101
|
Abstract
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease, worldwide. The molecular pathogenesis of NAFLD is complex, involving numerous signalling molecules including microRNAs (miRNAs). Dysregulation of miRNA expression is associated with hepatic inflammation, fibrosis and hepatocellular carcinoma. Although miRNAs are also critical to the cellular response to vitamin D, mediating regulation of the vitamin D receptor (VDR) and vitamin D’s anticancer effects, a role for vitamin D regulated miRNAs in NAFLD pathogenesis has been relatively unexplored. Therefore, this review aimed to critically assess the evidence for a potential subset of miRNAs that are both dysregulated in NAFLD and modulated by vitamin D. Comprehensive review of 89 human studies identified 25 miRNAs found dysregulated in more than one NAFLD study. In contrast, only 17 studies, including a protocol for a trial in NAFLD, had examined miRNAs in relation to vitamin D status, response to supplementation, or vitamin D in the context of the liver. This paper summarises these data and reviews the biological roles of six miRNAs (miR-21, miR-30, miR-34, miR-122, miR-146, miR-200) found dysregulated in multiple independent NAFLD studies. While modulation of miRNAs by vitamin D has been understudied, integrating the data suggests seven vitamin D modulated miRNAs (miR-27, miR-125, miR-155, miR-192, miR-223, miR-375, miR-378) potentially relevant to NAFLD pathogenesis. Our summary tables provide a significant resource to underpin future hypothesis-driven research, and we conclude that the measurement of serum and hepatic miRNAs in response to vitamin D supplementation in larger trials is warranted.
Collapse
|
102
|
Parchekani J, Hashemzadeh H, Allahverdi A, Siampour H, Abbasian S, Moshaii A, Naderi-Manesh H. Zepto molar miRNA-21 detection in gold Nano-islands platform toward early cancer screening. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
103
|
Gubu A, Su W, Zhao X, Zhang X, Fan X, Wang J, Wang Q, Tang X. Circular Antisense Oligonucleotides for Specific RNase-H-Mediated microRNA Inhibition with Reduced Off-Target Effects and Nonspecific Immunostimulation. J Med Chem 2021; 64:16046-16055. [PMID: 34672619 DOI: 10.1021/acs.jmedchem.1c01421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antisense microRNA oligodeoxynucleotides (AMOs) are powerful tools to regulate microRNA functions. Unfortunately, severe off-target effects are sometimes observed. Due to the special topological and enzymatic properties of circular oligodeoxynucleotides (c-ODNs), we rationally designed and developed circular AMOs, which effectively inhibited microRNA functions with high target specificity and low off-target effects. Binding and enzymatic assays indicated that small circular AMOs could selectively bind to and further digest the target mature miR 21, which suggested that the topological properties of circular c-ODNs significantly decreased their off-target effects as microRNA inhibitors. Compared with their linear corresponding phosphorothioated AMOs, circular phosphorothioated AMOs could more effectively reduce the amount of carcinogenic miR 21 and miR 222 and upregulate the expression levels of downstream antitumor proteins of PTEN and PDCD4. In addition, c-PS-antimiRs induced much less nonspecific immunostimulatory effects compared with their linear partner PS-ODNs, further indicating the advantages of circular ODNs in nonspecific immunostimulation.
Collapse
Affiliation(s)
- Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.,Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Wenbo Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.,Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.,Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.,Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.,Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.,Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
104
|
Tong Y, Liu X, Xia D, Peng E, Yang X, Liu H, Ye T, Wang X, He Y, Xu H, Ye Z, Chen Z, Tang K. Biological Roles and Clinical Significance of Exosome-Derived Noncoding RNAs in Bladder Cancer. Front Oncol 2021; 11:704703. [PMID: 34692482 PMCID: PMC8530185 DOI: 10.3389/fonc.2021.704703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BCa) is a common heterogeneous urinary system tumor with high malignancy and limited advancement in treatment. Limited understanding of BCa has not contributed to any significant progress in diagnosis or treatment, exploring the mechanisms underlying BCa has become an urgent research focus. Exosomes, a type of extracellular vesicle (EV), have drawn substantial interest for their important roles in mediating intracellular communication. Exosomes shuttle numerous bioactive molecules, and noncoding RNAs (ncRNAs) are among the most numerous. ncRNAs including microRNA, long noncoding RNA, and circular RNA are sorted and packaged into exosomes selectively and transferred into recipient cells to regulate their function. Exosomal ncRNAs are associated with hallmarks of BCa, such as proliferation, apoptosis, epithelial-mesenchymal transition (EMT), cell cycle arrest, lymphangiogenesis, and chemotherapy resistance. Exosomal ncRNAs can also be detected in urine and serum, making them encouraging biomarkers for BCa diagnosis and prognosis. More importantly, exosomes exhibit excellent biocompatibility and potential for diversified applications. The delivery of bioactive substances and drugs into specific cells has become a promising approach for precision therapy for BCa patients. In addition, cancer vaccines have also received increasing attention. In this review, we summarize the current research on the regulatory roles of exosomal ncRNAs in BCa tumorigenesis and progression, as well as their potential clinical value in accelerating the diagnosis and therapy of BCa.
Collapse
Affiliation(s)
- Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinguang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
105
|
Gembillo G, Visconti L, Giusti MA, Siligato R, Gallo A, Santoro D, Mattina A. Cardiorenal Syndrome: New Pathways and Novel Biomarkers. Biomolecules 2021; 11:1581. [PMID: 34827580 PMCID: PMC8615764 DOI: 10.3390/biom11111581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiorenal syndrome (CRS) is a multi-organ disease characterized by the complex interaction between heart and kidney during acute or chronic injury. The pathogenesis of CRS involves metabolic, hemodynamic, neurohormonal, and inflammatory mechanisms, and atherosclerotic degeneration. In the process of better understanding the bi-directional pathophysiological aspects of CRS, the need to find precise and easy-to-use markers has also evolved. Based on the new pathophysiological standpoints and an overall vision of the CRS, the literature on renal, cardiac, metabolic, oxidative, and vascular circulating biomarkers was evaluated. Though the effectiveness of different extensively applied biomarkers remains controversial, evidence for several indicators, particularly when combined, has increased in recent years. From new aspects of classic biomarkers to microRNAs, this review aimed at a 360-degree analysis of the pathways that balance the kidney and the heart physiologies. In this delicate system, different markers and their combination can shed light on the diagnosis, risk, and prognosis of CRS.
Collapse
Affiliation(s)
- Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Luca Visconti
- Unit of Nephrology and Dialysis, Ospedali Riuniti Villa Sofia Cervello, University of Palermo, 90146 Palermo, Italy;
| | - Maria Ausilia Giusti
- Diabetes and Islet Transplantation Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), UPMC Italy, 90127 Palermo, Italy; (M.A.G.); (A.M.)
| | - Rossella Siligato
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), UPMC Italy, 90127 Palermo, Italy;
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Alessandro Mattina
- Diabetes and Islet Transplantation Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), UPMC Italy, 90127 Palermo, Italy; (M.A.G.); (A.M.)
| |
Collapse
|
106
|
Yusof KM, Groen K, Rosli R, Avery-Kiejda KA. Crosstalk Between microRNAs and the Pathological Features of Secondary Lymphedema. Front Cell Dev Biol 2021; 9:732415. [PMID: 34733847 PMCID: PMC8558478 DOI: 10.3389/fcell.2021.732415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023] Open
Abstract
Secondary lymphedema is characterized by lymphatic fluid retention and subsequent tissue swelling in one or both limbs that can lead to decreased quality of life. It often arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial modalities, such as lymphatic insults after surgery, immune system dysfunction, deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation. Although secondary lymphedema is often associated with breast cancer, the condition can occur in patients with any type of cancer that requires lymphadenectomy such as gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal roles in regulating gene expression in biological processes such as lymphangiogenesis, angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA profiling has led to the discovery of the molecular mechanisms involved in the pathophysiology of auto-immune, inflammation-related, and metabolic diseases. Although the role of microRNAs in regulating secondary lymphedema is yet to be elucidated, the crosstalk between microRNAs and molecular factors involved in the pathological features of lymphedema, such as skin fibrosis, inflammation, immune dysregulation, and aberrant lipid metabolism have been demonstrated in several studies. MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of their roles in lymphedema can provide a better understanding or new insights of the mechanisms underlying this debilitating condition.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kira Groen
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kelly A. Avery-Kiejda
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
107
|
Ma GM, Huo LW, Tong YX, Wang YC, Li CP, Jia HX. Label-free and sensitive MiRNA detection based on turn-on fluorescence of DNA-templated silver nanoclusters coupled with duplex-specific nuclease-assisted signal amplification. Mikrochim Acta 2021; 188:355. [PMID: 34585278 DOI: 10.1007/s00604-021-05001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs). The combination between target miRNA, DSNSA, and AgNCs is achieved by the unique design of DNA sequences. Target miRNA opens the hairpin structure of the Hairpin DNA probe (HP) by hybridizing with the HP and initiates the duplex-specific nuclease-assisted signal amplification (DSNSA) reaction. The DSNSA reaction generates the release of the guanine-rich DNA sequence, which can turn on the fluorescence of the dark AgNCs by hybridizing with the DNA template of the dark AgNCs. The fluorescence intensity of AgNCs corresponds to the dosage of the target miRNA. This is measured at 630 nm by exciting at 560 nm. The constructed method exhibits a low detection limit (~8.3 fmol), a great dynamic range of more than three orders of magnitude, and excellent selectivity. Moreover, it has a good performance for miR-21 detection in complex biological samples. A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs).
Collapse
Affiliation(s)
- Gui-Min Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Li-Wei Huo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Yin-Xia Tong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Yu-Cong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China
| | - Cui-Ping Li
- Key Laboratory of Public Health Safety of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; College of Public Health, Hebei University, Baoding, 071002, People's Republic of China
| | - Hong-Xia Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education; Key Laboratory of Analytical Science and Technology of Hebei Province; Institute of Life Science and Green Development; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, Hebei Province, People's Republic of China.
| |
Collapse
|
108
|
Zhu J, Tang Z, Ren J, Geng J, Guo F, Xu Z, Jia J, Chen L, Jia Y. Downregulation of microRNA-21 contributes to decreased collagen expression in venous malformations via transforming growth factor-β/Smad3/microRNA-21 signaling feedback loop. J Vasc Surg Venous Lymphat Disord 2021; 10:469-481.e2. [PMID: 34506963 DOI: 10.1016/j.jvsv.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Venous malformations (VMs) are the most frequent vascular malformations and are characterized by dilated and tortuous veins with a dysregulated vascular extracellular matrix. The purpose of the present study was to investigate the potential involvement of microRNA-21 (miR-21), a multifunctional microRNA tightly associated with extracellular matrix regulation, in the pathogenesis of VMs. METHODS The expression of miR-21, collagen I, III, and IV, transforming growth factor-β (TGF-β), and Smad3 (mothers against decapentaplegic homolog 3) was evaluated in VMs and normal skin tissue using in situ hybridization, immunohistochemistry, Masson trichrome staining, and real-time polymerase chain reaction. Human umbilical vein endothelial cells (HUVECs) were used to explore the underlying mechanisms. RESULTS miR-21 expression was markedly decreased in the VM specimens compared with normal skin, in parallel with downregulation of collagen I, III, and IV and the TGF-β/Smad3 pathway in VMs. Moreover, our data demonstrated that miR-21 positively regulated the expression of collagens in HUVECs and showed a positive association with the TGF-β/Smad3 pathway in the VM tissues. In addition, miR-21 was found to mediate TGF-β-induced upregulation of collagens in HUVECs. Our data have indicated that miR-21 and the TGF-β/Smad3 pathway could form a positive feedback loop to synergistically regulate endothelial collagen synthesis. In addition, TGF-β/Smad3/miR-21 feedback loop signaling was upregulated in bleomycin-treated HUVECs and VM specimens, which was accompanied by increased collagen deposition. CONCLUSIONS To the best of our knowledge, the present study has, for the first time, revealed downregulation of miR-21 in VMs, which might contribute to decreased collagen expression via the TGF-β/Smad3/miR-21 signaling feedback loop. These findings provide new information on the pathogenesis of VMs and might facilitate the development of new therapies for VMs.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zirong Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinhuan Geng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
109
|
Lu J, Xie L, Sun S. The inhibitor miR-21 regulates macrophage polarization in an experimental model of chronic obstructive pulmonary disease. Tob Induc Dis 2021; 19:69. [PMID: 34539308 PMCID: PMC8409097 DOI: 10.18332/tid/140095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION In chronic obstructive pulmonary disease (COPD), macrophages play an indispensable role. In the lung tissues of COPD patients and smokers, macrophages can be observed to polarize towards M2 phenotype. The molecular mechanism of this process is unclear, and it has not been fully elucidated in COPD. METHODS We bought laboratory animals [C57BL/6 and miR-21-/- C57BL/6(F1)] from the Jackson Laboratory. The model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). RT-PCR detected the expression levels of inflammatory factors and markers associated with M1 and M2 macrophages. The ratio of M2 macrophages to M1 macrophages was detected by immunohistochemical staining. RESULTS The level of miR-21 was increased in RAW264.7 cells intervened by CSE and in lung tissue and bone marrow-derived macrophages (BMDMs) from COPD mice. CSE can gradually over time increase the level of miR-21. The proportion of M2 macrophages to M1 macrophages had a positive correlation with miR-21. Knockdowning miR-21 can reduce lung tissue damage. CSE also increased the levels of related inflammatory factors and markers associated with M2 macrophages, and an miR-21 inhibitor can reverse this conversion. CONCLUSIONS We confirmed that CSE can lead to macrophage transformation to the M2 phenotype and an increase in the expression level of miR-21. Knockdown of the miR-21 gene could inhibit the transformation of macrophages to the M2 phenotype in COPD.
Collapse
Affiliation(s)
- JunJuan Lu
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, People's Republic of China
| | - LiHua Xie
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, People's Republic of China
| | - ShengHua Sun
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
110
|
Chen X, Liu F, Xue Q, Weng X, Xu F. Metastatic pancreatic cancer: Mechanisms and detection (Review). Oncol Rep 2021; 46:231. [PMID: 34498718 PMCID: PMC8444192 DOI: 10.3892/or.2021.8182] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy. Its prevalence rate remains low but continues to grow each year. Among all stages of PC, metastatic PC is defined as late-stage (stage IV) PC and has an even higher fatality rate. Patients with PC do not have any specific clinical manifestations. Most cases are inoperable at the time-point of diagnosis. Prognosis is also poor even with curative-intent surgery. Complications during surgery, postoperative pancreatic fistula and recurrence with metastatic foci make the management of metastatic PC difficult. While extensive efforts were made to improve survival outcomes, further elucidation of the molecular mechanisms of metastasis poses a formidable challenge. The present review provided an overview of the mechanisms of metastatic PC, summarizing currently known signaling pathways (e.g. epithelial-mesenchymal transition, NF-κB and KRAS), imaging that may be utilized for early detection and biomarkers (e.g. carbohydrate antigen 19-9, prostate cancer-associated transcript-1, F-box/LRR-repeat protein 7 and tumor stroma), giving insight into promising therapeutic targets.
Collapse
Affiliation(s)
- Xiangling Chen
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Fangfang Liu
- Department of Art, Art College, Southwest Minzu University, Chengdu, Sichuan 610041, P.R. China
| | - Qingping Xue
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
111
|
Pimalai D, Putnin T, Waiwinya W, Chotsuwan C, Aroonyadet N, Japrung D. Development of electrochemical biosensors for simultaneous multiplex detection of microRNA for breast cancer screening. Mikrochim Acta 2021; 188:329. [PMID: 34495394 DOI: 10.1007/s00604-021-04995-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022]
Abstract
A highly sensitive electrochemical biosensors has been developed for the detection of multiplex micro ribonucleic acids (miRNAs) by modifying an electrode with reduced graphene oxide/poly(2-aminobenzylamine)/gold nanoparticles and adopting porous, hollow silver-gold nanoparticles as tagged labeling with metal ions. In addition, an anti-deoxyribonucleic acid (DNA)-RNA hybrid [S9.6] antibody was used to detect different hybridized capture DNAs and miRNAs that can detect multiple miRNAs simultaneously. The developed electrochemical platform exhibits high selectivity, stability, and sensitivity with a wide linear range from 1 fM to 10 nM and a low detection limit of 0.98 fM, 3.58 fM, and 0.25 fM for miRNA-155, miRNA-21, and miRNA-16, respectively. In addition, the proposed electrochemical biosensor capable for the simultaneous detection of miRNA-155, miRNA-16, and miRNA-21, which are breast cancer biomarkers, in normal human serum, can be adopted and potentially used for breast cancer screening.
Collapse
Affiliation(s)
- Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Thitirat Putnin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wassa Waiwinya
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chuleekorn Chotsuwan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Noppadol Aroonyadet
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
112
|
Prasad SR, Pai A, Shyamala K, Yaji A. Expression of Salivary miRNA 21 in Oral Submucous Fibrosis (OSMF): An Observational Study. Microrna 2021; 9:295-302. [PMID: 31985389 PMCID: PMC8226152 DOI: 10.2174/2211536609666200127143749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022]
Abstract
Objective: To observe the expression patterns of salivary mRNA 21 in different stages and grades of OSMF and also in habitual areca nut chewers without OSMF. Subjects and Methods The study consisted of a total of 185 samples, where 61 patients had chewing habits (chewing gutkha and other forms of areca nut) and had OSMF (Group 1). 61 patients had chewing habits but did not have OSMF (Group 2), and 63 were normal healthy patients (control group) without any chewing habits (Group 3). Unstimulated saliva samples were collected from patients following the standard operating procedures. miRNA 21 was isolated and purified from saliva samples using the miRNeasy Mini Kit, Qiagen. The primers for miRNA relative quantification analysis were designed using the Primer Express software of Applied Biosystems. Quantification of all the samples was carried out using SYBR chemistry in an Applied Biosystems Real-Time PCR. Results There was no statistically significant difference between the demographic characteristics of patients. There was a statistically significant difference between the expressions of miRNA 21 amongst the three groups noted in Kruskal Wallis test. (<0.001*) A post hoc test was perfomed to confirm the statistical difference between patients within all three groups. There was no statistically significant difference noted between the OSMF group and patients with chewing habits group (G1 vs. G2 p: 0.10), but there was a significant difference when compared with normal patients. (G1 vs. G3 p: <0.001*) and (G2 vs. G3 <0.001*) Conclusion This study concludes that miRNA 21 is overexpressed in OSMF and chewing habit patients. But the expression levels were not significantly associated with the severity of the disease process. A long term and large scale studies are required to assess its application as a diagnostic profibrotic marker in OSMF.
Collapse
Affiliation(s)
- Shesha R Prasad
- Department of Oral Medicine and Radiology, The Oxford Dental College and Hospital, Bommanhalli, Hosur Road, Bangalore-560068, India
| | - Anuradha Pai
- Department of Oral Medicine and Radiology, The Oxford Dental College and Hospital, Bommanhalli, Hosur Road, Bangalore-560068, India
| | - K Shyamala
- Department of Oral and Maxillofacial Pathology, Raja Rajeswari Dental College & Hospital, Kumbalgodu, Bangalore - 560074, India
| | - Anisha Yaji
- Oral Medicine and Radiologist, Dental Department, Sri Krishna Sevashrama Hospital, Jaynagar, Bangalore - 560041, India
| |
Collapse
|
113
|
Wu H, Chen S, Liu C, Li J, Wei X, Jia M, Guo J, Jin J, Meng D, Zhi X. SPTBN1 inhibits growth and epithelial-mesenchymal transition in breast cancer by downregulating miR-21. Eur J Pharmacol 2021; 909:174401. [PMID: 34358482 DOI: 10.1016/j.ejphar.2021.174401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023]
Abstract
SPTBN1 (spectrin beta, non-erythrocytic 1) has been linked to tumor progression and epithelial-mesenchymal transition (EMT). However, the role of SPTBN1 has yet to be investigated in breast cancer. This study aimed to evaluate the viability, growth, and migration ability of the breast cancer cell line MDA-MB-231 and BT549 using CCK-8 assay, xenograft models, and Transwell assays. The expression of SPTBN1, EMT-related genes, and miRNA21 in breast cancer cells and tissues were assessed by quantitative real-time polymerase chain reaction (qPCR) and Western blot. SPTBN1 staining of breast cancer tissues was analyzed by the Human Protein Atlas databases. Both chromatin immunoprecipitation qPCR and immunofluorescence were performed to detect how SPTBN1 regulates miRNA21. Our results showed that the expression of SPTBN1 in primary breast cancer tumors was dramatically lower than that in normal tissues and that lower levels of SPTBN1 were associated with significantly shorter progression-free survival. We also discovered that the loss of SPTBN1 promotes EMT, the viability of MDA-MB-231 and BT549 in vitro, and the growth of MDA-MB-231 tumor xenografts in vivo by upregulating miR-21 level. Furthermore, loss of SPTBN1-mediated miR-21 upregulation was dependent on the stability and nuclear translocation of NF-κB p65. Therefore, SPTBN1 is a pivotal regulator that inhibits EMT and the growth of breast cancer.
Collapse
Affiliation(s)
- Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
114
|
Nuñez-Borque E, Fernandez-Bravo S, Rodriguez Del Rio P, Alwashali EM, Lopez-Dominguez D, Gutierrez-Blazquez MD, Laguna JJ, Tome-Amat J, Gallego-Delgado J, Gomez-Lopez A, Betancor D, Cuesta-Herranz J, Ibañez-Sandin MD, Benito-Martin A, Esteban V. Increased miR-21-3p and miR-487b-3p serum levels during anaphylactic reaction in food allergic children. Pediatr Allergy Immunol 2021; 32:1296-1306. [PMID: 33876465 PMCID: PMC8453890 DOI: 10.1111/pai.13518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Anaphylaxis is the most severe manifestation of allergic disorders. The poor knowledge of its molecular mechanisms often leads to under-diagnosis. MicroRNAs (miRNA) regulate physiologic and pathologic processes, and they have been postulated as promising diagnostic markers. The main objectives of this study were to characterize the human miRNA profile during anaphylaxis and to assess their capacity as diagnostic markers and determine their participation in the molecular mechanisms of this event. METHODS The miRNA serum profiles from the acute and baseline phase of 5 oral food-challenged anaphylactic children (<18 years old) were obtained by next-generation sequencing (NGS). From the panel of statistically significant miRNAs obtained, several candidates were selected and analyzed in 19 anaphylactic children by qPCR. We performed system biology analysis (SBA) on their target genes to identify main functions and canonical pathways. A functional in vitro assay was carried out incubating endothelial cells (ECs) in anaphylactic conditions. RESULTS The NGS identified 389 miRNAs among which 41 were significantly different between acute and baseline samples. The high levels of miR-21-3p (fold change = 2.28, P = .006) and miR-487b-3p (fold change = 1.04, P = .039) observed by NGS in acute serum samples were confirmed in a larger group of 19 patients. The SBA revealed molecular pathways related to the inflammation and immune system regulation. miR-21-3p increased intracellularly and in acute phase serum after EC stimulation. CONCLUSIONS These findings provide, for the first time, some insights into the anaphylactic miRNA serum profile in children and point to miR-21-3p and miR-487b-3p as candidate biomarkers. Furthermore, the SBA revealed a possible implication of these molecules in the underlying molecular mechanisms. Moreover, ECs increased miR-21-3p intracellularly and released it to the environment in response to anaphylaxis.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | - Pablo Rodriguez Del Rio
- Allergy Department, Foundation for Biomedical Research, Niño Jesus University Children's Hospital, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain
| | - Ebrahim Mohammed Alwashali
- CAI Genomics and Proteomics, Proteomic Unit, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - David Lopez-Dominguez
- Clinical Biostatistics Unit, Instituto de Investigación Puerta de Hierro (IDIPHIM), Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | | | - Jose Julio Laguna
- Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Faculty of Medicine, Hospital Central de la Cruz Roja, Alfonso X El Sabio University, Madrid, Spain
| | - Jaime Tome-Amat
- Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, USA.,Program in Biology, The Graduate Center, The City University of New York, New York, NY, USA
| | | | | | - Javier Cuesta-Herranz
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Maria Dolores Ibañez-Sandin
- Allergy Department, Foundation for Biomedical Research, Niño Jesus University Children's Hospital, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain
| | | | - Vanesa Esteban
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Instituto de Salud Carlos III, ARADyAL Network, Madrid, Spain.,Faculty of Biomedicine and Medicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
115
|
Yonet-Tanyeri N, Ahlmark BZ, Little SR. Advances in Multiplexed Paper-Based Analytical Devices for Cancer Diagnosis: A Review of Technological Developments. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001138. [PMID: 34447879 PMCID: PMC8384263 DOI: 10.1002/admt.202001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 05/14/2023]
Abstract
Cancer is one of the leading causes of death worldwide producing estimated cost of $161.2 billion in the US in 2017 only. Early detection of cancer would not only reduce cancer mortality rates but also dramatically reduce healthcare costs given that the 17 million new cancer cases in 2018 are estimated to grow 27.5 million new cases by 2040. Analytical devices based upon paper substrates could provide effective, rapid, and extremely low cost alternatives for early cancer detection compared to existing testing methods. However, low concentrations of biomarkers in body fluids as well as the possible association of any given biomarker with multiple diseases remain as one of the greatest challenges to widespread adoption of these paper-based devices. However, recent advances have opened the possibility of detecting multiple biomarkers within the same device, which could be predictive of a patient's condition with unprecedented cost-effectiveness. Accordingly, this review highlights the recent advancements in paper-based analytical devices with a multiplexing focus. The primary areas of interest include lateral flow assay and microfluidic paper-based assay formats, signal amplification approaches to enhance the sensitivity for a specific cancer type, along with current challenges and future outlook for the detection of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Z Ahlmark
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
116
|
Madhyastha R, Madhyastha H, Nurrahmah QI, Purbasari B, Maruyama M, Nakajima Y. MicroRNA 21 Elicits a Pro-inflammatory Response in Macrophages, with Exosomes Functioning as Delivery Vehicles. Inflammation 2021; 44:1274-1287. [PMID: 33501624 DOI: 10.1007/s10753-021-01415-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022]
Abstract
MicroRNAs can regulate inflammatory responses by modulating macrophage polarization. Although microRNA miR-21 is linked to crucial processes involved in inflammatory responses, its precise role in macrophage polarization is controversial. In this study, we investigated the functional relevance of endogenous miRNA-21 and the role of exosomes. RAW 264.7 macrophages were transfected with miR-21 plasmid, and the inflammatory response was evaluated by flow cytometry, phagocytosis, and real-time PCR analysis of inflammatory cytokines. To understand the signaling pathways' role, the cells were treated with inhibitors specific for PI3K or NFĸB. Exosomes from transfected cells were used to study the paracrine action of miR-21 on naive macrophages. Overexpression of miR-21 resulted in significant upregulation of pro-inflammatory cytokines, pushing the cells towards a pro-inflammatory phenotype, with partial involvement of PI3K and NFĸB signal pathways. The cells also secreted miR-21 rich exosomes, which, on delivery to naive macrophages, caused them to exhibit pro-inflammatory activity. The presence of miR-21 inhibitor quenched the inflammatory response. This study validates the pro-inflammatory property of miR-21 with a tendency to foster an inflammatory milieu. Our findings also reinforce the dual importance of exosomal miR-21 as a biomarker and therapeutic target in inflammatory conditions.
Collapse
Affiliation(s)
- Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake Cho, Miyazaki, 889-1692, Japan.
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake Cho, Miyazaki, 889-1692, Japan
| | - Queen Intan Nurrahmah
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake Cho, Miyazaki, 889-1692, Japan
| | - Bethasiwi Purbasari
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake Cho, Miyazaki, 889-1692, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake Cho, Miyazaki, 889-1692, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake Cho, Miyazaki, 889-1692, Japan.
| |
Collapse
|
117
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
118
|
Talib WH, Mahmod AI, Kamal A, Rashid HM, Alashqar AMD, Khater S, Jamal D, Waly M. Ketogenic Diet in Cancer Prevention and Therapy: Molecular Targets and Therapeutic Opportunities. Curr Issues Mol Biol 2021; 43:558-589. [PMID: 34287243 PMCID: PMC8928964 DOI: 10.3390/cimb43020042] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet's therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet's potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Hasan M. Rashid
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Aya M. D. Alashqar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Duaa Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Mostafa Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 34-123, Oman;
| |
Collapse
|
119
|
Pengjam Y, Prajantasen T, Tonwong N, Panichayupakaranant P. Downregulation of miR-21 gene expression by CRE-Ter to modulate osteoclastogenesis: De Novo mechanism. Biochem Biophys Rep 2021; 26:101002. [PMID: 33997317 PMCID: PMC8099503 DOI: 10.1016/j.bbrep.2021.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
miR-21 expression stimulates osteoclast cells in the context of osteoclastogenesis. A previous report showed that NFκB-miR-21 pathway could serve as an innovative alternative to devise therapeutics for healing diabetic ulcers. Furthermore, our study demonstrated that a highly water-soluble curcuminoids-rich extract (CRE-Ter) inhibits osteoclastogenesis through NFκB pathway. The interplay between miR-21 and CRE-Ter in osteoclastogenesis has not yet been investigated. In this study, we examined the relation of CRE-Ter and miR-21 gene expression in receptor of the nuclear factor κB (NFκB) ligand (RANKL) - induced murine monocyte/macrophage RAW 264.7 cells, osteoclast cells, in osteoclastogenesis. Effect of CRE-Ter on generation of intracellular reactive oxygen species (ROS) was estimated by dichlorofluorescein diacetate (DCFH-DA). The results reveal that CRE-Ter reduced expression levels of miR-21 gene in osteoclasts. The inhibitory effects of CRE-Ter on in vitro osteoclastogenesis were evaluated by reduction in tartrate-resistant acid phosphatase (TRAP) content, and by reduction in expression levels of an osteoclast-specific gene, cathepsin K. Treatment of the osteoclast cells with CRE-Ter suppressed RANKL-induced NFκB activation including phospho-NFκB-p65, and phospho IκBα proteins. Western blot analysis revealed that NFκB inhibitor up-regulated CRE-Ter-promoted expression of phospho-NFκB-p65. In addition, CRE-Ter dose-dependently inhibited phospho-Akt expression. CRE-Ter also dose-dependently reduced DNA binding activity of NFκB and Akt as revealed by EMSA. ChIP assay revealed binding of NFκB-p65 to miR-21 promoters. In conclusion, our results demonstrate that CRE-Ter downregulates miR-21 gene expression in osteoclasts via a de novo mechanism, NFκB- Akt-miR-21 pathway.
Collapse
Affiliation(s)
- Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Thanet Prajantasen
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Natda Tonwong
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences Prince of Songkla University, Songkhla, 90110, Thailand
| |
Collapse
|
120
|
Xu C, He XY, Ren XH, Cheng SX. Direct detection of intracellular miRNA in living circulating tumor cells by tumor targeting nanoprobe in peripheral blood. Biosens Bioelectron 2021; 190:113401. [PMID: 34119837 DOI: 10.1016/j.bios.2021.113401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Molecular analysis of circulating tumor cells (CTCs) is of critical significance for the non-invasive early detection of tumors. However, in situ detection of intracellular nucleic acids of CTCs in whole blood still remains challenge. By using a highly efficient tumor targeting nanoprobe, we realize in situ detection of microRNA-21 (miR-21) of living CTCs in unprocessed whole blood. In the nanoprobe, a catalytic hairpin assembly (CHA) system is complexed with protamine sulfate (PS), and then decorated by SYL3C conjugated hyaluronic acid (SHA) and hyaluronic acid (HA). The CHA system can be specifically delivered into living CTCs in whole blood, followed by hybridization between the CHA system and intracellular miR-21 in CTCs to induce strong fluorescence emission. After isolation of CTCs by membrane filtration, CTCs of cancer patients can be directly visualized by a fluorescence microscope for miR-21 detection at a single-cell level. Our study provides an efficient strategy to realize in situ genomic analysis of living CTCs in whole blood.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
121
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
122
|
Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, Kong L, Zhang H. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B 2021; 11:1578-1591. [PMID: 34221869 PMCID: PMC8245913 DOI: 10.1016/j.apsb.2021.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Limb and CNS expressed 1 like (LIX1L) is over-expressed in several types of tumors. However, the function of LIX1L in glucose metabolism and hepatocellular carcinoma (HCC) progression remains elusive. Here we report that LIX1L is over-expressed in human HCC tissues, which predicts unfavorable prognosis. LIX1L deficiency in vivo significantly attenuated liver cancer initiation in mice. Functional studies indicated that LIX1L overexpression elevated proliferation, migratory, invasive capacities of HCC cells in vitro, and promoted liver cancer growth and metastasis in vivo. LIX1L knockdown up-regulated fructose-1,6-bisphosphatase (FBP1) expression to reduce glucose consumption as well as lactate production. Mechanistically, LIX1L increased miR-21-3p expression, which targeted and suppressed FBP1, thereby promoting HCC growth and metastasis. MiR-21-3p inhibitor could abrogate LIX1L induced enhancement of cell migration, invasion, and glucose metabolism. Inhibition of miR-21-3p suppressed tumor growth in an orthotopic tumor model. Our results establish LIX1L as a critical driver of hepatocarcinogenesis and HCC progression, with implications for prognosis and treatment.
Collapse
Key Words
- CCl4, carbon tetrachloride
- DEN, diethylnitrosamine
- ECAR, extracellular acidification rate
- EMT, epithelial–mesenchymal transition
- FBP1
- FBP1, fructose-1,6-bisphosphatase 1
- Gluconeogenesis
- Glucose metabolism
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- LIX1L
- LIX1L, Limb and CNS expressed 1 like
- Metastasis
- NASH, non-alcoholic steatohepatitis
- Proliferation
- Seq, sequencing
- miR-21-3p
- miRNA, microRNA
- shRNA, short-hairpin RNA
Collapse
Affiliation(s)
- Jie Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyun Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dejuan Xiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanqiu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
123
|
Basnet U, Patil AR, Kulkarni A, Roy S. Role of Stress-Survival Pathways and Transcriptomic Alterations in Progression of Colorectal Cancer: A Health Disparities Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5525. [PMID: 34063993 PMCID: PMC8196775 DOI: 10.3390/ijerph18115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/09/2022]
Abstract
Every year, more than a million individuals are diagnosed with colorectal cancer (CRC) across the world. Certain lifestyle and genetic factors are known to drive the high incidence and mortality rates in some groups of individuals. The presence of enormous amounts of reactive oxygen species is implicated for the on-set and carcinogenesis, and oxidant scavengers are thought to be important in CRC therapy. In this review, we focus on the ethnicity-based CRC disparities in the U.S., the negative effects of oxidative stress and apoptosis, and gene regulation in CRC carcinogenesis. We also highlight the use of antioxidants for CRC treatment, along with screening for certain regulatory genetic elements and oxidative stress indicators as potential biomarkers to determine the CRC risk and progression.
Collapse
Affiliation(s)
- Urbashi Basnet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Abhijeet R. Patil
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
124
|
Nguyen HT, Kacimi SEO, Nguyen TL, Suman KH, Lemus-Martin R, Saleem H, Do DN. MiR-21 in the Cancers of the Digestive System and Its Potential Role as a Diagnostic, Predictive, and Therapeutic Biomarker. BIOLOGY 2021; 10:biology10050417. [PMID: 34066762 PMCID: PMC8151274 DOI: 10.3390/biology10050417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression of their target genes, and thus, their dysregulation significantly contributes to the development of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated via its different molecular networks. Then, a comprehensive review on the potential targets and the current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the challenges for the use of miR-21 as a therapeutic tool for these cancers is added.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- Faculty of Medicine, Duy Tan University, Danang 550000, Vietnam
| | | | - Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Kamrul Hassan Suman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | | | - Humaira Saleem
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada
- Correspondence: ; Tel.: +1-819-571-5310
| |
Collapse
|
125
|
Roberti SL, Gatti CR, Fornes D, Higa R, Jawerbaum A. Diets enriched in PUFAs at an early postimplantation stage prevent embryo resorptions and impaired mTOR signaling in the decidua from diabetic rats. J Nutr Biochem 2021; 95:108765. [PMID: 33965535 DOI: 10.1016/j.jnutbio.2021.108765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022]
Abstract
Maternal diabetes increases the risk of embryo resorptions and impairs embryo development. Decidualization is crucial for embryo development and regulated by mTOR signaling. However, little is known about how maternal diabetes affects the decidua at early postimplantation stages and whether dietary treatments enriched in polyunsaturated fatty acids (PUFAs) can prevent decidual alterations. Here, we determined resorption rates, decidual mTOR pathways and markers of decidual function and remodeling in diabetic rats fed or not with diets enriched in PUFAs exclusively during the early postimplantation period. Pregestational streptozotocin-induced diabetic Albino Wistar rats and controls were fed or not with diets enriched in 6% sunflower oil or 6% chia oil (enriched in n-6 or n-3 PUFAs, respectively) on days 7, 8 and 9 of pregnancy and evaluated on day 9 of pregnancy. Maternal diabetes induced an 11-fold increase in embryo resorptions, which was prevented by both PUFAs-enriched diets despite no changes in maternal glycemia. The activity of mTOR pathway was decreased in the decidua from diabetic rats, an alteration prevented by the PUFAs-enriched diets. PUFAs-enriched diets prevented increased expression of Foxo1 (a negative regulator of mTOR) and reduced expression of miR-21 (a negative regulator of Foxo1). These diets also prevented reduced markers of decidual function (leukemia inhibitory factor and IGFBP1 expression and MMPs activity) in diabetic rat decidua. We identified the early post implantation as a crucial stage for pregnancy success, in which dietary PUFAs can protect diabetic pregnancies from embryo resorptions, decidual mTOR signaling impairments, and altered markers of decidual function and remodeling.
Collapse
Affiliation(s)
- Sabrina Lorena Roberti
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Cintia Romina Gatti
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Daiana Fornes
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Romina Higa
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
126
|
Galluzzo A, Gallo S, Pardini B, Birolo G, Fariselli P, Boretto P, Vitacolonna A, Peraldo-Neia C, Spilinga M, Volpe A, Celentani D, Pidello S, Bonzano A, Matullo G, Giustetto C, Bergerone S, Crepaldi T. Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing. ESC Heart Fail 2021; 8:2907-2919. [PMID: 33934544 PMCID: PMC8318428 DOI: 10.1002/ehf2.13371] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aims Risk stratification in patients with advanced chronic heart failure (HF) is an unmet need. Circulating microRNA (miRNA) levels have been proposed as diagnostic and prognostic biomarkers in several diseases including HF. The aims of the present study were to characterize HF‐specific miRNA expression profiles and to identify miRNAs with prognostic value in HF patients. Methods and results We performed a global miRNome analysis using next‐generation sequencing in the plasma of 30 advanced chronic HF patients and of matched healthy controls. A small subset of miRNAs was validated by real‐time PCR (P < 0.0008). Pearson's correlation analysis was computed between miRNA expression levels and common HF markers. Multivariate prediction models were exploited to evaluate miRNA profiles' prognostic role. Thirty‐two miRNAs were found to be dysregulated between the two groups. Six miRNAs (miR‐210‐3p, miR‐22‐5p, miR‐22‐3p, miR‐21‐3p, miR‐339‐3p, and miR‐125a‐5p) significantly correlated with HF biomarkers, among which N‐terminal prohormone of brain natriuretic peptide. Inside the cohort of advanced HF population, we identified three miRNAs (miR‐125a‐5p, miR‐10b‐5p, and miR‐9‐5p) altered in HF patients experiencing the primary endpoint of cardiac death, heart transplantation, or mechanical circulatory support implantation when compared with those without clinical events. The three miRNAs added substantial prognostic power to Barcelona Bio‐HF score, a multiparametric and validated risk stratification tool for HF (from area under the curve = 0.72 to area under the curve = 0.82). Conclusions This discovery study has characterized, for the first time, the advanced chronic HF‐specific miRNA expression pattern. We identified a few miRNAs able to improve the prognostic stratification of HF patients based on common clinical and laboratory values. Further studies are needed to validate our results in larger populations.
Collapse
Affiliation(s)
- Alessandro Galluzzo
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.,Ospedale Sant'Andrea, Vercelli, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Boretto
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Caterina Peraldo-Neia
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Alessandra Volpe
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Dario Celentani
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Stefano Pidello
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Carla Giustetto
- Department of Medical Sciences, University of Turin, Turin, Italy.,A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Serena Bergerone
- A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
127
|
Hur J, Rhee CK, Lee SY, Kim YK, Kang JY. MicroRNA-21 inhibition attenuates airway inflammation and remodelling by modulating the transforming growth factor β-Smad7 pathway. Korean J Intern Med 2021; 36:706-720. [PMID: 33601867 PMCID: PMC8137415 DOI: 10.3904/kjim.2020.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/05/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND/AIMS Current asthma therapies remain unsatisfactory for controlling airway remodelling in asthma. MicroRNA-21 is a key player in asthma pathogenesis, but the molecular mechanisms underlying its effects on airway remodelling are not completely understood. We investigated the effects of inhibition of microRNA-21 on allergic airway inflammation and remodelling. METHODS Female BALB/c mice were divided into four groups: control, ovalbumin-sensitized and -challenged for 3 months, microRNA-negative control-treated ovalbumin-treated, and microRNA-21 inhibitor-treated ovalbumin-treated groups. Parameters related to airway remodelling, cytokine production, airway inflammation, and airway hyperresponsiveness were compared between groups. Human bronchial smooth muscle cells were used in a mechanism study. RESULTS In this asthma model, ovalbumin-sensitized and -challenged mice exhibited allergic airway inf lammation and airway remodelling. MicroRNA-21 inhibitor-treated mice had fewer inflammatory cells, lower TH2 cytokine production, and suppressed parameters related to remodelling such as goblet cell hyperplasia, collagen deposition, hydroxyproline content, and expression of smooth muscle actin. Inhibition of microRNA-21 decreased transforming growth factor β1 expression and induced Smad7 expression in lung tissue. In human bronchial smooth muscle cells stimulated with transforming growth factor β1, microRNA-21 inhibition upregulated Smad7 expression and decreased markers of airway remodelling. CONCLUSION Inhibition of microRNA-21 had both anti-inflammatory and anti-remodelling effects in this model of ovalbumin-induced chronic asthma. Our data suggest that the microRNA-21-transforming growth factor β1-Smad7 axis modulates the pathogenesis of ovalbumin-induced chronic asthma and in human bronchial smooth muscle cells. MicroRNA-21 inhibitors may be a novel therapeutic target in patients with allergic asthma, especially those with airway remodelling.
Collapse
Affiliation(s)
- Jung Hur
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoon Kim
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Kang
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
128
|
NF-KappaB interacting LncRNA: Review of its roles in neoplastic and non-neoplastic conditions. Biomed Pharmacother 2021; 139:111604. [PMID: 33895520 DOI: 10.1016/j.biopha.2021.111604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
NF-κB Interacting LncRNA (NKILA) is a long non-coding RNA (lncRNA) which has inhibitory roles on NF-κB. NF-κB regulates expression of several molecules participating in various crucial physiological reaction including immune responses, cell proliferation and differentiation, as well as cell death. Therefore, NKILA can be involved in the pathogenesis of a wide spectrum of human disorders. Numerous studies in hepatocellular carcinoma, breast cancer, melanoma, glioma and other types of neoplasms have indicated the role of NKILA in blockage of tumor growth and inhibition of metastasis. Further in vitro and in vivo assays including apoptosis assays, knock-down and knock-in experiments have verified such roles. In addition to its roles in neoplastic conditions, NKILA is involved in the pathogenesis of immune-related disorders. Dysregulation of expression of NKILA has been reported in patients with diverse conditions such as epilepsy, osteoarthritis, periodontitis and coronary artery disease. In this paper, we recapitulate the contribution of NKILA in neoplastic and non-neoplastic conditions.
Collapse
|
129
|
Wan Y, Hoyle RG, Xie N, Wang W, Cai H, Zhang M, Ma Z, Xiong G, Xu X, Huang Z, Liu X, Li J, Wang C. A Super-Enhancer Driven by FOSL1 Controls miR-21-5p Expression in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:656628. [PMID: 33937067 PMCID: PMC8085558 DOI: 10.3389/fonc.2021.656628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
MiR-21-5p is one of the most common oncogenic miRNAs that is upregulated in many solid cancers by inhibiting its target genes at the posttranscriptional level. However, the upstream regulatory mechanisms of miR-21-5p are still not well documented in cancers. Here, we identify a super-enhancer associated with the MIR21 gene (MIR21-SE) by analyzing the MIR21 genomic regulatory landscape in head and neck squamous cell carcinoma (HNSCC). We show that the MIR21-SE regulates miR-21-5p expression in different HNSCC cell lines and disruption of MIR21-SE inhibits miR-21-5p expression. We also identified that a key transcription factor, FOSL1 directly controls miR-21-5p expression by interacting with the MIR21-SE in HNSCC. Moreover, functional studies indicate that restoration of miR-21-5p partially abrogates FOSL1 depletion-mediated inhibition of cell proliferation and invasion. Clinical studies confirmed that miR-21-5p expression is positively correlated with FOSL1 expression. These findings suggest that FOSL1-SE drives miR-21-5p expression to promote malignant progression of HNSCC
Collapse
Affiliation(s)
- Yuehan Wan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Nan Xie
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Department of Oral Pathology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wenjin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Ming Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhikun Ma
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiuyun Xu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhengxian Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
130
|
Liu R, Du J, Zhou J, Zhong B, Ba L, Zhang J, Liu Y, Liu S. Elevated microRNA-21 Is a Brake of Inflammation Involved in the Development of Nasal Polyps. Front Immunol 2021; 12:530488. [PMID: 33936025 PMCID: PMC8082185 DOI: 10.3389/fimmu.2021.530488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background CRSwNP is an inflammatory disease but the mechanism is not yet fully understood. MiR-21, a member of miRNAs, has been reported to play roles in mediating inflammation. However, the expression of miR-21 and its role in patients with CRSwNP remain elusive. Methods Turbinates from control subjects, uncinate processes from CRSsNP, polyp tissues from CRSwNP, and nasal epithelial cells brushed from nasal mucosa were collected. The expression of miR-21 and cytokines in nasal tissues and epithelial cells were detected by qPCR. The localization of miR-21 was detected by ISH, and its target was identified by bioinformation analysis, qPCR, IHC, WB, and luciferase reporter system. The protein and mRNA of PDCD4 and NF-κB P65 were determined by WB and qPCR after miR-21 transfection in HNEpC. The role of miR-21 on cytokines was analyzed in HNEpC and nasal polyp explants. Results MiR-21 was upregulated in CRSwNP relative to control subjects by qPCR, which was determined mainly in nasal epithelial cells of CRSwNP by ISH. Both pro-inflammation cytokines (IL-1β, IL-6, IL-8, IL-25, and TSLP) and a suppressive cytokine (IL-10) were overexpressed in the epithelial cells of CRSwNP. The expression of miR-21 was positively correlated with IL-10 and negatively correlated with IL-6, IL-8, IL-33, and TSLP in the epithelial cells of CRSwNP. As a potential target of miR-21, the expression of PDCD4 was negatively correlated with miR-21 in CRSwNP. In HNEpC, miR-21 could reduce the expression of PDCD4 at both mRNA and protein levels, and bioinformation analysis and luciferase reporter system confirmed PDCD4 as one target of miR-21. Furthermore, miR-21 could decrease the activation of NF-κB and increase IL-10 mRNA. Both SEB and LPS could elevate miR-21, with IL-25, IL-33, TSLP induced by SEB and IL-1β, IL-6, IL-8 induced by LPS, while the miR-21 could regulate the expression of IL-33, TSLP, IL-1β, IL- 6 and IL-8 in vitro and ex vivo. Clinically, miR-21 expression was inversely correlated with the Lund-Mackay CT scores and the Lund-Kennedy scores in CRSwNP. Conclusion MiR-21 could be a prominent negative feedback factor in the inflammation process to attenuate the expression of pro-inflammatory cytokines, thereby playing an anti-inflammation role in CRSwNP.
Collapse
Affiliation(s)
- Ruowu Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jintao Du
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Zhong
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of the Tibet Autonomous Region, Lasha, China
| | - Jie Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yafeng Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Upper Respiratory Tract Laboratory of Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
131
|
Tang M, Liu C, Liu D, Liu J, Liu J, Deng L. PMDFI: Predicting miRNA-Disease Associations Based on High-Order Feature Interaction. Front Genet 2021; 12:656107. [PMID: 33897768 PMCID: PMC8063614 DOI: 10.3389/fgene.2021.656107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that make a significant contribution to diverse biological processes, and their mutations and dysregulations are closely related to the occurrence, development, and treatment of human diseases. Therefore, identification of potential miRNA–disease associations contributes to elucidating the pathogenesis of tumorigenesis and seeking the effective treatment method for diseases. Due to the expensive cost of traditional biological experiments of determining associations between miRNAs and diseases, increasing numbers of effective computational models are being used to compensate for this limitation. In this study, we propose a novel computational method, named PMDFI, which is an ensemble learning method to predict potential miRNA–disease associations based on high-order feature interactions. We initially use a stacked autoencoder to extract meaningful high-order features from the original similarity matrix, and then perform feature interactive learning, and finally utilize an integrated model composed of multiple random forests and logistic regression to make comprehensive predictions. The experimental results illustrate that PMDFI achieves excellent performance in predicting potential miRNA–disease associations, with the average area under the ROC curve scores of 0.9404 and 0.9415 in 5-fold and 10-fold cross-validation, respectively.
Collapse
Affiliation(s)
- Mingyan Tang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chenzhe Liu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Dayun Liu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Junyi Liu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jiaqi Liu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
132
|
Li HY, You ZH, Wang L, Yan X, Li ZW. DF-MDA: An effective diffusion-based computational model for predicting miRNA-disease association. Mol Ther 2021; 29:1501-1511. [PMID: 33429082 DOI: 10.1016/j.ymthe.2021.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 12/28/2022] Open
Abstract
It is reported that microRNAs (miRNAs) play an important role in various human diseases. However, the mechanisms of miRNA in these diseases have not been fully understood. Therefore, detecting potential miRNA-disease associations has far-reaching significance for pathological development and the diagnosis and treatment of complex diseases. In this study, we propose a novel diffusion-based computational method, DF-MDA, for predicting miRNA-disease association based on the assumption that molecules are related to each other in human physiological processes. Specifically, we first construct a heterogeneous network by integrating various known associations among miRNAs, diseases, proteins, long non-coding RNAs (lncRNAs), and drugs. Then, more representative features are extracted through a diffusion-based machine-learning method. Finally, the Random Forest classifier is adopted to classify miRNA-disease associations. In the 5-fold cross-validation experiment, the proposed model obtained the average area under the curve (AUC) of 0.9321 on the HMDD v3.0 dataset. To further verify the prediction performance of the proposed model, DF-MDA was applied in three significant human diseases, including lymphoma, lung neoplasms, and colon neoplasms. As a result, 47, 46, and 47 out of top 50 predictions were validated by independent databases. These experimental results demonstrated that DF-MDA is a reliable and efficient method for predicting potential miRNA-disease associations.
Collapse
Affiliation(s)
- Hao-Yuan Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhu-Hong You
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Lei Wang
- Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277100, China.
| | - Xin Yan
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China; School of Foreign Languages, Zaozhuang University, Zaozhuang, Shandong 277100, China.
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
133
|
Lei Y, Tang J, He X, Shi H, Zeng Y, Sun H, Wang K. In Situ Modulating DNAzyme Activity and Internalization Behavior with Acid-Initiated Reconfigurable DNA Nanodevice for Activatable Theranostic. Anal Chem 2021; 93:5629-5634. [PMID: 33779138 DOI: 10.1021/acs.analchem.1c00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNAzyme-mediated gene silencing was still challenged by off-target toxicity. In this study, we developed a split DNAzyme-based nanodevice (sDz-ND) that leveraged acidic tumor microenvironments to drive in situ assembly, thus modulating internalization behavior and silencing activity of DNAzymes. sDz-ND consisted of two different modules, which functionalized with split DNAzyme fragments, respectively. At psychological pH (∼7.4), the two modules were monodispersed, showing cleavage anergy and quenched fluorescence. At pH 6.3, the separated modules could cross-link with each other to form integrated sDz-ND, resulting activation of theranostic function. Meanwhile, the increased particle size and acquired multivalent effect favored 2.1-fold enhanced binding ability, which further facilitated rapid endocytosis of sDz-ND into target cancer cells, then allowing DNAzyme mediated gene silencing. The strategy provides a promising and general concept for precise tumor imaging and gene therapy.
Collapse
Affiliation(s)
- Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, People's Republic of China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, People's Republic of China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, People's Republic of China
| | - Yu Zeng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Haiyan Sun
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, People's Republic of China
| |
Collapse
|
134
|
Nurrahmah QI, Madhyastha R, Madhyastha H, Purbasari B, Maruyama M, Nakajima Y. Retinoic acid abrogates LPS-induced inflammatory response via negative regulation of NF-kappa B/miR-21 signaling. Immunopharmacol Immunotoxicol 2021; 43:299-308. [PMID: 33757404 DOI: 10.1080/08923973.2021.1902348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Macrophages are essential components of the immune system, with significant roles in inflammation modulation. They can be activated into pro-inflammatory M1 or anti-inflammatory M2 phenotypes, depending on their micro-environment. Molecular factors that modulate macrophage polarization are hot targets for therapeutic strategies to counter chronic inflammatory pathological conditions. OBJECTIVE The current study aimed to elucidate the molecular mechanisms by which Retinoic acid (RA), a potent immunomodulator, suppresses LPS-induced inflammatory response in macrophages. MATERIALS AND METHODS RAW 264.7 macrophages were treated with RA and/or LPS, and analyzed for inflammatory genes and miR-21 by PCR. The roles of miR-21 and NF-ĸB signaling pathway were also assessed by knock-down experiments, immunofluorescence, and ChIP assays. RESULTS Pretreatment with RA quenched the LPS-induced inflammatory responses, including phagocytosis, ROS generation, and NO production. RA shifted the polarization away from the M1 state by negative regulation of IKKα/β, p65, and miR-21. RA hindered the phosphorylation of IKKα/β, translocation of p65 into the nucleus, and the subsequent upregulation of miR-21. Knock-in and knock-down experiments showed that miR-21 is central for the polarization shift toward the pro-inflammatory M1 state. CONCLUSION miR-21 is involved in the LPS-induced pro-inflammatory profile of macrophages and that RA negatively regulates the inflammatory response by targeting NF-ĸB/miR-21 signaling. Our data exposes RA's potential as a pharmacological agent to manipulate miR-21 and counteract hyper-inflammatory response.
Collapse
Affiliation(s)
- Queen Intan Nurrahmah
- Faculty of Medicine, Department of Applied Physiology, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Faculty of Medicine, Department of Applied Physiology, University of Miyazaki, Miyazaki, Japan
| | - Harishkumar Madhyastha
- Faculty of Medicine, Department of Applied Physiology, University of Miyazaki, Miyazaki, Japan
| | - Bethasiwi Purbasari
- Faculty of Medicine, Department of Applied Physiology, University of Miyazaki, Miyazaki, Japan
| | - Masugi Maruyama
- Faculty of Medicine, Department of Applied Physiology, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Nakajima
- Faculty of Medicine, Department of Applied Physiology, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
135
|
Dai H, Wang J, Shi Z, Ji X, Huang Y, Zhou R. Predictive value of miRNA-21 on coronary restenosis after percutaneous coronary intervention in patients with coronary heart disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24966. [PMID: 33725861 PMCID: PMC7969307 DOI: 10.1097/md.0000000000024966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Evidence reveals that microRNA (miRNA) can predict coronary restenosis in patients suffering from coronary heart disease (CHD) after percutaneous coronary intervention (PCI). Perhaps, miRNA-21 is a promising biomarker for the diagnosis of coronary restenosis after PCI. However, the accuracy of miRNA-21 has not been systematically evaluated. Therefore, it is necessary to perform meta-analysis to certify the diagnostic values of miRNA-21 on coronary restenosis after PCI. METHODS China National Knowledge Infrastructure, Wanfang, VIP, and China Biology Medicine disc, PubMed, EMBASE, Cochrane Library, and Web of Science were searched for relevant studies to explore the potential diagnostic values of miRNA-21 on coronary restenosis after PCI from inception to January 2021. All data were extracted by 2 experienced researchers independently. The risk of bias about the meta-analysis was confirmed by the Quality Assessment of Diagnostic Accuracy Studies-2. The data extracted were synthesized and heterogeneity was investigated as well. All of the above statistical analyses were carried out with Stata 16.0. RESULTS This study proved the pooled diagnostic performance of miRNA-21 on coronary restenosis after PCI. CONCLUSION This study clarified confusions about the specificity and sensitivity of miRNA-21 on coronary restenosis after PCI, thus further guiding their promotion and application. ETHICS AND DISSEMINATION Ethical approval is not required for this study. The systematic review will be published in a peer-reviewed journal, presented at conferences, and shared on social media platforms. This review would be disseminated in a peer-reviewed journal or conference presentations. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/356QK.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Zhou
- Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang province, China
| |
Collapse
|
136
|
Pansani AP, Ghazale PP, Dos Santos EG, Dos Santos Borges K, Gomes KP, Lacerda IS, Castro CH, Mendes EP, Dos Santos FCA, Biancardi MF, Nejm MB, Dogini DB, Rabelo LA, Nunes-Souza V, Scorza FA, Colugnati DB. The number and periodicity of seizures induce cardiac remodeling and changes in micro-RNA expression in rats submitted to electric amygdala kindling model of epilepsy. Epilepsy Behav 2021; 116:107784. [PMID: 33548915 DOI: 10.1016/j.yebeh.2021.107784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
Generalized tonic-clonic seizures (GTCS) are the main risk factor for sudden unexpected death in epilepsy (SUDEP). Also, among the several mechanisms underlying SUDEP there is the cardiac dysfunction. So, we aimed to evaluate the impact of the number of seizures on heart function and morphology in rats with epilepsy. Rats were randomized into three groups: Sham (without epilepsy), 5 S, and 10 S groups, referred as rats with epilepsy with a total of 5 or 10 GTCS, respectively. Epilepsy was induced by electrical amygdala kindling. The ventricular function was analyzed by the Langendorff technique and challenged by ischemia/reperfusion protocol. Cardiac fibrosis and hypertrophy were analyzed by histology. We also analyzed cardiac metalloproteinases (MMP2 and MMP9), ERK 1/2 and phosphorylated ERK1/2 (P-ERK) by western blot; microRNA-21 and -320 by RT-PCR; and oxidative stress (TBARS, catalase activity and nitrite) by biochemical analysis. Only the 5S group presented decreased values of ventricular function at before ischemia/reperfusion (baseline): intraventricular systolic pressure, developed intraventricular pressure, positive and negative dP/dt. During ischemia/reperfusion protocol, the variation of the ventricular function did not differ among groups. Both 5S and 10S groups had increased cardiomyocyte hypertrophy and fibrosis compared to Sham, but in the 5S group, these alterations were higher than in the 10S group. The 5S group increased in microRNA-21 and decreased in microRNA-320 expression compared to Sham and the 10S group. The 10S group increased in MMP9 and decreased in P-ERK/ERK expression, and increased in nitrite content compared to both Sham and the 5S group. Therefore, seizures impair cardiac function and morphology, probably through microRNA modulation. The continuation of seizures seems to exert a preconditioning-like stimulus that fails to compensate the cardiac tissue alteration.
Collapse
Affiliation(s)
- Aline Priscila Pansani
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil.
| | - Poliana Peres Ghazale
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Emilly Gomes Dos Santos
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Kiscilla Dos Santos Borges
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Karina Pereira Gomes
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Ismaley Santos Lacerda
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Carlos Henrique Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Elizabeth Pereira Mendes
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Mariana Bocca Nejm
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Danyella Barbosa Dogini
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiza Antas Rabelo
- Department of Physiology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Valéria Nunes-Souza
- Department of Physiological and Pharmacology Sciences, Institute of Biological Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Fulvio Alexandre Scorza
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Diego Basile Colugnati
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
137
|
Lai CY, Yeh KY, Lin CY, Hsieh YW, Lai HH, Chen JR, Hsu CC, Her GM. MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling. Cancers (Basel) 2021; 13:940. [PMID: 33668153 PMCID: PMC7956552 DOI: 10.3390/cancers13050940] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-β/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-β/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.
Collapse
Affiliation(s)
- Chi-Yu Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yang-Wen Hsieh
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chia-Chun Hsu
- Department of Radiology, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung 427, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
138
|
Li Y, Men X, Gao G, Tian Y, Wen Y, Zhang X. A distance-based capillary biosensor using wettability alteration. LAB ON A CHIP 2021; 21:719-724. [PMID: 33475116 DOI: 10.1039/d0lc01147a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Distance-based detection methods with a quantitative readout are of great significance to point-of-care testing (POCT), are low-cost and user-friendly, and can be integrated into portable analytical devices. Here, we submit a visual quantitative distance-based sensor by capillary force alteration in a capillary tube. This sensor converts the wettability alteration caused by the target molecules into a capillary rise height signal. Moreover, the sensor profits from isothermal amplification technology, achieving the detection of miRNAs with high sensitivity and specificity by visually reading the height of the water in the capillary tube. The proposed biosensor shows great potential in routine clinical diagnosis as well as POCT in resource-limited settings.
Collapse
Affiliation(s)
- Yansheng Li
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P.R. China.
| | - Xiujin Men
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China.
| | - Guowei Gao
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P.R. China.
| | - Ye Tian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
139
|
Molecular Insights into the Potential of Extracellular Vesicles Released from Mesenchymal Stem Cells and Other Cells in the Therapy of Hematologic Malignancies. Stem Cells Int 2021; 2021:6633386. [PMID: 33679988 PMCID: PMC7906808 DOI: 10.1155/2021/6633386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Hematologic cancer encompasses the heterogeneous group of neoplasms that affect different stages of blood cell linages. Despite the significant improvements made in the new modalities of anticancer therapy, many forms of blood cancer remain untreatable, putting the afflicted patients at high risk of death. Therefore, there has been an urgent need for novel therapy to improve the clinical outcomes of patients with blood cancer. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been reported to possess an anticancer activity. This review discusses (i) the therapeutic potential of MSC-EVs against blood cancer, (ii) the possibility of using EVs from sources other than MSCs as a mean for blood cancer vaccination and drug delivery, and (iii) areas to be optimized for MSC-EV-based clinical application on blood malignancies.
Collapse
|
140
|
Wiwatchaitawee K, Quarterman JC, Geary SM, Salem AK. Enhancement of Therapies for Glioblastoma (GBM) Using Nanoparticle-based Delivery Systems. AAPS PharmSciTech 2021; 22:71. [PMID: 33575970 DOI: 10.1208/s12249-021-01928-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumor. Current FDA-approved treatments include surgical resection, radiation, and chemotherapy, while hyperthermia, immunotherapy, and most relevantly, nanoparticle (NP)-mediated delivery systems or combinations thereof have shown promise in preclinical studies. Drug-carrying NPs are a promising approach to brain delivery as a result of their potential to facilitate the crossing of the blood-brain barrier (BBB) via two main types of transcytosis mechanisms: adsorptive-mediated transcytosis (AMT) and receptor-mediated transcytosis (RMT). Their ability to accumulate in the brain can thus provide local sustained release of tumoricidal drugs at or near the site of GBM tumors. NP-based drug delivery has the potential to significantly reduce drug-related toxicity, increase specificity, and consequently improve the lifespan and quality of life of patients with GBM. Due to significant advances in the understanding of the molecular etiology and pathology of GBM, the efficacy of drugs loaded into vectors targeting this disease has increased in both preclinical and clinical settings. Multitargeting NPs, such as those incorporating multiple specific targeting ligands, are an innovative technology that can lead to decreased off-target effects while simultaneously having increased accumulation and action specifically at the tumor site. Targeting ligands can include antibodies, or fragments thereof, and peptides or small molecules, which can result in a more controlled drug delivery system compared to conventional drug treatments. This review focuses on GBM treatment strategies, summarizing current options and providing a detailed account of preclinical findings with prospective NP-based approaches aimed at improving tumor targeting and enhancing therapeutic outcomes for GBM patients.
Collapse
|
141
|
Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells 2021; 10:314. [PMID: 33546399 PMCID: PMC7913585 DOI: 10.3390/cells10020314] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for 90-95% cases of diabetes, is characterized by chronic inflammation. The mechanisms that control inflammation activation in T2DM are largely unexplored. Inflammasomes represent significant sensors mediating innate immune responses. The aim of this work is to present a review of links between the NLRP3 inflammasome, endothelial dysfunction, and T2DM. The NLRP3 inflammasome activates caspase-1, which leads to the maturation of pro-inflammatory cytokines interleukin 1β and interleukin 18. In this review, we characterize the structure and functions of NLRP3 inflammasome as well as the most important mechanisms and molecules engaged in its activation. We present evidence of the importance of the endothelial dysfunction as the first key step to activating the inflammasome, which suggests that suppressing the NLRP3 inflammasome could be a new approach in depletion hyperglycemic toxicity and in averting the onset of vascular complications in T2DM. We also demonstrate reports showing that the expression of a few microRNAs that are also known to be involved in either NLRP3 inflammasome activation or endothelial dysfunction is deregulated in T2DM. Collectively, this evidence suggests that T2DM is an inflammatory disease stimulated by pro-inflammatory cytokines. Finally, studies revealing the role of glucose concentration in the activation of NLRP3 inflammasome are analyzed. The more that is known about inflammasomes, the higher the chances to create new, effective therapies for patients suffering from inflammatory diseases. This may offer potential novel therapeutic perspectives in T2DM prevention and treatment.
Collapse
Affiliation(s)
- Ilona M. Gora
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (A.C.); (P.L.)
| | | | | |
Collapse
|
142
|
Mohr R, Özdirik B, Lambrecht J, Demir M, Eschrich J, Geisler L, Hellberg T, Loosen SH, Luedde T, Tacke F, Hammerich L, Roderburg C. From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:1492. [PMID: 33540837 PMCID: PMC7867354 DOI: 10.3390/ijms22031492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.
Collapse
Affiliation(s)
- Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Lukas Geisler
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| |
Collapse
|
143
|
The neglected nutrigenomics of milk: What is the role of inter-species transfer of small non-coding RNA? FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
144
|
Zhou Z, Fan D, Wang J, Sohn YS, Nechushtai R, Willner I. Triggered Dimerization and Trimerization of DNA Tetrahedra for Multiplexed miRNA Detection and Imaging of Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007355. [PMID: 33470517 DOI: 10.1002/smll.202007355] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Indexed: 05/21/2023]
Abstract
The reversible and switchable triggered reconfiguration of tetrahedra nanostructures from monomer tetrahedra structures into dimer or trimer structures is introduced. The triggered bridging of monomer tetrahedra by K+ -ion-stabilized G-quadruplexes or T-A•T triplexes leads to dimer or trimer tetrahedra structures that are separated by crown ether or basic pH conditions, respectively. The signal-triggered dimerization/trimerization of DNA tetrahedra structures is used to develop multiplexed miRNA-sensing platforms, and the tetrahedra mixture is used for intracellular sensing and imaging of miRNAs.
Collapse
Affiliation(s)
- Zhixin Zhou
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Daoqing Fan
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
145
|
Dong T, Yin R, Yu Q, Qiu W, Li K, Qian L, Li H, Shen B, Liu G. Sensitive detection of microRNA-21 in cancer cells and human serum with Au@Si nanocomposite and lateral flow assay. Anal Chim Acta 2021; 1147:56-63. [DOI: 10.1016/j.aca.2020.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023]
|
146
|
Săsăran MO, Meliț LE, Dobru ED. MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22031406. [PMID: 33573346 PMCID: PMC7866828 DOI: 10.3390/ijms22031406] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) remains the most-researched etiological factor for gastric inflammation and malignancies. Its evolution towards gastric complications is dependent upon host immune response. Toll-like receptors (TLRs) recognize surface and molecular patterns of the bacterium, especially the lipopolysaccharide (LPS), and act upon pathways, which will finally lead to activation of the nuclear factor-kappa B (NF-kB), a transcription factor that stimulates release of inflammatory cytokines. MicroRNAs (MiRNAs) finely modulate TLR signaling, but their expression is also modulated by activation of NF-kB-dependent pathways. This review aims to focus upon several of the most researched miRNAs on this subject, with known implications in host immune responses caused by H. pylori, including let-7 family, miRNA-155, miRNA-146, miRNA-125, miRNA-21, and miRNA-221. TLR-LPS interactions and their afferent pathways are regulated by these miRNAs, which can be considered as a bridge, which connects gastric inflammation to pre-neoplastic and malignant lesions. Therefore, they could serve as potential non-invasive biomarkers, capable of discriminating H. pylori infection, as well as its associated complications. Given that data on this matter is limited in children, as well as for as significant number of miRNAs, future research has yet to clarify the exact involvement of these entities in the progression of H. pylori-associated gastric conditions.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics III, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technol-ogy of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-742-984744
| | - Ecaterina Daniela Dobru
- Department of Internal Medicine VII, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
147
|
Three-way junction DNA based electrochemical biosensor for microRNAs detection with distinguishable locked nucleic acid recognition and redox cycling signal amplification. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
148
|
An autoregulatory feedback loop of miR-21/VMP1 is responsible for the abnormal expression of miR-21 in colorectal cancer cells. Cell Death Dis 2020; 11:1067. [PMID: 33318473 PMCID: PMC7736343 DOI: 10.1038/s41419-020-03265-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
MircoRNA-21 (miR-21) was found to be highly expressed in various solid tumors, and its oncogenic properties have been extensively studied in recent years. However, the reason why miR-21 is highly expressed in various tumors remains elusive. Here, we found that the expression of miR-21 was negatively correlated with the expression of vacuole membrane protein-1 (VMP1) in colorectal cancer. Transcription of VMP1 activated either by small activating RNA (saRNA) or transcriptional activator GLI3 inhibited miR-21 expression through reducing its transcripts of VMP1-miR-21 and pri-miR-21, while no significant change in miR-21 expression after exogenous overexpression VMP1 in colorectal cancer cell HCT116. Considering the overlapping location of VMP1 and miR-21 gene in genome, the result suggested that the transcription of miR-21 was inhibited by the endogenous transcriptional activation of VMP1. Furthermore, we identified that miR-21 inhibited the activation and nuclear translocation of transcription factor EB (TFEB) through reducing the inhibitory of PTEN on AKT phosphorylation, which can directly activate the transcription of VMP1. Loss of miR-21 significantly increased VMP1 expression, which could be blocked by PTEN inhibitor (VO-Ohpic) or TFEB siRNA. These results showed that miR-21 negatively regulated VMP1 transcription through the PTEN/AKT/TFEB pathway, and TFEB-induced transcriptional activation of VMP1 could inhibit miR-21 expression, thus forming a feedback regulatory loop of miR-21/VMP1. We further found that disrupting the miR-21/VMP1 feedback loop will decrease the expression of miR-21, reduce the malignancy, and increase their sensitivity to 5-fluorouracil in colorectal cancer cells. Taken together, our results revealed a novel regulatory mechanism of miR-21 expression, and targeting the miR-21/VMP1 feedback loop may provide a new approach to inhibit miR-21 expression in colorectal cancer cells.
Collapse
|
149
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
150
|
MiRNAs directly targeting the key intermediates of biological pathways in pancreatic cancer. Biochem Pharmacol 2020; 189:114357. [PMID: 33279497 DOI: 10.1016/j.bcp.2020.114357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic Cancer (PC) is a severe form of malignancy all over the world. Delayed diagnosis and chemoresistance are the major factors contributing to its poor prognosis and high mortality rate. The genetic and epigenetic regulations of biological pathways further complicate the progression and chemotherapy response to this cancer. MicroRNAs (MiRNAs) involvement has been observed in all types of cancers including PC. The understanding and categorization of miRNAs according to their specific targets are very important to develop early diagnostic and therapeutic interventions. The current review, emphasizing recent research findings, has categorized miRNAs that directly target the potential onco-factors that act as central converging signal-nodes in five major cancer-related pathways i.e., MAPK/ERK, JAK/STAT, Wnt/β-catenin, AKT/mTOR, and TGFβ in PC. The therapeutic perspectives of miRNAs in PC have also been discussed. This will help to understand the interplay of various miRNAs within foremost signaling pathways and develop a multifactorial approach to treat difficult-to-treat PC.
Collapse
|