1501
|
Abstract
The clinical benefit of therapeutic cancer vaccines has been established. Whereas regression of lesions was shown for premalignant lesions caused by HPV, clinical benefit in cancer patients was mostly noted as prolonged survival. Suboptimal vaccine design and an immunosuppressive cancer microenvironment are the root causes of the lack of cancer eradication. Effective cancer vaccines deliver concentrated antigen to both HLA class I and II molecules of DCs, promoting both CD4 and CD8 T cell responses. Optimal vaccine platforms include DNA and RNA vaccines and synthetic long peptides. Antigens of choice include mutant sequences, selected cancer testis antigens, and viral antigens. Drugs or physical treatments can mitigate the immunosuppressive cancer microenvironment and include chemotherapeutics, radiation, indoleamine 2,3-dioxygenase (IDO) inhibitors, inhibitors of T cell checkpoints, agonists of selected TNF receptor family members, and inhibitors of undesirable cytokines. The specificity of therapeutic vaccination combined with such immunomodulation offers an attractive avenue for the development of future cancer therapies.
Collapse
|
1502
|
Devoldere J, Dewitte H, De Smedt SC, Remaut K. Evading innate immunity in nonviral mRNA delivery: don't shoot the messenger. Drug Discov Today 2015. [PMID: 26210957 DOI: 10.1016/j.drudis.2015.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the field of nonviral gene therapy, in vitro transcribed (IVT) mRNA has emerged as a promising tool for the delivery of genetic information. Over the past few years it has become widely known that the introduction of IVT mRNA into mammalian cells elicits an innate immune response that has favored mRNA use toward immunotherapeutic vaccination strategies. However, for non-immunotherapy-related applications this intrinsic immune-stimulatory activity directly interferes with the aimed therapeutic outcome, because it can seriously compromise the expression of the desired protein. This review presents an overview of the immune-related obstacles that limit mRNA advance for non-immunotherapy-related applications.
Collapse
Affiliation(s)
- Joke Devoldere
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
1503
|
Uchida S, Kataoka K, Itaka K. Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity. Pharmaceutics 2015. [PMID: 26213960 PMCID: PMC4588190 DOI: 10.3390/pharmaceutics7030137] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chemical modification of nucleosides in mRNA is an important technology to regulate the immunogenicity of mRNA. In this study, various previously reported mRNA formulations were evaluated by analyzing in vitro protein expression and immunogenicity in multiple cell lines. For the macrophage-derived cell line, RAW 264.7, modified mRNA tended to have reduced immunogenicity and increased protein expression compared to the unmodified mRNA. In contrast, in some cell types, such as hepatocellular carcinoma cells (HuH-7) and mouse embryonic fibroblasts (MEFs), protein expression was decreased by mRNA modification. Further analyses revealed that mRNA modifications decreased translation efficiency but increased nuclease stability. Thus, mRNA modification is likely to exert both positive and negative effects on the efficiency of protein expression in transfected cells and optimal mRNA formulation should be determined based on target cell types and transfection purposes.
Collapse
Affiliation(s)
- Satoshi Uchida
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazunori Kataoka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Keiji Itaka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
1504
|
Janeba Z. Development of Small-Molecule Antivirals for Ebola. Med Res Rev 2015; 35:1175-94. [PMID: 26172225 PMCID: PMC7168439 DOI: 10.1002/med.21355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 01/05/2023]
Abstract
Ebola hemorrhagic fever is a deadly disease caused by infection with one of the Ebola virus species. Although a significant progress has recently been made in understanding of Ebola virus biology and pathogenesis, development of effective anti-Ebola treatments has not been very productive, compared to other areas of antiviral research (e.g., HIV and HCV infections). No approved vaccine or medicine is available for Ebola but several are currently under development. This review summarises attempts in identification, evaluation, and development of small-molecule candidates for treatment of Ebola viral disease, including the most promising experimental drugs brincidofovir (CMX001), BCX4430, and favipiravir (T-705).
Collapse
Affiliation(s)
- Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
1505
|
Leung AKK, Tam YYC, Chen S, Hafez IM, Cullis PR. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. J Phys Chem B 2015; 119:8698-706. [DOI: 10.1021/acs.jpcb.5b02891] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alex K. K. Leung
- Department of Biochemistry
and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Yuen Yi C. Tam
- Department of Biochemistry
and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sam Chen
- Department of Biochemistry
and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Ismail M. Hafez
- Department of Biochemistry
and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Pieter R. Cullis
- Department of Biochemistry
and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
1506
|
Efficient expression of stabilized mRNA PEG-peptide polyplexes in liver. Gene Ther 2015; 22:993-9. [PMID: 26125604 PMCID: PMC4670273 DOI: 10.1038/gt.2015.68] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/14/2015] [Accepted: 06/23/2015] [Indexed: 12/17/2022]
Abstract
The expression efficiency in liver following hydrodynamic delivery of in vitro transcribed mRNA was improved 2000-fold using a codon-optimized mRNA luciferase construct with flanking 3' and 5' human β-globin untranslated regions (UTR mRNA) over an un-optimized mRNA without β-globin UTRs. Nanoparticle UTR mRNA polyplexes were formed using a novel polyacridine PEG-peptide, resulting in an additional 15-fold increase in expression efficiency in the liver. The combined increase in expression for UTR mRNA PEG-peptide polyplexes was 3500-fold over mRNA lacking UTRs and PEG-peptide. The expression efficiency of UTR mRNA polyplex was 10-fold greater than the expression from an equivalent 1 µg dose of pGL3. Maximal expression was maintained from 4 to 24 hours. Serum incubation established the unique ability of the polyacridine PEG-peptide to protect UTR mRNA polyplexes from RNase metabolism by binding to double stranded regions. UTR mRNA PEG-peptide polyplexes are efficient non-viral vectors that circumvent the need for nuclear uptake, representing an advancement toward the development of a targeted gene delivery system to transfect liver hepatocytes.
Collapse
|
1507
|
Boros G, Miko E, Muramatsu H, Weissman D, Emri E, van der Horst GTJ, Szegedi A, Horkay I, Emri G, Karikó K, Remenyik É. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA. PLoS One 2015; 10:e0131141. [PMID: 26121660 PMCID: PMC4488231 DOI: 10.1371/journal.pone.0131141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022] Open
Abstract
Major biological effects of UVB are attributed to cyclobutane pyrimidine dimers (CPDs), the most common photolesions formed on DNA. To investigate the contribution of CPDs to UVB-induced changes of gene expression, a model system was established by transfecting keratinocytes with pseudouridine-modified mRNA (Ψ-mRNA) encoding CPD-photolyase. Microarray analyses of this model system demonstrated that more than 50% of the gene expression altered by UVB was mediated by CPD photolesions. Functional classification of the gene targets revealed strong effects of CPDs on the regulation of the cell cycle and transcriptional machineries. To confirm the microarray data, cell cycle-regulatory genes, CCNE1 and CDKN2B that were induced exclusively by CPDs were selected for further investigation. Following UVB irradiation, expression of these genes increased significantly at both mRNA and protein levels, but not in cells transfected with CPD-photolyase Ψ-mRNA and exposed to photoreactivating light. Treatment of cells with inhibitors of c-Jun N-terminal kinase (JNK) blocked the UVB-dependent upregulation of both genes suggesting a role for JNK in relaying the signal of UVB-induced CPDs into transcriptional responses. Thus, photolyase mRNA-based experimental platform demonstrates CPD-dependent and -independent events of UVB-induced cellular responses, and, as such, has the potential to identify novel molecular targets for treatment of UVB-mediated skin diseases.
Collapse
Affiliation(s)
- Gábor Boros
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Miko
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eszter Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dermatological Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Irén Horkay
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Éva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
1508
|
Maggio I, Gonçalves MAFV. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 2015; 33:280-91. [PMID: 25819765 DOI: 10.1016/j.tibtech.2015.02.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/26/2022]
Abstract
Genome editing (GE) entails the modification of specific genomic sequences in living cells for the purpose of determining, changing, or expanding their function(s). Typically, GE occurs after delivering sequence-specific designer nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) and donor DNA constructs into target cells. These designer nucleases can generate gene knockouts or gene knock-ins when applied alone or in combination with donor DNA templates, respectively. We review progress in this field, with an emphasis on designer nuclease and donor template delivery into mammalian target cell populations. We also discuss the impact that incremental improvements to these tools are having on the specificity and fidelity attainable with state-of-the-art DNA-editing procedures. Finally, we identify areas that warrant further investigation.
Collapse
Affiliation(s)
- Ignazio Maggio
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
1509
|
Ulmer JB, Mansoura MK, Geall AJ. Vaccines 'on demand': science fiction or a future reality. Expert Opin Drug Discov 2015; 10:101-6. [PMID: 25582273 DOI: 10.1517/17460441.2015.996128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Self-amplifying mRNA vaccines are being developed as a platform technology with potential to be used for a broad range of targets. The synthetic production methods for their manufacture, combined with the modern tools of bioinformatics and synthetic biology, enable these vaccines to be produced rapidly from an electronic gene sequence. Preclinical proof of concept has so far been achieved for influenza, respiratory syncytial virus, rabies, Ebola, cytomegalovirus, human immunodeficiency virus and malaria. AREAS COVERED This editorial highlights the key milestones in the discovery and development of self-amplifying mRNA vaccines, and reviews how they might be used as a rapid response platform. The paper points out how future improvements in RNA vector design and non-viral delivery may lead to decreases in effective dose and increases in production capacity. EXPERT OPINION The prospects for non-viral delivery of self-amplifying mRNA vaccines are very promising. Like other types of nucleic acid vaccines, these vaccines have the potential to draw on the positive attributes of live-attenuated vaccines while obviating many potential safety limitations. Hence, this approach could enable the concept of vaccines on demand as a rapid response to a real threat rather than the deployment of strategic stockpiles based on epidemiological predictions for possible threats.
Collapse
Affiliation(s)
- Jeffrey B Ulmer
- Novartis Vaccines, Inc. , 350 Massachusetts Ave., Cambridge, MA 02139 , USA +1 617 871 3745 ;
| | | | | |
Collapse
|
1510
|
Andries O, Kitada T, Bodner K, Sanders NN, Weiss R. Synthetic biology devices and circuits for RNA-based ‘smart vaccines’: a propositional review. Expert Rev Vaccines 2015; 14:313-31. [DOI: 10.1586/14760584.2015.997714] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1511
|
Sun Y, Yin G. RETRACTED ARTICLE: Cell-specific delivery of messenger RNA and microRNA by recombinant MS2 virus-like particles carrying cell-penetrating peptide. Appl Microbiol Biotechnol 2014; 99:4755. [PMID: 25547830 DOI: 10.1007/s00253-014-6274-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022]
Affiliation(s)
- Yanli Sun
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, No.7166, Baotong Xi (Western) Street, Weifang, 261053, People's Republic of China,
| | | |
Collapse
|
1512
|
Abstract
Synthetic mRNAs can become biopharmaceutics allowing vaccination against cancer, bacterial and virus infections. Clinical trials with direct administration of synthetic mRNAs encoding tumor antigens demonstrated safety and induction of tumor-specific immune responses. Although immune responses are generated by naked mRNAs, their formulations with chemical carriers are expected to provide more specificity and internalization in dendritic cells (DCs) for better immune responses and dose reduction. This review reports lipid-based formulations (LBFs) that have proved preclinical efficacy. The selective delivery of mRNA LBFs to favor intracellular accumulation in DCs and reduction of the effective doses is discussed, notably to decorate LBFs with carbohydrates or glycomimetics allowing endocytosis in DCs. We also report how smart intracellular delivery is achieved using pH-sensitive lipids or polymers for an efficient mRNA escape from endosomes and limitations regarding cytosolic mRNA location for translation.
Collapse
Affiliation(s)
- Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and Université d'Orléans, Orléans, 45071, cedex 02, France
| | | |
Collapse
|