101
|
Damasco JA, Ohulchanskyy TY, Mahajan S, Chen G, Singh A, Kutscher HL, Huang H, Turowski SG, Spernyak JA, Singh AK, Lovell JF, Seshadri M, Prasad PN. Excretable, ultrasmall hexagonal NaGdF 4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnol 2021; 12:4. [PMID: 33603920 PMCID: PMC7864820 DOI: 10.1186/s12645-021-00075-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/10/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In this study, we report on the synthesis, imaging, and radiosensitizing properties of ultrasmall β-NaGdF4:Yb50% nanoparticles as a multifunctional theranostic platform. The synthesized nanoparticles act as potent bimodal contrast agents with superior imaging properties compared to existing agents used for magnetic resonance imaging (MRI) and computed tomography (CT). Clonogenic assays demonstrated that these nanoparticles can act as effective radiosensitizers, provided that the nanoparticles are taken up intracellularly. RESULTS Our ultrasmall β-NaGdF4:Yb50% nanoparticles demonstrate improvement in T1-weighted contrast over the standard clinical MR imaging agent Gd-DTPA and similar CT signal enhancement capabilities as commercial agent iohexol. A 2 Gy dose of X-ray induced ~ 20% decrease in colony survival when C6 rat glial cells were incubated with non-targeted nanoparticles (NaGdF4:Yb50%), whereas the same X-ray dose resulted in a ~ 60% decrease in colony survival with targeted nanoparticles conjugated to folic acid (NaGdF4:Yb50%-FA). Intravenous administration of nanoparticles resulted in clearance through urine and feces within a short duration, based on the ex vivo analysis of Gd3+ ions via ICP-MS. CONCLUSION These biocompatible and in vivo clearable ultrasmall NaGdF4:Yb50% are promising candidates for further evaluation in image-guided radiotherapy applications.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Tymish Y. Ohulchanskyy
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- College of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, People’s Republic of China
| | - Supriya Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University At Buffalo, The State University of New York, Buffalo, NY 14203 USA
| | - Guanying Chen
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 15001 People’s Republic of China
| | - Ajay Singh
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Hilliard L. Kutscher
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- Department of Anesthesiology, University At Buffalo, The State University of New York, Buffalo, NY 14214 USA
| | - Haoyuan Huang
- Department of Biomedical Engineering, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Steven G. Turowski
- Translational Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Joseph A. Spernyak
- Translational Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Mukund Seshadri
- Translational Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
- Department of Oral Oncology/Dentistry and Maxillofacial Prosthetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Paras N. Prasad
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| |
Collapse
|
102
|
Yogo K, Misawa M, Shimizu M, Shimizu H, Kitagawa T, Hirayama R, Ishiyama H, Furukawa T, Yasuda H. Effect of Gold Nanoparticle Radiosensitization on Plasmid DNA Damage Induced by High-Dose-Rate Brachytherapy. Int J Nanomedicine 2021; 16:359-370. [PMID: 33469290 PMCID: PMC7813456 DOI: 10.2147/ijn.s292105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/19/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose Gold nanoparticles (AuNPs) are candidate radiosensitizers for medium-energy photon treatment, such as γ-ray radiation in high-dose-rate (HDR) brachytherapy. However, high AuNP concentrations are required for sufficient dose enhancement for clinical applications. Here, we investigated the effect of positively (+) charged AuNP radiosensitization of plasmid DNA damage induced by 192Ir γ-rays, and compared it with that of negatively (−) charged AuNPs. Methods We observed DNA breaks and reactive oxygen species (ROS) generation in the presence of AuNPs at low concentrations. pBR322 plasmid DNA exposed to 64 ng/mL AuNPs was irradiated with 192Ir γ-rays via HDR brachytherapy. DNA breaks were detected by observing the changes in the form of the plasmid and quantified by agarose gel electrophoresis. The ROS generated by the AuNPs were measured with the fluorescent probe sensitive to ROS. The effects of positively (+) and negatively (−) charged AuNPs were compared to study the effect of surface charge on dose enhancement. Results +AuNPs at lower concentrations promoted a comparable level of radiosensitization by producing both single-stranded breaks (SSBs) and double-stranded breaks (DSBs) than those used in cell assays and Monte Carlo simulation experiments. The dose enhancement factor (DEF) for +AuNPs was 1.3 ± 0.2 for SSBs and 1.5 ± 0.4 for DSBs. The ability of +AuNPs to augment plasmid DNA damage is due to enhanced ROS generation. While −AuNPs generated similar ROS levels, they did not cause significant DNA damage. Thus, dose enhancement using low concentrations of +AuNPs presumably occurred via DNA binding or increasing local +AuNP concentration around the DNA. Conclusion +AuNPs at low concentrations displayed stronger radiosensitization compared to −AuNPs. Combining +AuNPs with 192Ir γ-rays in HDR brachytherapy is a candidate method for improving clinical outcomes. Future development of cancer cell-specific +AuNPs would allow their wider application for HDR brachytherapy.
Collapse
Affiliation(s)
- Katsunori Yogo
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masaki Misawa
- Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Morihito Shimizu
- Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Ryoichi Hirayama
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba-shi, Chiba, Japan
| | - Hiromichi Ishiyama
- Graduate School of Medical Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Takako Furukawa
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
103
|
Anuje M, Pawaskar P, Sivan A, Lokhande C, Ahmed I, Patil D. Use of Poly (Ethylene Glycol) Coated Superparamagnetic Iron Oxide Nanoparticles as Radio Sensitizer in Enhancing Colorectal Cancer Radiation Efficacy. J Med Phys 2021; 46:278-285. [PMID: 35261497 PMCID: PMC8853453 DOI: 10.4103/jmp.jmp_15_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGORUND The aim of the radiotherapy is to deliver a lethal dose to tumor while reducing the impact on the normal tissue. This reduction in impact can be achieved to have a greater therapeutic ratio by using nanoparticles as radiosensitizer. MATERIALS AND METHODS In this article, the potential role of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitization enhancer on HT 29 cell lines for different concentrations (0.007to 0.25 mg/ml) and different radiation doses (0.5to 2 Gy) of 6MV photon beam is presented. RESULTS The highest sensitization enhancement ratio (SER) value was observed with 2 Gy for 0.25 mg/ml concentration. Radio sensitization increases with increase in the concentration of nanoparticles. Combination of 6MV energy radiation and polyethylene glycol (PEG) coated SPIONs results in increasing cell killing of HT 29 as compared to cell killing with radiation therapy alone. CONCLUSION The results reveal that PEG coated nanoparticle might be a potential candidate to work as radiotherapy sensitizer in colorectal cancer.
Collapse
Affiliation(s)
- Madhuri Anuje
- Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur, Maharashtra, India,Integrated Cancer Treatment and Research Centre, Pune, Maharashtra, India
| | - Padamaja Pawaskar
- Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur, Maharashtra, India,Address for correspondence: Dr. Padamaja Pawaskar, Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur - 416 006, Maharashtra, India. E-mail:
| | - Ajay Sivan
- Integrated Cancer Treatment and Research Centre, Pune, Maharashtra, India
| | - Chandrakant Lokhande
- Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur, Maharashtra, India
| | - Imtiaz Ahmed
- Department of Radiation Oncology, KLES Belgaum Cancer Hospital, Belgaum, Karnataka, India
| | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research (KLE University), Belgaum, Karnataka, India
| |
Collapse
|
104
|
Du Y, Sun H, Lux F, Xie Y, Du L, Xu C, Zhang H, He N, Wang J, Liu Y, Leduc G, Doussineau T, Ji K, Wang Q, Lin Z, Wang Y, Liu Q, Tillement O. Radiosensitization Effect of AGuIX, a Gadolinium-Based Nanoparticle, in Nonsmall Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56874-56885. [PMID: 33326207 DOI: 10.1021/acsami.0c16548] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Radiotherapy is the main treatment for cancer patients. A major concern in radiotherapy is the radiation resistance of some tumors, such as human nonsmall cell lung cancer. However, the radiation dose delivered to the tumors is often limited by the possibility of collateral damage to surrounding healthy tissues. A new and efficient gadolinium-based nanoparticle, AGuIX, has recently been developed for magnetic resonance imaging-guided radiotherapy and has been proven to act as an efficient radiosensitizer. The amplified radiation effects of AGuIX nanoparticles appear to be due to the emission of low-energy photoelectrons and Auger electron interactions. We demonstrated that AGuIX nanoparticles exacerbated radiation-induced DNA double-strand break damage and reduced DNA repair in the H1299 nonsmall cell lung cancer cell line. Furthermore, we observed a significant improvement in tumor cell damage and growth suppression, under radiation therapy, with the AGuIX nanoparticles in a H1299 mouse xenograft model. This study paves the way for research into the radiosensitization mechanism of AGuIX nanoparticles and provides a scientific basis for the use of AGuIX nanoparticles as radiosensitizing drugs.
Collapse
Affiliation(s)
- Yanan Du
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
- Tianjin Center for Disease Control and Prevention, 300011 Tianjin, China
| | - Hao Sun
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - François Lux
- Institute Light and Mater, UMR5306, Lyon1 University-CNRS, Lyon University, 69100 Villeurbanne, France
- NH TherAguix, NH TherAguix SAS, 69100 Villeurbanne, France
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Liqing Du
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Ningning He
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Jinhan Wang
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Yang Liu
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | | | | | - Kaihua Ji
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Qin Wang
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Zhenhua Lin
- NH TherAguix, NH TherAguix SAS, 69100 Villeurbanne, France
| | - Yan Wang
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine& Peking Union Medical College, Chinese Academy of Medical Sciences, 300192 Tianjin, China
| | - Olivier Tillement
- Institute Light and Mater, UMR5306, Lyon1 University-CNRS, Lyon University, 69100 Villeurbanne, France
- NH TherAguix, NH TherAguix SAS, 69100 Villeurbanne, France
| |
Collapse
|
105
|
Herrero de la Parte B, Irazola Duñabeitia M, Carrero JA, Etxebarria Loizate N, García-Alonso I, Echevarria-Uraga JJ. Intra-Arterial Infusion of Magnetic Nanoparticle-Based Theragnostic Agent to Treat Colorectal Cancer Liver Implants in Rats. Eur Surg Res 2020; 61:136-142. [PMID: 33333523 DOI: 10.1159/000512458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Nowadays, surgical excision remains the gold standard to treat liver metastases of colorectal cancer (CRCLM). However, as more than 50% of patients are not eligible for surgery, other alternatives such as percutaneous or intravascular interventional therapies (thermal ablation, chemoembolization, or radioembolization), are quite relevant. Recently, the use of magnetic nanoparticles (MNPs) has been suggested as an adjuvant for these therapies, as they could increase their necrotising effect on the tumour while reducing doses and exposure times of thermal therapies. To investigate the potential curative effect of these compounds, animal models are needed, both for the development of experimental interventional procedures and for MNPs toxicity and distribution assessment. Herein, we describe both an experimental infusion procedure in CRCLM-bearing rats and analytical and histological methods to evaluate MNPs deposits in the tissue. METHODS Eighteen male WAG/RijHsd rats were subjected to intrahepatic injection of 250,000 colorectal cancer cells. Twenty-eight days later, half of the tumour-positive animals (n = 6) were administered with MNPs while the other half (n = 6) did not receive any injection and were used as control. Under microscope magnification, the splenic artery was carefully and completely dissected, and a catheter was inserted through the splenic artery to the common hepatic artery where 1 mL MNPs suspension was administered in 5 min; then STIR, DP*, and T2 MRI sequences were obtained (and signal intensity measured) and both tumour and liver tissue samples were collected for elemental and histological analyses. CONCLUSION Our method for selective administration of MNPs is reproducible and well-tolerated and it fairly mimics the approach used in clinical practice when intravascular interventional therapies are applied.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country (UPV/EHU), Leioa, Spain, .,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,
| | - Mireia Irazola Duñabeitia
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Analytical Chemistry, University of The Basque Country (UPV/EHU), Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of The Basque Country (UPV/EHU), Plentzia, Spain
| | - Jose Antonio Carrero
- Department of Analytical Chemistry, University of The Basque Country (UPV/EHU), Leioa, Spain
| | - Nestor Etxebarria Loizate
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Analytical Chemistry, University of The Basque Country (UPV/EHU), Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of The Basque Country (UPV/EHU), Plentzia, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, University of The Basque Country (UPV/EHU), Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Jose Javier Echevarria-Uraga
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Radiology, Galdakao-Usansolo Hospital, Osakidetza Basque Health Service, Galdakao, Spain
| |
Collapse
|
106
|
Hagan CT, Mi Y, Knape NM, Wang AZ. Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Bioconjug Chem 2020; 31:2668-2678. [PMID: 33251789 PMCID: PMC7747221 DOI: 10.1021/acs.bioconjchem.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy and immunotherapy are two key treatments for cancer. There is growing evidence that they are also synergistic, and combination treatments are being studied extensively in the clinical setting. In addition, there is emerging evidence that nanotechnology-enabled therapeutics can potentiate both radiotherapy and immunotherapy, in turn improving both treatments. This is an exciting new area of interdisciplinary science and has significant potential for major clinical impact. Some of the approaches in this area have already reached the clinical stage. In this review, we will discuss recent advances in the interface between radiotherapy, immunotherapy, and nanomedicine. We plan to review the many approaches to combine these three fields for cancer treatment.
Collapse
Affiliation(s)
- C. Tilden Hagan
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC/NCSU
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yu Mi
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole M. Knape
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Z. Wang
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
107
|
Mediratta K, El-Sahli S, D’Costa V, Wang L. Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3529. [PMID: 33256070 PMCID: PMC7761500 DOI: 10.3390/cancers12123529] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
With improved understanding of the immunogenicity of triple-negative breast cancer (TNBC), immunotherapy has emerged as a promising candidate to treat this lethal disease owing to the lack of specific targets and effective treatments. While immune checkpoint inhibition (ICI) has been effectively used in immunotherapy for several types of solid tumor, monotherapies targeting programmed death 1 (PD-1), its ligand PD-L1, or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have shown little efficacy for TNBC patients. Over the past few years, various therapeutic candidates have been reviewed, attempting to improve ICI efficacy on TNBC through combinatorial treatment. In this review, we describe the clinical limitations of ICI and illustrate candidates from an immunological, pharmacological, and metabolic perspective that may potentiate therapy to improve the outcomes of TNBC patients.
Collapse
Affiliation(s)
- Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Vanessa D’Costa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
108
|
Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2020; 15:9407-9430. [PMID: 33262595 PMCID: PMC7699443 DOI: 10.2147/ijn.s272902] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
The rapid development of nanotechnology offers a variety of potential therapeutic strategies for cancer treatment. High atomic element nanomaterials are often utilized as radiosensitizers due to their unique photoelectric decay characteristics. Among them, gold nanoparticles (GNPs) are one of the most widely investigated and are considered to be an ideal radiosensitizers for radiotherapy due to their high X-ray absorption and unique physicochemical properties. Over the last few decades, multi-disciplinary studies have focused on the design and optimization of GNPs to achieve greater dosing capability and higher therapeutic effects and highlight potential mechanisms for radiosensitization of GNPs. Although the radiosensitizing potential of GNPs has been widely recognized, its clinical translation still faces many challenges. This review analyses the different roles of GNPs as radiosensitizers in cancer radiotherapy and summarizes recent advances. In addition, the underlying mechanisms of GNP radiosensitization, including physical, chemical and biological mechanisms are discussed, which may provide new directions for the optimization and clinical transformation of next-generation GNPs.
Collapse
Affiliation(s)
- Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| |
Collapse
|
109
|
Chong G, Zang J, Han Y, Su R, Weeranoppanant N, Dong H, Li Y. Bioengineering of nano metal-organic frameworks for cancer immunotherapy. NANO RESEARCH 2020; 14:1244-1259. [PMID: 33250971 PMCID: PMC7686557 DOI: 10.1007/s12274-020-3179-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 05/23/2023]
Abstract
Immunotherapy techniques, such as immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell therapies and cancer vaccines, have been burgeoning with great success, particularly for specific cancer types. However, side effects with fatal risks, dysfunction in tumor microenvironment and low immune response rates remain the bottlenecks in immunotherapy. Nano metal-organic frameworks (nMOFs), with an accurate structure and a narrow size distribution, are emerging as a solution to these problems. In addition to their function of temporospatial delivery, a large library of their compositions, together with flexibility in chemical interaction and inherent immune efficacy, offers opportunities for various designs of nMOFs for immunotherapy. In this review, we overview state-of-the-art research on nMOFs-based immunotherapies as well as their combination with other therapies. We demonstrate that nMOFs are predominantly customized for vaccine delivery or tumor-microenvironment modulation. Finally, a prospect of nMOFs in cancer immunotherapy will be discussed.
Collapse
Affiliation(s)
- Gaowei Chong
- Shanghai Tenth People’s Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092 China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065 China
| | - Jie Zang
- Shanghai Tenth People’s Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092 China
| | - Yi Han
- Shanghai Tenth People’s Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092 China
| | - Runping Su
- Shanghai Tenth People’s Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092 China
| | - Nopphon Weeranoppanant
- Department of Chemical Engineering, Burapha University, 169 Longhard Bangsaen, Saensook, Chonburi, 20131 Thailand
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, 21210 Thailand
| | - Haiqing Dong
- Shanghai Tenth People’s Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092 China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065 China
| | - Yongyong Li
- Shanghai Tenth People’s Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092 China
| |
Collapse
|
110
|
Lu SL, Liu WW, Cheng JCH, Lin LC, Wang CRC, Li PC. Enhanced Radiosensitization for Cancer Treatment with Gold Nanoparticles through Sonoporation. Int J Mol Sci 2020; 21:ijms21218370. [PMID: 33171604 PMCID: PMC7664670 DOI: 10.3390/ijms21218370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
We demonstrate the megavoltage (MV) radiosensitization of a human liver cancer line by combining gold-nanoparticle-encapsulated microbubbles (AuMBs) with ultrasound. Microbubbles-mediated sonoporation was administered for 5 min, at 2 h prior to applying radiotherapy. The intracellular concentration of gold nanoparticles (AuNPs) increased with the inertial cavitation of AuMBs in a dose-dependent manner. A higher inertial cavitation dose was also associated with more DNA damage, higher levels of apoptosis markers, and inferior cell surviving fractions after MV X-ray irradiation. The dose-modifying ratio in a clonogenic assay was 1.56 ± 0.45 for a 10% surviving fraction. In a xenograft mouse model, combining vascular endothelial growth factor receptor 2 (VEGFR2)-targeted AuMBs with sonoporation significantly delayed tumor regrowth. A strategy involving the spatially and temporally controlled release of AuNPs followed by clinically utilized MV irradiation shows promising results that make it worthy of further translational investigations.
Collapse
Affiliation(s)
- Shao-Lun Lu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
| | - Jason Chia-Hsien Cheng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100229, Taiwan
| | - Lien-Chieh Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
| | - Churng-Ren Chris Wang
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chia-Yi 621301, Taiwan;
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3551
| |
Collapse
|
111
|
Perry J, Minaei E, Engels E, Ashford BG, McAlary L, Clark JR, Gupta R, Tehei M, Corde S, Carolan M, Ranson M. Thulium oxide nanoparticles as radioenhancers for the treatment of metastatic cutaneous squamous cell carcinoma. Phys Med Biol 2020; 65:215018. [PMID: 32726756 DOI: 10.1088/1361-6560/abaa5d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metastases from cutaneous squamous cell carcinoma (cSCC) occur in 2%-5% of cases. Surgery is the standard treatment, often combined with adjuvant radiotherapy. Concurrent carboplatin treatment with post-operative radiotherapy may be prescribed, although it has not shown benefit in recent clinical trials in high-risk cSCC patients. The novel high-Z nanoparticle thulium (III) oxide has been shown to enhance radiation dose delivery to brain tumors by specific uptake of these nanoparticles into the cancerous tissue. As the dose-enhancement capacity of thulium oxide nanoparticles following radiotherapy against metastatic cSCC cells is unknown, its efficacy as a radiosensitizer was evaluated, with and without carboplatin. Novel and validated human patient-derived cell lines of metastatic cSCC were used. The sensitivity of the cells to radiation was investigated using short-term proliferation assays as well as clonogenic survival as the radiobiological endpoint. Briefly, cells were irradiated with 125 kVp orthovoltage x-rays (0-6 Gy) with and without thulium oxide nanoparticles (99.9% trace metals basis; 50 µg ml-1) or low dose carboplatin pre-sensitization. Cellular uptake of the nanoparticles was first confirmed by microscopy and found to have no impact on short-term cell survival for the cSCC cells, highlighting the biocompatibility of thulium oxide nanoparticles. Clonogenic cell survival assays confirmed radio-sensitization when exposed to thulium nanoparticles, with the cell sensitivity increasing by a factor of 1.24 (calculated at the 10% survival fraction) for the irradiated cSCC cells. The combination of carboplatin with thulium oxide nanoparticles with irradiation did not result in significant further reductions in survival compared to nanoparticles alone. This is the first study to provide in vitro data demonstrating the independent radiosensitization effect of high-Z nanoparticles against metastatic cSCC with or without carboplatin. Further preclinical investigations with radiotherapy plus high-Z nanoparticles for the management of metastatic cSCC are warranted.
Collapse
Affiliation(s)
- Jay Perry
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia. School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia. Centre for Oncology Education and Research Translation (CONCERT), NSW 2170, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Mulens-Arias V, Balfourier A, Nicolás-Boluda A, Carn F, Gazeau F. Endocytosis-driven gold nanoparticle fractal rearrangement in cells and its influence on photothermal conversion. NANOSCALE 2020; 12:21832-21849. [PMID: 33104150 DOI: 10.1039/d0nr05886f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular endocytosis and intracellular trafficking of nanoparticles induce dynamic rearrangements that profoundly modify the physical properties of nanoparticle and govern their biological outcomes when activated by external fields. The precise structure, organization, distribution, and density of gold nanoparticles (AuNPs) confined within intracellular compartments such as lysosomes have not been studied comprehensively, hampering the derivation of predictive models of their therapeutic activity within the cells of interest. By using transmission electron microscopy and small-angle X-ray scattering, we have determined that canonical spherical citrate-coated AuNPs in the 3-30 nm size range form fractal clusters in endolysosomes of macrophages, endothelial cells, and colon cancer cells. Statistical analysis revealed that the cluster size and endolysosome size are correlated but do not depend on the size of AuNPs unless larger preformed aggregates of AuNPs are internalized. Smaller AuNPs are confined in greater numbers in loose aggregates covering a higher fraction of the endolysosomes compared to the largest AuNPs. The fractal dimensions of intracellular clusters increased with the particle size, regardless of the cell type. We thus analyzed how these intracellular structure parameters of AuNPs affect their optical absorption and photothermal properties. We observed that a 2nd plasmon resonance band was shifted to the near-infrared region when the nanoparticle size and fractal dimensions of the intracellular cluster increased. This phenomenon of intracellular plasmon coupling is not directly correlated to the size of the intralysosomal cluster or the number of AuNPs per cluster but rather to the compacity of the cluster and the size of the individual AuNPs. The intracellular plasmon-coupling phenomenon translates to an efficient heating efficiency with the excitation of the three cell types at 808 nm, transforming the NIR-transparent canonical AuNPs with sizes below 30 nm into NIR-absorbing clusters in the tumor microenvironment. Harnessing the spontaneous clustering of spherical AuNPs by cells might be a more valuable strategy for theranostic purposes than deploying complex engineering to derive NIR-absorbent nanostructures out of their environment. Our paper sheds light on AuNP intracellular reorganization and proposes a general method to link their intracellular fates to their in situ physical properties exploited in medical applications.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Laboratoire Matière et Systèmes Complexes, UMR 7075, CNRS and Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
113
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
114
|
Racca L, Cauda V. Remotely Activated Nanoparticles for Anticancer Therapy. NANO-MICRO LETTERS 2020; 13:11. [PMID: 34138198 PMCID: PMC8187688 DOI: 10.1007/s40820-020-00537-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 05/05/2023]
Abstract
Cancer has nowadays become one of the leading causes of death worldwide. Conventional anticancer approaches are associated with different limitations. Therefore, innovative methodologies are being investigated, and several researchers propose the use of remotely activated nanoparticles to trigger cancer cell death. The idea is to conjugate two different components, i.e., an external physical input and nanoparticles. Both are given in a harmless dose that once combined together act synergistically to therapeutically treat the cell or tissue of interest, thus also limiting the negative outcomes for the surrounding tissues. Tuning both the properties of the nanomaterial and the involved triggering stimulus, it is possible furthermore to achieve not only a therapeutic effect, but also a powerful platform for imaging at the same time, obtaining a nano-theranostic application. In the present review, we highlight the role of nanoparticles as therapeutic or theranostic tools, thus excluding the cases where a molecular drug is activated. We thus present many examples where the highly cytotoxic power only derives from the active interaction between different physical inputs and nanoparticles. We perform a special focus on mechanical waves responding nanoparticles, in which remotely activated nanoparticles directly become therapeutic agents without the need of the administration of chemotherapeutics or sonosensitizing drugs.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy.
| |
Collapse
|
115
|
Morozov VN, Belousov AV, Zverev VI, Shtil AA, Kolyvanova MA, Krivoshapkin PV. The Prospects of Metal Oxide Nanoradiosensitizers: The Effect of the Elemental Composition of Particles and Characteristics of Radiation Sources on Enhancement of the Adsorbed Dose. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
116
|
Tang Q, Rossner C, Vana P, Müller M. Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations. Biomacromolecules 2020; 21:5008-5020. [PMID: 33076657 DOI: 10.1021/acs.biomac.0c01184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of forming multifunctional nanostructures, such as nanotheranostic superstructures, is often highly protracted, involving macroscopic time scales and resulting in nanostructures that correspond to kinetically stable states rather than thermodynamic equilibrium. Predicting such kinetically stable nanostructures becomes a great challenge due to the widely different, relevant time scales that are implicated in the formation kinetics of nano-objects. We develop a methodology, integral of first-passage times from constrained simulations (IFS), to predict kinetically stable, planet-satellite nanotheranostic superstructures. The simulation results are consistent with our experimental observations. The developed methodology enables the exploration of time scales from molecular vibrations of 10-3 ns toward macroscopic scales, 1010 ns, which permits the rational design and prediction of kinetically stable nanotheranostic superstructures for applications in nanomedicine.
Collapse
Affiliation(s)
- Qiyun Tang
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Christian Rossner
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany.,Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Physikalische Chemie und Physik der Polymere, Hohe Straße 6, 01069 Dresden, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
117
|
Safari A, Sarikhani A, Shahbazi-Gahrouei D, Alamzadeh Z, Beik J, Dezfuli AS, Mahabadi VP, Tohfeh M, Shakeri-Zadeh A. Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagnosis Photodyn Ther 2020; 32:102061. [PMID: 33068822 DOI: 10.1016/j.pdpdt.2020.102061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023]
Abstract
Maximal synergistic effect between photothermal therapy and radiotherapy (RT) may be achieved when the interval between these two modalities is optimal. In this study, we tried to determine the optimal schedule of the combined regime of RT and nano-photothermal therapy (NPTT), based on the cell cycle distribution and kinetics of cell death. To this end, alginate-coated iron oxide-gold core-shell nanoparticles (Fe3O4@Au/Alg NPs) were synthesized, characterized, and their photo-radio sensitization potency was evaluated on human nasopharyngeal cancer KB cells. Our results demonstrated that synthesized NPs have a good potential in radiotherapy and near-infrared (NIR) photothermal therapy. However, results from flow cytometry analysis indicated that a major portion of KB cells were accumulated in the most radiosensitive phases of cell cycle (G2/M) 24 h after NPTT. Moreover, the maximal synergistic anticancer efficacy (12.3% cell viability) was observed when RT was applied 24 h following the administration of NPTT (NPs [30 μg/mL, 4 h incubation time] + Laser [808 nm, 1 W/cm2, 5 min] + RT [6 Gy]). It is noteworthy that apoptosis was the dominant cell death pathway in the group of cells treated by combination of NPTT and RT. This highly synergistic anticancer efficacy provides a mechanistic basis for Fe3O4@Au/Alg NPs-mediated photothermal therapy combined with RT. Knowing such a basis is helpful to promote novel nanotechnology cancer treatment strategies.
Collapse
Affiliation(s)
- Arash Safari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Alamzadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Jaber Beik
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Tohfeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
118
|
Jiang YW, Gao G, Jia HR, Zhang X, Cheng X, Wang HY, Liu P, Wu FG. Palladium Nanosheets as Safe Radiosensitizers for Radiotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11637-11644. [PMID: 32902987 DOI: 10.1021/acs.langmuir.0c02316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many noble metal-based nanoparticles have emerged for applications in cancer radiotherapy in recent years, but few investigations have been carried out for palladium nanoparticles. Herein, palladium nanosheets (Pd NSs), which possess a sheetlike morphology with a diameter of ∼14 nm and a thickness of ∼2 nm, were utilized as a sensitizer to improve the performance of radiotherapy. It was found that Pd NSs alone did not decrease the cell viability after treatment for as long as 130 h, suggesting the excellent cytocompatibility of the nanoagents. However, the viability of cancer cells treated with X-ray irradiation became lower, and the viability became even lower if the cells were co-treated with X-ray and Pd NSs, indicating the radiosensitization effect of Pd NSs. Additionally, compared with X-ray irradiation, the combined treatment of Pd NSs and X-ray irradiation induced the generation of more DNA double-stranded breaks and reactive oxygen species within cancer cells, which eventually caused elevated cell apoptosis. Moreover, in vivo experiments also verified the radiosensitization effect and the favorable biocompatibility of Pd NSs, indicating their potential for acquiring satisfactory in vivo radiotherapeutic effect at lower X-ray doses. It is believed that the present research will open new avenues for the application of noble metal-based nanoparticles in radiosensitization.
Collapse
Affiliation(s)
- Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Peidang Liu
- Institute of Neurobiology, School of Medicine, Southeast University, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
119
|
Kim AS, Melemenidis S, Gustavsson AK, Abid D, Wu Y, Liu F, Hristov D, Schüler E. Increased local tumor control through nanoparticle-mediated, radiation-triggered release of nitrite, an important precursor for reactive nitrogen species. Phys Med Biol 2020; 65:195003. [PMID: 32721936 DOI: 10.1088/1361-6560/abaa27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The efficacy of dose-enhancing gold nanoparticles (AuNPs) is negatively impacted by low tumor uptake, low cell membrane penetration, limited diffusion distance, and short lifetime of radiation-induced secondary particles. To overcome these limitations, we have developed a novel AuNP system capable of radiation-triggered release of nitrite, a precursor of reactive nitrogen species, and report here on the in vivo characterization of this system. AuNPs were functionalized through PEGylation, cell-penetrating peptides (CPP; AuNP@CPP), and nitroimidazole (nIm; AuNP@nIm-CPP). Mice with subcutaneous 4T1 tumors received either AuNP@nIm-CPP or AuNP@CPP intraperitoneally. Tumor and normal tissue uptake were evaluated 24 h post AuNP administration. A separate cohort of mice was injected and irradiated to a single-fraction dose of 18 Gy in a 225 kVp small animal irradiator 24 h post NP administration. The mice were followed for two weeks to evaluate tumor response. The mean physical and hydrodynamic size of both NP systems were 5 and 13 nm, respectively. NP nIm-loading of 1 wt% was determined. Tumor accumulation of AuNP@nIm-CPP was significantly lower than that of AuNP@CPP (0.2% vs 1.2%, respectively). In contrast, AuNP@nIm-CPP showed higher accumulation compared to AuNP@CPP in liver (16.5% vs 6.6%, respectively) and spleen (10.8% vs 3.1%, respectively). With respect to tumor response, no differential response was found between non-irradiated mice receiving either saline or AuNP@nIm-CPP alone. The combination of AuNP@CPP+ radiation showed no differential response from radiation alone. In contrast, a significant delay in tumor regrowth was observed in mice receiving AuNP@nIm-CPP+ radiation compared to radiation alone. AuNP functionalized with both CPP and nIm exhibited an order of magnitude less tumor accumulation compared to the NP system without nIm yet resulted in a significantly higher therapeutic response. Our data suggest that by improving the biokinetics of AuNP@nIm-CPP, this novel NP system could be a promising radiosensitizer for enhanced therapeutic response following radiation therapy.
Collapse
Affiliation(s)
- Anna S Kim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Belanova A, Chmykhalo V, Beseda D, Belousova M, Butova V, Soldatov A, Makarenko Y, Zolotukhin P. A mini-review of X-ray photodynamic therapy (XPDT) nonoagent constituents' safety and relevant design considerations. Photochem Photobiol Sci 2020; 19:1134-1144. [PMID: 32776036 DOI: 10.1039/c9pp00456d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional photodynamic therapy (PDT) has proved effective in the management of primary tumors and individual metastases. However, most cancer mortality arises from wide-spread multiple metastases. The latter has thus become the principal target in oncology, and X-ray induced photodynamic therapy (XPDT or PDTX) offers a great solution for adapting the PDT principle to deep tumors and scattered metastases. Developing agents capable of being excited by X-rays and emitting visible light to excite photosensitizers is based on challenging physical and chemical technologies, but there are fundamental biological limitations that are to be accounted for as well. In the present review, we have established eight major groups of safety determinants of NPs encompassing 22 parameters of clinical applicability of XPDT nanoparticulate formulations. Most, if not all, of these parameters can be accounted for and optimized during the design and development of novel XPDT nanoparticles.
Collapse
Affiliation(s)
- A Belanova
- Biomedical Innovations LLC, Russian Federation
| | - V Chmykhalo
- Southern Federal University, Russian Federation
| | - D Beseda
- Biomedical Innovations LLC, Russian Federation
| | - M Belousova
- Southern Federal University, Russian Federation
| | - V Butova
- Southern Federal University, Russian Federation
| | - A Soldatov
- Southern Federal University, Russian Federation
| | - Y Makarenko
- Rostov-on-Don Pathological-anatomical bureau No. 1, Russian Federation
| | - P Zolotukhin
- Southern Federal University, Russian Federation.
| |
Collapse
|
121
|
Bai L, Jiang F, Wang R, Lee C, Wang H, Zhang W, Jiang W, Li D, Ji B, Li Z, Gao S, Xie J, Ma Q. Ultrathin gold nanowires to enhance radiation therapy. J Nanobiotechnology 2020; 18:131. [PMID: 32917209 PMCID: PMC7488570 DOI: 10.1186/s12951-020-00678-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Radiation therapy is a main treatment option for cancer. Due to normal tissue toxicity, radiosensitizers are commonly used to enhance RT. In particular, heavy metal or high-Z materials, such as gold nanoparticles, have been investigated as radiosensitizers. So far, however, the related studies have been focused on spherical gold nanoparticles. In this study, we assessed the potential of ultra-thin gold nanowires as a radiosensitizer, which is the first time. METHODS Gold nanowires were synthesized by the reduction of HAuCl4 in hexane. The as-synthesized gold nanowires were then coated with a layer of PEGylated phospholipid to be rendered soluble in water. Spherical gold nanoparticles coated with the same phospholipid were also synthesized as a comparison. Gold nanowires and gold nanospheres were first tested in solutions for their ability to enhance radical production under irradiation. They were then incubated with 4T1 cells to assess whether they could elevate cell oxidative stress under irradiation. Lastly, gold nanowires and gold nanoparticles were intratumorally injected into a 4T1 xenograft model, followed by irradiation applied to tumors (3 Gy/per day for three days). Tumor growth was monitored and compared. RESULTS Our studies showed that gold nanowires are superior to gold nanospheres in enhancing radical production under X-ray radiation. In vitro analysis found that the presence of gold nanowires caused elevated lipid peroxidation and intracellular oxidative stress under radiation. When tested in vivo, gold nanowires plus irradiation led to better tumor suppression than gold nanospheres plus radiation. Moreover, gold nanowires were found to be gradually reduced to shorter nanowires by glutathione, which may benefit fractionated radiation. CONCLUSION Our studies suggest that gold nanowires are a promising type of radiosensitizer that can be safely injected into tumors to enhance radiotherapy. While the current study was conducted in a breast cancer model, the approach can be extended to the treatment of other cancer types.
Collapse
Affiliation(s)
- Lin Bai
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Renjie Wang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Hui Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Wen Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Dandan Li
- Department of Gastrointestinal Medicine, Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
122
|
Advances in Gold Nanoparticle-Based Combined Cancer Therapy. NANOMATERIALS 2020; 10:nano10091671. [PMID: 32858957 PMCID: PMC7557687 DOI: 10.3390/nano10091671] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
According to the global cancer observatory (GLOBOCAN), there are approximately 18 million new cancer cases per year worldwide. Cancer therapies are largely limited to surgery, radiotherapy, and chemotherapy. In radiotherapy and chemotherapy, the maximum tolerated dose is presently being used to treat cancer patients. The integrated development of innovative nanoparticle (NP) based approaches will be a key to address one of the main issues in both radiotherapy and chemotherapy: normal tissue toxicity. Among other inorganic NP systems, gold nanoparticle (GNP) based systems offer the means to further improve chemotherapy through controlled delivery of chemotherapeutics, while local radiotherapy dose can be enhanced by targeting the GNPs to the tumor. There have been over 20 nanotechnology-based therapeutic products approved for clinical use in the past two decades. Hence, the goal of this review is to understand what we have achieved so far and what else we can do to accelerate clinical use of GNP-based therapeutic platforms to minimize normal tissue toxicity while increasing the efficacy of the treatment. Nanomedicine will revolutionize future cancer treatment options and our ultimate goal should be to develop treatments that have minimum side effects, for improving the quality of life of all cancer patients.
Collapse
|
123
|
Omyan G, Gholami S, Zad AG, Severgnini M, Longo F, Kalantari F. Monte Carlo simulation and analytical calculation methods to investigate the potential of nanoparticles for INTRABEAM® IORT machine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102288. [PMID: 32805406 DOI: 10.1016/j.nano.2020.102288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/02/2020] [Accepted: 08/09/2020] [Indexed: 11/16/2022]
Abstract
In the present study, Monte Carlo (MC) simulation and analytical calculation methods were used to investigate the potential of cancer treatment for the combination of IORT with nanoparticles (NPs). The Geant4 MC toolkit was used to simulate ZEISS INTRABEAM® IORT machine and its smallest applicator with 1.5 cm diameter. The dose enhancement effects (DEFs) were obtained for silver (Ag), gold (Au), bismuth (Bi), copper (Cu) and iron (Fe) spherical NPs considering different concentrations. In addition, analytical calculations were performed based on attenuation coefficient formula for sample NPs. Our MC results showed that the use of different NPs led to an increase in DEF up to 40%. Among different NPs, Au had the maximum DEF. In addition, analytical calculations revealed a significant increase, using NPs as well. Our study has suggested that the use of NPs in combination with IORT has the potential to enhance treatment outcomes.
Collapse
Affiliation(s)
- Gilnaz Omyan
- Department of Physics, Faculty of Sciences, University of Guilan, Rasht, Iran; Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Gholami
- Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
| | - Abbas Ghasemi Zad
- Department of Physics, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mara Severgnini
- Medical Physics Department, Riuniti Hospital ASUITS, Trieste, Italy
| | - Francesco Longo
- Physics Department, University of Trieste and INFN sezione di Trieste, Trieste, Italy
| | - Faraz Kalantari
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, United states
| |
Collapse
|
124
|
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front Bioeng Biotechnol 2020; 8:990. [PMID: 32903562 PMCID: PMC7438450 DOI: 10.3389/fbioe.2020.00990] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology has become a trending area in science and has made great advances with the development of functional, engineered nanoparticles. Various metal nanoparticles have been widely exploited for a wide range of medical applications. Among them, gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence and are highly remarkable. AuNPs, with their multiple, unique functional properties, and easy of synthesis, have attracted extensive attention. Their intrinsic features (optics, electronics, and physicochemical characteristics) can be altered by changing the characterization of the nanoparticles, such as shape, size and aspect ratio. They can be applied to a wide range of medical applications, including drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and radiation therapy (RT), diagnosis, X-ray imaging, computed tomography (CT) and other biological activities. However, to the best of our knowledge, there is no comprehensive review that summarized the applications of AuNPs in the medical field. Therefore, in this article we systematically review the methods of synthesis, the modification and characterization techniques of AuNPs, medical applications, and some biological activities of AuNPs, to provide a reference for future studies.
Collapse
Affiliation(s)
| | | | | | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | |
Collapse
|
125
|
Landry C, Morrison A, Ghandi K. Application of muon and other complementary radiation techniques to study interaction of radiation with nanostructures. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
126
|
Winter H, Neufeld MJ, Makotamo L, Sun C, Goforth AM. Synthesis of Radioluminescent CaF 2:Ln Core, Mesoporous Silica Shell Nanoparticles for Use in X-ray Based Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1447. [PMID: 32722132 PMCID: PMC7466269 DOI: 10.3390/nano10081447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
X-ray radiotherapy is a common method of treating cancerous tumors or other malignant lesions. The side effects of this treatment, however, can be deleterious to patient quality of life if critical tissues are affected. To potentially lower the effective doses of radiation and negative side-effects, new classes of nanoparticles are being developed to enhance reactive oxygen species production during irradiation. This report presents the synthesis and radiotherapeutic efficacy evaluation of a new nanoparticle formulation designed for this purpose, composed of a CaF2 core, mesoporous silica shell, and polyethylene glycol coating. The construct was additionally doped with Tb and Eu during the CaF2 core synthesis to prepare nanoparticles (NPs) with X-ray luminescent properties for potential application in fluorescence imaging. The mesoporous silica shell was added to provide the opportunity for small molecule loading, and the polyethylene glycol coating was added to impart aqueous solubility and biocompatibility. The potential of these nanomaterials to act as radiosensitizers for enhancing X-ray radiotherapy was supported by reactive oxygen species generation assays. Further, in vitro experiments indicate biocompatibility and enhanced cellular damage during X-ray radiotherapy.
Collapse
Affiliation(s)
- Hayden Winter
- Department of Chemistry, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA; (H.W.); (L.M.)
| | - Megan J. Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA;
| | - Lydia Makotamo
- Department of Chemistry, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA; (H.W.); (L.M.)
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA;
- Department of Radiation Medicine, 3181 S. W. Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrea M. Goforth
- Department of Chemistry, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA; (H.W.); (L.M.)
| |
Collapse
|
127
|
Samani RK, Tavakoli MB, Maghsoudinia F, Motaghi H, Hejazi SH, Mehrgardi MA. Trastuzumab and folic acid functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation therapy of human breast cancer. Eur J Pharm Sci 2020; 153:105487. [PMID: 32707173 DOI: 10.1016/j.ejps.2020.105487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
In the present study, the effect of functionalized gold nanoclusters (AuNCs) with trastuzumab (Herceptin®) and/or folic acid (FA) as a single and dual-targeted radiosensitizers for the enhancement of megavoltage radiation therapy efficacy was investigated. SK-BR3 breast cancer cells as human epidermal growth factor 2 (HER2) and folate overexpressing cell line and the murine fibroblast (L929) as a control cell line were selected. The cellular uptake was followed using inductively coupled plasma optical emission spectrometry (ICP-OES) that showed AuNCs-FA-HER uptake by SK-BR3 cells was 3 times more than the non-targeted AuNCs after 12 h incubation. MTT and clonogenic assays revealed that the viability and surviving fraction of cancer cells were significantly inhibited by treating with all AuNCs under radiation compared to treating with radiation alone. However, these effects in the dual-targeted AuNCs group (AuNCs-FA-HER) was significantly greater than non-targeted and single-targeted AuNCs groups. Also, apoptosis was evaluated using an Annexin V-FITC/propidium iodide (PI) kit in flow cytometry. All AuNCs, in combination with 4 Gy of photon beam, induced more apoptosis. By fitting the survival fraction data on the linear-quadratic model, the sensitization enhancement factor (SER) of AuNCs, AuNCs-FA, AuNCs-HER, and AuNCs-FA-HER, were obtained 1.17, 1.32, 1.48 and 1.77, respectively. SER for AuNCs-FA-HER was significantly higher than that non-targeted and single-targeted AuNCs (p-value < 0.05) that can be attributed to more internalization in the cancer cells. It was concluded that functionalized AuNCs with both folic acid and Herceptin could represent a promising strategy for increased cellular internalization that improved radiation therapy efficiency in SK-BR3 breast cancer cells.
Collapse
Affiliation(s)
- Roghayeh Kamran Samani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohamad Bagher Tavakoli
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Fatemeh Maghsoudinia
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hasan Motaghi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
128
|
Neuer AL, Gerken LRH, Keevend K, Gogos A, Herrmann IK. Uptake, distribution and radio-enhancement effects of gold nanoparticles in tumor microtissues. NANOSCALE ADVANCES 2020; 2:2992-3001. [PMID: 36132396 PMCID: PMC9417636 DOI: 10.1039/d0na00256a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/28/2020] [Indexed: 05/27/2023]
Abstract
Radiotherapy is an integral and highly effective part of cancer therapy, applicable in over 50% of patients affected by cancer. Due to the low specificity of the X-ray irradiation, the maximal radiation dose is greatly limited in order to avoid damage to surrounding healthy tissue. The limitations in applicable dose oftentimes result in the survival of a subpopulation of radio-resistant cells that then cause cancer reoccurence. Approaches based on tumor-targeted high atomic number inorganic nanoparticles have been proposed to locally increase the photoelectric absorption cross-section of tumors relative to healthy tissue. However, the complex interplay between the nanoparticle radio-enhancers and the tumor tissue has led to poor translation of in vitro findings to (pre)clinics. Here, we report the development of a tumor microtissue model along with analytical imaging for the quantitative assessment of nanoparticle-based radio-enhancement as a function of nanoparticle size, uptake and intratissural distribution. The advanced in vitro model exhibits key features of cancerous tissues, including diminished susceptibility to drugs and attenuated response to nanoparticle treatment compared to corresponding conventional 2D cell cultures. Whereas radio-enhancement effects between 2D and 3D cell cultures were comparable for 5 nm gold particles, the limited penetration of 50 nm gold nanoparticles into 3D microtissues led to a significantly reduced radio-enhancement effect in 3D compared to 2D. Taken together, tumor microtissues, which in stark contrast to 2D cell culture exhibit tissue-like features, may provide a valuable high-throughput intermediate pre-selection step in the preclinical translation of nanoparticle-based radio-enhancement therapy designs.
Collapse
Affiliation(s)
- Anna L Neuer
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland +41 58 765 7153
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich Sonneggstrasse 3 CH-8092 Zurich Switzerland
| | - Lukas R H Gerken
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland +41 58 765 7153
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich Sonneggstrasse 3 CH-8092 Zurich Switzerland
| | - Kerda Keevend
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland +41 58 765 7153
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich Sonneggstrasse 3 CH-8092 Zurich Switzerland
| | - Alexander Gogos
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland +41 58 765 7153
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland +41 58 765 7153
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich Sonneggstrasse 3 CH-8092 Zurich Switzerland
| |
Collapse
|
129
|
Gray T, Bassiri N, David S, Patel DY, Stathakis S, Kirby N, Mayer KM. A detailed Monte Carlo evaluation of 192Ir dose enhancement for gold nanoparticles and comparison with experimentally measured dose enhancements. Phys Med Biol 2020; 65:135007. [PMID: 32434159 DOI: 10.1088/1361-6560/ab9502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gold nanoparticles (GNPs) have been studied extensively as promising radiation dose enhancing agents. In the current study, the dose enhancement effect of GNPs for Ir-192 HDR brachytherapy is studied using Monte Carlo N-Particle code, version 6.2 (MCNP6.2) and compared with experimental results obtained using Burlin cavity theory formalism. The Ir-192 source is verified using TG-43 parameters and dose enhancement factors (DEFs) from GNPs are simulated for three different mass percentages of gold in the GNP solution. These results are compared to DEFs previously reported experimentally by our group (Bassiri et al 2019 Med. Phys.) for a GNP-containing volume in an apparatus designed in-house to measure dose enhancement with GNPs for high dose rate (HDR) Ir-192 brachytherapy. An HDR Ir-192 Microselectron v2 r HDR brachytherapy source was modeled using MCNP6.2 using the TG-43 formalism in water. Anisotropy and radial dose function were verified against known values. An apparatus designed to measure dose enhancement to a 0.75 cm3 volume of GNPs from an Ir-192 brachytherapy seed with average energy of 0.38 MeV was built in-house and modeled using MCNP6.2. Burlin cavity correction factors were applied to experimental measurements. The macroscopic DEF was calculated for GNPs of size 30 nm at mass percentages of gold of 0.28%, 0.56% and 0.77%, using the repeating structures capability of MCNP6.2. DEF was calculated by dividing dose to the GNP solution by dose to water in the same volume. The radial dose function and anisotropy factor values at varying angles and distances were accurate when compared against known values. DEFs of 1.018 ± 0.003, 1.031 ± 0.003, and 1.041 ± 0.003 for GNP solutions containing mass percent of gold of 0.28%, 0.56% and 0.77%, respectively, were computed. These DEFs were within 2% of experimental values with Burlin cavity correction factors applied for all three mass percentages of gold.
Collapse
Affiliation(s)
- Tara Gray
- The University of Texas at San Antonio, Department of Physics and Astronomy, San Antonio, TX 78249, United States of America
| | | | | | | | | | | | | |
Collapse
|
130
|
Detappe A, Mathieu C, Jin C, Agius MP, Diringer MC, Tran VL, Pivot X, Lux F, Tillement O, Kufe D, Ghoroghchian PP. Anti-MUC1-C Antibody-Conjugated Nanoparticles Potentiate the Efficacy of Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 108:1380-1389. [PMID: 32634545 DOI: 10.1016/j.ijrobp.2020.06.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Heavy-metal chelators and inorganic nanoparticles (NPs) have been examined as potential radioenhancers to increase the efficacy of external beam radiation therapy for various cancers. Most of these agents have, unfortunately, displayed relatively poor pharmacokinetic properties, which limit the percentage of injected dose (%ID/g) that localizes to tumors and which shorten the window for effective radiation enhancement due to rapid tumor washout. METHODS AND MATERIALS To address these challenges, we sought to conjugate gadolinium-based ultrasmall (<5 nm) NPs to an antibody directed against the oncogenic MUC1-C subunit that is overexpressed on the surface of many different human cancer types. The binding of the anti-MUC1-C antibody 3D1 to MUC1-C on the surface of a cancer cell is associated with its internalization and, thereby, to effective intracellular delivery of the antibody-associated payload, promoting its effective tumor retention. As such, we examined whether systemically administered anti-MUC1-C antibody-conjugated, gadolinium-based NPs (anti-MUC1-C/NPs) could accumulate within cell-line xenograft models of MUC1-C-expressing (H460) lung and (E0771) breast cancers to improve the efficacy of radiation therapy (XRT). RESULTS The %ID/g of anti-MUC1-C/NPs that accumulated within tumors was found to be similar to that of their unconjugated counterparts (6.6 ± 1.4 vs 5.9 ± 1.7 %ID/g, respectively). Importantly, the anti-MUC1-C/NPs demonstrated prolonged retention in in vivo tumor microenvironments; as a result, the radiation boost was maintained during the course of fractionated therapy (3 × 5.2 Gy). We found that by administering anti-MUC1-C/NPs with XRT, it was possible to significantly augment tumor growth inhibition and to prolong the animals' overall survival (46.2 ± 3.1 days) compared with the administration of control NPs with XRT (31.1 ± 2.4 days) or with XRT alone (27.3 ± 1.6 days; P < .01, log-rank). CONCLUSIONS These findings suggest that anti-MUC1-C/NPs could be used to enhance the effectiveness of radiation therapy and potentially to improve clinical outcomes.
Collapse
Affiliation(s)
- Alexandre Detappe
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts; Centre Paul Strauss, Strasbourg, France.
| | - Clélia Mathieu
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Caining Jin
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Michael P Agius
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | | | - Vu-Long Tran
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France
| | - Xavier Pivot
- Institut du Cancer Strasbourg, Strasbourg, France
| | - Francois Lux
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France; Institut Universitaire de France, Paris, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex, France
| | - Donald Kufe
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Peter P Ghoroghchian
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
131
|
Verry C, Dufort S, Lemasson B, Grand S, Pietras J, Troprès I, Crémillieux Y, Lux F, Mériaux S, Larrat B, Balosso J, Le Duc G, Barbier EL, Tillement O. Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective. SCIENCE ADVANCES 2020; 6:eaay5279. [PMID: 32832613 PMCID: PMC7439298 DOI: 10.1126/sciadv.aay5279] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/06/2020] [Indexed: 06/01/2023]
Abstract
The use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent. The presence of nanoparticles in metastases was monitored and quantified with MRI and was noticed up to 1 week after their administration. To take advantage of the radiosensitizing property of the nanoparticles, patients underwent radiotherapy sessions following their administration. This protocol has been extended to a multicentric phase 2 clinical trial including 100 patients.
Collapse
Affiliation(s)
| | | | - Benjamin Lemasson
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Johan Pietras
- IRMaGe, CNRS, INSERM, Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Irène Troprès
- IRMaGe, CNRS, INSERM, Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Yannick Crémillieux
- Institut des Sciences Moléculaires, CNRS, Université de Bordeaux, Bordeaux, France
| | - François Lux
- Institut Lumière Matière, CNRS, Université de Lyon, Villeurbanne, France
| | | | - Benoit Larrat
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | - Emmanuel L. Barbier
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier Tillement
- Institut Lumière Matière, CNRS, Université de Lyon, Villeurbanne, France
| |
Collapse
|
132
|
Reda M, Bagley AF, Zaidan HY, Yantasee W. Augmenting the therapeutic window of radiotherapy: A perspective on molecularly targeted therapies and nanomaterials. Radiother Oncol 2020; 150:225-235. [PMID: 32598976 DOI: 10.1016/j.radonc.2020.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Radiation therapy is a cornerstone of modern cancer therapy alongside surgery, chemotherapy, and immunotherapy, with over half of all cancer patients receiving radiation therapy as part of their treatment regimen. Development of novel radiation sensitizers that can improve the therapeutic window of radiation therapy are sought after, particularly for tumors at an elevated risk of local and regional recurrence such as locally-advanced lung, head and neck, and gastrointestinal tumors. This review discusses clinical strategies to enhance radiotherapy efficacy and decrease toxicity, hence, increasing the overall therapeutic window. A focus is given to the molecular targets that have been identified and their associated mechanisms of action in enhancing radiotherapy. Examples include cell survival and proliferation signaling such as the EGFR and PI3K/AKT/mTOR pathways, DNA repair genes including PARP and ATM/ATR, angiogenic growth factors, epigenetic regulators, and immune checkpoint proteins. By manipulating various mechanisms of tumor resistance to ionizing radiation (IR), targeted therapies hold significant value to increase the therapeutic window of radiotherapy. Further, the use of novel nanoparticles to enhance radiotherapy is also reviewed, including nanoparticle delivery of chemotherapies, metallic (high-Z) nanoparticles, and nanoparticle delivery of targeted therapies - all of which may improve the therapeutic window of radiotherapy by enhancing the tumor response to IR or reducing normal tissue toxicity.
Collapse
Affiliation(s)
- Moataz Reda
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, United States; PDX Pharmaceuticals, Portland, OR 97239, United States
| | - Alexander F Bagley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, United States; PDX Pharmaceuticals, Portland, OR 97239, United States.
| |
Collapse
|
133
|
Modulation of the Microtubule Network for Optimization of Nanoparticle Dynamics for the Advancement of Cancer Nanomedicine. Bioengineering (Basel) 2020; 7:bioengineering7020056. [PMID: 32545909 PMCID: PMC7355834 DOI: 10.3390/bioengineering7020056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles (NPs) have shown promise in both radiotherapy and chemotherapy. NPs are mainly transported along cellular microtubules (MTs). Docetaxel (DTX) is a commonly used chemotherapeutic drug that can manipulate the cellular MT network to maximize its clinical benefit. However, the effect of DTX on NP behaviour has not yet been fully elucidated. We used gold NPs of diameters 15 and 50 nm at a concentration of 0.2 nM to investigate the size dependence of NP behaviour. Meanwhile, DTX concentrations of 0, 10 and 50 nM were used to uphold clinical relevance. Our study reveals that a concentration of 50 nM DTX increased NP uptake by ~50% and their retention by ~90% compared to cells treated with 0 and 10 nM DTX. Smaller NPs had a 20-fold higher uptake in cells treated with 50 nM DTX vs. 0 and 10 nM DTX. With the treatment of 50 nm DTX, the cells became more spherical in shape, and NPs were redistributed closer to the nucleus. A significant increase in NP uptake and retention along with their intracellular distribution closer to the nucleus with 50 nM DTX could be exploited to target a higher dose to the most important target, the nucleus in both radiotherapy and chemotherapy.
Collapse
|
134
|
Hassan M, Nakayama M, Salah M, Akasaka H, Kubota H, Nakahana M, Tagawa T, Morita K, Nakaoka A, Ishihara T, Miyawaki D, Yoshida K, Nishimura Y, Ogino C, Sasaki R. A Comparative Assessment of Mechanisms and Effectiveness of Radiosensitization by Titanium Peroxide and Gold Nanoparticles. NANOMATERIALS 2020; 10:nano10061125. [PMID: 32517328 PMCID: PMC7353194 DOI: 10.3390/nano10061125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
The development of potentially safe radiosensitizing agents is essential to enhance the treatment outcomes of radioresistant cancers. The titanium peroxide nanoparticle (TiOxNP) was originally produced using the titanium dioxide nanoparticle, and it showed excellent reactive oxygen species (ROS) generation in response to ionizing radiation. Surface coating the TiOxNPs with polyacrylic acid (PAA) showed low toxicity to the living body and excellent radiosensitizing effect on cancer cells. Herein, we evaluated the mechanism of radiosensitization by PAA-TiOxNPs in comparison with gold nanoparticles (AuNPs) which represent high-atomic-number nanoparticles that show a radiosensitizing effect through the emission of secondary electrons. The anticancer effects of both nanoparticles were compared by induction of apoptosis, colony-forming assay, and the inhibition of tumor growth. PAA-TiOxNPs showed a significantly more radiosensitizing effect than that of AuNPs. A comparison of the types and amounts of ROS generated showed that hydrogen peroxide generation by PAA-TiOxNPs was the major factor that contributed to the nanoparticle radiosensitization. Importantly, PAA-TiOxNPs were generally nontoxic to healthy mice and caused no histological abnormalities in the liver, kidney, lung, and heart tissues.
Collapse
Affiliation(s)
- Mennaallah Hassan
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Clinical Oncology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Discipline of Medical Radiations, School of Biomedical & Health Sciences, RMIT University, Bundoora Campus, Victoria 3083, Australia
| | - Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Makiko Nakahana
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Tatsuichiro Tagawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
- Research Facility Center for Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Ai Nakaoka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Takeaki Ishihara
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Daisuke Miyawaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Kenji Yoshida
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; (K.M.); (Y.N.); (C.O.)
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan; (M.H.); (M.N.); (M.S.); (H.A.); (H.K.); (M.N.); (T.T.); (A.N.); (T.I.); (D.M.); (K.Y.)
- Correspondence: ; Tel.: +81-78-3825687; Fax: +81-78-3826734
| |
Collapse
|
135
|
Radiosensitization by Gold Nanoparticles: Impact of the Size, Dose Rate, and Photon Energy. NANOMATERIALS 2020; 10:nano10050952. [PMID: 32429500 PMCID: PMC7279506 DOI: 10.3390/nano10050952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/09/2023]
Abstract
Gold nanoparticles (GNPs) emerged as promising antitumor radiosensitizers. However, the complex dependence of GNPs radiosensitization on the irradiation conditions remains unclear. In the present study, we investigated the impacts of the dose rate and photon energy on damage of the pBR322 plasmid DNA exposed to X-rays in the presence of 12 nm, 15 nm, 21 nm, and 26 nm GNPs. The greatest radiosensitization was observed for 26 nm GNPs. The sensitizer enhancement ratio (SER) 2.74 ± 0.61 was observed at 200 kVp with 2.4 mg/mL GNPs. Reduction of X-ray tube voltage to 150 and 100 kVp led to a smaller effect. We demonstrate for the first time that the change of the dose rate differentially influences on radiosensitization by GNPs of various sizes. For 12 nm, an increase in the dose rate from 0.2 to 2.1 Gy/min led to a ~1.13-fold increase in radiosensitization. No differences in the effect of 15 nm GNPs was found within the 0.85–2.1 Gy/min range. For 21 nm and 26 nm GNPs, an enhanced radiosensitization was observed along with the decreased dose rate from 2.1 to 0.2 Gy/min. Thus, GNPs are an effective tool for increasing the efficacy of orthovoltage X-ray exposure. However, careful selection of irradiation conditions is a key prerequisite for optimal radiosensitization efficacy.
Collapse
|
136
|
X-ray Induced Hydroxyl Radical Generation by GdYVO4:Eu3+ Nanoparticles in Aqueous Solution: Main Mechanisms. CRYSTALS 2020. [DOI: 10.3390/cryst10050370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report on strong X-ray-induced hydroxyl radical (. O H ) generation in an aqueous solution containing UV light pre-treated GdYVO4:Eu3+ nanoparticles (L-GdYVO). The methods of optical spectroscopy were used to detect . O H in the solutions. The complex nature of the mechanism of . O H generation has been revealed and discussed. The experimental data obtained indicate that the mechanism of . O H generation is associated with two main processes: (i) direct . O H generation with the participation of thermalized h+ formed at X-ray irradiation, and (ii) X-ray-facilitated jumps of h+ formed in the nanoparticles’ (NPs’) valence band at UV light pre-treatment and trapped in local levels formed by random scattering potential. At the same time, for GdYVO4:Eu3+ nanoparticles, which were not exposed to UV light before the X-ray irradiation (D-GdYVO), a strong radioprotective effect ascribed to the electron-donation properties of V4+ ions was observed. Thus, depending on the pre-treatment condition, we can change the redox properties of GdYVO4:Eu3+ NPs in an opposite direction, which makes this nanomaterial a unique theranostic agent for radiation therapy (RT) enhancement, allowing the problem of radiation therapy (RT)-resistant hypoxic tumours to be overcome.
Collapse
|
137
|
Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Antioxidant nanoparticles have recently gained tremendous attention for their enormous potential in biomedicine. However, discrepant reports of either medical benefits or toxicity, and lack of reproducibility of many studies, generate uncertainties delaying their effective implementation. Herein, the case of cerium oxide is considered, a well-known catalyst in the petrochemistry industry and one of the first antioxidant nanoparticles proposed for medicine. Like other nanoparticles, it is now described as a promising therapeutic alternative, now as threatening to health. Sources of these discrepancies and how this analysis helps to overcome contradictions found for other nanoparticles are summarized and discussed. For the context of this analysis, what has been reported in the liver is reviewed, where many diseases are related to oxidative stress. Since well-dispersed nanoparticles passively accumulate in liver, it represents a major testing field for the study of new nanomedicines and their clinical translation. Even more, many contradictory works have reported in liver either cerium-oxide-associated toxicity or protection against oxidative stress and inflammation. Based on this, finally, the intention is to propose solutions to design improved nanoparticles that will work more precisely in medicine and safely in society.
Collapse
Affiliation(s)
- Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Marina Parra-Robert
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Manuel Morales-Ruiz
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| | - Wladimiro Jiménez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Víctor Puntes
- Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| |
Collapse
|
138
|
Zhou X, Meng Z, She J, Zhang Y, Yi X, Zhou H, Zhong J, Dong Z, Han X, Chen M, Fan Q, Yang K, Wang C. Near-Infrared Light-Responsive Nitric Oxide Delivery Platform for Enhanced Radioimmunotherapy. NANO-MICRO LETTERS 2020; 12:100. [PMID: 34138094 PMCID: PMC7770715 DOI: 10.1007/s40820-020-00431-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
Radiotherapy (RT) is a widely used way for cancer treatment. However, the efficiency of RT may come with various challenges such as low specificity, limitation by resistance, high dose and so on. Nitric oxide (NO) is known a very effective radiosensitizer of hypoxic tumor. However, NO cannot circulate in body with high concentration. Herein, an NIR light-responsive NO delivery system is developed for controlled and precisely release of NO to hypoxic tumors during radiotherapy. Tert-Butyl nitrite, which is an efficient NO source, is coupled to Ag2S quantum dots (QDs). NO could be generated and released from the Ag2S QDs effectively under the NIR irradiation due to the thermal effect. In addition, Ag is also a type of heavy metal that can benefit the RT therapy. We demonstrate that Ag2S NO delivery platforms remarkably maximize radiotherapy effects to inhibit tumor growth in CT26 tumor model. Furthermore, immunosuppressive tumor microenvironment is improved by our NO delivery system, significantly enhancing the anti-PD-L1 immune checkpoint blockade therapy. 100% survival rate is achieved by the radio-immune combined therapy strategy based on the Ag2S NO delivery platforms. Our results suggest the promise of Ag2S NO delivery platforms for multifunctional cancer radioimmunotherapy.
Collapse
Affiliation(s)
- Xuanfang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhouqi Meng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Jialin She
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yaojia Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xuan Yi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jing Zhong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Ziliang Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Xiao Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Qin Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
139
|
|
140
|
Brun F, Di Trapani V, Albers J, Sacco P, Dreossi D, Brombal L, Rigon L, Longo R, Mittone A, Dullin C, Bravin A, Delogu P. Single-shot K-edge subtraction x-ray discrete computed tomography with a polychromatic source and the Pixie-III detector. Phys Med Biol 2020; 65:055016. [PMID: 31995530 DOI: 10.1088/1361-6560/ab7105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
K-edge subtraction (KES) imaging is a technique able to map a specific element such as e.g. a contrast agent within the tissues, by exploiting the sharp rise of its absorption coefficient at the K-edge energy. Whereas mainly explored at synchrotron radiation sources, the energy discrimination properties of modern x-ray photon counting detectors (XPCDs) pave the way for an implementation of single-shot KES imaging with conventional polychromatic sources. In this work we present an x-ray CT imaging system based on the innovative Pixie-III detector and discrete reconstruction. The results reported here show that a reliable automatic localization of Barium (above a certain concentration) is possible with a few dozens of tomographic projections for a volume having an axial slice of 512 [Formula: see text] 512 pixels. The final application is a routine high-fidelity 3D mapping of a specific element ready for further morphological quantification by means of x-ray CT with potential promising applications in vivo.
Collapse
Affiliation(s)
- Francesco Brun
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy. National Institute for Nuclear Physics (INFN), Trieste Division, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901943. [PMID: 31259464 DOI: 10.1002/smll.201901943] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 05/23/2023]
Abstract
As nanomaterials (NMs) possess attractive physicochemical properties that are strongly related to their specific sizes and morphologies, they are becoming one of the most desirable components in the fields of drug delivery, biosensing, bioimaging, and tissue engineering. By choosing an appropriate methodology that allows for accurate control over the reaction conditions, not only can NMs with high quality and rapid production rate be generated, but also designing composite and efficient products for therapy and diagnosis in nanomedicine can be realized. Recent evidence implies that microfluidic technology offers a promising platform for the synthesis of NMs by easy manipulation of fluids in microscale channels. In this Review, a comprehensive set of developments in the field of microfluidics for generating two main classes of NMs, including nanoparticles and nanofibers, and their various potentials in biomedical applications are summarized. Furthermore, the major challenges in this area and opinions on its future developments are proposed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
142
|
de Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci 2020; 7:3534-3551. [PMID: 31250854 DOI: 10.1039/c9bm00577c] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combining hyperthermia with other therapies holds a great potential for improving cancer treatment. In this approach, the increase in the body temperature can exert a therapeutic effect on cells and/or enhance the effectiveness of anticancer agents. However, the conventional methodologies available to induce hyperthermia cannot confine a high temperature increase to the tumor-site while maintaining healthy tissues unexposed and ensuring minimal invasiveness. To overcome these limitations, combination photothermal therapy (PTT) mediated by graphene family nanomaterials (GFN) has been showing promising results. Such is owed to the ability of GFN to accumulate at the tumor site and convert near infrared light into heat, enabling a hyperthermia with a high spatial-temporal resolution. Furthermore, GFN can also incorporate different therapeutic agents on their structure for delivery purposes to cancer cells. In this way, the combination PTT mediated by GFN can result in an improved therapeutic effect. In this review, the combination of GFN mediated PTT with chemo-, photodynamic-, gene-, radio-, and immuno-therapies is examined. Furthermore, the main parameters that influence these types of combination approaches are also analyzed, with emphasis on the photothermal potential of GFN and on the vascular and cellular effects produced by the temperature increase mediated by GFN.
Collapse
Affiliation(s)
- Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | | | | | | |
Collapse
|
143
|
S J, M C, M B T, A Z, K GS, R A. Investigation of Combination Effect Between 6 MV X-Ray Radiation and Polyglycerol Coated Superparamagnetic Iron Oxide Nanoparticles on U87-MG Cancer Cells. J Biomed Phys Eng 2020; 10:15-24. [PMID: 32158708 PMCID: PMC7036420 DOI: 10.31661/jbpe.v0i0.929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
Background Radiosensitization using nanoparticles is proposed as a novel strategy for treatment of different cancers. Superparamagnetic iron oxide nanoparticles (SPIONs) have been reported to enhance effects of radiotherapy in several researches. Objective The objective of this research is to investigate the radiosensitization properties of polyglycerol coated SPIONs (PG-SPIONs) on U87-MG cancer cells. Material and Methods In this experimental study, polyglycerol coated SPIONs were synthesized by thermal decomposition method and characterized by FTIR, TEM and VSM analysis. Cellular uptake of nanoparticles by cells was examined via AAS. Cytotoxicity and radiosensitization of nanoparticles in combination with radiation were evaluated by MTT and colony assay, respectively. Results Mean size of nanoparticles was 17.9±2.85 nm. FTIR verified SPIONs coating by Polyglycerol and VSM showed that they have superparamagnetic behaviour. Viability significantly (P < 0.001) decreased at concentrations above 100µg/ml for SPIONs but not for PG-SPIONs (P > 0.05). Dose verification results by TLD for doses of 2 and 4 Gy were 2±0.19 and 4±0.12 Gy respectively. The combination index for all situations was less than 1 and the effect is antagonism. Conclusion However, PG-SPIONs combination with 6 MV X-ray reduced survival of U87-MG cells compared to radiation alone but the effect is antagonism.
Collapse
Affiliation(s)
- Jafari S
- PhD, Department of Radiology Technology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Cheki M
- PhD, Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tavakoli M B
- PhD, Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zarrabi A
- PhD, Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ghazikhanlu Sani K
- PhD, Department of Radiology Technology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afzalipour R
- PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
144
|
Sun W, Zhou Z, Pratx G, Chen X, Chen H. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics 2020; 10:1296-1318. [PMID: 31938066 PMCID: PMC6956812 DOI: 10.7150/thno.41578] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) has shown great effectiveness in oncotherapy but has not been implemented in broad clinical applications because the limited penetration depth of the light used has been unable to reach deep-seated tumors. However, X-rays have been widely used in the clinical field for imaging and radiation therapy due to their excellent tissue penetration depth. Recently, X-rays have been established as an ideal excitation source for PDT, which holds great promise for breaking the depth limitation of traditional PDT for treatment of deep-seated tumors. This review aims to provide an overview of nanoscintillator-mediated X-ray induced PDT (X-PDT) including the concept, the design considerations of nanosensitizers for X-PDT, the modelling of nanosensitizer energy deposition, the putative mechanism by which X-PDT kills cells, and the prospects of future directions. We attempt to summarize the main developments that have occurred over the past decades. Possibilities and challenges for the clinical translation of X-PDT are also discussed.
Collapse
|
145
|
Guerreiro A, Chatterton N, Crabb EM, Golding JP. A comparison of the radiosensitisation ability of 22 different element metal oxide nanoparticles using clinical megavoltage X-rays. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0057-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions.
Results
Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage.
Conclusions
Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success.
Collapse
|
146
|
Li X, Porcel E, Menendez‐Miranda M, Qiu J, Yang X, Serre C, Pastor A, Desmaële D, Lacombe S, Gref R. Highly Porous Hybrid Metal–Organic Nanoparticles Loaded with Gemcitabine Monophosphate: a Multimodal Approach to Improve Chemo‐ and Radiotherapy. ChemMedChem 2019; 15:274-283. [DOI: 10.1002/cmdc.201900596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Xue Li
- Institut de Sciences Moléculaires d'Orsay UMR CNRS 8214 Université Paris-Sud Université Paris-Saclay Rue André Rivière 91405 Orsay Cedex France
| | - Erika Porcel
- Institut de Sciences Moléculaires d'Orsay UMR CNRS 8214 Université Paris-Sud Université Paris-Saclay Rue André Rivière 91405 Orsay Cedex France
| | - Mario Menendez‐Miranda
- Institut de Sciences Moléculaires d'Orsay UMR CNRS 8214 Université Paris-Sud Université Paris-Saclay Rue André Rivière 91405 Orsay Cedex France
| | - Jingwen Qiu
- Institut de Sciences Moléculaires d'Orsay UMR CNRS 8214 Université Paris-Sud Université Paris-Saclay Rue André Rivière 91405 Orsay Cedex France
| | - Xiaomin Yang
- Institut de Sciences Moléculaires d'Orsay UMR CNRS 8214 Université Paris-Sud Université Paris-Saclay Rue André Rivière 91405 Orsay Cedex France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, FRE 2000 Ecole Normale Supérieure de Paris Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University 24 rue Lhomond 75005 Paris France
| | - Alexandra Pastor
- Institut Galien UMR CNRS 8612, Université Paris-Sud, Université Paris-Saclay 5 Rue Jean-Baptiste Clément 92290 Châtenay-Malabry France
| | - Didier Desmaële
- Institut Galien UMR CNRS 8612, Université Paris-Sud, Université Paris-Saclay 5 Rue Jean-Baptiste Clément 92290 Châtenay-Malabry France
| | - Sandrine Lacombe
- Institut de Sciences Moléculaires d'Orsay UMR CNRS 8214 Université Paris-Sud Université Paris-Saclay Rue André Rivière 91405 Orsay Cedex France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay UMR CNRS 8214 Université Paris-Sud Université Paris-Saclay Rue André Rivière 91405 Orsay Cedex France
| |
Collapse
|
147
|
Habiba K, Aziz K, Sanders K, Santiago CM, Mahadevan LSK, Makarov V, Weiner BR, Morell G, Krishnan S. Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers. Sci Rep 2019; 9:17120. [PMID: 31745177 PMCID: PMC6864075 DOI: 10.1038/s41598-019-53706-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Metal nanoparticles have significant interaction cross-sections with electromagnetic waves due to their large surface area-to-volume ratio, which can be exploited in cancer radiotherapy to locally enhance the radiation dose deposition in tumors. We developed a new type of silver nanoparticle composite, PEGylated graphene quantum dot (GQD)-decorated Silver Nanoprisms (pGAgNPs), that show excellent in vitro intracellular uptake and radiosensitization in radiation-sensitive HCT116 and relatively radiation-resistant HT29 colorectal cancer cells. Furthermore, following biodistribution analysis of intravenously injected nanoparticles in nude mice bearing HCT116 tumors radiosensitization was evaluated. Treatment with nanoparticles and a single radiation dose of 10 Gy significantly reduces the growth of colorectal tumors and increases the survival time as compared to treatment with radiation only. Our findings suggest that these novel nanoparticles offer a promising paradigm for enhancing colorectal cancer radiation therapy efficacy.
Collapse
Affiliation(s)
- Khaled Habiba
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Kathryn Aziz
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keith Sanders
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carlene Michelle Santiago
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Biology, University of Puerto Rico -Rio Piedras Campus, San Juan, PR, 00925-2537, USA.,Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, 00926-2614, USA
| | | | - Vladimir Makarov
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, 00926-2614, USA.,Department of Physics, University of Puerto Rico -Rio Piedras Campus, San Juan, PR, 00925-2537, USA
| | - Brad R Weiner
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, 00926-2614, USA.,Department of Chemistry, University of Puerto Rico -Rio Piedras Campus, San Juan, PR, 00925-2537, USA.,Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, 00936-3027, USA
| | - Gerardo Morell
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, 00926-2614, USA.,Department of Physics, University of Puerto Rico -Rio Piedras Campus, San Juan, PR, 00925-2537, USA.,Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, 00936-3027, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
148
|
Wu PH, Opadele AE, Onodera Y, Nam JM. Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therapy. Cancers (Basel) 2019; 11:E1783. [PMID: 31766201 PMCID: PMC6895796 DOI: 10.3390/cancers11111783] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Due to advancements in nanotechnology, the application of nanosized materials (nanomaterials) in cancer diagnostics and therapeutics has become a leading area in cancer research. The decoration of nanomaterial surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to cancer cells. These ligands can bind to specific receptors on the cell surface and enable nanomaterials to actively target cancer cells. Integrins are one of the cell surface receptors that regulate the communication between cells and their microenvironment. Several integrins are overexpressed in many types of cancer cells and the tumor microvasculature and function in the mediation of various cellular events. Therefore, the surface modification of nanomaterials with integrin-specific ligands not only increases their binding affinity to cancer cells but also enhances the cellular uptake of nanomaterials through the intracellular trafficking of integrins. Moreover, the integrin-specific ligands themselves interfere with cancer migration and invasion by interacting with integrins, and this finding provides a novel direction for new treatment approaches in cancer nanomedicine. This article reviews the integrin-specific ligands that have been used in cancer nanomedicine and provides an overview of the recent progress in cancer diagnostics and therapeutic strategies involving the use of integrin-targeted nanomaterials.
Collapse
Affiliation(s)
- Ping-Hsiu Wu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Abayomi Emmanuel Opadele
- Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan;
| | - Yasuhito Onodera
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Jin-Min Nam
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| |
Collapse
|
149
|
Salado-Leza D, Traore A, Porcel E, Dragoe D, Muñoz A, Remita H, García G, Lacombe S. Radio-Enhancing Properties of Bimetallic Au:Pt Nanoparticles: Experimental and Theoretical Evidence. Int J Mol Sci 2019; 20:ijms20225648. [PMID: 31718091 PMCID: PMC6888691 DOI: 10.3390/ijms20225648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
The use of nanoparticles, in combination with ionizing radiation, is considered a promising method to improve the performance of radiation therapies. In this work, we engineered mono- and bimetallic core-shell gold–platinum nanoparticles (NPs) grafted with poly (ethylene glycol) (PEG). Their radio-enhancing properties were investigated using plasmids as bio-nanomolecular probes and gamma radiation. We found that the presence of bimetallic Au:Pt-PEG NPs increased by 90% the induction of double-strand breaks, the signature of nanosize biodamage, and the most difficult cell lesion to repair. The radio-enhancement of Au:Pt-PEG NPs were found three times higher than that of Au-PEG NPs. This effect was scavenged by 80% in the presence of dimethyl sulfoxide, demonstrating the major role of hydroxyl radicals in the damage induction. Geant4-DNA Monte Carlo simulations were used to elucidate the physical processes involved in the radio-enhancement. We predicted enhancement factors of 40% and 45% for the induction of nanosize damage, respectively, for mono- and bimetallic nanoparticles, which is attributed to secondary electron impact processes. This work contributed to a better understanding of the interplay between energy deposition and the induction of nanosize biomolecular damage, being Monte Carlo simulations a simple method to guide the synthesis of new radio-enhancing agents.
Collapse
Affiliation(s)
- Daniela Salado-Leza
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Cátedras CONACyT, Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, S.L.P., Mexico
| | - Ali Traore
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Erika Porcel
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR 8182) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Antonio Muñoz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 22, 28040 Madrid, Spain;
| | - Hynd Remita
- Laboratoire de Chimie Physique (UMR 8000) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Correspondence: ; Tel.: +33-(1)-6915-8263
| |
Collapse
|
150
|
Ni K, Lan G, Chan C, Duan X, Guo N, Veroneau SS, Weichselbaum RR, Lin W. Ultrathin metal-organic layer-mediated radiotherapy-radiodynamic therapy enhances immunotherapy of metastatic cancers. MATTER 2019; 1:1331-1353. [PMID: 32832885 PMCID: PMC7442115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Checkpoint blockade immunotherapy (CBI) is effective in promoting a systemic immune response against some metastatic tumors. The reliance on the pre-existing immune environment of the tumor, however, limits the efficacy of CBI on a broad spectrum of cancers. Herein, we report the design of a novel nanoscale metal-organic layer (nMOL), Hf-MOL, for effective treatment of local tumors by enabling radiotherapy-radiodynamic therapy (RT-RDT) with low-dose X-rays and, when in combination with an immune checkpoint inhibitor, regression of metastatic tumors by re-activating anti-tumor immunity and inhibiting myeloid-derived suppressor cells. Owing to the reduced dimensionality, nMOLs allow facile diffusion of reactive oxygen species and exhibit superior RT-RDT effects. The synergy of Hf-MOL-enabled RT-RDT immune activation and anti-programmed death ligand 1 (anti-PD-L1) CBI led to robust abscopal effects on a series of bilateral models of colon, head and neck, and breast cancers and significant anti-metastatic effects on an orthotopic model of breast cancer.
Collapse
Affiliation(s)
- Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally to this work
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally to this work
| | - Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Samuel S. Veroneau
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|