HIV IgG (p<0.05 for each). The present report doubles the number of T/F HIV-1 clones available for pathogenesis and vaccine research and extends their representation to include subtypes A, B, C and D.
Collapse
Affiliation(s)
- Joshua Baalwa
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Role of human immunodeficiency virus type 1 envelope structure in the induction of broadly neutralizing antibodies. J Virol 2012; 86:13152-63. [PMID: 23015715 DOI: 10.1128/jvi.01110-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very soon after the discovery of neutralizing antibodies (NAbs) toward human immunodeficiency virus type 1 (HIV-1) infection, it became apparent that characterization of these NAbs would be an important step in finding a cure for or a vaccine to eradicate HIV-1. Since the initial description of broadly cross-clade NAbs naturally produced in HIV-1 patients, numerous studies have described new viral targets for these antibodies. More recently, studies concerning new groups of patients able to control their viremia, such as long-term nonprogressors (LTNPs) or elite controllers, have described the generation of numerous envelope-targeted NAbs. Recent studies have marked a new stage in research on NAbs with the description of antibodies obtained from a worldwide screening of HIV-positive patients. These studies have permitted the discovery of NAb families with great potential for both neutralization and neutralization breadth, such as PG, PGT, CH, and highly active agonistic anti-CD4 binding site antibodies (HAADs), of which VRC01 and its variants are members. These antibodies are able to neutralize more than 80% of circulating strains without any autoreactivity and can be rapidly integrated into clinical trials in order to test their protective potential. In this review, we will focus on new insights into HIV-1 envelope structure and their implications for the generation of potent NAbs.
Collapse
|
113
|
Steers NJ, Ratto-Kim S, de Souza MS, Currier JR, Kim JH, Michael NL, Alving CR, Rao M. HIV-1 envelope resistance to proteasomal cleavage: implications for vaccine induced immune responses. PLoS One 2012; 7:e42579. [PMID: 22880042 PMCID: PMC3412807 DOI: 10.1371/journal.pone.0042579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were biased towards the Env antigen with a dominant CD4+ T-cell response. METHODS In this study, we examined the susceptibility of HIV-1 Env-A244 gp120 protein, one of the protein boost subunits of the RV144 Phase III vaccine trial, to proteasomes and cathepsins and identified the generated peptide epitope repertoire by mass spectrometry. The peptide fragments were tested for cytokine production in CD4(+) T-cell lines derived from RV144 volunteers. RESULTS Env-A244 was resistant to proteasomes, thus diminishing the possibility of the generation of class I epitopes by the classical MHC class I pathway. However, Env-A244 was efficiently cleaved by cathepsins generating peptide arrays identified by mass spectrometry that contained both MHC class I and class II epitopes as reported in the Los Alamos database. Each of the cathepsins generated distinct degradation patterns containing regions of light and dense epitope clusters. The sequence DKKQKVHALF that is part of the V2 loop of gp120 produced by cathepsins induced a polyfunctional cytokine response including the generation of IFN-γ from CD4(+) T-cell lines-derived from RV144 vaccinees. This sequence is significant since antibodies to the V1/V2-loop region correlated inversely with HIV-1 infection in the RV144 trial. CONCLUSIONS Based on our results, the susceptibility of Env-A244 to cathepsins and not to proteasomes suggests a possible mechanism for the generation of Env-specific CD4(+)T cell and antibody responses in the RV144 vaccinees.
Collapse
Affiliation(s)
- Nicholas J. Steers
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Silvia Ratto-Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mark S. de Souza
- Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Jeffrey R. Currier
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Jerome H. Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Carl R. Alving
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
114
|
A DNA-based candidate HIV vaccine delivered via in vivo electroporation induces CD4 responses toward the α4β7-binding V2 loop of HIV gp120 in healthy volunteers. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1557-9. [PMID: 22837097 DOI: 10.1128/cvi.00327-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Administration of a clade C/B' candidate HIV-1 DNA vaccine, ADVAX, by in vivo electroporation (EP) was safe and more immunogenic than intramuscular administration without EP. The breadth and specificity of T-cell responses to full-length Env were mapped. Responses to multiple Env regions were induced, with most focusing on V3/C4 and V2 regions, including the α4β7 integrin-binding domain. The breadth of responses induced by this DNA vaccine regimen was comparable to that of viral-vectored vaccine regimens.
Collapse
|