101
|
Llobet Rosell A, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol 2019; 9:190118. [PMID: 31455157 PMCID: PMC6731592 DOI: 10.1098/rsob.190118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axon loss is a shared feature of nervous systems being challenged in neurological disease, by chemotherapy or mechanical force. Axons take up the vast majority of the neuronal volume, thus numerous axonal intrinsic and glial extrinsic support mechanisms have evolved to promote lifelong axonal survival. Impaired support leads to axon degeneration, yet underlying intrinsic signalling cascades actively promoting the disassembly of axons remain poorly understood in any context, making the development to attenuate axon degeneration challenging. Wallerian degeneration serves as a simple model to study how axons undergo injury-induced axon degeneration (axon death). Severed axons actively execute their own destruction through an evolutionarily conserved axon death signalling cascade. This pathway is also activated in the absence of injury in diseased and challenged nervous systems. Gaining insights into mechanisms underlying axon death signalling could therefore help to define targets to block axon loss. Herein, we summarize features of axon death at the molecular and subcellular level. Recently identified and characterized mediators of axon death signalling are comprehensively discussed in detail, and commonalities and differences across species highlighted. We conclude with a summary of engaged axon death signalling in humans and animal models of neurological conditions. Thus, gaining mechanistic insights into axon death signalling broadens our understanding beyond a simple injury model. It harbours the potential to define targets for therapeutic intervention in a broad range of human axonopathies.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| |
Collapse
|
102
|
Ding C, Hammarlund M. Mechanisms of injury-induced axon degeneration. Curr Opin Neurobiol 2019; 57:171-178. [PMID: 31071521 PMCID: PMC6629473 DOI: 10.1016/j.conb.2019.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Injury-induced axon degeneration in model organisms and cell culture has emerged as an area of growing interest due to its experimental tractability and to the promise of identifying conserved mechanisms that mediate axon loss in human disease. Injury-induced axon degeneration is also observed within the well-studied process of Wallerian degeneration, a complex phenomenon triggered by axon injury to peripheral nerves in mammals. Recent studies have led to the identification of key molecular components of injury-induced axon degeneration. Axon survival factors, such as NMNAT2, act to protect injured axons from degeneration. By contrast, factors such as SARM1, MAPK, and PHR1 act to promote degeneration. The coordinated activity of these factors determines axon fate after injury. Since axon loss is an early feature of neurodegenerative diseases, it is possible that understanding the molecular mechanism of injury-induced degeneration will lead to new treatments for axon loss in neurodegenerative disease. Here, we discuss the critical pathways for injury-induced axon degeneration across species with an emphasis on their interactions in an integrated signaling network.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University, New Haven, United States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University, New Haven, United States; Department of Genetics, Yale University, New Haven, United States.
| |
Collapse
|
103
|
Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 2019; 73:100769. [PMID: 31301400 DOI: 10.1016/j.preteyeres.2019.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
Axonal degeneration is an active, highly controlled process that contributes to beneficial processes, such as developmental pruning, but also to neurodegeneration. In glaucoma, ocular hypertension leads to vision loss by killing the output neurons of the retina, the retinal ganglion cells (RGCs). Multiple processes have been proposed to contribute to and/or mediate axonal injury in glaucoma, including: neuroinflammation, loss of neurotrophic factors, dysregulation of the neurovascular unit, and disruption of the axonal cytoskeleton. While the inciting injury to RGCs in glaucoma is complex and potentially heterogeneous, axonal injury is ultimately thought to be the key insult that drives glaucomatous neurodegeneration. Glaucomatous neurodegeneration is a complex process, with multiple molecular signals contributing to RGC somal loss and axonal degeneration. Furthermore, the propagation of the axonal injury signal is complex, with injury triggering programs of degeneration in both the somal and axonal compartment. Further complicating this process is the involvement of multiple cell types that are known to participate in the process of axonal and neuronal degeneration after glaucomatous injury. Here, we review the axonal signaling that occurs after injury and the molecular signaling programs currently known to be important for somal and axonal degeneration after glaucoma-relevant axonal injuries.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
104
|
Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci 2019; 24:371-383. [PMID: 31280708 DOI: 10.1080/1028415x.2019.1637504] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that mediates various redox reactions. Particularly, mitochondrial NAD plays a critical role in energy production pathways, including the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and oxidative phosphorylation. NAD also serves as a substrate for ADP-ribosylation and deacetylation by poly(ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response. Numerous studies have demonstrated the involvement of NAD metabolism in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and retinal degenerative diseases. Mitochondrial dysfunction is considered crucial pathogenesis for neurodegenerative diseases such as AD and PD. Maintaining appropriate NAD levels is important for mitochondrial function. Indeed, decreased NAD levels are observed in AD and PD, and supplementation of NAD precursors ameliorates disease phenotypes by activating mitochondrial functions. NAD metabolism also plays an important role in axonal degeneration, a characteristic feature of peripheral neuropathy and neurodegenerative diseases. In addition, dysregulated NAD metabolism is implicated in retinal degenerative diseases such as glaucoma and Leber congenital amaurosis, and NAD metabolism is considered a therapeutic target for these diseases. In this review, we summarize the involvement of NAD metabolism in axon degeneration and various neurodegenerative diseases and discuss perspectives of nutritional intervention using NAD precursors.
Collapse
Affiliation(s)
- Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
105
|
Abstract
The mechanism of axon degeneration is incompletely understood. A recent study demonstrates that transgenic expression of bacterial nicotinamide adenine mononucleotide (NMN) in zebrafish and mice, which decreases NMN levels by converting it to NaMN, protects against axon degeneration.
Collapse
Affiliation(s)
- Michael S Cohen
- Program in Chemical Biology, Neuroscience Graduate Program, and Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97210, USA.
| |
Collapse
|
106
|
Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho CY, Russell JW. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD +-dependent SIRT1-PGC-1α-TFAM pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:177-209. [PMID: 31208524 DOI: 10.1016/bs.irn.2019.04.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival of human peripheral nervous system neurons and associated distal axons is highly dependent on energy. Diabetes invokes a maladaptation in glucose and lipid energy metabolism in adult sensory neurons, axons and Schwann cells. Mitochondrial (Mt) dysfunction has been implicated as an etiological factor in failure of energy homeostasis that results in a low intrinsic aerobic capacity within the neuron. Over time, this energy failure can lead to neuronal and axonal degeneration and results in increased oxidative injury in the neuron and axon. One of the key pathways that is impaired in diabetic peripheral neuropathy (DPN) is the energy sensing pathway comprising the nicotinamide-adenine dinucleotide (NAD+)-dependent Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α)/Mt transcription factor A (TFAM or mtTFA) signaling pathway. Knockout of PGC-1α exacerbates DPN, whereas overexpression of human TFAM is protective. LY379268, a selective metabolomic glutamate receptor 2/3 (mGluR2/3) receptor agonist, also upregulates the SIRT1/PGC-1α/TFAM signaling pathway and prevents DPN through glutamate recycling in Schwann/satellite glial (SG) cells and by improving dorsal root ganglion (DRG) neuronal Mt function. Furthermore, administration of nicotinamide riboside (NR), a precursor of NAD+, prevents and reverses DPN, in part by increasing NAD+ levels and SIRT1 activity. In summary, we review the role of NAD+, mitochondria and the SIRT1-PGC-1α-TFAM pathway both from the perspective of pathogenesis and therapy in DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muragundla Anjaneyulu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Preclinical Division, Syngene International Ltd., Bangalore, India
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
107
|
Schmidt RE. Mitochondriopathy: The unifying concept in distal neuropathies? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:1-12. [PMID: 31208521 DOI: 10.1016/bs.irn.2019.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This is a new, exciting time for the study of peripheral nerve and its diseases. For many years research in peripheral neuropathies largely involved descriptive analysis, a situation which is now rapidly giving way to hypothesis testing with the development and validation of molecular genetic tools. Although it has been known for some time that many neuropathies target the most distal portions of the longest peripheral nerves, a process variously referred to as central-peripheral distal neuropathy, "dying-back" neuropathy, or "stocking-glove" neuropathy, proposed mechanisms driving axon loss have been generally unproven/untestable. Studies have shown that mitochondrial DNA mutations accumulate in distal axons and a unifying theory of distal neuropathy has been proposed based on underlying mitochondrial aging defects in mitogenesis and, thus, distal axon susceptibility, particularly if axonal transport defects also accompanied them. Increased levels of mtDNA mutations have been described in some painful neuropathies (e.g., HIV) compared to baseline HIV patients and controls. For some time no therapies were available to preserve and prevent the development of peripheral neuropathy and, with a variety of expected pathogenetic mechanisms, complex cocktails of therapeutic agents were envisioned. Although structure and ultrastructure continue to be relevant in the studies of mitochondriopathy-driven neuropathies, more techniques have been added and more complex hypotheses now expand the concept and focus directly on mitochondrial pathology or dysfunction. It is now possible to definitively test possible pathogenetic mechanisms with a variety of new tools and to formulate new and testable hypotheses.
Collapse
Affiliation(s)
- Robert E Schmidt
- Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
108
|
Sapar ML, Han C. Die in pieces: How Drosophila sheds light on neurite degeneration and clearance. J Genet Genomics 2019; 46:187-199. [PMID: 31080046 PMCID: PMC6541534 DOI: 10.1016/j.jgg.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Dendrites and axons are delicate neuronal membrane extensions that undergo degeneration after physical injuries. In neurodegenerative diseases, they often degenerate prior to neuronal death. Understanding the mechanisms of neurite degeneration has been an intense focus of neurobiology research in the last two decades. As a result, many discoveries have been made in the molecular pathways that lead to neurite degeneration and the cell-cell interactions responsible for the subsequent clearance of neuronal debris. Drosophila melanogaster has served as a prime in vivo model system for identifying and characterizing the key molecular players in neurite degeneration, thanks to its genetic tractability and easy access to its nervous system. The knowledge learned in the fly provided targets and fuel for studies in other model systems that have further enhanced our understanding of neurodegeneration. In this review, we will introduce the experimental systems developed in Drosophila to investigate injury-induced neurite degeneration, and then discuss the biological pathways that drive degeneration. We will also cover what is known about the mechanisms of how phagocytes recognize and clear degenerating neurites, and how recent findings in this area enhance our understanding of neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Maria L Sapar
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
109
|
Tang BL. Why is NMNAT Protective against Neuronal Cell Death and Axon Degeneration, but Inhibitory of Axon Regeneration? Cells 2019; 8:267. [PMID: 30901919 PMCID: PMC6468476 DOI: 10.3390/cells8030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT), a key enzyme for NAD⁺ synthesis, is well known for its activity in neuronal survival and attenuation of Wallerian degeneration. Recent investigations in invertebrate models have, however, revealed that NMNAT activity negatively impacts upon axon regeneration. Overexpression of Nmnat in laser-severed Drosophila sensory neurons reduced axon regeneration, while axon regeneration was enhanced in injured mechanosensory axons in C. elegansnmat-2 null mutants. These diametrically opposite effects of NMNAT orthologues on neuroprotection and axon regeneration appear counterintuitive as there are many examples of neuroprotective factors that also promote neurite outgrowth, and enhanced neuronal survival would logically facilitate regeneration. We suggest here that while NMNAT activity and NAD⁺ production activate neuroprotective mechanisms such as SIRT1-mediated deacetylation, the same mechanisms may also activate a key axonal regeneration inhibitor, namely phosphatase and tensin homolog (PTEN). SIRT1 is known to deacetylate and activate PTEN which could, in turn, suppress PI3 kinase⁻mTORC1-mediated induction of localized axonal protein translation, an important process that determines successful regeneration. Strategic tuning of Nmnat activity and NAD⁺ production in axotomized neurons may thus be necessary to promote initial survival without inhibiting subsequent regeneration.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
110
|
Hara N, Osago H, Hiyoshi M, Kobayashi-Miura M, Tsuchiya M. Quantitative analysis of the effects of nicotinamide phosphoribosyltransferase induction on the rates of NAD+ synthesis and breakdown in mammalian cells using stable isotope-labeling combined with mass spectrometry. PLoS One 2019; 14:e0214000. [PMID: 30875389 PMCID: PMC6420012 DOI: 10.1371/journal.pone.0214000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
NAD+ is mainly synthesized from nicotinamide (Nam) by the rate-limiting enzyme Nam phosphoribosyltransferase (Nampt) and degraded to Nam by NAD+-degrading enzymes in mammals. Numerous studies report that tissue NAD+ levels decrease during aging and age-related diseases and suggest that NAD+ replenishment promotes healthy aging. Although increased expression of Nampt might be a promising intervention for healthy aging, forced expression of Nampt gene, inducing more than 10-fold increases in the enzyme protein level, has been reported to elevate NAD+ levels only 40-60% in mammalian cells. Mechanisms underlying the limited increases in NAD+ levels remain to be determined. Here we show that Nampt is inhibited in cells and that enhanced expression of Nampt activates NAD+ breakdown. Combined with the measurement of each cell's volume, we determined absolute values (μM/h) of the rates of NAD+ synthesis (RS) and breakdown (RB) using a flux assay with a 2H (D)-labeled Nam, together with the absolute NAD+ concentrations in various mammalian cells including primary cultured cardiomyocytes under the physiological conditions and investigated the relations among total cellular Nampt activity, RS, RB, and the NAD+ concentration. NAD+ concentration was maintained within a narrow range (400-700 μM) in the cells. RS was much smaller than the total Nampt activity, indicating that NAD+ synthesis from Nam in the cells is suppressed. Forced expression of Nampt leading to 6-fold increase in total Nampt activity induced only a 1.6-fold increase in cellular NAD+ concentration. Under the conditions, RS increased by 2-fold, while 2-fold increase in RB was also observed. The small increase in cellular NAD+ concentration is likely due to both inhibited increase in the NAD+ synthesis and the activation of its breakdown. Our findings suggest that cellular NAD+ concentrations do not vary dramatically by the physiological fluctuation of Nampt expression and show the tight link between the NAD+ synthesis and its breakdown.
Collapse
Affiliation(s)
- Nobumasa Hara
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
- * E-mail:
| | - Harumi Osago
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Mineyoshi Hiyoshi
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Mikiko Kobayashi-Miura
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Mikako Tsuchiya
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
111
|
Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med 2019; 216:743-756. [PMID: 30842236 PMCID: PMC6446871 DOI: 10.1084/jem.20171885] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 01/20/2023] Open
Abstract
Zhu et al. show that SARM1 deficiency selectively up-regulates XAF1 expression, which, in turn, promotes prion-induced neuronal death and accelerates prion progression. This study reveals a novel link between SARM1, XAF1, and associated neuronal apoptosis in prion disease. SARM1 (sterile α and HEAT/armadillo motif–containing protein) is a member of the MyD88 (myeloid differentiation primary response gene 88) family, which mediates innate immune responses. Because inactivation of SARM1 prevents various forms of axonal degeneration, we tested whether it might protect against prion-induced neurotoxicity. Instead, we found that SARM1 deficiency exacerbates the progression of prion pathogenesis. This deleterious effect was not due to SARM1-dependent modulation of prion-induced neuroinflammation, since microglial activation, astrogliosis, and brain cytokine profiles were not altered by SARM1 deficiency. Whole-transcriptome analyses indicated that SARM1 deficiency led to strong, selective overexpression of the pro-apoptotic gene XAF1 (X-linked inhibitor of apoptosis-associated factor 1). Consequently, the activity of pro-apoptotic caspases and neuronal death were enhanced in prion-infected SARM1−/− mice. These results point to an unexpected function of SARM1 as a regulator of prion-induced neurodegeneration and suggest that XAF1 might constitute a therapeutic target in prion disease.
Collapse
Affiliation(s)
- Caihong Zhu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Bei Li
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yingjun Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
112
|
Russo A, Goel P, Brace EJ, Buser C, Dickman D, DiAntonio A. The E3 ligase Highwire promotes synaptic transmission by targeting the NAD-synthesizing enzyme dNmnat. EMBO Rep 2019; 20:e46975. [PMID: 30692130 PMCID: PMC6399608 DOI: 10.15252/embr.201846975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
The ubiquitin ligase Highwire restrains synaptic growth and promotes evoked neurotransmission at NMJ synapses in Drosophila Highwire regulates synaptic morphology by downregulating the MAP3K Wallenda, but excess Wallenda signaling does not account for the decreased presynaptic release observed in highwire mutants. Hence, Highwire likely has a second substrate that inhibits neurotransmission. Highwire targets the NAD+ biosynthetic and axoprotective enzyme dNmnat to regulate axonal injury responses. dNmnat localizes to synapses and interacts with the active zone protein Bruchpilot, leading us to hypothesize that Highwire promotes evoked release by downregulating dNmnat. Here, we show that excess dNmnat is necessary in highwire mutants and sufficient in wild-type larvae to reduce quantal content, likely via disruption of active zone ultrastructure. Catalytically active dNmnat is required to drive defects in evoked release, and depletion of a second NAD+ synthesizing enzyme is sufficient to suppress these defects in highwire mutants, suggesting that excess NAD+ biosynthesis is the mechanism inhibiting neurotransmission. Thus, Highwire downregulates dNmnat to promote evoked synaptic release, suggesting that Highwire balances the axoprotective and synapse-inhibitory functions of dNmnat.
Collapse
Affiliation(s)
- Alexandra Russo
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - E J Brace
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Chris Buser
- Oak Crest Institute of Science, Monrovia, CA, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
113
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
114
|
Pieper AA, McKnight SL. Benefits of Enhancing Nicotinamide Adenine Dinucleotide Levels in Damaged or Diseased Nerve Cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:207-217. [PMID: 30787047 DOI: 10.1101/sqb.2018.83.037622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three unbiased lines of research have commonly pointed to the benefits of enhanced levels of nicotinamide adenine dinucleotide (NAD+) to diseased or damaged neurons. Mice carrying a triplication of the gene encoding the culminating enzyme in NAD+ salvage from nicotinamide, NMNAT, are protected from a variety of insults to axons. Protection from Wallerian degeneration of axons is also observed in flies and mice bearing inactivating mutations in the SARM1 gene. Functional studies of the SARM1 gene product have revealed the presence of an enzymatic activity directed toward the hydrolysis of NAD+ Finally, an unbiased drug screen performed in living mice led to the discovery of a neuroprotective chemical designated P7C3. Biochemical studies of the P7C3 chemical show that it can enhance recovery of NAD+ from nicotinamide by activating NAMPT, the first enzyme in the salvage pathway. In combination, these three unrelated research endeavors offer evidence of the benefits of enhanced NAD+ levels to damaged neurons.
Collapse
Affiliation(s)
- Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, USA
| | - Steven L McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
115
|
NMNAT Proteins that Limit Wallerian Degeneration Also Regulate Critical Period Plasticity in the Visual Cortex. eNeuro 2019; 6:eN-NWR-0277-18. [PMID: 30671537 PMCID: PMC6338469 DOI: 10.1523/eneuro.0277-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Many brain regions go through critical periods of development during which plasticity is enhanced. These critical periods are associated with extensive growth and retraction of thalamocortical and intracortical axons. Here, we investigated whether a signaling pathway that is central in Wallerian axon degeneration also regulates critical period plasticity in the primary visual cortex (V1). Wallerian degeneration is characterized by rapid disintegration of axons once they are separated from the cell body. This degenerative process is initiated by reduced presence of cytoplasmic nicotinamide mononucleotide adenylyltransferases (NMNATs) and is strongly delayed in mice overexpressing cytoplasmic NMNAT proteins, such as WldS mutant mice producing a UBE4b-NMNAT1 fusion protein or NMNAT3 transgenic mice. Here, we provide evidence that in WldS mice and NMNAT3 transgenic mice, ocular dominance (OD) plasticity in the developing visual cortex is reduced. This deficit is only observed during the second half of the critical period. Additionally, we detect an early increase of visual acuity in the V1 of WldS mice. We do not find evidence for Wallerian degeneration occurring during OD plasticity. Our findings suggest that NMNATs do not only regulate Wallerian degeneration during pathological conditions but also control cellular events that mediate critical period plasticity during the physiological development of the cortex.
Collapse
|
116
|
Geisler S, Huang SX, Strickland A, Doan RA, Summers DW, Mao X, Park J, DiAntonio A, Milbrandt J. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J Exp Med 2019; 216:294-303. [PMID: 30642945 PMCID: PMC6363435 DOI: 10.1084/jem.20181040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/22/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Axonal degeneration (AxD) following nerve injury, chemotherapy, and in several neurological disorders is an active process driven by SARM1, an injury-activated NADase. Axons of SARM1-null mice exhibit greatly delayed AxD after transection and in models of neurological disease, suggesting that inhibiting SARM1 is a promising strategy to reduce pathological AxD. Unfortunately, no drugs exist to target SARM1. We, therefore, developed SARM1 dominant-negatives that potently block AxD in cellular models of axotomy and neuropathy. To assess efficacy in vivo, we used adeno-associated virus-mediated expression of the most potent SARM1 dominant-negative and nerve transection as a model of severe AxD. While axons of vehicle-treated mice degenerate rapidly, axons of mice expressing SARM1 dominant-negative can remain intact for >10 d after transection, similar to the protection observed in SARM1-null mice. We thus developed a novel in vivo gene therapeutic to block pathological axon degeneration by inhibiting SARM1, an approach that may be applied clinically to treat manifold neurodegenerative diseases characterized by axon loss.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Shay X Huang
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Ryan A Doan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Daniel W Summers
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jiwoong Park
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO .,Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO .,Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
117
|
Keeping the balance in NAD metabolism. Biochem Soc Trans 2019; 47:119-130. [PMID: 30626706 DOI: 10.1042/bst20180417] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
Abstract
Research over the last few decades has extended our understanding of nicotinamide adenine dinucleotide (NAD) from a vital redox carrier to an important signalling molecule that is involved in the regulation of a multitude of fundamental cellular processes. This includes DNA repair, cell cycle regulation, gene expression and calcium signalling, in which NAD is a substrate for several families of regulatory proteins, such as sirtuins and ADP-ribosyltransferases. At the molecular level, NAD-dependent signalling events differ from hydride transfer by cleavage of the dinucleotide into an ADP-ribosyl moiety and nicotinamide. Therefore, non-redox functions of NAD require continuous biosynthesis of the dinucleotide. Maintenance of cellular NAD levels is mainly achieved by nicotinamide salvage, yet a variety of other precursors can be used to sustain cellular NAD levels via different biosynthetic routes. Biosynthesis and consumption of NAD are compartmentalised at the subcellular level, and currently little is known about the generation and role of some of these subcellular NAD pools. Impaired biosynthesis or increased NAD consumption is deleterious and associated with ageing and several pathologies. Insults to neurons lead to depletion of axonal NAD and rapid degeneration, partial rescue can be achieved pharmacologically by administration of specific NAD precursors. Restoring NAD levels by stimulating biosynthesis or through supplementation with precursors also produces beneficial therapeutic effects in several disease models. In this review, we will briefly discuss the most recent achievements and the challenges ahead in this diverse research field.
Collapse
|
118
|
Carty M, Bowie AG. SARM: From immune regulator to cell executioner. Biochem Pharmacol 2019; 161:52-62. [PMID: 30633870 DOI: 10.1016/j.bcp.2019.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
SARM is the fifth and most conserved member of the Toll/Il-1 Receptor (TIR) adaptor family. However, unlike the other TIR adaptors, MyD88, Mal, TRIF and TRAM, SARM does not participate in transducing signals downstream of TLRs. By contrast SARM inhibits TLR signalling by interacting with the adaptors TRIF and MyD88. In addition, SARM also has positive roles in innate immunity by activating specific transcriptional programs following immune challenge. SARM has a pivotal role in activating different forms of cell death following cellular stress and viral infection. Many of these functions of mammalian SARM are also reflected in SARM orthologues in lower organisms such as C. elegans and Drosophila. SARM expression is particularly enriched in neurons of the CNS and SARM has a critical role in neuronal death and in axon degeneration. Recent fascinating molecular insights have been revealed as to the molecular mechanism of SARM mediated axon degeneration. SARM has been shown to deplete NAD+ by possessing intrinsic NADase activity in the TIR domain of the protein. This activity can be activated experimentally by forced dimerization of the TIR domain. It is thought that this activity of SARM is normally switched off by the axo-protective activities of NMNAT2 which maintain low levels of the NAD+ precursor NMN. Therefore, there is now great excitement in the field of SARM research as targeting this enzymatic activity of SARM may lead to the development of new therapies for neurodegenerative diseases such as multiple sclerosis and motor neuron disease.
Collapse
Affiliation(s)
- Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
119
|
Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration. Cell Death Dis 2018; 9:1116. [PMID: 30389906 PMCID: PMC6214901 DOI: 10.1038/s41419-018-1155-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023]
Abstract
Apoptotic cells expose Phosphatidylserine (PS), that serves as an “eat me” signal for engulfing cells. Previous studies have shown that PS also marks degenerating axonsduring developmental pruning or in response to insults (Wallerian degeneration), but the pathways that control PS exposure on degenerating axons are largely unknown. Here, we used a series of in vitro assays to systematically explore the regulation of PS exposure during axonal degeneration. Our results show that PS exposure is regulated by the upstream activators of axonal pruning and Wallerian degeneration. However, our investigation of signaling further downstream revealed divergence between axon degeneration and PS exposure. Importantly, elevation of the axonal energetic status hindered PS exposure, while inhibition of mitochondrial activity caused PS exposure, without degeneration. Overall, our results suggest that the levels of PS on the outer axonal membrane can be dissociated from the degeneration process and that the axonal energetic status plays a key role in the regulation of PS exposure.
Collapse
|
120
|
Liu HW, Smith CB, Schmidt MS, Cambronne XA, Cohen MS, Migaud ME, Brenner C, Goodman RH. Pharmacological bypass of NAD + salvage pathway protects neurons from chemotherapy-induced degeneration. Proc Natl Acad Sci U S A 2018; 115:10654-10659. [PMID: 30257945 PMCID: PMC6196523 DOI: 10.1073/pnas.1809392115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Axon degeneration, a hallmark of chemotherapy-induced peripheral neuropathy (CIPN), is thought to be caused by a loss of the essential metabolite nicotinamide adenine dinucleotide (NAD+) via the prodegenerative protein SARM1. Some studies challenge this notion, however, and suggest that an aberrant increase in a direct precursor of NAD+, nicotinamide mononucleotide (NMN), rather than loss of NAD+, is responsible. In support of this idea, blocking NMN accumulation in neurons by expressing a bacterial NMN deamidase protected axons from degeneration. We hypothesized that protection could similarly be achieved by reducing NMN production pharmacologically. To achieve this, we took advantage of an alternative pathway for NAD+ generation that goes through the intermediate nicotinic acid mononucleotide (NAMN), rather than NMN. We discovered that nicotinic acid riboside (NAR), a precursor of NAMN, administered in combination with FK866, an inhibitor of the enzyme nicotinamide phosphoribosyltransferase that produces NMN, protected dorsal root ganglion (DRG) axons against vincristine-induced degeneration as well as NMN deamidase. Introducing a different bacterial enzyme that converts NAMN to NMN reversed this protection. Collectively, our data indicate that maintaining NAD+ is not sufficient to protect DRG neurons from vincristine-induced axon degeneration, and elevating NMN, by itself, is not sufficient to cause degeneration. Nonetheless, the combination of FK866 and NAR, which bypasses NMN formation, may provide a therapeutic strategy for neuroprotection.
Collapse
Affiliation(s)
- Hui-Wen Liu
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239
| | - Chadwick B Smith
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 55242
| | - Xiaolu A Cambronne
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239
| | - Michael S Cohen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 33604
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 55242;
| | - Richard H Goodman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239;
| |
Collapse
|
121
|
Pottorf T, Mann A, Fross S, Mansel C, Vohra BPS. Nicotinamide Mononucleotide Adenylyltransferase 2 maintains neuronal structural integrity through the maintenance of golgi structure. Neurochem Int 2018; 121:86-97. [PMID: 30278188 DOI: 10.1016/j.neuint.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Golgi fragmentation and loss of Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) are the early key features of many neurodegenerative disorders. We investigated the link between NMNAT2 loss, Golgi fragmentation and axon degeneration. Golgi fragmentation in the cultured dorsal root ganglion (DRG) neurons resulted in caspase dependent axon degeneration and neuronal cell death. NMNAT2 depletion in the DRG neurons caused Golgi fragmentation and caspase dependent axon degeneration. NMNAT2 depletion did not cause ATP loss in the axons. These results indicate that NMNAT2 is required for maintenance of Golgi structure. Loss of Golgi structure or Nmnat2 depletion causes caspase dependent neurodegeneration. cytNmnat1 overexpression inhibited the axon degeneration induced by Golgi fragmentation or NMNAT2 depletion. These results also suggest that these degeneration signals converge on a common cytNmnat1 mediated axon protective program and are distinct from the SARM1 mediated caspase independent axon degeneration.
Collapse
Affiliation(s)
- Tana Pottorf
- William Jewell College, Department of Biology, Liberty, MO, USA
| | - Alexis Mann
- William Jewell College, Department of Biology, Liberty, MO, USA
| | - Shaneann Fross
- William Jewell College, Department of Biology, Liberty, MO, USA
| | - Clayton Mansel
- William Jewell College, Department of Biology, Liberty, MO, USA
| | | |
Collapse
|
122
|
Virga DM, Capps J, Vohra BPS. Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity. Neurochem Res 2018; 43:2288-2303. [PMID: 30259276 DOI: 10.1007/s11064-018-2649-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson's disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.
Collapse
Affiliation(s)
- Daniel M Virga
- Biology Department, William Jewell College, Liberty, MO, 64068, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jessica Capps
- Biology Department, William Jewell College, Liberty, MO, 64068, USA
| | | |
Collapse
|
123
|
Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc Natl Acad Sci U S A 2018; 115:E8746-E8754. [PMID: 30150401 DOI: 10.1073/pnas.1806933115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Axon degeneration is a prominent event in many neurodegenerative disorders. Axon injury stimulates an intrinsic self-destruction program that culminates in activation of the prodegeneration factor SARM1 and local dismantling of damaged axon segments. In healthy axons, SARM1 activity is restrained by constant delivery of the axon survival factor NMNAT2. Elevating NMNAT2 is neuroprotective, while loss of NMNAT2 evokes SARM1-dependent axon degeneration. As a gatekeeper of axon survival, NMNAT2 abundance is an important regulatory node in neuronal health, highlighting the need to understand the mechanisms behind NMNAT2 protein homeostasis. We demonstrate that pharmacological inhibition of the MAP3Ks dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) elevates NMNAT2 abundance and strongly protects axons from injury-induced degeneration. We discover that MAPK signaling selectively promotes degradation of palmitoylated NMNAT2, as well as palmitoylated SCG10. Conversely, nonpalmitoylated NMNAT2 is degraded by the Phr1/Skp1a/Fbxo45 ligase complex. Combined inactivation of both pathways leads to synergistic accumulation of NMNAT2 in axons and dramatically enhanced protection against pathological axon degeneration. Hence, the subcellular localization of distinct pools of NMNAT2 enables differential regulation of NMNAT2 abundance to control axon survival.
Collapse
|
124
|
Sasaki Y, Hackett AR, Kim S, Strickland A, Milbrandt J. Dysregulation of NAD + Metabolism Induces a Schwann Cell Dedifferentiation Program. J Neurosci 2018; 38:6546-6562. [PMID: 29921717 PMCID: PMC6052240 DOI: 10.1523/jneurosci.3304-17.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Schwann cell (SC) is the major component of the peripheral nervous system (PNS) that provides metabolic and functional support for peripheral axons. The emerging roles of SC mitochondrial function for PNS development and axonal stability indicate the importance of SC metabolism in nerve function and in peripheral neuropathies associated with metabolic disorders. Nicotinamide adenine dinucleotide (NAD+) is a crucial molecule in the regulation of cellular metabolism and redox homeostasis. Here, we investigated the roles of NAD+ metabolism in SC functions in vivo by mutating NAMPT, the rate-limiting enzyme of NAD+ biosynthesis, specifically in SCs. NAMPT SC knock-out male and female mice (NAMPT SCKO mice) had delayed SC maturation in development and developed hypomyelinating peripheral neuropathy without axon degeneration or decreased SC survival. JUN, a master regulator of SC dedifferentiation, is elevated in NAMPT SCKO SCs, suggesting that decreased NAD+ levels cause them to arrest at an immature stage. Nicotinic acid administration rescues the NAD+ decline and reverses the SC maturation defect and the development of peripheral neuropathy, indicating the central role of NAD+ in PNS development. Upon nicotinic acid withdrawal in adulthood, NAMPT SCKO mice showed rapid and severe peripheral neuropathy and activation of ERK/MEK/JUN signaling, which in turn promotes SC dedifferentiation. These data demonstrate the importance of NAD+ metabolism in SC maturation and nerve development and maintenance and suggest that altered SC NAD+ metabolism could underlie neuropathies associated with diabetes and aging.SIGNIFICANCE STATEMENT In this study, we showed that Schwann cell differentiation status is critically dependent on NAD+ homeostasis. Aberrant regulation of NAD+ biosynthesis via NAMPT deletion results in a blockade of Schwann cell maturation during development and severe peripheral neuropathy without significant axon loss. The phenotype can be rescued by supplementation with nicotinic acid; however, withdrawal of nicotinic acid leads to Schwann cell dedifferentiation, myelination defects, and death. These results provide new therapeutic possibilities for peripheral neuropathies associated with NAD+ decline during aging or diabetes.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Amber R Hackett
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sungsu Kim
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
125
|
Stassart RM, Möbius W, Nave KA, Edgar JM. The Axon-Myelin Unit in Development and Degenerative Disease. Front Neurosci 2018; 12:467. [PMID: 30050403 PMCID: PMC6050401 DOI: 10.3389/fnins.2018.00467] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are electrically excitable, cable-like neuronal processes that relay information between neurons within the nervous system and between neurons and peripheral target tissues. In the central and peripheral nervous systems, most axons over a critical diameter are enwrapped by myelin, which reduces internodal membrane capacitance and facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath, which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes and Schwann cells; in most mammals myelination occurs during postnatal development and after axons have established connection with their targets. Myelin covers the vast majority of the axonal surface, influencing the axon's physical shape, the localisation of molecules on its membrane and the composition of the extracellular fluid (in the periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in axonal support, at least in part by providing metabolic substrates to the underlying axon to fuel its energy requirements. The unique architecture of the myelinated axon, which is crucial to its function as a conduit over long distances, renders it particularly susceptible to injury and confers specific survival and maintenance requirements. In this review we will describe the normal morphology, ultrastructure and function of myelinated axons, and discuss how these change following disease, injury or experimental perturbation, with a particular focus on the role the myelinating cell plays in shaping and supporting the axon.
Collapse
Affiliation(s)
- Ruth M. Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Julia M. Edgar
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
126
|
Sasaki Y. Metabolic aspects of neuronal degeneration: From a NAD + point of view. Neurosci Res 2018; 139:9-20. [PMID: 30006197 DOI: 10.1016/j.neures.2018.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
Abstract
Cellular metabolism maintains the life of cells, allowing energy production required for building cellular constituents and maintaining homeostasis under constantly changing external environments. Neuronal cells maintain their structure and function for the entire life of organisms and the loss of neurons, with limited neurogenesis in adults, directly causes loss of complexity in the neuronal networks. The nervous system organizes the neurons by placing cell bodies containing nuclei of similar types of neurons in discrete regions. Accordingly, axons must travel great distances to connect different types of neurons and peripheral organs. The enormous surface area of neurons makes them high-energy demanding to keep their membrane potential. Distal axon survival is dependent on axonal transport that is another energy demanding process. All of these factors make metabolic stress a potential risk factor for neuronal death and neuronal degeneration often associated with metabolic diseases. This review discusses recent findings on metabolic dysregulations under neuronal degeneration and pathways protecting neurons in these conditions.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University in St. Louis, Couch Biomedical Research Building, 4515 McKinley Ave., Saint Louis, MO, 63110, United States
| |
Collapse
|
127
|
Ryu KW, Nandu T, Kim J, Challa S, DeBerardinis RJ, Kraus WL. Metabolic regulation of transcription through compartmentalized NAD + biosynthesis. Science 2018; 360:360/6389/eaan5780. [PMID: 29748257 DOI: 10.1126/science.aan5780] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/14/2017] [Accepted: 03/16/2018] [Indexed: 11/02/2022]
Abstract
NAD+ (nicotinamide adenine dinucleotide in its oxidized state) is an essential molecule for a variety of physiological processes. It is synthesized in distinct subcellular compartments by three different synthases (NMNAT-1, -2, and -3). We found that compartmentalized NAD+ synthesis by NMNATs integrates glucose metabolism and adipogenic transcription during adipocyte differentiation. Adipogenic signaling rapidly induces cytoplasmic NMNAT-2, which competes with nuclear NMNAT-1 for the common substrate, nicotinamide mononucleotide, leading to a precipitous reduction in nuclear NAD+ levels. This inhibits the catalytic activity of poly[adenosine diphosphate (ADP)-ribose] polymerase-1 (PARP-1), a NAD+-dependent enzyme that represses adipogenic transcription by ADP-ribosylating the adipogenic transcription factor C/EBPβ. Reversal of PARP-1-mediated repression by NMNAT-2-mediated nuclear NAD+ depletion in response to adipogenic signals drives adipogenesis. Thus, compartmentalized NAD+ synthesis functions as an integrator of cellular metabolism and signal-dependent transcriptional programs.
Collapse
Affiliation(s)
- Keun Woo Ryu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiyeon Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. .,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
128
|
Sarm1 Deletion, but Not Wld S, Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. Cell Rep 2018; 21:10-16. [PMID: 28978465 PMCID: PMC5640801 DOI: 10.1016/j.celrep.2017.09.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022] Open
Abstract
Studies with the WldS mutant mouse have shown that axon and synapse pathology in several models of neurodegenerative diseases are mechanistically related to injury-induced axon degeneration (Wallerian degeneration). Crucially, an absence of SARM1 delays Wallerian degeneration as robustly as WldS, but their relative capacities to confer long-term protection against related, non-injury axonopathy and/or synaptopathy have not been directly compared. While Sarm1 deletion or WldS can rescue perinatal lethality and widespread Wallerian-like axonopathy in young NMNAT2-deficient mice, we report that an absence of SARM1 enables these mice to survive into old age with no overt phenotype, whereas those rescued by WldS invariantly develop a progressive neuromuscular defect in their hindlimbs from around 3 months of age. We therefore propose Sarm1 deletion as a more reliable tool than WldS for investigating Wallerian-like mechanisms in disease models and suggest that SARM1 blockade may have greater therapeutic potential than WLDS-related strategies. Rescue of an axonopathy model by Sarm1 deletion or WldS compared in an aging study Young adult NMNAT2-deficient mice rescued by WldS develop a hindlimb motor defect NMNAT2-deficient mice rescued by Sarm1 deletion are overtly normal up to 24 months SARM1 depletion/inhibition may have analytical and therapeutic advantages over WLDS
Collapse
|
129
|
Turkiew E, Falconer D, Reed N, Höke A. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J Peripher Nerv Syst 2018; 22:162-171. [PMID: 28485482 DOI: 10.1111/jns.12219] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
Distal axon degeneration seen in many peripheral neuropathies is likely to share common molecular mechanisms with Wallerian degeneration. Although several studies in mouse models of peripheral neuropathy showed prevention of axon degeneration in the slow Wallerian degeneration (Wlds) mouse, the role of a recently identified player in Wallerian degeneration, Sarm1, has not been explored extensively. In this study, we show that mice lacking the Sarm1 gene are resistant to distal axonal degeneration in a model of chemotherapy induced peripheral neuropathy caused by paclitaxel and a model of high fat diet induced putative metabolic neuropathy. This study extends the role of Sarm1 to axon degeneration seen in peripheral neuropathies and identifies it as a likely target for therapeutic development.
Collapse
Affiliation(s)
- Elliot Turkiew
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debbie Falconer
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicole Reed
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
130
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 774] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
131
|
Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods. J Neurosci 2018; 38:4031-4047. [PMID: 29567804 DOI: 10.1523/jneurosci.2343-17.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/21/2018] [Accepted: 03/15/2018] [Indexed: 11/21/2022] Open
Abstract
Traumatic axonal injury (TAI) is a common neuropathology in traumatic brain injury and is featured by primary injury to axons. Here, we generated TAI with impact acceleration of the head in male Thy1-eYFP-H transgenic mice in which specific populations of neurons and their axons are labeled with yellow fluorescent protein. This model results in axonal lesions in multiple axonal tracts along with blood-brain barrier disruption and neuroinflammation. The corticospinal tract, a prototypical long tract, is severely affected and is the focus of this study. Using optimized CLARITY at single-axon resolution, we visualized the entire corticospinal tract volume from the pons to the cervical spinal cord in 3D and counted the total number of axonal lesions and their progression over time. Our results divulged the presence of progressive traumatic axonopathy that was maximal at the pyramidal decussation. The perikarya of injured corticospinal neurons atrophied, but there was no evidence of neuronal cell death. We also used CLARITY at single-axon resolution to explore the role of the NMNAT2-SARM1 axonal self-destruction pathway in traumatic axonopathy. When we interfered with this pathway by genetically ablating SARM1 or by pharmacological strategies designed to increase levels of Nicotinamide (Nam), a feedback inhibitor of SARM1, we found a significant reduction in the number of axonal lesions early after injury. Our findings show that high-resolution neuroanatomical strategies reveal important features of TAI with biological implications, especially the progressive axonopathic nature of TAI and the role of the NMNAT2-SARM1 pathway in the early stages of axonopathy.SIGNIFICANCE STATEMENT In the first systematic application of novel high-resolution neuroanatomical tools in neuropathology, we combined CLARITY with 2-photon microscopy, optimized for detection of single axonal lesions, to reconstruct the injured mouse brainstem in a model of traumatic axonal injury (TAI) that is a common pathology associated with traumatic brain injury. The 3D reconstruction of the corticospinal tract at single-axon resolution allowed for a more advanced level of qualitative and quantitative understanding of TAI. Using this model, we showed that TAI is an axonopathy with a prominent role of the NMNAT2-SARM1 molecular pathway, that is also implicated in peripheral neuropathy. Our results indicate that high-resolution anatomical models of TAI afford a level of detail and sensitivity that is ideal for testing novel molecular and biomechanical hypotheses.
Collapse
|
132
|
Abstract
Optic neuropathies such as glaucoma are characterized by the degeneration of retinal ganglion cells (RGCs) and the irreversible loss of vision. In these diseases, focal axon injury triggers a propagating axon degeneration and, eventually, cell death. Previous work by us and others identified dual leucine zipper kinase (DLK) and JUN N-terminal kinase (JNK) as key mediators of somal cell death signaling in RGCs following axonal injury. Moreover, others have shown that activation of the DLK/JNK pathway contributes to distal axonal degeneration in some neuronal subtypes and that this activation is dependent on the adaptor protein, sterile alpha and TIR motif containing 1 (SARM1). Given that SARM1 acts upstream of DLK/JNK signaling in axon degeneration, we tested whether SARM1 plays a similar role in RGC somal apoptosis in response to optic nerve injury. Using the mouse optic nerve crush (ONC) model, our results show that SARM1 is critical for RGC axonal degeneration and that axons rescued by SARM1 deficiency are electrophysiologically active. Genetic deletion of SARM1 did not, however, prevent DLK/JNK pathway activation in RGC somas nor did it prevent or delay RGC cell death. These results highlight the importance of SARM1 in RGC axon degeneration and suggest that somal activation of the DLK/JNK pathway is activated by an as-yet-unidentified SARM1-independent signal.
Collapse
|
133
|
Abstract
Nicotinamide adenine dinucleotide (NAD), the cell's hydrogen carrier for redox enzymes, is well known for its role in redox reactions. More recently, it has emerged as a signaling molecule. By modulating NAD+-sensing enzymes, NAD+ controls hundreds of key processes from energy metabolism to cell survival, rising and falling depending on food intake, exercise, and the time of day. NAD+ levels steadily decline with age, resulting in altered metabolism and increased disease susceptibility. Restoration of NAD+ levels in old or diseased animals can promote health and extend lifespan, prompting a search for safe and efficacious NAD-boosting molecules that hold the promise of increasing the body's resilience, not just to one disease, but to many, thereby extending healthy human lifespan.
Collapse
Affiliation(s)
- Luis Rajman
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Karolina Chwalek
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
134
|
TIR Domain Proteins Are an Ancient Family of NAD +-Consuming Enzymes. Curr Biol 2018; 28:421-430.e4. [PMID: 29395922 DOI: 10.1016/j.cub.2017.12.024] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is the signature signaling domain of Toll-like receptors (TLRs) and their adaptors, serving as a scaffold for the assembly of protein complexes for innate immune signaling [1, 2]. TIR domain proteins are also expressed in plants, where they mediate disease resistance [3, 4], and in bacteria, where they have been associated with virulence [5-9]. In pursuing our work on axon degeneration [10], we made the surprising discovery that the TIR domain of SARM1 (sterile alpha and TIR motif containing 1), a TLR adaptor protein, has enzymatic activity [11]. Upon axon injury, the SARM1 TIR domain cleaves nicotinamide adenine dinucleotide (NAD+), destroying this essential metabolic co-factor to trigger axon destruction [11, 12]. Whereas current studies of TIR domains focus on their scaffolding function, our findings with SARM1 inspired us to ask whether this enzymatic activity is the primordial function of the TIR domain. Here we show that ancestral prokaryotic TIR domains constitute a new family of NADase enzymes. Using purified proteins from a cell-free translation system, we find that TIR domain proteins from both bacteria and archaea cleave NAD+ into nicotinamide and ADP-ribose (ADPR), with catalytic cleavage executed by a conserved glutamic acid. A subset of bacterial and archaeal TIR domains generates a non-canonical variant cyclic ADPR (cADPR) molecule, and the full-length TIR domain protein from pathogenic Staphylococcus aureus induces NAD+ loss in mammalian cells. These findings suggest that the primordial function of the TIR domain is the enzymatic cleavage of NAD+ and establish TIR domain proteins as a new class of metabolic regulatory enzymes.
Collapse
|
135
|
Seki SM, Gaultier A. Exploring Non-Metabolic Functions of Glycolytic Enzymes in Immunity. Front Immunol 2017; 8:1549. [PMID: 29213268 PMCID: PMC5702622 DOI: 10.3389/fimmu.2017.01549] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023] Open
Abstract
At the beginning of the twentieth century, discoveries in cancer research began to elucidate the idiosyncratic metabolic proclivities of tumor cells (1). Investigators postulated that revealing the distinct nutritional requirements of cells with unchecked growth potential would reveal targetable metabolic vulnerabilities by which their survival could be selectively curtailed. Soon thereafter, researchers in the field of immunology began drawing parallels between the metabolic characteristics of highly proliferative cancer cells and those of immune cells that respond to perceived threats to host physiology by invading tissues, clonally expanding, and generating vast amounts of pro-inflammatory effector molecules to provide the host with protection. Throughout the past decade, increasing effort has gone into elucidating the biosynthetic and bioenergetic requirements of immune cells during inflammatory responses. It is now well established that, like tumor cells, immune cells must undergo metabolic adaptations to fulfill their effector functions (2, 3). Unraveling the metabolic adaptations that license inflammatory immune responses may lead to the development of novel classes of therapeutics for pathologies with prominent inflammatory components (e.g., autoimmunity). However, the translational potential of discoveries made toward this end is currently limited by the ubiquitous nature of the "pathologic" process being targeted: metabolism. Recent works have started to unravel unexpected non-metabolic functions for metabolic enzymes in the context of inflammation, including signaling and gene regulation. One way information gained through the study of immunometabolism may be leveraged for therapeutic benefit is by exploiting these non-canonical features of metabolic machinery, modulating their contribution to the immune response without impacting their basal metabolic functions. The focus of this review is to discuss the metabolically independent functions of glycolytic enzymes and how these could impact T cells, agents of the immune system that are commonly considered as orchestrators of auto-inflammatory processes.
Collapse
Affiliation(s)
- Scott M Seki
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA, United States.,Graduate Program in Neuroscience, Charlottesville, VA, United States.,Medical Scientist Training Program, Charlottesville, VA, United States
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA, United States
| |
Collapse
|
136
|
Galindo R, Banks Greenberg M, Araki T, Sasaki Y, Mehta N, Milbrandt J, Holtzman DM. NMNAT3 is protective against the effects of neonatal cerebral hypoxia-ischemia. Ann Clin Transl Neurol 2017; 4:722-738. [PMID: 29046881 PMCID: PMC5634348 DOI: 10.1002/acn3.450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To determine whether the NAD+ biosynthetic protein, nicotinamide mononucleotide adenylyltransferase-3 (NMNAT3), is a neuroprotective inducible enzyme capable of decreasing cerebral injury after neonatal hypoxia-ischemia (H-I) and reducing glutamate receptor-mediated excitotoxic neurodegeneration of immature neurons. METHODS Using NMNAT3-overexpressing mice we investigated whether increases in brain NMNAT3 reduced cerebral tissue loss following H-I. We then employed biochemical methods from injured neonatal brains to examine the inducibility of NMNAT3 and the mechanism of NMNAT3-dependent neuroprotection. Using AAV8-mediated vectors for in vitro neuronal NMNAT3 knockdown, we then examine the endogenous role of this protein on immature neuronal survival prior and following NMDA receptor-mediated excitotoxicity. RESULTS NMNAT3 mRNA and protein levels increased after neonatal H-I. In addition, NMNAT3 overexpression decreased cortical and hippocampal tissue loss 7 days following injury. We further show that the NMNAT3 neuroprotective mechanism involves a decrease in calpastatin degradation, and a decrease in caspase-3 activity and calpain-mediated cleavage. Conversely, NMNAT3 knockdown of cortical and hippocampal neurons in vitro caused neuronal degeneration and increased excitotoxic cell death. The neurodegenerative effects of NMNAT3 knockdown were counteracted by exogenous upregulation of NMNAT3. CONCLUSIONS Our observations provide new insights into the neuroprotective mechanisms of NMNATs in the injured developing brain, adding NMNAT3 as an important neuroprotective enzyme in neonatal H-I via inhibition of apoptotic and necrotic neurodegeneration. Interestingly, we find that endogenous NMNAT3 is an inducible protein important for maintaining the survival of immature neurons. Future studies aimed at uncovering the mechanisms of NMNAT3 upregulation and neuroprotection may offer new therapies against the effects of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Rafael Galindo
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| | - Marianne Banks Greenberg
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| | - Toshiyuki Araki
- Department of Peripheral Nervous System ResearchNational Institute of NeuroscienceKodairaTokyoJapan
| | - Yo Sasaki
- Department of GeneticsWashington UniversitySt. LouisMissouri63110
| | - Nehali Mehta
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| | | | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| |
Collapse
|
137
|
Feinberg K, Kolaj A, Wu C, Grinshtein N, Krieger JR, Moran MF, Rubin LL, Miller FD, Kaplan DR. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. J Cell Biol 2017; 216:3655-3675. [PMID: 28877995 PMCID: PMC5674898 DOI: 10.1083/jcb.201705085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
The pan-kinase inhibitor foretinib is identified as a potent suppressor of sympathetic, sensory, and motor neuron axon degeneration, acting in part by inhibiting the activity of the unliganded TrkA/nerve growth factor receptor and by preserving mitochondria in die-back and Wallerian degeneration models. Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaida Kolaj
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chen Wu
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Natalie Grinshtein
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan R Krieger
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
138
|
Salvadores N, Sanhueza M, Manque P, Court FA. Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Front Neurosci 2017; 11:451. [PMID: 28928628 PMCID: PMC5591337 DOI: 10.3389/fnins.2017.00451] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Aging constitutes the main risk factor for the development of neurodegenerative diseases. This represents a major health issue worldwide that is only expected to escalate due to the ever-increasing life expectancy of the population. Interestingly, axonal degeneration, which occurs at early stages of neurodegenerative disorders (ND) such as Alzheimer's disease, Amyotrophic lateral sclerosis, and Parkinson's disease, also takes place as a consequence of normal aging. Moreover, the alteration of several cellular processes such as proteostasis, response to cellular stress and mitochondrial homeostasis, which have been described to occur in the aging brain, can also contribute to axonal pathology. Compelling evidence indicate that the degeneration of axons precedes clinical symptoms in NDs and occurs before cell body loss, constituting an early event in the pathological process and providing a potential therapeutic target to treat neurodegeneration before neuronal cell death. Although, normal aging and the development of neurodegeneration are two processes that are closely linked, the molecular basis of the switch that triggers the transition from healthy aging to neurodegeneration remains unrevealed. In this review we discuss the potential role of axonal degeneration in this transition and provide a detailed overview of the literature and current advances in the molecular understanding of the cellular changes that occur during aging that promote axonal degeneration and then discuss this in the context of ND.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Mario Sanhueza
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| |
Collapse
|
139
|
Fukuda Y, Li Y, Segal RA. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2017; 11:481. [PMID: 28912674 PMCID: PMC5583221 DOI: 10.3389/fnins.2017.00481] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a “dying back” axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yihang Li
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| |
Collapse
|
140
|
Vaur P, Brugg B, Mericskay M, Li Z, Schmidt MS, Vivien D, Orset C, Jacotot E, Brenner C, Duplus E. Nicotinamide riboside, a form of vitamin B 3, protects against excitotoxicity-induced axonal degeneration. FASEB J 2017; 31:5440-5452. [PMID: 28842432 DOI: 10.1096/fj.201700221rr] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/31/2017] [Indexed: 11/11/2022]
Abstract
NAD+ depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD+ was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD+ to NR prompted us to probe the effects of NAD+ and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD+ reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD+ Moreover, the stronger effect of NR compared to NAD+ depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD+ and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD+ in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD+ homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.
Collapse
Affiliation(s)
- Pauline Vaur
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Bernard Brugg
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Mathias Mericskay
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Unité Signalisation et Physiopathologie Cardiovasculaire, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Zhenlin Li
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Equipe de Recherche Labellisée (ERL) U1164, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Denis Vivien
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Cyrille Orset
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Etienne Jacotot
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Eric Duplus
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France;
| |
Collapse
|
141
|
Neukomm LJ, Burdett TC, Seeds AM, Hampel S, Coutinho-Budd JC, Farley JE, Wong J, Karadeniz YB, Osterloh JM, Sheehan AE, Freeman MR. Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly. Neuron 2017; 95:78-91.e5. [PMID: 28683272 DOI: 10.1016/j.neuron.2017.06.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/25/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Axon degeneration is a hallmark of neurodegenerative disease and neural injury. Axotomy activates an intrinsic pro-degenerative axon death signaling cascade involving loss of the NAD+ biosynthetic enzyme Nmnat/Nmnat2 in axons, activation of dSarm/Sarm1, and subsequent Sarm-dependent depletion of NAD+. Here we identify Axundead (Axed) as a mediator of axon death. axed mutants suppress axon death in several types of axons for the lifespan of the fly and block the pro-degenerative effects of activated dSarm in vivo. Neurodegeneration induced by loss of the sole fly Nmnat ortholog is also fully blocked by axed, but not dsarm, mutants. Thus, pro-degenerative pathways activated by dSarm signaling or Nmnat elimination ultimately converge on Axed. Remarkably, severed axons morphologically preserved by axon death pathway mutations remain integrated in circuits and able to elicit complex behaviors after stimulation, indicating that blockade of axon death signaling results in long-term functional preservation of axons.
Collapse
Affiliation(s)
- Lukas J Neukomm
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Thomas C Burdett
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew M Seeds
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stefanie Hampel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan E Farley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jack Wong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yonca B Karadeniz
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeannette M Osterloh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy E Sheehan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
142
|
Brazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It's an NAD + synthase… It's a chaperone… It's a neuroprotector. Curr Opin Genet Dev 2017; 44:156-162. [PMID: 28445802 DOI: 10.1016/j.gde.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Nicotinamide mononucleotide adenylyl transferases (NMNATs) are a family of highly conserved proteins indispensable for cellular homeostasis. NMNATs are classically known for their enzymatic function of catalyzing NAD+ synthesis, but also have gained a reputation as essential neuronal maintenance factors. NMNAT deficiency has been associated with various human diseases with pronounced consequences on neural tissues, underscoring the importance of the neuronal maintenance and protective roles of these proteins. New mechanistic studies have challenged the role of NMNAT-catalyzed NAD+ production in delaying Wallerian degeneration and have specified new mechanisms of NMNAT's chaperone function critical for neuronal health. Progress in understanding the regulation of NMNAT has uncovered a neuronal stress response with great therapeutic promise for treating various neurodegenerative conditions.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
143
|
Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD + Cleavage Activity that Promotes Pathological Axonal Degeneration. Neuron 2017; 93:1334-1343.e5. [PMID: 28334607 PMCID: PMC6284238 DOI: 10.1016/j.neuron.2017.02.022] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 01/08/2023]
Abstract
Axonal degeneration is an early and prominent feature of many neurological disorders. SARM1 is the central executioner of the axonal degeneration pathway that culminates in depletion of axonal NAD+, yet the identity of the underlying NAD+-depleting enzyme(s) is unknown. Here, in a series of experiments using purified proteins from mammalian cells, bacteria, and a cell-free protein translation system, we show that the SARM1-TIR domain itself has intrinsic NADase activity-cleaving NAD+ into ADP-ribose (ADPR), cyclic ADPR, and nicotinamide, with nicotinamide serving as a feedback inhibitor of the enzyme. Using traumatic and vincristine-induced injury models in neurons, we demonstrate that the NADase activity of full-length SARM1 is required in axons to promote axonal NAD+ depletion and axonal degeneration after injury. Hence, the SARM1 enzyme represents a novel therapeutic target for axonopathies. Moreover, the widely utilized TIR domain is a protein motif that can possess enzymatic activity.
Collapse
Affiliation(s)
- Kow Essuman
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daniel W Summers
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
144
|
Gamage KK, Cheng I, Park RE, Karim MS, Edamura K, Hughes C, Spano AJ, Erisir A, Deppmann CD. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons. Curr Biol 2017; 27:890-896. [PMID: 28285993 DOI: 10.1016/j.cub.2017.01.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6-/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wlds and Sarm1-/- mice, preserved axons in DR6-/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration.
Collapse
Affiliation(s)
- Kanchana K Gamage
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Irene Cheng
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Rachel E Park
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mardeen S Karim
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Kazusa Edamura
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher Hughes
- Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807, USA
| | - Anthony J Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
145
|
NMN Deamidase Delays Wallerian Degeneration and Rescues Axonal Defects Caused by NMNAT2 Deficiency In Vivo. Curr Biol 2017; 27:784-794. [PMID: 28262487 DOI: 10.1016/j.cub.2017.01.070] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
Abstract
Axons require the axonal NAD-synthesizing enzyme NMNAT2 to survive. Injury or genetically induced depletion of NMNAT2 triggers axonal degeneration or defective axon growth. We have previously proposed that axonal NMNAT2 primarily promotes axon survival by maintaining low levels of its substrate NMN rather than generating NAD; however, this is still debated. NMN deamidase, a bacterial enzyme, shares NMN-consuming activity with NMNAT2, but not NAD-synthesizing activity, and it delays axon degeneration in primary neuronal cultures. Here we show that NMN deamidase can also delay axon degeneration in zebrafish larvae and in transgenic mice. Like overexpressed NMNATs, NMN deamidase reduces NMN accumulation in injured mouse sciatic nerves and preserves some axons for up to three weeks, even when expressed at a low level. Remarkably, NMN deamidase also rescues axonal outgrowth and perinatal lethality in a dose-dependent manner in mice lacking NMNAT2. These data further support a pro-degenerative effect of accumulating NMN in axons in vivo. The NMN deamidase mouse will be an important tool to further probe the mechanisms underlying Wallerian degeneration and its prevention.
Collapse
|
146
|
Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 2017; 6. [PMID: 28095293 PMCID: PMC5241118 DOI: 10.7554/elife.22540] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI:http://dx.doi.org/10.7554/eLife.22540.001
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Daniel W Summers
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - Yo Sasaki
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - E J Brace
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| |
Collapse
|