101
|
Kanzaki H, Shinohara F, Kanako I, Yamaguchi Y, Fukaya S, Miyamoto Y, Wada S, Nakamura Y. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox Biol 2016; 8:186-91. [PMID: 26795736 PMCID: PMC4732015 DOI: 10.1016/j.redox.2016.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/30/2022] Open
Abstract
It has been reported that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Tohoku University Hospital, Maxillo-Oral Disorders, Japan; Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan.
| | - Fumiaki Shinohara
- Tohoku University Graduate School of Dentistry, Oral Microbiology, Japan
| | - Itohiya Kanako
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Yuuki Yamaguchi
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Sari Fukaya
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Yutaka Miyamoto
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Satoshi Wada
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Yoshiki Nakamura
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| |
Collapse
|
102
|
Babikova D, Kalinova R, Zhelezova I, Momekova D, Konstantinov S, Momekov G, Dimitrov I. Functional block copolymer nanocarriers for anticancer drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra19236j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present a synthetic strategy towards functional polymer-based nanocarriers for potential anticancer drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Georgi Momekov
- Faculty of Pharmacy
- Medical University-Sofia
- 1000 Sofia
- Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| |
Collapse
|
103
|
Golombick T, Diamond TH, Manoharan A, Ramakrishna R. B-Cell Disorders and Curcumin. Integr Cancer Ther 2015; 16:255-257. [PMID: 26674787 DOI: 10.1177/1534735415622013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical studies with patients with early hematological malignancies (ie, monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, or stage 0/1 chronic lymphocytic leukemia) suggest that early intervention with curcumin, derived from the spice turmeric, may lead to prolonged survival and delay in progressive disease in some of these patients.
Collapse
|
104
|
Đudarić L, Fužinac-Smojver A, Muhvić D, Giacometti J. The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.10.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
105
|
Curcumin in Combination with Piperine Suppresses Osteoclastogenesis In Vitro. J Endod 2015; 41:1638-45. [PMID: 26300429 DOI: 10.1016/j.joen.2015.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/02/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The dietary pigment curcumin is a natural polyphenol extracted from the Curcuma longa rhizomes native to South Asia. The antioxidative, antimicrobial, and anti-inflammatory activities besides its unknown side effects suggest that curcumin could be a promising antiresorptive agent to prevent replacement resorption in replanted teeth after traumatic avulsion. Piperine, an alkaloid present in black pepper, seems to enhance the bioavailability and activity of curcumin. Therefore, this study evaluated the biocompatibility of curcumin and piperine in cultures of periodontal ligament cells as well as their effects in an in vitro osteoclastogenesis model of RAW 264.7 macrophages. METHODS The cytotoxicity in human periodontal ligament fibroblasts, human osteogenic sarcoma cells (SAOS-2), and murine osteoclastic precursors (RAW 264.7) was analyzed by using cell number determination and proliferation assays. The ability of curcumin and its conjugate to suppress the receptor activator of nuclear factor kappa B ligand-induced osteoclastogenesis was assessed by tartrate-resistant acid phosphatase (TRAP) staining and activity as well as real-time polymerase chain reaction. RESULTS Curcumin at concentrations ≥ 10 μmol/L was cytotoxic in all cell types tested, whereas piperine showed only slight cytotoxicity at 30 μmol/L in RAW and SAOS cultures. Although curcumin caused already significant effects, the combination with piperine completely suppressed the osteoclastogenesis by decreasing the TRAP activity and inhibiting the expression of the specific osteoclast markers TRAP, cathepsin K, and calcitonin receptor. CONCLUSIONS We demonstrated that curcumin combined with piperine suppressed the osteoclastogenesis in vitro without causing cytotoxic effects in periodontal ligament cells. These findings suggest its potential therapeutic application for the prevention and treatment of replacement resorption in replanted avulsed teeth.
Collapse
|
106
|
Siddiqi MH, Siddiqi MZ, Kang S, Noh HY, Ahn S, Simu SY, Aziz MA, Sathishkumar N, Jiménez Pérez ZE, Yang DC. Inhibition of Osteoclast Differentiation by Ginsenoside Rg3 in RAW264.7 Cells via RANKL, JNK and p38 MAPK Pathways Through a Modulation of Cathepsin K: An In Silico and In Vitro Study. Phytother Res 2015; 29:1286-1294. [PMID: 26059856 DOI: 10.1002/ptr.5374] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
Various studies have demonstrated that overexpression of cathepsin K (Cat-K) causes excessive bone loss, which ultimately leads to a variety of bone diseases including osteoporosis. Therefore, inhibition of Cat-K signifies a potential therapeutic target in osteoporosis treatment. Ginsenoside Rg3 is one of the most promising compound of Panax ginseng Meyer (P. ginseng) with numerous biological activities. Thus, in recent study the inhibitory effect of Rg3 isolated from P. ginseng was investigated in order to impede the osteoclast activity by an in silico approach followed by in vitro study validation using RAW264.7 cells through the investigation of different biological activity prediction such as absorption distribution metabolism and excretion (ADMET) properties against Cat-K protein. The docking results of our study showed that Rg3 is a non-toxic compound and may act as a drug-like molecule. Additionally, the molecular interaction of Rg3 with the active residues of Cat-K markedly describes its inhibitory effects on osteoclastogenesis. Findings of the present study exhibited that Rg3 significantly reduced receptor activator of nuclear factor kappa B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, pit formation (actin rings), and TRAP-positive multinucleated cells development in RAW264.7 cells. Furthermore, Rg3 dose-dependently reduced the mRNA expression levels of osteoclast-specific markers such as RANK, TRAP, and Cat-K induced by RANKL through the down regulation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) pathways. In conclusion, in silico docking study and in vitro validation together suggested that Rg3 inhibits osteoclastogenesis and reduces bone resorption through the inhibition of Cat-K. Therefore, Rg3 might be a useful therapeutic agent for the treatment of osteoporosis and proper bone formation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Hanif Siddiqi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Muhammad Zubair Siddiqi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Sera Kang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Hae Yong Noh
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Sungeun Ahn
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Shakina Yesmin Simu
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Mohamed Antar Aziz
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Natarajan Sathishkumar
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Zuly Elizabeth Jiménez Pérez
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggido, 449-701, Korea
| |
Collapse
|
107
|
Yeh CC, Su YH, Lin YJ, Chen PJ, Shi CS, Chen CN, Chang HI. Evaluation of the protective effects of curcuminoid (curcumin and bisdemethoxycurcumin)-loaded liposomes against bone turnover in a cell-based model of osteoarthritis. Drug Des Devel Ther 2015; 9:2285-300. [PMID: 25945040 PMCID: PMC4408943 DOI: 10.2147/dddt.s78277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Curcumin (Cur) and bisdemethoxycurcumin (BDMC), extracted from Curcuma longa, are poorly water-soluble polyphenol compounds that have shown anti-inflammatory potential for the treatment of osteoarthritis. To increase cellular uptake of Cur and BDMC in bone tissue, soybean phosphatidylcholines were used for liposome formulation. In this study, curcuminoid (Cur and BDMC)-loaded liposomes were characterized in terms of particle size, encapsulation efficiency, liposome stability, and cellular uptake. The results show that there is about 70% entrapment efficiency of Cur and BDMC in liposomes and that particle sizes are stable after liposome formation. Both types of liposome can inhibit macrophage inflammation and osteoclast differential activities. In comparison with free drugs (Cur and BDMC), curcuminoid-loaded liposomes were less cytotoxic and expressed high cellular uptake of the drugs. Of note is that Cur-loaded liposomes can prevent liposome-dependent inhibition of osteoblast differentiation and mineralization, but BDMC-loaded liposomes could not. With interleukin (IL)-1β stimulation, curcuminoid-loaded liposomes can successfully downregulate the expression of inflammatory markers on osteoblasts, and show a high osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio to prevent osteoclastogenesis. In the present study, we demonstrated that Cur and BDMC can be successfully encapsulated in liposomes and can reduce osteoclast activity and maintain osteoblast functions. Therefore, curcuminoid-loaded liposomes may slow osteoarthritis progression.
Collapse
Affiliation(s)
- Chih-Chang Yeh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
- Orthopaedic Department, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan, Republic of China
| | - Yu-Han Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Yu-Jhe Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Pin-Jyun Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China
| |
Collapse
|
108
|
Omori A, Yoshimura Y, Deyama Y, Suzuki K. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells. Biomed Rep 2015; 3:483-490. [PMID: 26171153 DOI: 10.3892/br.2015.452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and downregulation of NFATc1.
Collapse
Affiliation(s)
- Akina Omori
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Yoshitaka Yoshimura
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Yoshiaki Deyama
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Kuniaki Suzuki
- Department of Molecular Cell Pharmacology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| |
Collapse
|
109
|
Li W, Wang Y, Song Y, Xu L, Zhao J, Fang B. A preliminary study of the effect of curcumin on the expression of p53 protein in a human multiple myeloma cell line. Oncol Lett 2015; 9:1719-1724. [PMID: 25789029 PMCID: PMC4356419 DOI: 10.3892/ol.2015.2946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 01/13/2015] [Indexed: 11/12/2022] Open
Abstract
Curcumin is an inexpensive, natural plant ingredient with protease inhibitor effects. The present study aimed to analyze the inhibitory effects of curcumin on the multiple myeloma (MM) RPMI 8226 cell line, and examine the underlying mechanism that promotes the apoptosis of RPMI 8226 cells. A growth curve was constructed in order to observe the relative growth velocity, and MTT was used to analyze the effect of different concentrations of curcumin on inhibiting the proliferation of the RPMI 8226 cells. The mRNA expression of the p53, Bax and MDM2 genes was detected using quantitative polymerase chain reaction. The expression of p53 protein in the MM RPMI 8226 cells following treatment with curcumin was detected by western blotting and ELISA. Curcumin inhibited the proliferation of the MM RPMI 8226 cells in a dose- and time-dependent manner. In the MM RPMI 8226 cells treated with curcumin, the expression of the p53 and Bax genes was upregulated, while the expression of the MDM2 gene was downregulated. p53 protein expression was higher in the curcumin experimental group compared with the control group. Subsequent to treatment with curcumin, the growth of the MM RPMI 8226 cell line was inhibited in a concentration- and time-dependent manner. In the MM RPMI 8226 cells treated with curcumin, p53 protein levels were upregulated, which suggested that curcumin may promote the apoptosis of MM cells by upregulating p53 protein expression.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yaomei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China ; Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Linping Xu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Junmei Zhao
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Baijun Fang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
110
|
EFFECT OF CURCUMIN LIPOSOMAL FORM ON ANGIOTENSIN CONVERTING ACTIVITY, CYTOKINES AND COGNITIVE CHARACTERISTICS OF THE RATS WITH ALZHEIMER’S DISEASE MODEL. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
111
|
Heo DN, Ko WK, Moon HJ, Kim HJ, Lee SJ, Lee JB, Bae MS, Yi JK, Hwang YS, Bang JB, Kim EC, Do SH, Kwon IK. Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS NANO 2014; 8:12049-62. [PMID: 25420230 DOI: 10.1021/nn504329u] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gold nanoparticles (GNPs) have been previously reported to inhibit osteoclast (OC) formation. However, previous research only confirmed the osteoclastogenesis inhibitory effect under in vitro conditions. The aim of this study was to develop a therapeutic agent for osteoporosis based on the utilization of GNPs and confirm their effect both in vitro and in vivo. We prepared β-cyclodextrin (CD) conjugated GNPs (CGNPs), which can form inclusion complexes with curcumin (CUR-CGNPs), and used these to investigate their inhibitory effects on receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages (BMMs). The CUR-CGNPs significantly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells in BMMs without inducing cytotoxicity. The mRNA expressions of genetic markers of OC differentiation including c-Fos, nuclear factor of activated T cells 1 (NFATc1), TRAP, and osteoclast associated receptor (OSCAR) were significantly decreased in the presence of CUR-CGNPs. In addition, the CUR-CGNPs inhibited OC differentiation of BMMs through suppression of the RANKL-induced signaling pathway. Additionally, CUR-CGNPs caused a decrease in RANKL-induced actin ring formation, which is an essential morphological characteristic of OC formation allowing them to carry out bone resorption activity. Furthermore, the in vivo results of an ovariectomy (OVX)-induced osteoporosis model showed that CUR-CGNPs significantly improved bone density and prevented bone loss. Therefore, CUR-CGNPs may prove to be useful as therapeutic agents for preventing and treating osteoporosis.
Collapse
Affiliation(s)
- Dong Nyoung Heo
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, ‡Department of Conservative Dentistry, School of Dentistry, §Department of Dental Education, School of Dentistry, and ⊥Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University , Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Plant-derived anticancer agents: a promising treatment for bone metastasis. BONEKEY REPORTS 2014; 3:599. [PMID: 28243436 DOI: 10.1038/bonekey.2014.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023]
Abstract
Bone metastasis is a very frequent complication of advanced cancer, and it remains an incurable disease. Current therapies that have been approved for the treatment of bone metastases delay the occurrence of skeletal-related events and can extend the patient's lifespan by a few years. However, they will not cure or cause the regression of established bone metastases, and new side effects are emerging after prolonged treatment. Thus, new therapies are severely needed. There are compelling evidences from in vitro and in vivo preclinical studies that support the use of compounds derived from plants to treat several forms of cancers including bone metastasis. More than 25% of the drugs used during the past 20 years were directly derived from plants, whereas another 25% are chemically altered natural products. Still, only 5-15% of the ∼250 000 higher plants have ever been investigated for bioactive compounds. There is a growing interest for the study of anticancer drugs with relatively low side effects that target specific key signaling pathways that control the establishment and progression of the cancer metastasis. Therefore, further studies are needed to identify new natural compounds with high efficiency in cancer prevention and treatment. Extensive reviews about plant-derived agents and their use in cancer have been published, but none when it comes to the treatment of bone metastases. Only a few of these compounds have been evaluated for the treatment of bone metastasis; here we describe some of the most prominent ones that are having the potential to reach the clinic soon.
Collapse
|
113
|
Kanzaki H, Shinohara F, Kajiya M, Fukaya S, Miyamoto Y, Nakamura Y. Nuclear Nrf2 induction by protein transduction attenuates osteoclastogenesis. Free Radic Biol Med 2014; 77:239-48. [PMID: 25224039 DOI: 10.1016/j.freeradbiomed.2014.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/26/2014] [Accepted: 09/05/2014] [Indexed: 12/30/2022]
Abstract
It has been reported that reactive oxygen species (ROS) play a role as intracellular signaling molecules in RANKL stimulation. Previously we demonstrated that induction of cytoprotective enzyme expression by Nrf2-gene transfer successfully ameliorated RANKL-dependent osteoclastogenesis. In the present study, we hypothesized that Nrf2 activation by inhibiting ubiquitination and degradation of Nrf2 by ETGE-peptide would induce Nrf2-dependent cytoprotective enzyme expression, attenuate ROS signaling, and thereby inhibit RANKL-dependent osteoclastogenesis. ETGE-peptide containing a cell-permeable sequence (seven consecutive arginine; 7R-ETGE) was applied to a mouse macrophage cell-line RAW 264.7 cell or a primary macrophage culture. ETGE-peptide prevents Keap1 from binding to Nrf2. Nrf2 nuclear translocation and Nrf2-dependent cytoprotective enzyme induction was observed. The effects of 7R-ETGE on RANKL-dependent induction of intracellular ROS levels and osteoclastogenesis were examined. Finally, the protective effect of 7R-ETGE on RANKL-mediated bone destruction was investigated in mice. 7R-ETGE dose-dependently induced nuclear Nrf2, followed by the induction of cytoprotective enzyme expression at both the gene and protein level. 7R-ETGE inhibited upregulation of intracellular ROS levels by RANKL stimulation, and osteoclastogenesis was attenuated. Of particular interest was that local injection of 7R-ETGE ameliorated RANKL-mediated bone destruction. Local induction of nuclear Nrf2 by protein transduction is a potential novel therapeutic target for bone destruction diseases such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Tohoku University Hospital, Maxillo-Oral Disorders; Department of orthodontics, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Fumiaki Shinohara
- Tohoku University Graduate School of Dentistry, Oral MicrobiologySendai, Miyagi 980-8577, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Division of Applied Life Science, Hiroshima University Graduate School of Biomedical & Health Sciences Hiroshima University, Hiroshima, Japan
| | - Sari Fukaya
- Department of orthodontics, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Yutaka Miyamoto
- Department of orthodontics, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Yoshiki Nakamura
- Department of orthodontics, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|
114
|
Zhang Z, Zhang J, Xiao J. Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta Gen Subj 2014; 1840:3246-3256. [PMID: 25116856 DOI: 10.1016/j.bbagen.2014.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence supports the view that selenoproteins are essential for maintaining bone health. SCOPE OF REVIEW The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized. MAJOR CONCLUSIONS Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women. GENERAL SIGNIFICANCE A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China
| | - Jinsong Zhang
- School of Tea Food Science, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China.
| |
Collapse
|
115
|
Refaey ME, Zhong Q, Ding KH, Shi XM, Xu J, Bollag WB, Hill WD, Chutkan N, Robbins R, Nadeau H, Johnson M, Hamrick MW, Isales CM. Impact of dietary aromatic amino acids on osteoclastic activity. Calcif Tissue Int 2014; 95:174-82. [PMID: 25000990 PMCID: PMC4104004 DOI: 10.1007/s00223-014-9878-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/20/2014] [Indexed: 01/28/2023]
Abstract
We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.
Collapse
Affiliation(s)
- Mona El Refaey
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Qing Zhong
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Ke-Hong Ding
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Xing-ming Shi
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Jianrui Xu
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Wendy B. Bollag
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Charlie Norwood VA Medical Center, Augusta, GA 30912 USA
| | - William D. Hill
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Charlie Norwood VA Medical Center, Augusta, GA 30912 USA
| | - Norman Chutkan
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Richard Robbins
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Hugh Nadeau
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Maribeth Johnson
- Departments of Biostatistics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Mark W. Hamrick
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| | - Carlos M. Isales
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
- Departments of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912 USA
| |
Collapse
|
116
|
Improvement of Bioavailability and Anti-Inflammatory Potential of Curcumin in Combination with Emu Oil. Inflammation 2014; 37:2139-55. [DOI: 10.1007/s10753-014-9948-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
117
|
A novel chemically modified curcumin reduces severity of experimental periodontal disease in rats: initial observations. Mediators Inflamm 2014; 2014:959471. [PMID: 25104884 PMCID: PMC4101223 DOI: 10.1155/2014/959471] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/01/2014] [Accepted: 05/19/2014] [Indexed: 12/24/2022] Open
Abstract
Tetracycline-based matrix metalloproteinase- (MMP-) inhibitors are currently approved for two inflammatory diseases, periodontitis and rosacea. The current study addresses the therapeutic potential of a novel pleiotropic MMP-inhibitor not based on an antibiotic. To induce experimental periodontitis, endotoxin (LPS) was repeatedly injected into the gingiva of rats on one side of the maxilla; the contralateral (control) side received saline injections. Two groups of rats were treated by daily oral intubation with a chemically modified curcumin, CMC 2.24, for two weeks; the control groups received vehicle alone. After sacrifice, gingiva, blood, and maxilla were collected, the jaws were defleshed, and periodontal (alveolar) bone loss was quantified morphometrically and by μ-CT scan. The gingivae were pooled per experimental group, extracted, and analyzed for MMPs (gelatin zymography; western blot) and for cytokines (e.g., IL-1β; ELISA); serum and plasma samples were analyzed for cytokines and MMP-8. The LPS-induced pathologically excessive bone loss was reduced to normal levels based on either morphometric (P = 0.003) or μ-CT (P = 0.008) analysis. A similar response was seen for MMPs and cytokines in the gingiva and blood. This initial study, on a novel triketonic zinc-binding CMC, indicates potential efficacy on inflammatory mediators and alveolar bone loss in experimental periodontitis and warrants future therapeutic and pharmacokinetic investigations.
Collapse
|
118
|
Enhanced effects of osteoclastogenesis inhibition by curcumin-delivering heparin nanoparticles. Macromol Res 2014. [DOI: 10.1007/s13233-014-2082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
119
|
Kim JY, Cheon YH, Oh HM, Rho MC, Erkhembaatar M, Kim MS, Lee CH, Kim JJ, Choi MK, Yoon KH, Lee MS, Oh J. Oleanolic acid acetate inhibits osteoclast differentiation by downregulating PLCγ2-Ca(2+)-NFATc1 signaling, and suppresses bone loss in mice. Bone 2014; 60:104-11. [PMID: 24361669 DOI: 10.1016/j.bone.2013.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/25/2013] [Accepted: 12/11/2013] [Indexed: 12/13/2022]
Abstract
Owing to their potential pharmacological activities in human disease, natural plant-derived compounds have recently become the focus of increased research interest. In this study, we first isolated oleanolic acid acetate (OAA), a triterpenoid compound, from Vigna angularis (azuki bean) to discover anti-bone resorptive agents. Many studies have identified and described the various medicinal effects of V. angularis extract. However, the pharmacological effect of OAA-derived V. angularis extract, particularly the effect on osteoclastogenesis, is not known. Therefore, we investigated the effect and mechanism of OAA in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. OAA inhibited RANKL-induced osteoclast differentiation in bone marrow macrophages (BMMs) without any evidence of cytotoxicity. Interestingly, OAA significantly inhibited Btk phosphorylation, phospholipase Cγ2 (PLCγ2) phosphorylation, calcium ion (Ca(2+)) oscillation, and nuclear factor of activated T cell c1 (NFATc1) expression in RANKL-stimulated BMMs, but did not affect RANKL-induced mitogen-activated protein kinase. OAA also inhibited the bone-resorbing activity of mature osteoclasts. Furthermore, mice treated with OAA demonstrated marked attenuation of lipopolysaccharide-induced bone erosion based on micro-computed tomography and histologic analysis of femurs. Taken together, the results suggested that OAA inhibited RANKL-mediated osteoclastogenesis via PLCγ2-Ca(2+)-NFATc1 signaling in vitro and suppressed inflammatory bone loss in vivo.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Yoon-Hee Cheon
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Hyun Mee Oh
- Bioindustrial Process Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Mun Chual Rho
- Bioindustrial Process Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Munkhsoyol Erkhembaatar
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Chang Hoon Lee
- Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Jeong Joong Kim
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Min Kyu Choi
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Kwon-Ha Yoon
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Radiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Myeung Su Lee
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea.
| | - Jaemin Oh
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea; Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea.
| |
Collapse
|
120
|
Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology 2014; 67:357-65. [PMID: 24500394 PMCID: PMC4329293 DOI: 10.1007/s10616-014-9694-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/23/2014] [Indexed: 12/21/2022] Open
Abstract
Polyphenol have been reported to have physiological effects with respect to alleviating diseases such as osteoporosis and osteopetrosis. We recently reported that the olive polyphenol hydroxytyrosol accelerates bone formation both in vivo and in vitro. The present study was designed to evaluate the in vivo and in vitro effects of apigenin (4′,5,7-trihydroxyflavone), one of the major polyphenols in olives and parsley, on bone formation by using cultured osteoblasts and osteoclasts and ovariectomized (OVX) mice, respectively. Apigenin markedly inhibited cell proliferation and indices of osteoblast differentiation, such as collagen production, alkaline phosphatase activity, and calcium deposition in osteoblastic MC3T3-E1 cells at concentrations of 1–10 μM. At 10 μM, apigenin completely inhibited the formation of multinucleated osteoclasts from mouse splenic cells. Moreover, injection of apigenin at 10 mg kg−1 body weight significantly suppressed trabecular bone loss in the femurs of OVX mice. Our findings indicate that apigenin may have critical effects on bone maintenance in vivo.
Collapse
|
121
|
Mukudai Y, Kondo S, Koyama T, Li C, Banka S, Kogure A, Yazawa K, Shintani S. Potential anti-osteoporotic effects of herbal extracts on osteoclasts, osteoblasts and chondrocytes in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:29. [PMID: 24438322 PMCID: PMC3904926 DOI: 10.1186/1472-6882-14-29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 01/10/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoporosis (OP) is one of the most serious diseases in the modern world, and OP patients frequently suffer from fragility fractures in the hip, spine and wrist, resulting in a limited quality of life. Although bisphosphonates (BPs) are the most effective class of anti-bone-resorptive drugs currently available and the most commonly prescribed for the clinical treatment of OP, they are known to cause serious side effects such as bisphosphonate-related osteonecrosis of the jaw. Novel therapeutic materials that can replace the use of BPs have therefore been developed. METHODS We commenced an institutional collaborative project in which candidates of herbal extracts were selected from more than 400 bioactive herbal products for their potential therapeutic effects not only in OP, but also in oral and skeletal diseases. In the present study, we report on 3 Chinese medical herbal extracts from the root barks of Melia azedarach, Corydalis turtschaninovii, and Cynanchum atratum. RESULTS All of these extracts inhibited osteoclast proliferation and induced apoptosis by up-regulation of caspase activity and increase of mitochondrial pro-apoptotic proteins expression. Furthermore, the extracts enhanced differentiation, but did not affect proliferation of both osteoblasts and chondrocytes. The osteo-inducible effect was also observed in cultured primary bone marrow cells. CONCLUSIONS Although these extracts have been utilized in traditional Chinese medicine for hundreds of years, there are no reports to our knowledge, on their therapeutic effects in OP. In this study, we elucidate the potency of these herbal extracts as novel candidates for OP therapy.
Collapse
|
122
|
Mawani Y, Orvig C. Improved separation of the curcuminoids, syntheses of their rare earth complexes, and studies of potential antiosteoporotic activity. J Inorg Biochem 2013; 132:52-8. [PMID: 24387940 DOI: 10.1016/j.jinorgbio.2013.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
The first reported homogenous rare earth curcumin (HCurc; ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione)) complexes with the formula ML3, where M(3+) is Eu(III), Gd(III) or Lu(III), were synthesized and characterized by mass spectrometry, infrared spectroscopy and, in the case of the lutetium complex, (1)H NMR spectroscopy. Most importantly an improved separation of the three curcuminoids, HCurc, HDMC ((1E,6E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione) and HBDMC ((1E,6E)-1,7-bis(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione) was realized using a combination of normal-phase column and phosphate-impregnated preparative-thin layer chromatographies. The toxicities of the metal curcumin complexes and ligands were investigated in MG-63 cells, an osteoblast-like cell line, for potential activity as antiosteoporotic agents.
Collapse
Affiliation(s)
- Yasmin Mawani
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
123
|
Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med 2013; 65:789-799. [PMID: 23954472 DOI: 10.1016/j.freeradbiomed.2013.08.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates the expression of a variety of antioxidant and detoxification genes through an antioxidant-response element. Nrf2 has been shown to protect several types of cells against the acute and chronic injury that accompanies oxidative stress, but its role in osteoclasts remains unclear. In this study, we investigated the role of Nrf2 in osteoclast (OC) differentiation, a process in which reactive oxygen species (ROS) are generated and then participate, using Nrf2-knockout mice. Receptor activator of nuclear factor κB ligand (RANKL)-induced OC differentiation, actin ring formation, and osteoclastic bone resorption were substantially promoted in Nrf2-deficient OC precursor cells compared to wild-type cells. Under both unstimulated and RANKL-stimulated conditions, Nrf2 loss led to an increase in the intracellular ROS level and the oxidized-to-reduced glutathione ratio and a defect in the production of numerous antioxidant enzymes and glutathione. Moreover, pretreatment with N-acetylcysteine or diphenyleneiodonium significantly reduced the OC differentiation and decreased the intracellular ROS level in both Nrf2-deficient and wild-type cells. Pretreatment with sulforaphane and curcumin also inhibited the OC differentiation by activating Nrf2 in part. Nrf2 deficiency promoted the RANKL-induced activation of mitogen-activated protein kinases, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38; the induction of c-Fos; and the consequent induction of nuclear factor of activated T cells, cytoplasmic 1, a pivotal determinant of OC differentiation. Our results suggest that Nrf2 probably inhibits RANKL-induced OC differentiation by regulating the cellular redox status by controlling the expression of oxidative response genes, findings that might form the basis of a new strategy for treating inflammatory bone diseases.
Collapse
Affiliation(s)
- Seungha Hyeon
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Hyojung Lee
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Yoohee Yang
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Woojin Jeong
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea.
| |
Collapse
|
124
|
Guimarães MR, Leite FRM, Spolidorio LC, Kirkwood KL, Rossa C. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch Oral Biol 2013; 58:1309-17. [PMID: 24011306 DOI: 10.1016/j.archoralbio.2013.07.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Curcumin is the active compound in the extract of Curcuma longa rhizomes with anti-inflammatory properties mediated by inhibition of intracellular signalling. SOCS and MAPKinases are involved in the signalling events controlling the expression of IL-6, TNF-α and PGE2, which have important roles on chronic inflammatory diseases. The aim was to assess if these pathways are involved in curcumin-mediated effects on LPS-induced expression of these cytokines in macrophages. RAW 264.7 murine macrophages were stimulated with Escherichia coli LPS in the presence and absence of non-cytotoxic concentrations of curcumin. Curcumin potently inhibited LPS-induced expression of IL-6, TNF-α and COX-2 mRNA and prevented LPS-induced inhibition of SOCS-1 and -3 expression and the inhibition of the activation of p38 MAPKinase by modulation of its nuclear translocation. In conclusion, curcumin potently inhibits expression of LPS-induced inflammatory cytokines in macrophages via mechanisms that involve modulation of expression and activity of SOCS-1 and SOCS-3 and of p38 MAPK.
Collapse
Affiliation(s)
- Morgana Rodrigues Guimarães
- Department of Diagnosis and Surgery, Faculdade de Odontologia de Araraquara, Univ Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
125
|
Mani J, Kumar S, Dobos GJ, Haferkamp A. [Aspects of traditional Indian medicine (Ayurveda) in urology]. Urologe A 2013. [PMID: 23178846 DOI: 10.1007/s00120-012-3063-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ayurveda is from a global viewpoint the oldest and the most employed traditional form of medicine in India. The difference to western medicine is that this form of medicine is based on experience, empirical evidence and intuition accumulated over thousands of years and passed down through generations orally as well as by sketches. Ayurveda is not only concerned with the physical but also with the spiritual aspects of the body and according to this doctrine most diseases result from psychological and pathological alterations in the body. Ultimately, the definition of health according to Ayurveda is an equilibrium between the physical, mental and spiritual components. Ayurvedic medicine is used within the framework of the treatment of urolithiasis for diuresis, for litholysis, as an analgetic for spasms and with an antimicrobial function.
Collapse
Affiliation(s)
- J Mani
- Klinik für Urologie und Kinderurologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt a.M., Deutschland.
| | | | | | | |
Collapse
|
126
|
Sung B, Prasad S, Yadav VR, Gupta SC, Reuter S, Yamamoto N, Murakami A, Aggarwal BB. RANKL signaling and osteoclastogenesis is negatively regulated by cardamonin. PLoS One 2013; 8:e64118. [PMID: 23691159 PMCID: PMC3656934 DOI: 10.1371/journal.pone.0064118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/09/2013] [Indexed: 01/02/2023] Open
Abstract
Bone loss/resorption or osteoporosis is a disease that is accelerated with aging and age-associated chronic diseases such as cancer. Bone loss has been linked with human multiple myeloma, breast cancer, and prostate cancer and is usually treated with bisphosphonates, and recently approved denosumab, an antibody against receptor activator of NF-κB ligand (RANKL). Because of the numerous side effects of the currently available drugs, the search continues for safe and effective therapies for bone loss. RANKL, a member of the TNF superfamily, has emerged as a major mediator of bone loss via activation of osteoclastogenesis. We have identified cardamonin, a chalcone isolated from Alpinia katsumadai Hayata that can affect osteoclastogenesis through modulation of RANKL. We found that treatment of monocytes with cardamonin suppressed RANKL-induced NF-κB activation and this suppression correlated with inhibition of IκBα kinase and of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Furthermore, cardamonin also downregulated RANKL-induced phosphorylation of MAPK including ERK and p38 MAPK. Cardamonin suppressed the RANKL-induced differentiation of monocytes to osteoclasts in a dose-dependent and time-dependent manner. We also found that an inhibitor of NF-κB essential modulator (NEMO) blocked RANKL-induced osteoclastogenesis, indicating a direct link with NF-κB. Finally, osteoclastogenesis induced by human breast cancer cells or human multiple myeloma cells were completely suppressed by cardamonin. Collectively, our results indicate that cardamonin suppresses osteoclastogenesis induced by RANKL and tumor cells by suppressing activation of the NF-κB and MAPK pathway.
Collapse
Affiliation(s)
- Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Vivek R. Yadav
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Subash C. Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Norio Yamamoto
- Food Science Research Center, House Wellness Foods Corporation, Itami, Japan
| | - Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
127
|
Kim JL, Li HM, Kim YH, Lee YJ, Shim JH, Lim SS, Kang YH. Osteogenic activity of yellow flag iris (Iris pseudacorus) extract modulating differentiation of osteoblasts and osteoclasts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 40:1289-305. [PMID: 23227798 DOI: 10.1142/s0192415x12500954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone integrity is maintained through a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Imbalance of the process results in metabolic bone diseases such as osteoporosis. This study investigated the yellow flag iris extract (YFIE) and revealed its anti-osteoporotic effects in osteoblastic MC3T3-E1 mouse cells and RAW 264.7 murine macrophages. When osteoblasts were treated with 1-20 μg/ml YFIE in an osteogenic medium, the bone nodule formation by calcium deposits was markedly enhanced during differentiation. Consistently, YFIE stimulated alkaline phosphatase activity and collagen type I secretion with a substantial effect on osteoblast proliferation. On the other hand, RAW 264.7 macrophages were pre-incubated with 1-20 μg/ml YFIE for 5 days in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Non-toxic YFIE markedly attenuated the differentiation of macrophages to multi-nucleated osteoclasts. YFIE diminished RANKL-elevated tartrate-resistant acid phosphatase activity and bone resorption. In addition, the YFIE treatment retarded RANKL-induced cathepsin K production and carbonic anhydrase II expression, both of which are involved in bone resorption. Therefore, YFIE potentially posesses therapeutic agents that may prevent osteoporosis through promoting bone formation and reducing bone resorption.
Collapse
Affiliation(s)
- Jung-Lye Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | | | | | | | | | | | | |
Collapse
|
128
|
Yoon WJ, Kim KN, Heo SJ, Han SC, Kim J, Ko YJ, Kang HK, Yoo ES. Sargachromanol G inhibits osteoclastogenesis by suppressing the activation NF-κB and MAPKs in RANKL-induced RAW 264.7 cells. Biochem Biophys Res Commun 2013; 434:892-7. [PMID: 23611776 DOI: 10.1016/j.bbrc.2013.04.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 11/27/2022]
Abstract
Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sargachromanol G (SG), isolated from the brown alga Sargassum siliquastrum, inhibits the production of inflammatory cytokines. In the present study, we determined the effect of SG on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. SG inhibited RANKL-induced osteoclast differentiation from RAW264.7 cells without signs of cytotoxicity. Additionally, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), matrix metalloproteinase 9 (MMP9), and calcitonin receptor (CTR), was strongly inhibited. SG inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκB-α degradation. Furthermore, SG inhibited RANKL-induced phosphorylation of mitogen activated protein kinases (p38, JNK, and ERK). This study identified SG as an inhibitor for osteoclast formation and provided evidence that natural compounds, such as SG, are an alternative medicines for preventing and treating osteolysis.
Collapse
Affiliation(s)
- Weon-Jong Yoon
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Zhou T, Chen D, Li Q, Sun X, Song Y, Wang C. Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontol Scand 2013; 71:349-56. [PMID: 22554269 DOI: 10.3109/00016357.2012.682092] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Curcumin, an active ingredient of turmeric, is proved to be a potential candidate of controlling inflammation and bone resorption, but few reports are on the periodontitis. The purpose of this study was to evaluate whether the intra-gastric administration of curcumin could inhibit the inflammation and alveolar bone resorption in rats following ligature-induced experimental periodontitis. MATERIALS AND METHOD Male Wistar rats were randomly divided into three groups: no ligature placement and administration of vehicle, ligature placement and administration of vehicle, ligature placement and administration of curcumin. After the animals were sacrificed, their mandibles were collected for morphological, histological and immunohistochemical analysis; their gingival tissues were collected for cytokine measurements. RESULTS Bone resorption was significantly higher in the experimental periodontitis animals treated with vehicle compared with the curcumin-treated group or the control group. Furthermore, receptor activator of nuclear factor-κB ligand (RANKL), receptor activator of nuclear factor-κB (RANK), osteoprotegerin (OPG), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels were higher in the experimental periodontitis animals treated with vehicle compared with the curcumin treated group or the control group. CONCLUSIONS. Curcumin may decrease alveolar bone loss in the experimental periodontitis rats via suppressing the expression of RANKL/RANK/OPG and its anti-inflammatory properties.
Collapse
Affiliation(s)
- Te Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
130
|
Cho DC, Kim KT, Jeon Y, Sung JK. A synergistic bone sparing effect of curcumin and alendronate in ovariectomized rat. Acta Neurochir (Wien) 2012; 154:2215-23. [PMID: 23053289 DOI: 10.1007/s00701-012-1516-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/25/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the therapeutic effects of combination therapy with curcumin and alendronate on bone remodeling after ovariectomy in rats. METHODS Eighty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed amongst four groups: untreated OVX group, curcumin-administered group, alendronate-administered group, and the combination therapy group. At 8 and 12 weeks after surgery, rats from each of the groups were euthanized. Serum biochemical markers of bone turnover, including osteocalcin and alkaline phosphatase (ALP), and the telopeptide fragment of type I collagen C-terminus (CTX) were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test. RESULTS Serum biochemical markers of bone turnover in the experiment groups (curcumin administered group, alendronate administered group, and the combination therapy group) were significantly lower than in the untreated OVX group (p < 0.05). The combination therapy group had lower ALP and CTX-1 concentrations at 12 weeks, which were statistically significant compared with the curcumin only and the alendronate only group (p < 0.05). The combination therapy group had a significant increase in BMD at 8 weeks and Cr.BMD at 12 weeks compared with the curcumin-only group (p = 0.005 and p = 0.013, respectively). The three point bending test showed that the 4th lumbar vertebrae of the combination therapy group had a significantly greater maximal load value compared to that of the curcumin only and the alendronate only group (p < 0.05). CONCLUSIONS The present study demonstrated that combination therapy with a high dose of curcumin and a standard dose of alendronate has therapeutic advantages over curcumin or alendronate monotherapy, in terms of the synergistic antiresorptive effect on bone remodeling, and improving bone mechanical strength.
Collapse
|
131
|
Moran JM, Roncero-Martin R, Rodriguez-Velasco FJ, Calderon-Garcia JF, Rey-Sanchez P, Vera V, Canal-Macias ML, Pedrera-Zamorano JD. Effects of curcumin on the proliferation and mineralization of human osteoblast-like cells: implications of nitric oxide. Int J Mol Sci 2012; 13:16104-18. [PMID: 23443113 PMCID: PMC3546681 DOI: 10.3390/ijms131216104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Curcumin (diferuloylmethane) is found in the rhizomes of the turmeric plant (Curcuma longa L.) and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO) is a gaseous molecule generated from l-arginine during the catalization of nitric oxide synthase (NOS), and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s) by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63), we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.
Collapse
Affiliation(s)
- Jose M Moran
- Metabolic Bone Diseases Research Group, School of Nursing and Occupational Therapy, University of Extremadura, Caceres 10003, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Gu Q, Cai Y, Huang C, Shi Q, Yang H. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag 2012; 8:202-8. [PMID: 23060694 PMCID: PMC3466455 DOI: 10.4103/0973-1296.99285] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/12/2011] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric) and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO)-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs) differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP) activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2) and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2) and CCAAT/enhancer-binding protein (C/EBP) α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.
Collapse
Affiliation(s)
- Qiaoli Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu- 215006, People's Republic of China
| | | | | | | | | |
Collapse
|
133
|
Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 2012; 33:7164-73. [DOI: 10.1016/j.biomaterials.2012.06.026] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/16/2012] [Indexed: 11/19/2022]
|
134
|
Reuter S, Gupta SC, Phromnoi K, Aggarwal BB. Thiocolchicoside suppresses osteoclastogenesis induced by RANKL and cancer cells through inhibition of inflammatory pathways: a new use for an old drug. Br J Pharmacol 2012; 165:2127-39. [PMID: 21955206 DOI: 10.1111/j.1476-5381.2011.01702.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Most patients with cancer die not because of the tumour in the primary site, but because it has spread to other sites. Common tumours, such as breast, multiple myeloma, and prostate tumours, frequently metastasize to the bone. To search for an inhibitor of cancer-induced bone loss, we investigated the effect of thiocolchicoside, a semi-synthetic colchicoside derived from the plant Gloriosa superba and clinically used as a muscle relaxant, on osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL) and tumour cells. EXPERIMENTAL APPROACH We used RAW 264.7 (murine macrophage) cells, a well-established system for osteoclastogenesis, and evaluated the effect of thiocolchicoside on RANKL-induced NF-κB signalling and osteoclastogenesis as well as on osteoclastogenesis induced by tumour cells. KEY RESULTS Thiocolchicoside suppressed osteoclastogenesis induced by RANKL, and by breast cancer and multiple myeloma cells. Inhibition of the NF-κB pathway was responsible for this effect since the colchicoside inhibited RANKL-induced NF-κB activation, activation of IκB kinase (IKK) and suppressed inhibitor of NF-κBα (IκBα) phosphorylation and degradation, an inhibitor of NF-κB. Furthermore, an inhibitor of the IκBα kinase γ or NF-κB essential modulator, the regulatory component of the IKK complex, demonstrated that the NF-κB signalling pathway is mandatory for osteoclastogenesis induced by RANKL. CONCLUSIONS AND IMPLICATIONS Together, these data suggest that thiocolchicoside significantly suppressed osteoclastogenesis induced by RANKL and tumour cells via the NF-κB signalling pathway. Thus, thiocolchicoside, a drug that has been used for almost half a century to treat muscle pain, may also be considered as a new treatment for bone loss.
Collapse
Affiliation(s)
- Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
135
|
Kuo JJ, Chang HH, Tsai TH, Lee TY. Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis. Int J Mol Med 2012; 30:643-9. [PMID: 22692588 DOI: 10.3892/ijmm.2012.1020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/18/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance occurs in almost all patients with non-alcoholic fatty liver disease (NAFLD), and mitochondrial dysfunction likely plays a pivotal role in the progression of fatty liver into non-alcoholic steatohepatitis (NASH). Curcumin is a compound derived from the spice turmeric, a spice that is a potent antioxidant, anti-carcinogenic, and anti-hepatotoxic agent. The aim of this study was to analyze the ability of curcumin to protect against the mitochondrial impairment induced by high free fatty acids (HFFAs) and to determine the underlying mechanism for this cytoprotection. Curcumin treatment inhibited the lipoapoptosis, ROS production and ATP depletion elicited by HFFA in primary hepatocytes. We demonstrate that curcumin effectively suppressed HFFA-induced production of phosphoenol pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in hepatocytes. Not only did curcumin treatment increase mitochondrial DNA (mtDNA) copy number in hepatocytes, but it also increased levels of transcriptional factors that regulate mitochondrial biogenesis, including peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam). In addition, curcumin contributed to cell survival, as indicated by the restoration of the mitochondrial membrane potential (MMP) and the inhibition of the mitochondrial biogenesis induced by HFFA. Furthermore, this cytoprotection resulted from curcumin-mediated downregulation of the NF-κB p65 subunit, thereby inhibiting lipoapoptosis. Together, these data suggest that curcumin protects hepatocytes from HFFA-induced lipoapoptosis and mitochondrial dysfunction, which partially occurs through the regulation of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jong-Jen Kuo
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan, R.O.C
| | | | | | | |
Collapse
|
136
|
Shi HS, Gao X, Li D, Zhang QW, Wang YS, Zheng Y, Cai LL, Zhong RM, Rui A, Li ZY, Zheng H, Chen XC, Chen LJ. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int J Nanomedicine 2012; 7:2601-11. [PMID: 22679371 PMCID: PMC3368513 DOI: 10.2147/ijn.s31439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Radiation pneumonitis (RP) is an important dose-limiting toxicity during thoracic radiotherapy. Previous investigations have shown that curcumin is used for the treatment of inflammatory conditions and cancer, suggesting that curcumin may prevent RP and sensitize cancer cells to irradiation. However, the clinical advancement of curcumin is limited by its poor water solubility and low bioavailability after oral administration. Here, a water-soluble liposomal curcumin system was developed to investigate its prevention and sensitizing effects by an intravenous administration manner in mice models. The results showed that liposomal curcumin inhibited nuclear factor-κB pathway and downregulated inflammatory factors including tumor necrosis factor-α, interleukin (IL)-6, IL-8, and transforming growth factor-β induced by thoracic irradiation. Furthermore, the combined treatment with liposomal curcumin and radiotherapy increased intratumoral apoptosis and microvessel responses to irradiation in vivo. The significantly enhanced inhibition of tumor growth also was observed in a murine lung carcinoma (LL/2) model. There were no obvious toxicities observed in mice. The current results indicate that liposomal curcumin can effectively mitigate RP, reduce the fibrosis of lung, and sensitize LL/2 cells to irradiation. This study also suggests that the systemic administration of liposomal curcumin is safe and deserves to be investigated for further clinical application.
Collapse
Affiliation(s)
- Hua-shan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medicine School, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Golombick T, Diamond TH, Manoharan A, Ramakrishna R. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am J Hematol 2012; 87:455-60. [PMID: 22473809 DOI: 10.1002/ajh.23159] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 02/02/2023]
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) represent useful models for studying multiple myeloma precursor disease, and for developing early intervention strategies. Administering a 4g dose of curcumin, we performed a randomised, double-blind placebo-controlled cross-over study, followed by an open-label extension study using an 8g dose to assess the effect of curcumin on FLC response and bone turnover in patients with MGUS and SMM. 36 patients (19 MGUS and 17 SMM) were randomised into two groups: one received 4g curcumin and the other 4g placebo, crossing over at 3 months. At completion of the 4g arm, all patients were given the option of entering an open-label, 8g dose extension study. Blood and urine samples were collected at specified intervals for specific marker analyses. Group values are expressed as mean ± 1 SD. Data from different time intervals within groups were compared using Student's paired t-test. 25 patients completed the 4g cross-over study and 18 the 8g extension study. Curcumin therapy decreased the free light-chain ratio (rFLC), reduced the difference between clonal and nonclonal light-chain (dFLC) and involved free light-chain (iFLC). uDPYD, a marker of bone resorption, decreased in the curcumin arm and increased on the placebo arm. Serum creatinine levels tended to diminish on curcumin therapy. These findings suggest that curcumin might have the potential to slow the disease process in patients with MGUS and SMM.
Collapse
Affiliation(s)
- Terry Golombick
- Department of Endocrinology, St George Hospital, Sydney, Australia.
| | | | | | | |
Collapse
|
138
|
Colitti M, Gaspardo B, Della Pria A, Scaini C, Stefanon B. Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs. Vet Immunol Immunopathol 2012; 147:136-46. [PMID: 22591841 DOI: 10.1016/j.vetimm.2012.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 11/17/2022]
Abstract
The dietary effect of non-steroidal anti-inflammatory drug (NSAID) or curcumin on the gene expression of peripheral white blood cells in osteoarthritis (OA) affected dogs was investigated using a 44K oligo microarray. Two groups of OA dogs and one group of healthy dogs (6 dogs each) were clinically evaluated and blood was sampled before (T0) and after 20days (T20) of dietary administration of NSAID (NSAID group) or curcumin (CURCUMIN group). Differentially expressed genes (P<0.05) in comparison to the control group were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). After 20days of treatment, the differentially expressed transcripts significantly (P<0.05) decreased from 475 to 173 in NSAID group and from 498 to 141 in CURCUMIN group. Genes involved in "inflammatory response" and in "connective tissue development and function" dramatically decreased at T20. Other genes, included in "cellular movement", "cellular compromise" and "immune cell trafficking", were differentially expressed at T0 but not at T20 in both groups. Specific molecular targets of CURCUMIN, not observed for NSAID, were the IkB up regulation in the "TNRF1 signaling pathway" and IL18 down regulation in the "role of cytokines in mediating communication between immune cells". The activity of CURCUMIN was also evidenced from the inhibition of macrophages proliferation (HBEGF), related to a strong down regulation of TNFα and to activation of fibrinolysis (SERPINE1). The results would suggest that curcumin offers a complementary antinflammatory support for OA treatment in dogs.
Collapse
Affiliation(s)
- M Colitti
- Department of Scienze Agrarie e Ambientali, Università di Udine, via delle Scienze, 206-33100 Udine, Italy
| | | | | | | | | |
Collapse
|
139
|
Moon HJ, Kim EK, Nam YS, Kim JH, Ko WK, Lee JM, Lee CH, Jang JB, Lee KS, Kwon IK. Safflower Seed Extract Inhibits Osteoclast Differentiation by Suppression of the p38 Mitogen-activated Protein Kinase and IκB Kinase Activity. Phytother Res 2012; 26:1648-55. [DOI: 10.1002/ptr.4622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/30/2011] [Accepted: 01/16/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Ho-Jin Moon
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Eun-Kyung Kim
- Department of Oriental Gynecology, College of Oriental Medicine; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Yun Sik Nam
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry; Kyung Hee University; Seoul 130-701 Republic of Korea
- Advanced Analysis Center; Korea Institute of Science and Technology; Cheongryangri Seoul 136-791 Republic of Korea
| | - Jung Ho Kim
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Wan-Kyu Ko
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Jin-Moo Lee
- Department of Oriental Gynecology, College of Oriental Medicine; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Chang-Hoon Lee
- Department of Oriental Gynecology, College of Oriental Medicine; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Jun-Bock Jang
- Department of Oriental Gynecology, College of Oriental Medicine; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Kyung-Sub Lee
- Department of Oriental Gynecology, College of Oriental Medicine; Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Il Keun Kwon
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry; Kyung Hee University; Seoul 130-701 Republic of Korea
| |
Collapse
|
140
|
Kim WK, Ke K, Sul OJ, Kim HJ, Kim SH, Lee MH, Kim HJ, Kim SY, Chung HT, Choi HS. Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis. J Cell Biochem 2012; 112:3159-66. [PMID: 21732406 DOI: 10.1002/jcb.23242] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Curcumin has anti-oxidative activity. In view of the increasing evidence for a biochemical link between increased oxidative stress and reduced bone density we hypothesized that curcumin might increase bone density by elevating antioxidant activity in some target cell type. We measured bone density by Micro-CT, enzyme expression levels by quantitative PCR or enzyme activity, and osteoclast (OC) formation by tartrate-resistant acid phosphatase staining. The bone mineral density of the femurs of curcumin-administered mice was significantly higher than that of vehicle-treated mice after ovariectomy (OVX) and this was accompanied by reduced amounts of serum collagen-type I fragments, which are markers of bone resorption. Curcumin suppressed OC formation by increasing receptor activator of nuclear factor-κB ligand (RANKL)-induced glutathione peroxidase-1, and reversed the stimulatory effect of homocysteine, a known H(2) O(2) generator, on OC formation by restoring Gpx activity. Curcumin generated an aberrant RANKL signal characterized by reduced expression of nuclear factor of activated T cells 2 (NFAT2) and attenuated activation of mitogen-activated protein kinases (ERK, JNK, and p38). Curcumin thus inhibited OVX-induced bone loss, at least in part by reducing osteoclastogenesis as a result of increased antioxidant activity and impaired RANKL signaling. These findings suggest that bone loss associated with estrogen deficiency could be attenuated by curcumin administration.
Collapse
Affiliation(s)
- W K Kim
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Cheng B, Li J, Du J, Lv X, Weng L, Ling C. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-κB and MAPKs pathways. Food Chem Toxicol 2012; 50:1610-5. [PMID: 22386813 DOI: 10.1016/j.fct.2012.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/03/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
Abstract
Ginsenosides (GSS), the main active components of ginseng, have been reported possessing anti-osteoporosis activity in ovariectomized rats. However, the active ingredient and the mechanisms underlying the anti-osteoporosis activity of GSS have not been clearly elucidated. In the present study, we determined the effect of ginsenoside Rb1, a major component of ginsenosides, on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. Ginsenoside Rb1 inhibited RANKL-induced osteoclast differentiation from Raw264.7 cells without cytotoxicity. Ginsenoside Rb1 also inhibited RANKL-induced TNFα mRNA expression in Raw264.7 cells. Pretreatment with ginsenoside Rb1 significantly inhibited RANKL-induced the gene expression of c-Fos and nuclear factor of activated T-cells c1 (NFATc1), which are two essential and crucial transcription factors for osteoclast formation. Rb1 inhibited RANKL-induced nucleus translocation and activation of NF-κB, the upstream factor of c-Fos and NFATc1. Among the three well known mitogen-activated protein kinases (MAPKs), Rb1 inhibited RANKL-induced JNK and p38 phosphorylation, but not ERK1/2. Taken together, our data suggest that ginsenoside Rb1 is one of the effective components of GSS for the anti-osteoporosis activity and can inhibit osteoclastogenesis by suppressing RANKL-induced activation of both JNK and p38 MAPKs and NF-κB pathways, and consequently down-regulating the gene expression of c-Fos and NFATc1 in osteoclast precursors.
Collapse
Affiliation(s)
- Binbin Cheng
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
142
|
Banu J, Varela E, Fernandes G. Alternative therapies for the prevention and treatment of osteoporosis. Nutr Rev 2012; 70:22-40. [PMID: 22221214 DOI: 10.1111/j.1753-4887.2011.00451.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is a medical condition that affects millions of men and women. People with this condition have low bone mass, which places them at increased risk for bone fracture after minor trauma. The surgeries and treatments required to repair and heal bone fractures involve long recovery periods and can be expensive. Because osteoporosis occurs frequently in the elderly, the financial burden it places on society is likely to be large. In the United States, the Food and Drug Administration has approved several drugs for use in the prevention and treatment of osteoporosis. However, all of the currently available agents have severe side effects that limit their efficacy and underscore the urgent need for new treatment options. One promising approach is the development of alternative (nonpharmaceutical) strategies for bone maintenance, as well as for the prevention and treatment of osteoporosis. This review examines the currently available nonpharmaceutical alternatives that have been evaluated in in vitro and in vivo studies. Certain plants from the following families have shown the greatest benefits on bone: Alliceae, Asteraceae, Thecaceae, Fabaceae, Oleaceae, Rosaceae, Ranunculaceae, Vitaceae, Zingiberaceae. The present review discusses the most promising findings from studies of these plant families.
Collapse
Affiliation(s)
- Jameela Banu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, San Antonio, Texas, USA.
| | | | | |
Collapse
|
143
|
Moon HJ, Ko WK, Han SW, Kim DS, Hwang YS, Park HK, Kwon IK. Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem Biophys Res Commun 2012; 418:247-53. [PMID: 22252298 DOI: 10.1016/j.bbrc.2012.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 11/27/2022]
Abstract
Coenzyme Q10 (CoQ10), selenium, and curcumin are known to be powerful antioxidants. Osteoclasts are capable of resorbing mineralized bone and excessive bone resorption by osteoclasts causes bone loss-related diseases. During osteoclast differentiation, the reactive oxygen species (ROS) acts as a secondary messenger on signal pathways. In this study, we investigated whether antioxidants can inhibit RANKL-induced osteoclastogenesis through suppression of ROS generation and compared the relative inhibitory activities of CoQ10, sodium selenite, and curcumin on osteoclast differentiation. We found that antioxidants markedly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone marrow-derived monocytes (BMMs) and RAW 264.7 cells. Antioxidants scavenged intracellular ROS generation within osteoclast precursors during RANKL-stimulated osteoclastogenesis. These also acted to significantly suppress the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor (OSCAR), which are genetic markers of osteoclast differentiation in a dose-dependent manner. These antioxidants also suppressed ROS-induced IκBα signaling pathways for osteoclastogenesis. Specially, curcumin displayed the highest inhibitory effect on osteoclast differentiation when concentrations were held constant. Together, CoQ10, selenite, and curcumin act as inhibitors of RANKL-induced NFATc1 which is a downstream event of NF-κB signal pathway through suppression of ROS generation, thereby suggesting their potential usefulness for the treatment of bone disease associated with excessive bone resorption.
Collapse
Affiliation(s)
- Ho-Jin Moon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
144
|
Gagné L, Maizes V. Osteoporosis. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
145
|
|
146
|
Shin MY, Alcantara EH, Park YM, Kwon ST, Kwun IS. Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.4.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
147
|
Yadav VR, Prasad S, Reuter S, Sung B, Yamamoto N, Murakami A, Aggarwal BB. WITHDRAWN: Cardamonin Inhibits Osteoclastogenesis Induced by Tumor Cells Through Interruption of the Signaling Pathway Activated by Receptor Activator of NF-κB Ligand. Cancer Lett 2011:S0304-3835(11)00758-0. [PMID: 22182452 PMCID: PMC3769506 DOI: 10.1016/j.canlet.2011.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/04/2011] [Accepted: 12/07/2011] [Indexed: 11/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Vivek R Yadav
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | | | | | | |
Collapse
|
148
|
Sung B, Oyajobi B, Aggarwal BB. Plumbagin inhibits osteoclastogenesis and reduces human breast cancer-induced osteolytic bone metastasis in mice through suppression of RANKL signaling. Mol Cancer Ther 2011; 11:350-9. [PMID: 22090419 DOI: 10.1158/1535-7163.mct-11-0731] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone loss is one of the major complications of advanced cancers such as breast cancer, prostate cancer, and multiple myeloma; agents that can suppress this bone loss have therapeutic potential. Extensive research within the last decade has revealed that RANKL, a member of the tumor necrosis factor superfamily, plays a major role in cancer-associated bone resorption and thus is a therapeutic target. We investigated the potential of vitamin K3 analogue plumbagin (derived from Chitrak, an Ayurvedic medicinal plant) to modulate RANKL signaling, osteoclastogenesis, and breast cancer-induced osteolysis. Plumbagin suppressed RANKL-induced NF-κB activation in mouse monocytes, an osteoclast precursor cell, through sequential inhibition of activation of IκBα kinase, IκBα phosphorylation, and IκBα degradation. Plumbagin also suppressed differentiation of these cells into osteoclasts induced either by RANKL or by human breast cancer or human multiple myeloma cells. When examined for its ability to prevent human breast cancer-induced bone loss in animals, plumbagin (2 mg/kg body weight) administered via the intraperitoneal route significantly decreased osteolytic lesions, resulting in preservation of bone volume in nude mice bearing human breast tumors. Overall, our results indicate that plumbagin, a vitamin K analogue, is a potent inhibitor of osteoclastogenesis induced by tumor cells and of breast cancer-induced osteolytic metastasis through suppression of RANKL signaling.
Collapse
Affiliation(s)
- Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
149
|
Yekollu SK, Thomas R, O’Sullivan B. Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice. Diabetes 2011; 60:2928-38. [PMID: 21885868 PMCID: PMC3198103 DOI: 10.2337/db11-0275] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine whether and by what mechanism systemic delivery of curcumin-containing liposomes improves insulin resistance in the leptin deficient (ob/ob) mouse model of insulin resistance. RESEARCH DESIGN AND METHODS Insulin resistant ob/ob mice with steatosis were injected intraperitoneally with liposome nanoparticles, entrapping the nuclear factor-κB (NF-κB) inhibitor curcumin (curcusomes), and uptake in liver and adipose tissue was determined by flow cytometry. The effects of curcusomes on macrophage NF-κB activation and cytokine production were assessed. Transfer experiments determined the role of hepatic tumor necrosis factor (TNF)/inducible nitric oxide synthase-producing dendritic cells (Tip-DCs) and adipose tissue macrophages (ATMs) in inflammation-induced insulin resistance, determined by homeostatic assessment of insulin resistance. RESULTS Phagocytic myeloid cells infiltrating the liver in ob/ob mice had the phenotypic characteristics of Tip-DCs that arise from monocyte precursors in the liver and spleen after infection. Targeting Tip-DCs and ATMs with curcusomes in ob/ob mice reduced NF-κB/RelA DNA binding activity, reduced TNF, and enhanced interleukin-4 production. Curcusomes improved peripheral insulin resistance. CONCLUSIONS Both hepatic Tip-DCs and ATMs contribute to insulin resistance in ob/ob mice. Curcusome nanoparticles inhibit proinflammatory pathways in hepatic Tip-DCs and ATMs and reverse insulin resistance. Targeting inflammatory DCs is a novel approach for type 2 diabetes treatment.
Collapse
|
150
|
Ramadan G, Al-Kahtani MA, El-Sayed WM. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation 2011; 34:291-301. [PMID: 21120596 DOI: 10.1007/s10753-010-9278-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Turmeric (rich in curcuminoids) and ginger (rich in gingerols and shogaols) rhizomes have been widely used as dietary spices and to treat different diseases in Ayurveda/Chinese medicine since antiquity. Here, we compared the anti-inflammatory/anti-oxidant activity of these two plants in rat adjuvant-induced arthritis (AIA). Both plants (at dose 200 mg/kg body weight) significantly suppressed (but with different degrees) the incidence and severity of arthritis by increasing/decreasing the production of anti-inflammatory/pro-inflammatory cytokines, respectively, and activating the anti-oxidant defence system. The anti-arthritic activity of turmeric exceeded that of ginger and indomethacin (a non-steroidal anti-inflammatory drug), especially when the treatment started from the day of arthritis induction. The percentage of disease recovery was 4.6-8.3% and 10.2% more in turmeric compared with ginger and indomethacin (P < 0.05), respectively. The present study proves the anti-inflammatory/anti-oxidant activity of turmeric over ginger and indomethacin, which may have beneficial effects against rheumatoid arthritis onset/progression as shown in AIA rat model.
Collapse
Affiliation(s)
- Gamal Ramadan
- Biological Science Department, College of Science, King Faisal University, Al-Hufof, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|