101
|
Guliy OI, Zaitsev BD, Borodina IA. New approach for determination of antimicrobial susceptibility to antibiotics by an acoustic sensor. Appl Microbiol Biotechnol 2019; 104:1283-1290. [PMID: 31865437 DOI: 10.1007/s00253-019-10295-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
For the first time, a rapid method was proposed to determine the susceptibility of Escherichia coli cells to antibiotics by the example of ampicillin by using a biological sensor based on a slot mode in an acoustic delay line. It has been established that an indicator of the antibiotic activity to microbial cells is the difference between the recorded sensor's signal before and after exposure cells with antibiotic. The depth and frequency of the peaks of resonant absorption in the frequency dependence of the insertion loss of sensor varied after adding an antibiotic with different concentrations to the microbial cells. By using the acoustic sensor based on slot-mode a criterion of E. coli sensitivity to ampicillin was established. The advantages of this method are the ability to carry out the analysis directly in the liquid, the short analysis time (within 10-15 min), and the possibility to reusable sensor.
Collapse
Affiliation(s)
- O I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia.
| | - B D Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov, 410019, Russia
| | - I A Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov, 410019, Russia
| |
Collapse
|
102
|
Highly specific Electrochemical Sensing of Pseudomonas aeruginosa in patients suffering from corneal ulcers: A comparative study. Sci Rep 2019; 9:18320. [PMID: 31797959 PMCID: PMC6892848 DOI: 10.1038/s41598-019-54667-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is the most common pathogenic gram-negative bacteria causing corneal ulcers globally. In severe cases, often after trauma and eye injury, corneal destruction progresses rapidly and may be completed within 24–48 h causing blindness. In our preliminary work, we have established an ultrasensitive polyaniline (PANI)/gold nanoparticles (Au NPs)/indium tin oxide (ITO) modified sensor for rapid detection of pyocyanin (PYO) in P. aeruginosa infections with a linear range from 238 μM to 1.9 μM and a detection limit of 500 nM. In the present study, we evaluated the efficiency of the established modified electrochemical sensor in the diagnosis of P. aeruginosa in 50 samples collected from patients suffering from corneal ulcers. The obtained results were compared with the results gained by the screen-printed electrode, conventional techniques, automated identification method, and the amplification of the 16 s rRNA gene by PCR as a gold standard test for P. aeruginosa identification. We have found that the electrochemical detection of PYO by square wave voltammetry technique using PANI/Au NPs modified ITO electrode was the only technique showing 100% agreement with the molecular method in sensitivity, specificity, positive and negative predictive values when compared with the SPE, conventional and automated methods.
Collapse
|
103
|
Hossain SMZ, Mansour N. Biosensors for on-line water quality monitoring – a review. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1691434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- S. M. Zakir Hossain
- Department of Chemical Engineering, University of Bahrain, Isa Town, Kingdom of Bahrain
| | - Noureddine Mansour
- Department of Chemical Engineering, University of Bahrain, Isa Town, Kingdom of Bahrain
| |
Collapse
|
104
|
García-Álvarez L, Busto H, Oteo JA. Proton nuclear magnetic resonance for antimicrobial drug susceptibility studies: why has progress been slow? Future Microbiol 2019; 14:1175-1177. [PMID: 31625445 DOI: 10.2217/fmb-2019-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lara García-Álvarez
- Department of Infectious Diseases, Center for Biomedical Research of La Rioja (CIBIR), San Pedro University Hospital. Logroño, 26006, Spain
| | - Héctor Busto
- Department of Chemistry, Center for Research in Chemical Synthesis (CISQ), University of La Rioja. Logroño, 26006, Spain
| | - José A Oteo
- Department of Infectious Diseases, Center for Biomedical Research of La Rioja (CIBIR), San Pedro University Hospital. Logroño, 26006, Spain
| |
Collapse
|
105
|
Miller LM, Silver CD, Herman R, Duhme-Klair AK, Thomas GH, Krauss TF, Johnson SD. Surface-Bound Antibiotic for the Detection of β-Lactamases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32599-32604. [PMID: 31449379 PMCID: PMC7007045 DOI: 10.1021/acsami.9b05793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance (AMR) has been identified as a major threat to public health worldwide. To ensure appropriate use of existing antibiotics, rapid and reliable tests of AMR are necessary. One of the most common and clinically important forms of bacterial resistance is to β-lactam antibiotics (e.g., penicillin). This resistance is often caused by β-lactamases, which hydrolyze β-lactam drugs, rendering them ineffective. Current methods for detecting these enzymes require either time-consuming growth assays or antibiotic mimics such as nitrocefin. Here, we report the development of a surface-bound, clinically relevant β-lactam drug that can be used to detect β-lactamases and that is compatible with a range of high-sensitivity, low-cost, and label-free analytical techniques currently being developed for point-of-care-diagnostics. Furthermore, we demonstrate the use of these functionalized surfaces to selectively detect β-lactamases in complex biological media, such as urine.
Collapse
Affiliation(s)
- Lisa M. Miller
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Callum D. Silver
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Reyme Herman
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Anne-Kathrin Duhme-Klair
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Gavin H. Thomas
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Thomas F. Krauss
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Steven D. Johnson
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| |
Collapse
|
106
|
Abstract
Advanced microbiology technologies are rapidly changing our ability to diagnose infections, improve patient care, and enhance clinical workflow. These tools are increasing the breadth, depth, and speed of diagnostic data generated per patient, and testing is being moved closer to the patient through rapid diagnostic technologies, including point-of-care (POC) technologies. Advanced microbiology technologies are rapidly changing our ability to diagnose infections, improve patient care, and enhance clinical workflow. These tools are increasing the breadth, depth, and speed of diagnostic data generated per patient, and testing is being moved closer to the patient through rapid diagnostic technologies, including point-of-care (POC) technologies. While select stakeholders have an appreciation of the value/importance of improvements in the microbial diagnostic field, there remains a disconnect between clinicians and some payers and hospital administrators in terms of understanding the potential clinical utility of these novel technologies. Therefore, a key challenge for the clinical microbiology community is to clearly articulate the value proposition of these technologies to encourage payers to cover and hospitals to adopt advanced microbiology tests. Specific guidance on how to define and demonstrate clinical utility would be valuable. Addressing this challenge will require alignment on this topic, not just by microbiologists but also by primary care and emergency room (ER) physicians, infectious disease specialists, pharmacists, hospital administrators, and government entities with an interest in public health. In this article, we discuss how to best conduct clinical studies to demonstrate and communicate clinical utility to payers and to set reasonable expectations for what diagnostic manufacturers should be required to demonstrate to support reimbursement from commercial payers and utilization by hospital systems.
Collapse
|
107
|
Lee WB, Chien CC, You HL, Kuo FC, Lee MS, Lee GB. An integrated microfluidic system for antimicrobial susceptibility testing with antibiotic combination. LAB ON A CHIP 2019; 19:2699-2708. [PMID: 31328212 DOI: 10.1039/c9lc00585d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polypharmacy is routinely administered to fight severe infections, though it has led to rampant multi-drug resistance in many bacterial strains. Preferably, antimicrobial susceptibility testing (AST) would be carried out prior to antibiotic prescription, though it is generally thought to be too complex and labor-intensive. In order to assist clinicians with better antibiotic administration for the effective treatment of bacterial infections, an integrated microfluidic system (IMS) capable of automating AST for 1-2 antibiotics against clinical bacterial pathogens was developed herein. Accurate determination of the minimum and fractional inhibitory concentrations of vancomycin, gentamicin, and linezolid were determined by assaying growth of two clinical methicillin-resistant Staphylococcus aureus isolates via a colorimetric assay on-chip. By applying various antibiotic combinations against a single pathogen in multiple chambers, the IMS could identify the optimal drug combination and the minimum effective dosage by evaluating the fractional inhibitory concentration index. This IMS possessed several advantages over conventional methods, including (1) a 50% reduction in bacterial sample and reagent volume (<50 μL per well), (2) less potential for human error due to its automatic nature, (3) faster liquid manipulation time by integrating the microfluidic components rather than labor-intensive process, and (4) straightforward result interpretation via colorimetric change instead of turbidity degree. Personalized medicine for treatment of bacterial infections may therefore be realized using this IMS.
Collapse
Affiliation(s)
- Wen-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chun-Chih Chien
- Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Huey-Ling You
- Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Feng-Chih Kuo
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Mel S Lee
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan and Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
108
|
Behera B, Anil Vishnu GK, Chatterjee S, Sitaramgupta V VSN, Sreekumar N, Nagabhushan A, Rajendran N, Prathik BH, Pandya HJ. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron 2019; 142:111552. [PMID: 31421358 DOI: 10.1016/j.bios.2019.111552] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
Abstract
Superbugs such as infectious bacteria pose a great threat to humanity due to an increase in bacterial mortality leading to clinical treatment failure, lengthy hospital stay, intravenous therapy and accretion of bacteraemia. These disease-causing bacteria gain resistance to drugs over time which further complicates the treatment. Monitoring of antibiotic resistance is therefore necessary so that bacterial infectious diseases can be diagnosed rapidly. Antimicrobial susceptibility testing (AST) provides valuable information on the efficacy of antibiotic agents and their dosages for treatment against bacterial infections. In clinical laboratories, most widely used AST methods are disk diffusion, gradient diffusion, broth dilution, or commercially available semi-automated systems. Though these methods are cost-effective and accurate, they are time-consuming, labour-intensive, and require skilled manpower. Recently much attention has been on developing rapid AST techniques to avoid misuse of antibiotics and provide effective treatment. In this review, we have discussed emerging engineering AST techniques with special emphasis on phenotypic AST. These techniques include fluorescence imaging along with computational image processing, surface plasmon resonance, Raman spectra, and laser tweezer as well as micro/nanotechnology-based device such as microfluidics, microdroplets, and microchamber. The mechanical and electrical behaviour of single bacterial cell and bacterial suspension for the study of AST is also discussed.
Collapse
Affiliation(s)
- Bhagaban Behera
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - G K Anil Vishnu
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Suman Chatterjee
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta V
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Niranjana Sreekumar
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Apoorva Nagabhushan
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | | | - B H Prathik
- Indira Gandhi Institute of Child Health, Bangalore, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
109
|
Kotenkova E, Bataeva D, Minaev M, Zaiko E. Application of EvaGreen for the assessment of Listeria monocytogenes АТСС 13932 cell viability using flow cytometry. AIMS Microbiol 2019; 5:39-47. [PMID: 31384701 PMCID: PMC6646934 DOI: 10.3934/microbiol.2019.1.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/20/2019] [Indexed: 11/18/2022] Open
Abstract
Determination of eukaryotic cell viability using flow cytometry is widespread and based on the use of fluorescent dyes such as SYTO, DAPI, SYBR, PI, and SYTOX. For many years, traditional microbiological methods have been used to successfully analyze prokaryotic cells, but the application of flow cytometry should be considered because it provides an opportunity for quantitative assessment. A combination of SYTO 9 or SYBR green and PI has been used successfully. DNA-binding dyes such as SYTO 9, SYBR green, and EvaGreen are used in qPCR. The aim of this study was to assess the feasibility of EvaGreen to determine the viability of Listeria monocytogenes АТСС 13932 cells using flow cytometry. RNA from Escherichia coli ATCC 25922 was isolated using the MagNA Pure LC RNA Isolation Kit-High Performance (Roche, Germany) according to the kit instructions on MagNA Pure LC® 2.0 (Roche, Switzerland). Chicken DNA was isolated using the Sorb-GMO-B kit (Syntol CJSC, Russia) according to the kit instructions. RNA from E. coli ATCC 25922, chicken DNA, a positive control, and a negative control of L. monocytogenes АТСС 13932 were stained with EvaGreen and analyzed on the Guava EasyCyte flow cytometer (Merck Millipore, Germany). Chicken DNA demonstrated both green and red fluorescence, while E. coli RNA displayed only red fluorescence. While the positive L. monocytogenes АТСС 13932 control and chicken DNA demonstrated similar fluorescence properties, the negative control showed a localization similar to that observed with E. coli RNA. Degraded ssDNA and RNA stained with EvaGreen demonstrated red fluorescence. Although EvaGreen is a class III dye, we observed fluorescence of live L. monocytogenes АТСС 13932 cells in the positive control stained with EvaGreen. The observed phenomenon was linked to the solution composition. It is necessary to repeat this analysis with various solution compositions as well as a wide range of both Gram-positive and Gram-negative bacteria to determine the effects on cell envelope permeability of EvaGreen.
Collapse
Affiliation(s)
- Elena Kotenkova
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, 109316, Talalikhina St., 26, Moscow, Russia
| | - Dagmara Bataeva
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, 109316, Talalikhina St., 26, Moscow, Russia
| | - Mikhail Minaev
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, 109316, Talalikhina St., 26, Moscow, Russia
| | - Elena Zaiko
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, 109316, Talalikhina St., 26, Moscow, Russia
| |
Collapse
|
110
|
Mo M, Yang Y, Zhang F, Jing W, Iriya R, Popovich J, Wang S, Grys T, Haydel SE, Tao N. Rapid Antimicrobial Susceptibility Testing of Patient Urine Samples Using Large Volume Free-Solution Light Scattering Microscopy. Anal Chem 2019; 91:10164-10171. [PMID: 31251566 PMCID: PMC7003966 DOI: 10.1021/acs.analchem.9b02174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of antibiotic resistance has prompted the development of rapid antimicrobial susceptibility testing (AST) technologies that will enable evidence-based treatment and promote antimicrobial stewardship. To date, many rapid AST methods have been developed, but few are able to be performed on clinical samples directly. Here we developed a large volume light scattering microscopy technique that tracks phenotypic features of single bacterial cells directly in clinical urine samples without sample enrichment or culturing. The technique demonstrated rapid (90 min) detection of Escherichia coli in 24 clinical urine samples with 100% sensitivity and 83% specificity and rapid (90 min) AST in 12 urine samples with 87.5% categorical agreement with two antibiotics, ampicillin and ciprofloxacin.
Collapse
Affiliation(s)
- Manni Mo
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Fenni Zhang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Wenwen Jing
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Rafael Iriya
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - John Popovich
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Shelley E. Haydel
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona 85287, United States
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
111
|
Song D, Liu H, Ji H, Lei Y. Whole Slide Imaging for High-Throughput Sensing Antibiotic Resistance at Single-Bacterium Level and Its Application to Rapid Antibiotic Susceptibility Testing. Molecules 2019; 24:molecules24132441. [PMID: 31277201 PMCID: PMC6651422 DOI: 10.3390/molecules24132441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
Since conventional culture-based antibiotic susceptibility testing (AST) methods are too time-consuming (typically 24–72 h), rapid AST is urgently needed for preventing the increasing emergence and spread of antibiotic resistant infections. Although several phenotypic antibiotic resistance sensing modalities are able to reduce the AST time to a few hours or less, concerning the biological heterogeneity, their accuracy or limit of detection are limited by low throughput. Here, we present a rapid AST method based on whole slide imaging (WSI)-enabled high-throughput sensing antibiotic resistance at single-bacterium level. The time for determining the minimum inhibitory concentration (MIC) was theoretically shortest, which ensures that the growth of each individual cell present in a large population is inhibited. As a demonstration, our technique was able to sense the growth of at least several thousand bacteria at single-cell level. Reliable MIC of Enterobacter cloacae against gentamicin was obtained within 1 h, while the gold standard broth dilution method required at least 16 h for the same result. In addition, the application of our method prevails over other imaging-based AST approaches in allowing rapid and accurate determination of antibiotic susceptibility for phenotypically heterogeneous samples, in which the number of antibiotic resistant cells was negligible compared to that of the susceptible cells. Hence, our method shows great promise for both rapid AST determination and point-of-care testing of complex clinical bacteria isolates.
Collapse
Affiliation(s)
- Donghui Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Haomin Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Huayi Ji
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yu Lei
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
112
|
Inglis TJJ, Ekelund O. Rapid antimicrobial susceptibility tests for sepsis; the road ahead. J Med Microbiol 2019; 68:973-977. [PMID: 31145055 DOI: 10.1099/jmm.0.000997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current methods for antimicrobial susceptibility testing (AST) are too slow to affect initial treatment decisions in the early stages of sepsis, when the prescriber is most concerned to select effective therapy immediately, rather than finding out what will not work 1 or 2 days later. There is a clear need for much faster differentiation between viral and bacterial infection, and AST, linked to earlier aetiological diagnosis, without sacrificing either the accuracy of quantitative AST or the low cost of qualitative AST. Truly rapid AST methods are eagerly awaited, and there are several candidate technologies that aim to improve the targeting of our limited stock of effective antimicrobial agents. However, none of these technologies are approaching the point of care and nor can they be described as truly culture-independent diagnostic tests. Rapid chemical and genomic methods of resistance detection are not yet reliable predictors of antimicrobial susceptibility and often rely on prior bacterial isolation. In order to resolve the trade-off between diagnostic confidence and therapeutic efficacy in increasingly antimicrobial-resistant sepsis, we propose a series of three linked decision milestones: initial clinical assessment (e.g. qSOFA score) within 10 min, initial laboratory tests and presumptive antimicrobial therapy within 1 h, and definitive AST with corresponding antimicrobial amendment within an 8 h window (i.e. the same working day). Truly rapid AST methods therefore must be integrated into the clinical laboratory workflow to ensure maximum impact on clinical outcomes of sepsis, and diagnostic and antimicrobial stewardship. The requisite series of development stages come with a substantial regulatory burden that hinders the translation of innovation into practice. The regulatory hurdles for the adoption of rapid AST technology emphasize technical accuracy, but progress will also rely on the effect rapid AST has on prescribing behaviour by physicians managing the care of patients with sepsis. Early adopters in well-equipped teaching centres in close proximity to large clinical laboratories are likely to be early beneficiaries of rapid AST, while simplified and lower-cost technology is needed to support poorly resourced hospitals in developing countries, with their higher burden of AMR. If we really want the clinical laboratory to deliver a specific, same-day diagnosis underpinned by definitive AST results, we are going to have to advocate more effectively for the clinical benefits of bacterial detection and susceptibility testing at critical decision points in the sepsis management pathway.
Collapse
Affiliation(s)
- Timothy J J Inglis
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.,Schools of Medicine and Biomedical Sciences, Faculty of Health and Medical Sciences, the University of Western Australia, Crawley, WA 6009, Australia
| | - Oskar Ekelund
- Department of Clinical Microbiology, Region Kronoberg, Växjö, Sweden
| |
Collapse
|
113
|
Yang K, Li HZ, Zhu X, Su JQ, Ren B, Zhu YG, Cui L. Rapid Antibiotic Susceptibility Testing of Pathogenic Bacteria Using Heavy-Water-Labeled Single-Cell Raman Spectroscopy in Clinical Samples. Anal Chem 2019; 91:6296-6303. [PMID: 30942570 DOI: 10.1021/acs.analchem.9b01064] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Speeding up antibiotic susceptibility testing (AST) is urgently needed in clincial settings to guide fast and tailored antibiotic prescription before treatment. It remains a big challenge to achieve a sample-to-AST answer within a half working day directly from a clinical sample. Here we develop single-cell Raman spectroscopy coupled with heavy water labeling (Raman-D2O) as a rapid activity-based AST approach directly applicable for clinical urine samples. By rapidly transferring (15 min) bacteria in clinical urine for AST, the total assay time from receiving urine to binary susceptibility/resistance (S/R) readout was shortened to only 2.5 h. Moreover, by overcoming the nonsynchronous responses between microbial activity and microbial growth, together with setting a new S/R cutoff value based on relative C-D ratios, S/R of both pathogenic isolates and three clinical urines against antibiotics of different action mechanisms determined by Raman-D2O were all consistent with the slow standard AST assay used in clincial settings. This work promotes clinical practicability and faciliates antibiotic stewardship.
Collapse
Affiliation(s)
- Kai Yang
- Key Lab of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Xuan Zhu
- The Second Affiliated Hospital of Xiamen Medical College , Xiamen 361021 , China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China
| | - Bin Ren
- Department of Chemistry , Xiamen University , Xiamen 361005 , China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China.,State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Li Cui
- Key Lab of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China
| |
Collapse
|
114
|
Pitruzzello G, Thorpe S, Johnson S, Evans A, Gadêlha H, Krauss TF. Multiparameter antibiotic resistance detection based on hydrodynamic trapping of individual E. coli. LAB ON A CHIP 2019; 19:1417-1426. [PMID: 30869093 DOI: 10.1039/c8lc01397g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There is an urgent need to develop novel methods for assessing the response of bacteria to antibiotics in a timely manner. Antibiotics are traditionally assessed via their effect on bacteria in a culture medium, which takes 24-48 h and exploits only a single parameter, i.e. growth. Here, we present a multiparameter approach at the single-cell level that takes approximately an hour from spiking the culture to correctly classify susceptible and resistant strains. By hydrodynamically trapping hundreds of bacteria, we simultaneously monitor the evolution of motility and morphology of individual bacteria upon drug administration. We show how this combined detection method provides insights into the activity of antimicrobials at the onset of their action which single parameter and traditional tests cannot offer. Our observations complement the current growth-based methods and highlight the need for future antimicrobial susceptibility tests to take multiple parameters into account.
Collapse
|
115
|
FRET probe-based antibacterial susceptibility testing (F-AST) by detection of bacterial nucleases released by antibiotic-induced lysis. Biosens Bioelectron 2019; 130:225-229. [DOI: 10.1016/j.bios.2019.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/21/2022]
|
116
|
Sabu P, Elangovan D, Pragasam AK, Bakthavatchalam YD, Rodrigues C, Chitnis DS, Chaudhuri BN, Veeraraghavan B. Efficacy ratio: A tool to enhance optimal antimicrobial use for intra-abdominal infections. Indian J Pharmacol 2019; 50:332-335. [PMID: 30783326 PMCID: PMC6364343 DOI: 10.4103/ijp.ijp_264_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Antimicrobial resistance and inappropriate antibiotic regimen hamper a favorable outcome in intra-abdominal infections. Clinicians rely on the minimum inhibitory concentration (MIC) value to choose from the susceptible antimicrobials. However, the MIC values cannot be directly compared between the different antibiotics because their breakpoints are different. For that reason, efficacy ratio (ER), a ratio of susceptible MIC breakpoint and MIC of isolate, can be used to choose the most appropriate antimicrobial. MATERIALS AND METHODS A prospective, observational study conducted during 2015 and 2016 included 356 Escherichia coli and 158 Klebsiella spp. isolates obtained from the intra-abdominal specimens. MIC was determined by microbroth dilution method, and ER of each antibiotic was calculated for all the isolates. RESULTS For both E. coli and Klebsiella spp., ertapenem, amikacin, and piperacillin/tazobactam had the best activities among their respective antibiotic classes. DISCUSSION This is the first study calculating ER for deciding empiric treatment choices. ER also has a potential additional value in choosing the use of susceptible drugs as monotherapy or combination therapy. A shift in ERs over a period of time tracks rising MIC values and predicts antimicrobial resistance development. CONCLUSION Estimation of ER could be a meaningful addition for the interpretation of an antimicrobial susceptibility report, thus helping the physician to choose the best among susceptible antimicrobials for patient management.
Collapse
Affiliation(s)
- Priyanka Sabu
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Divyaa Elangovan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Camilla Rodrigues
- Department of Microbiology, PD Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - D S Chitnis
- Department of Microbiology and Immunology, Choithram Hospital, Indore, Madhya Pradesh, India
| | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
117
|
Nelson MM, Waldron CL, Bracht JR. Rapid molecular detection of macrolide resistance. BMC Infect Dis 2019; 19:144. [PMID: 30755177 PMCID: PMC6373131 DOI: 10.1186/s12879-019-3762-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Emerging antimicrobial resistance is a significant threat to human health. However, methods for rapidly diagnosing antimicrobial resistance generally require multi-day culture-based assays. Macrolide efflux gene A, mef(A), provides resistance against erythromycin and azithromycin and is known to be laterally transferred among a wide range of bacterial species. METHODS We use Recombinase Polymerase Assay (RPA) to detect the antimicrobial resistance gene mef(A) from raw lysates without nucleic acid purification. To validate these results we performed broth dilution assays to assess antimicrobial resistance to erythromycin and ampicillin (a negative control). RESULTS We validate the detection of mef(A) in raw lysates of Streptococcus pyogenes, S. pneumoniae, S. salivarius, and Enterococcus faecium bacterial lysates within 7-10 min of assay time. We show that detection of mef(A) accurately predicts real antimicrobial resistance assessed by traditional culture methods, and that the assay is robust to high levels of spiked-in non-specific nucleic acid contaminant. The assay was unaffected by single-nucleotide polymorphisms within divergent mef(A) gene sequences, strengthening its utility as a robust diagnostic tool. CONCLUSIONS This finding opens the door to implementation of rapid genomic diagnostics in a clinical setting, while providing researchers a rapid, cost-effective tool to track antibiotic resistance in both pathogens and commensal strains.
Collapse
Affiliation(s)
- Megan M. Nelson
- Department of Biology, American University, Washington, DC 20016 USA
| | | | - John R. Bracht
- Department of Biology, American University, Washington, DC 20016 USA
| |
Collapse
|
118
|
Nanotheranostics Approaches in Antimicrobial Drug Resistance. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
119
|
Maugeri G, Lychko I, Sobral R, Roque ACA. Identification and Antibiotic-Susceptibility Profiling of Infectious Bacterial Agents: A Review of Current and Future Trends. Biotechnol J 2019; 14:e1700750. [PMID: 30024110 PMCID: PMC6330097 DOI: 10.1002/biot.201700750] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/06/2018] [Indexed: 12/16/2022]
Abstract
Antimicrobial resistance is one of the most worrying threats to humankind with extremely high healthcare costs associated. The current technologies used in clinical microbiology to identify the bacterial agent and profile antimicrobial susceptibility are time-consuming and frequently expensive. As a result, physicians prescribe empirical antimicrobial therapies. This scenario is often the cause of therapeutic failures, causing higher mortality rates and healthcare costs, as well as the emergence and spread of antibiotic resistant bacteria. As such, new technologies for rapid identification of the pathogen and antimicrobial susceptibility testing are needed. This review summarizes the current technologies, and the promising emerging and future alternatives for the identification and profiling of antimicrobial resistance bacterial agents, which are expected to revolutionize the field of clinical diagnostics.
Collapse
Affiliation(s)
- Gaetano Maugeri
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Iana Lychko
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Rita Sobral
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| | - Ana C A Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516, Caparica, Portugal
| |
Collapse
|
120
|
Leonard H, Colodner R, Halachmi S, Segal E. Recent Advances in the Race to Design a Rapid Diagnostic Test for Antimicrobial Resistance. ACS Sens 2018; 3:2202-2217. [PMID: 30350967 DOI: 10.1021/acssensors.8b00900] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even with advances in antibiotic therapies, bacterial infections persistently plague society and have amounted to one of the most prevalent issues in healthcare today. Moreover, the improper and excessive administration of antibiotics has led to resistance of many pathogens to prescribed therapies, rendering such antibiotics ineffective against infections. While the identification and detection of bacteria in a patient's sample is critical for point-of-care diagnostics and in a clinical setting, the consequent determination of the correct antibiotic for a patient-tailored therapy is equally crucial. As a result, many recent research efforts have been focused on the development of sensors and systems that correctly guide a physician to the best antibiotic to prescribe for an infection, which can in turn, significantly reduce the instances of antibiotic resistance and the evolution of bacteria "superbugs." This review details the advantages and shortcomings of the recent advances (focusing from 2016 and onward) made in the developments of antimicrobial susceptibility testing (AST) measurements. Detection of antibiotic resistance by genomic AST techniques relies on the prediction of antibiotic resistance via extracted bacterial DNA content, while phenotypic determinations typically track physiological changes in cells and/or populations exposed to antibiotics. Regardless of the method used for AST, factors such as cost, scalability, and assay time need to be weighed into their design. With all of the expansive innovation in the field, which technology and sensing systems demonstrate the potential to detect antimicrobial resistance in a clinical setting?
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, Israel 18101
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, Israel 3104800
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa, Israel, 3200003
| |
Collapse
|
121
|
Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact. Appl Microbiol Biotechnol 2018; 103:549-566. [PMID: 30443798 DOI: 10.1007/s00253-018-9505-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
The development of antibiotic resistances in common pathogens is an increasing challenge for therapy of infections and especially severe complications like sepsis. To prevent administration of broad-spectrum and potentially non-effective antibiotics, the susceptibility spectrum of the pathogens underlying the infection has to be determined. Current phenotypic standard methods for antibiotic susceptibility testing (AST) require the isolation of pathogens from the patient and the subsequent culturing in the presence of antibiotics leading to results only after 24-72 h. Since the early initialization of an effective antibiotic therapy is crucial for positive treatment result in severe infections, faster methods of AST are urgently needed. A large number of different assay systems are currently tested for their practicability for fast detection of antibiotic resistance profiles. They can be divided into genotypic ones which detect the presence of certain genes or gene products associated with resistances and phenotypic assays which determine the effect of antibiotics on the pathogens. In this mini-review, we summarize current developments in fast phenotypic tests that use photonic approaches and critically discuss their status. We further outline steps that are required to bring these assays into clinical practice.
Collapse
|
122
|
Zhang X, Jiang X, Hao Z, Qu K. Advances in online methods for monitoring microbial growth. Biosens Bioelectron 2018; 126:433-447. [PMID: 30472440 DOI: 10.1016/j.bios.2018.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/16/2018] [Indexed: 12/24/2022]
Abstract
Understanding the characteristics of microbial growth is of great significance to many fields including in scientific research, the food industry, health care, and agriculture. Many methods have been established to characterize the process of microbial growth. Online and automated methods, in which sample transfer is avoided, are popular because they can facilitate the development of simple, safe, and effective growth monitoring. This review focuses on advances in online monitoring methods over the last decade (2008-2018). We specifically focus on optic- and electrochemistry-based techniques, either through contact measurements or contactless measurement. Strengths and weaknesses of each set of methods are described and we also speculate on forthcoming trends in the field.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xiaoyu Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihui Hao
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agriculture University, 700, Changcheng Rd, Chengyang District, Qingdao 266109, China.
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Rd, Shinan District, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
123
|
Karaman N, Adil Zainel R, Kapkaç HA, Karaca Gençer H, Ilgın S, Karaduman AB, Karaküçük-İyidoğan A, Oruç-Emre EE, Koçyiğit-Kaymakçıoğlu B. Design and evaluation of biological activities of 1,3-oxazolidinone derivatives bearing amide, sulfonamide, and thiourea moieties. Arch Pharm (Weinheim) 2018; 351:e1800057. [DOI: 10.1002/ardp.201800057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Nurcan Karaman
- Faculty of Arts and Sciences, Department of Chemistry; Gaziantep University; Gaziantep Turkey
| | - Rabeah Adil Zainel
- Faculty of Arts and Sciences, Department of Chemistry; Gaziantep University; Gaziantep Turkey
| | - Handan A. Kapkaç
- Faculty of Science, Department of Biology; Anadolu University; Eskisehir Turkey
| | - Hülya Karaca Gençer
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology; Anadolu University; Eskisehir Turkey
| | - Sinem Ilgın
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology; Anadolu University; Eskisehir Turkey
| | - A. Burak Karaduman
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology; Anadolu University; Eskisehir Turkey
| | | | - Emine E. Oruç-Emre
- Faculty of Arts and Sciences, Department of Chemistry; Gaziantep University; Gaziantep Turkey
| | | |
Collapse
|
124
|
Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin Microbiol Infect 2018; 24:738-743. [DOI: 10.1016/j.cmi.2017.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022]
|
125
|
|
126
|
Zhang X, Jiang X, Yang Q, Wang X, Zhang Y, Zhao J, Qu K, Zhao C. Online Monitoring of Bacterial Growth with an Electrical Sensor. Anal Chem 2018; 90:6006-6011. [PMID: 29685039 DOI: 10.1021/acs.analchem.8b01214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, we developed an automatic electrical bacterial growth sensor (EBGS) based on a multichannel capacitively coupled contactless conductivity detector (C4D). With the use of the EBGS, up to eight culture samples of E. coli in disposable tubes were online monitored simultaneously in a noninvasive manner. Growth curves with high resolution (on the order of a time scale of seconds) were generated by plotting normalized apparent conductivity value against incubation time. The characteristic data of E. coli growth (e.g., growth rate) obtained here were more accurate than those obtained with optical density and contact conductivity methods. And the correlation coefficient of the regression line ( r) for quantitative determination of viable bacteria was 0.9977. Moreover, it also could be used for other tasks, such as the investigation of toxic/stress effects from chemicals and antimicrobial susceptibility testing. All of these performances required neither auxiliary devices nor additional chemicals and biomaterials. Taken together, this strategy has the advantages of simplicity, accuracy, reproducibility, affordability, versatility, and miniaturization, liberating the users greatly from financial and labor costs.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Xiaoyu Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China.,College of Marine Sciences , Shanghai Ocean University , Shanghai 201306 , China
| | - Qianqian Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China.,College of Marine Sciences , Shanghai Ocean University , Shanghai 201306 , China
| | - Xiaochun Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Yan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Jun Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences and Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , 106 Nanjing Road , Qingdao 266071 , China
| | - Chuan Zhao
- School of Chemistry , Kensington Campus, The University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
127
|
Linear gold(I) complex with tris-(2-carboxyethyl)phosphine (TCEP): Selective antitumor activity and inertness toward sulfur proteins. J Inorg Biochem 2018; 186:104-115. [PMID: 29885553 DOI: 10.1016/j.jinorgbio.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
The search for modulating ligand substitution reaction in gold complexes is essential to find new active metallo compounds for medical applications. In this work, a new linear and hydrosoluble goldI complex with tris-(2-carboxyethylphosphine) (AuTCEP). The two phosphines coordinate linearly to the metal as solved by single crystal X-ray diffraction. Complete spectroscopic characterization is also reported. In vitro growth inhibition (GI50) in a panel of nine tumorigenic and one non-tumorigenic cell lines demonstrated the complex is highly selective to ovarium adenocarcinoma (OVCAR-03) with GI50 of 3.04 nmol mL-1. Moreover, non-differential uptake of AuTCEP was observed between OVCAR-03 (tumor) and HaCaT (non-tumor) two cell lines. Biophysical evaluation with the sulfur-rich biomolecules showed the compound does not interact with two types of zinc fingers, bovine serum albumin, N-acetyl-l-cysteine and also l-histidine, revealing to be inert to ligand substitution reactions with these molecules. However, AuTCEP demonstrated to cleave plasmidial DNA, suggesting DNA as a possible target. No antibacterial activity was observed in the strains evaluated. Besides, it inhibits 15% of the activity of a mixture of serine-β-lactamase and metallo-β-lactamase from Bacillus cereus in the enzymatic activity assay, similarly to EDTA. These results suggest AuTCEP is selective to metallo-β-lactamase but the cell uptake is hindered, and the compound does not reach the periplasmic space of Gram-positive bacteria. The unique inert behavior of AuTCEP is interesting and represent the modulation of the reactivity through coordination chemistry to decrease the toxicity associated with AuI complexes and its lack of specificity, generating very selective compounds with unexpected targets.
Collapse
|
128
|
Munteanu FD, Titoiu AM, Marty JL, Vasilescu A. Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes. SENSORS 2018; 18:s18030901. [PMID: 29562637 PMCID: PMC5877114 DOI: 10.3390/s18030901] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
This review provides a brief overview of the fabrication and properties of screen-printed electrodes and details the different opportunities to apply them for the detection of antibiotics, detection of bacteria and antibiotic susceptibility. Among the alternative approaches to costly chromatographic or ELISA methods for antibiotics detection and to lengthy culture methods for bacteria detection, electrochemical biosensors based on screen-printed electrodes present some distinctive advantages. Chemical and (bio)sensors for the detection of antibiotics and assays coupling detection with screen-printed electrodes with immunomagnetic separation are described. With regards to detection of bacteria, the emphasis is placed on applications targeting viable bacterial cells. While the electrochemical sensors and biosensors face many challenges before replacing standard analysis methods, the potential of screen-printed electrodes is increasingly exploited and more applications are anticipated to advance towards commercial analytical tools.
Collapse
Affiliation(s)
- Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Elena Dragoi, No. 2, Arad 310330, Romania.
| | - Ana Maria Titoiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania.
| |
Collapse
|
129
|
Gao T, Zeng H, Xu H, Gao F, Li W, Zhang S, Liu Y, Luo G, Li M, Jiang D, Chen Z, Wu Y, Wang W, Zeng W. Novel Self-assembled Organic Nanoprobe for Molecular Imaging and Treatment of Gram-positive Bacterial Infection. Am J Cancer Res 2018; 8:1911-1922. [PMID: 29556364 PMCID: PMC5858508 DOI: 10.7150/thno.22534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Increasing bacterial infections as well as a rise in bacterial resistance call for the development of novel and safe antimicrobial agents without inducing bacterial resistance. Nanoparticles (NPs) present some advantages in treating bacterial infections and provide an alternative strategy to discover new antibiotics. Here, we report the development of novel self-assembled fluorescent organic nanoparticles (FONs) with excellent antibacterial efficacy and good biocompatibility. Methods: Self-assembly of 1-(12-(pyridin-1-ium-1-yl)dodecyl)-4-(1,4,5-triphenyl-1H-imidazol-2-yl)pyridin-1-ium (TPIP) in aqueous solution was investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bacteria were imaged under a laser scanning confocal microscope. We evaluated the antibacterial efficacy of TPIP-FONsin vitro using sugar plate test. The antimicrobial mechanism was explored by SEM. The biocompatibility of the nanoparticles was examined using cytotoxicity test, hemolysis assay, and histological staining. We further tested the antibacterial efficacy of TPIP-FONsin vivo using the S. aureus-infected rats. Results: In aqueous solution, TPIP could self-assemble into nanoparticles (TPIP-FONs) with characteristic aggregation-induced emission (AIE). TPIP-FONs could simultaneously image gram-positive bacteria without the washing process. In vitro antimicrobial activity suggested that TPIP-FONs had excellent antibacterial activity against S. aureus (MIC = 2.0 µg mL-1). Furthermore, TPIP-FONs exhibited intrinsic biocompatibility with mammalian cells, in particular, red blood cells. In vivo studies further demonstrated that TPIP-FONs had excellent antibacterial efficacy and significantly reduced bacterial load in the infectious sites. Conclusion: The integrated design of bacterial imaging and antibacterial functions in the self-assembled small molecules provides a promising strategy for the development of novel antimicrobial nanomaterials.
Collapse
|
130
|
Iriya R, Syal K, Jing W, Mo M, Yu H, Haydel SE, Wang S, Tao N. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 29235272 PMCID: PMC8357327 DOI: 10.1117/1.jbo.22.12.126002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (∼9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Rafael Iriya
- Arizona State University, Biodesign Center for Biosensors and Bioelectronics, Tempe, Arizona, United States
- Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, Arizona, United States
| | - Karan Syal
- Arizona State University, Biodesign Center for Biosensors and Bioelectronics, Tempe, Arizona, United States
| | - Wenwen Jing
- Arizona State University, Biodesign Center for Biosensors and Bioelectronics, Tempe, Arizona, United States
| | - Manni Mo
- Arizona State University, Biodesign Center for Biosensors and Bioelectronics, Tempe, Arizona, United States
| | - Hui Yu
- Arizona State University, Biodesign Center for Biosensors and Bioelectronics, Tempe, Arizona, United States
- Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing, China
| | - Shelley E. Haydel
- Arizona State University, School of Life Sciences, Tempe, Arizona, United States
- Arizona State University, Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Tempe, Arizona, United States
| | - Shaopeng Wang
- Arizona State University, Biodesign Center for Biosensors and Bioelectronics, Tempe, Arizona, United States
- Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing, China
| | - Nongjian Tao
- Arizona State University, Biodesign Center for Biosensors and Bioelectronics, Tempe, Arizona, United States
- Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, Arizona, United States
- Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing, China
| |
Collapse
|
131
|
Syal K, Shen S, Yang Y, Wang S, Haydel SE, Tao N. Rapid Antibiotic Susceptibility Testing of Uropathogenic E. coli by Tracking Submicron Scale Motion of Single Bacterial Cells. ACS Sens 2017; 2:1231-1239. [PMID: 28741927 DOI: 10.1021/acssensors.7b00392] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To combat antibiotic resistance, a rapid antibiotic susceptibility testing (AST) technology that can identify resistant infections at disease onset is required. Current clinical AST technologies take 1-3 days, which is often too slow for accurate treatment. Here we demonstrate a rapid AST method by tracking sub-μm scale bacterial motion with an optical imaging and tracking technique. We apply the method to clinically relevant bacterial pathogens, Escherichia coli O157: H7 and uropathogenic E. coli (UPEC) loosely tethered to a glass surface. By analyzing dose-dependent sub-μm motion changes in a population of bacterial cells, we obtain the minimum bactericidal concentration within 2 h using human urine samples spiked with UPEC. We validate the AST method using the standard culture-based AST methods. In addition to population studies, the method allows single cell analysis, which can identify subpopulations of resistance strains within a sample.
Collapse
Affiliation(s)
- Karan Syal
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Simon Shen
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shelley E. Haydel
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Biosensors and
Bioelectronics, ‡School of Electrical, Computer and
Energy Engineering, §Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, and ∥School of Life
Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|