1651
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
1652
|
ABHD4-dependent developmental anoikis safeguards the embryonic brain. Nat Commun 2020; 11:4363. [PMID: 32868797 PMCID: PMC7459116 DOI: 10.1038/s41467-020-18175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
A specialized neurogenic niche along the ventricles accumulates millions of progenitor cells in the developing brain. After mitosis, fate-committed daughter cells delaminate from this germinative zone. Considering the high number of cell divisions and delaminations taking place during embryonic development, brain malformations caused by ectopic proliferation of misplaced progenitor cells are relatively rare. Here, we report that a process we term developmental anoikis distinguishes the pathological detachment of progenitor cells from the normal delamination of daughter neuroblasts in the developing mouse neocortex. We identify the endocannabinoid-metabolizing enzyme abhydrolase domain containing 4 (ABHD4) as an essential mediator for the elimination of pathologically detached cells. Consequently, rapid ABHD4 downregulation is necessary for delaminated daughter neuroblasts to escape from anoikis. Moreover, ABHD4 is required for fetal alcohol-induced apoptosis, but not for the well-established form of developmentally controlled programmed cell death. These results suggest that ABHD4-mediated developmental anoikis specifically protects the embryonic brain from the consequences of sporadic delamination errors and teratogenic insults.
Collapse
|
1653
|
Wang X, Chen F, Gou S. Combination of DN604 with gemcitabine led to cell apoptosis and cell motility inhibition via p38 MAPK signaling pathway in NSCLC. Bioorg Chem 2020; 104:104234. [PMID: 32920359 DOI: 10.1016/j.bioorg.2020.104234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/03/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cancer in the world, which is still treated with Pt(II) agents as first-line drugs. As a traditional anticancer agent, gemcitabine is usually used in the combination treatment of various solid tumors with other drugs. Here, we investigate the combinatory application of gemcitabine with a Pt(II) agent (DN604, reported previously in our former research) in the treatment of NSCLC. In vitro biological assays suggested that DN604-gemcitabine treatment can effectively induce cell apoptosis and suppress cell motility, showing better anti-tumor effect than the single drug treatment or the combined treatment of cisplatin and gemcitabine. More importantly, investigation on the mechanism of the combined treatment proved that such combined treatment can suppress cell autophagy to inhibit cell motility via the activation of p38 MAPK signaling pathway. In vivo studies indicated that combination of DN604 with gemcitabine significantly inhibited the growth of tumor with nearly no influence on the normal organs and weight of mice. Our study widened the application scope of Pt(II) agents combined with gemcitabine for NSCLC treatment.
Collapse
Affiliation(s)
- Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
1654
|
Yang C, Wang Y, Bai JQ, Zhang JR, Hu PY, Zhu Y, Ouyang Q, Su HM, Li QY, Zhang P. Mechanism of transmembrane and coiled-coil domain 1 in the regulation of proliferation and migration of A549 cells. Oncol Lett 2020; 20:159. [PMID: 32934727 DOI: 10.3892/ol.2020.12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/29/2020] [Indexed: 11/05/2022] Open
Abstract
Bioinformatics analyses have shown that transmembrane and coiled-coil domain 1 (TMCO1) may be associated with lung adenocarcinoma. However, to the best of our knowledge, no current research has determined whether TMCO1 is involved in the development of lung adenocarcinoma. The present study aimed to identify the association between TMCO1 and lung adenocarcinoma. The present study demonstrated that the positive immunohistochemical staining of TMCO1 in lung adenocarcinoma tissues was significantly higher compared with paracarcinoma tissues. Additionally, knockdown of TMCO1 was demonstrated to downregulate B-cell lymphoma-2 protein expression levels and upregulate cysteinyl aspartate specific proteinase (caspase)-3 and caspase-9 protein expression levels in A549 cells. These changes resulted in decreased apoptosis of A549 cells uponTMCO1 downregulation. In addition, knockdown of TMCO1 decreased matrix metalloproteinase (MMP)-2 and MMP-9 expression levels. The expression of N-cadherin and vimentin also decreased. By contrast, the expression levels of E-cadherin protein increased. Knockdown of TMCO1 resulted in the inhibition of A549 cell migration. The results of the present study demonstrated that TMCO1 was associated with lung adenocarcinoma and that inhibition of TMCO1 expression levels negatively regulated the apoptosis and migration of lung adenocarcinoma cells. Therefore, the present study suggests the potential for TMCO1 to be used in the clinical treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Chen Yang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Yuan Wang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Jian-Qi Bai
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Jing-Ru Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Pei-Yan Hu
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Yan Zhu
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Qin Ouyang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Hong-Mei Su
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Qiu-Yue Li
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| |
Collapse
|
1655
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
1656
|
Wang Y, Guo Y, Hu Y, Sun Y, Xu D. Endosulfan triggers epithelial-mesenchymal transition via PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139234. [PMID: 32413665 DOI: 10.1016/j.scitotenv.2020.139234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Endosulfan is a persistent organochlorine pesticide that bioaccumulates in human body through the food chain and thus represents a potential risk to public health. Despite epidemiological studies, the molecular mechanisms underlying the carcinogenic effects of endosulfan in the prostate remain poorly understood. In this study, we investigated the effect of endosulfan on epithelial-mesenchymal transition (EMT) in human prostate cancer PC3 and DU145 cells. Endosulfan induced alterations of EMT biomarkers, reflecting repression of E-cadherin expression and induction of fibronectin, snail2, ZEB2, Twist1 and Vimentin. The expression of Protein-tyrosine Phosphatase 4A3 (PTP4A3) at mRNA and protein levels was upregulated by endosulfan. PTP4A3 inhibitor reversed the changes of EMT biomarkers, PTP4A3 and p-Smad2/Smad2, but did not affect the upregulation of Cleaved-Notch1 and Jagged1 in endosulfan-exposed cells. Endosulfan promoted cell migration and invasion, which were rescued by specific inhibitors for PTP4A3, TGF-β signaling and Notch signaling, respectively. These findings suggest that endosulfan promoted cell migration and invasion with the induction of EMT through PTP4A3-mediated TGF-β signaling pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yubing Guo
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yumeng Hu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| |
Collapse
|
1657
|
Tian W, Jiang X, Kim D, Guan T, Nicolls MR, Rockson SG. Leukotrienes in Tumor-Associated Inflammation. Front Pharmacol 2020; 11:1289. [PMID: 32973519 PMCID: PMC7466732 DOI: 10.3389/fphar.2020.01289] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Leukotrienes are biologically active eicosanoid lipid mediators that originate from oxidative metabolism of arachidonic acid. Biosynthesis of leukotrienes involves a set of soluble and membrane-bound enzymes that constitute a machinery complex primarily expressed by cells of myeloid origin. Leukotrienes and their synthetic enzymes are critical immune modulators for leukocyte migration. Increased concentrations of leukotrienes are implicated in a number of inflammatory disorders. More recent work indicates that leukotrienes may also interact with a variety of tissue cells, contributing to the low-grade inflammation of cardiovascular, neurodegenerative, and metabolic conditions, as well as that of cancer. Leukotriene signaling contributes to the active tumor microenvironment, promoting tumor growth and resistance to immunotherapy. This review summarizes recent insights into the intricate roles of leukotrienes in promoting tumor growth and metastasis through shaping the tumor microenvironment. The emerging possibilities for pharmacological targeting of leukotriene signaling in tumor metastasis are considered.
Collapse
Affiliation(s)
- Wen Tian
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dongeon Kim
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Torrey Guan
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark R Nicolls
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Stanley G Rockson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
1658
|
The glutathione peroxidase 8 (GPX8)/IL-6/STAT3 axis is essential in maintaining an aggressive breast cancer phenotype. Proc Natl Acad Sci U S A 2020; 117:21420-21431. [PMID: 32817494 DOI: 10.1073/pnas.2010275117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the emerging hallmarks of cancer illustrates the importance of metabolic reprogramming, necessary to synthesize the building blocks required to fulfill the high demands of rapidly proliferating cells. However, the proliferation-independent instructive role of metabolic enzymes in tumor plasticity is still unclear. Here, we provide evidence that glutathione peroxidase 8 (GPX8), a poorly characterized enzyme that resides in the endoplasmic reticulum, is an essential regulator of tumor aggressiveness. We found that GPX8 expression was induced by the epithelial-mesenchymal transition (EMT) program. Moreover, in breast cancer patients, GPX8 expression significantly correlated with known mesenchymal markers and poor prognosis. Strikingly, GPX8 knockout in mesenchymal-like cells (MDA-MB-231) resulted in an epithelial-like morphology, down-regulation of EMT characteristics, and loss of cancer stemness features. In addition, GPX8 knockout significantly delayed tumor initiation and decreased its growth rate in mice. We found that these GPX8 loss-dependent phenotypes were accompanied by the repression of crucial autocrine factors, in particular, interleukin-6 (IL-6). In these cells, IL-6 bound to the soluble receptor (sIL6R), stimulating the JAK/STAT3 signaling pathway by IL-6 trans-signaling mechanisms, so promoting cancer aggressiveness. We observed that in GPX8 knockout cells, this signaling mechanism was impaired as sIL6R failed to activate the JAK/STAT3 signaling pathway. Altogether, we present the GPX8/IL-6/STAT3 axis as a metabolic-inflammatory pathway that acts as a robust regulator of cancer cell aggressiveness.
Collapse
|
1659
|
Xiao Q, Liu H, Wang HS, Cao MT, Meng XJ, Xiang YL, Zhang YQ, Shu F, Zhang QG, Shan H, Jiang GM. Histone deacetylase inhibitors promote epithelial-mesenchymal transition in Hepatocellular Carcinoma via AMPK-FOXO1-ULK1 signaling axis-mediated autophagy. Am J Cancer Res 2020; 10:10245-10261. [PMID: 32929346 PMCID: PMC7481427 DOI: 10.7150/thno.47045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer-related deaths globally because of high metastasis and recurrence rates. Elucidating the molecular mechanisms of HCC recurrence and metastasis and developing effective targeted therapies are expected to improve patient survival. The promising anti-cancer agents for the treatment of hematological malignancies, histone deacetylase inhibitors (HDIs), have limited effects against epithelial cell-derived cancers, including HCC, the mechanisms involved have not been elucidated. Herein, we studied the molecular mechanisms underlying HDI-induced epithelial-mesenchymal transition (EMT) involving FOXO1-mediated autophagy. Methods: The biological functions of HDIs in combination with autophagy inhibitors were examined both in vitro and in vivo. Cell autophagy was assessed using the generation of mRFP-GFP-LC3-expressing cells and fluorescent LC3 puncta analysis, Western blotting, and electron microscopy. An orthotopic hepatoma model was established in mice for the in vivo experiments. Results: Our study provided novel mechanistic insights into HDI-induced EMT mediated by the autophagy AMPK-FOXO1-ULK1-Snail signaling axis. We demonstrated that autophagy served as a pro-metastasis mechanism in HDI-treated hepatoma cells. HDIs induced autophagy via a FOXO1-dependent pathway, and FOXO1 inhibition promoted HDI-mediated apoptosis in hepatoma cells. Thus, our findings provided novel insights into the molecular mechanisms underlying HDI-induced EMT involving FOXO1-mediated autophagy and demonstrated that a FOXO1 inhibitor exerted a synergistic effect with an HDI to inhibit cell growth and metastasis in vitro and in vivo. Conclusion: We demonstrated that HDIs triggers FOXO1-dependent autophagy, which ultimately promotes EMT, limiting the clinical outcome of HDI-based therapies. Our study suggests that the combination of an HDI and a FOXO1 inhibitor is an effective therapeutic strategy for the treatment of HCC.
Collapse
|
1660
|
Chen W, Yang J, Fang H, Li L, Sun J. Relevance Function of Linc-ROR in the Pathogenesis of Cancer. Front Cell Dev Biol 2020; 8:696. [PMID: 32850817 PMCID: PMC7432147 DOI: 10.3389/fcell.2020.00696] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the key components of non-coding RNAs (ncRNAs) with a length of 200 nucleotides. They are transcribed from the so-called “dark matter” of the genome. Increasing evidence have shown that lncRNAs play an important role in the pathophysiology of human diseases, particularly in the development and progression of tumors. Linc-ROR, as a new intergenic non-protein coding RNA, has been considered to be a pivotal regulatory factor that affects the occurrence and development of human tumors, including breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), and so on. Dysregulation of Linc-ROR has been closely related to advanced clinicopathological factors predicting a poor prognosis. Because linc-ROR can regulate cell proliferation, apoptosis, migration, and invasion, it can thus be used as a potential biomarker for patients with tumors and has potential clinical significance as a therapeutic target. This article reviewed the role of linc-ROR in the development of tumors, its related molecular mechanisms, and clinical values.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Li
- The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
1661
|
Lin B, Li Y, Wang T, Qiu Y, Chen Z, Zhao K, Lu N. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene 2020; 39:6024-6040. [PMID: 32778769 DOI: 10.1038/s41388-020-01412-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022]
Abstract
Metastatic breast cancer is characterized by high mortality and limited therapeutic target. During tumor metastasis, cytoskeletal reorganization is one of the key steps in the migration and invasion of breast cancer cells. Collapsin response mediator protein 2 (CRMP2) is a cytosolic phosphoprotein that plays an important role in regulating cytoskeletal dynamics. Previous researches have reported that altered CRMP2 expression is associated with breast cancer progression, but the underlying mechanism remains poorly understood. Here, we show that CRMP2 expression is reduced in various subtypes of breast cancers and negatively correlated with lymphatic metastasis. Overexpression of CRMP2 significantly inhibits invasion and stemness in breast cancer cells, while downregulation of CRMP2 promotes cell invasion, which is not required for tubulin polymerization. Mechanistic studies demonstrate that CRMP2 interacts with RECK, prevents RECK degradation, which, in turn, blocks NF-κB and Wnt signaling pathways. Furthermore, we find that phosphorylation of CRMP2 at T514 and S522 remarkably abolishes its functions to bind with RECK and to inhibit cell invasion. Pharmacologic rescue of CRMP2 expression suppressed breast cancer metastasis in vitro and in vivo and stimulated a synergetic effect with FN-1501 that induces CRMP2 dephosphorylation. Collectively, this study highlights the potential of CRMP2 as a therapeutic target in breast cancer metastasis and reveals a distinct mechanism of CRMP2.
Collapse
Affiliation(s)
- Binyan Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.,School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing, 210023, People's Republic of China
| | - Yongxu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Tiepeng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yangmin Qiu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhenzhong Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
1662
|
Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H, Guo L. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Front Cell Dev Biol 2020; 8:760. [PMID: 32850862 PMCID: PMC7423833 DOI: 10.3389/fcell.2020.00760] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaowei Lai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Fang Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiechun Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
1663
|
Yu J, Zhou Z, Wei Z, Wu J, OuYang J, Huang W, He Y, Zhang C. FYN promotes gastric cancer metastasis by activating STAT3-mediated epithelial-mesenchymal transition. Transl Oncol 2020; 13:100841. [PMID: 32763503 PMCID: PMC7408597 DOI: 10.1016/j.tranon.2020.100841] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the most lethal cancers worldwide. FYN, a gene that is differentially expressed in gastric cancer, is considered a critical metastasis regulator in several solid tumors, but its role in gastric cancer is still unclear. This study aimed to evaluate the role of FYN and test whether FYN promotes migration and invasion of gastric cancer cells in vitro and in vivo via STAT3 signaling. FYN was overexpressed in gastric cancer and positively correlated with metastasis. FYN knockdown significantly decreased cancer cell migration and invasion, whereas FYN overexpression increased cancer migration and invasion. Genetic inhibition of FYN decreased the number of metastatic lung nodules in vivo. Several epithelial-mesenchymal transition markers were positively correlated with FYN expression, indicative of FYN involvement in this transition. Furthermore, gene set enrichment analysis of a Cancer Genome Atlas dataset revealed that the STAT3 signaling pathway was positively correlated with FYN expression. STAT3 inhibition reversed the FYN-mediated epithelial-mesenchymal transition and suppressed metastasis. In conclusion, FYN promotes gastric cancer metastasis possibly by activating STAT3-mediated epithelial mesenchymal transition and may be a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jie Yu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China
| | - ZhiJun Zhou
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China
| | - ZheWei Wei
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China
| | - Jing Wu
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China
| | - Jun OuYang
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China
| | - WeiBin Huang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China
| | - YuLong He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China.
| | - ChangHua Zhang
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
1664
|
Ancel J, Dewolf M, Deslée G, Nawrocky-Raby B, Dalstein V, Gilles C, Polette M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs 2020; 211:91-109. [PMID: 32750701 DOI: 10.1159/000510103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Maxime Dewolf
- Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Béatrice Nawrocky-Raby
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium,
| | - Myriam Polette
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| |
Collapse
|
1665
|
Yang C, Zhang L, Huang H, Yuan X, Zhang P, Ye C, Wei M, Huang Y, Luo X, Luo J. Alantolactone inhibits proliferation, metastasis and promotes apoptosis of human osteosarcoma cells by suppressing Wnt/β-catenin and MAPKs signaling pathways. Genes Dis 2020; 9:466-478. [PMID: 35224161 PMCID: PMC8843874 DOI: 10.1016/j.gendis.2020.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Although there are many therapeutic strategies such as surgery and chemotherapy, the prognosis of osteosarcoma (OS) is still far from being satisfactory. It is urgent to develop more effective, tolerable and safe drugs for the treatment of OS. In the present study, we investigated the anti-OS activity of Alantolactone (ALT), a natural eucalyptone sesquiterpene lactone mainly exists in Inula helenium, and probed the possible mechanism involved. We demonstrated that ALT significantly inhibited cell proliferation of various human OS cell lines while had relative lower cytotoxicity against normal cells. Then, we validated that ALT reduced migration, decreased invasion possibly through reversing epithelial mesenchymal transition (EMT) process and suppressing Matrix metalloproteinases (MMPs). Moreover, we confirmed that ALT promoted apoptosis and arrested cell cycle at G2/M phase of human OS cells in vitro. In addition, we confirmed that ALT restrained tumor growth and metastasis of OS 143 cells in a xenograft model in vivo. Mechanistically, ALT inhibited the activity of Wnt/β-catenin and p38, ERK1/2 and JNK Mitogen Activated Protein Kinases (MAPKs) signal pathway. Notably, the combination of ALT and Wnt/β-catenin inhibitor, as well as the combination of ALT and MAPKs inhibitors resulted in a synergistically effect on inhibiting the proliferation, migration and invasion of OS cells. Collectively, our results validate the ALT may inhibit proliferation, metastasis and promotes apoptosis of human OS cells possibly through suppressing Wnt/β-Catenin and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Chunmei Yang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Lulu Zhang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Huakun Huang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaohui Yuan
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ping Zhang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Caihong Ye
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengqi Wei
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, PR China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, PR China
| | - Jinyong Luo
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
- Corresponding author. School of Laboratory Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, PR China.
| |
Collapse
|
1666
|
Reynolds BA, Oli MW, Oli MK. Eco-oncology: Applying ecological principles to understand and manage cancer. Ecol Evol 2020; 10:8538-8553. [PMID: 32884638 PMCID: PMC7452771 DOI: 10.1002/ece3.6590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is a disease of single cells that expresses itself at the population level. The striking similarities between initiation and growth of tumors and dynamics of biological populations, and between metastasis and ecological invasion and community dynamics suggest that oncology can benefit from an ecological perspective to improve our understanding of cancer biology. Tumors can be viewed as complex, adaptive, and evolving systems as they are spatially and temporally heterogeneous, continually interacting with each other and with the microenvironment and evolving to increase the fitness of the cancer cells. We argue that an eco-evolutionary perspective is essential to understand cancer biology better. Furthermore, we suggest that ecologically informed therapeutic approaches that combine standard of care treatments with strategies aimed at decreasing the evolutionary potential and fitness of neoplastic cells, such as disrupting cell-to-cell communication and cooperation, and preventing successful colonization of distant organs by migrating cancer cells, may be effective in managing cancer as a chronic condition.
Collapse
Affiliation(s)
- Brent A. Reynolds
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Monika W. Oli
- Department of Microbiology and Cell ScienceInstitute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFLUSA
| | - Madan K. Oli
- Department of Wildlife Ecology and ConservationInstitute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
1667
|
Bocci F, Onuchic JN, Jolly MK. Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models. Front Physiol 2020; 11:929. [PMID: 32848867 PMCID: PMC7411240 DOI: 10.3389/fphys.2020.00929] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Notch signaling is an evolutionary conserved cell-cell communication pathway. Besides regulating cell-fate decisions at an individual cell level, Notch signaling coordinates the emergent spatiotemporal patterning in a tissue through ligand-receptor interactions among transmembrane molecules of neighboring cells, as seen in embryonic development, angiogenesis, or wound healing. Due to its ubiquitous nature, Notch signaling is also implicated in several aspects of cancer progression, including tumor angiogenesis, stemness of cancer cells and cellular invasion. Here, we review experimental and computational models that help understand the operating principles of cell patterning driven by Notch signaling. First, we discuss the basic mechanisms of spatial patterning via canonical lateral inhibition and lateral induction mechanisms, including examples from angiogenesis, inner ear development and cancer metastasis. Next, we analyze additional layers of complexity in the Notch pathway, including the effect of varying cell sizes and shapes, ligand-receptor binding within the same cell, variable binding affinity of different ligand/receptor subtypes, and filopodia. Finally, we discuss some recent evidence of mechanosensitivity in the Notch pathway in driving collective epithelial cell migration and cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
1668
|
Li G, Qi HW, Dong HG, Bai P, Sun M, Liu HY. Targeting deubiquitinating enzyme USP26 by microRNA-203 regulates Snail1's pro-metastatic functions in esophageal cancer. Cancer Cell Int 2020; 20:355. [PMID: 32760222 PMCID: PMC7393868 DOI: 10.1186/s12935-020-01441-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Esophageal cancer is one of the most common cancers worldwide with poor prognosis and high mortality. The transcription factor SNAI1, encoding Snail1, is important for metastatic progression in esophageal cancer whereas the microRNA (miRNA)-203 has been shown to function as an inhibitor of metastasis in EC. The Snail1 protein is stabilized in EC partially by the deubiquitinating enzyme USP26; however, how USP26 is regulated is not completely known. Methods Expression of SNAI1 and USP26 messenger RNA (mRNA) and miR-203 was performed in datasets within The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Expression of Snail1 and USP26 protein and miR-203 was determined in the normal esophageal cell line HET-1A and EC cell lines Kyse150 and TE-1 using western blot and quantitative polymerase chain reaction, respectively. TargetScan was used for in situ prediction of miR-203 targets and in vitro heterologous reporter assays using the wild-type and miR-203 seed mutant of the 3′ Untranslated region (UTR) of USP26 were used to investigate whether USP26 is a target of miR-203. Effects of increasing miR-203 using MIR203A/5P mimic on USP26 and Snail1 in the HET-1A, Kyse150 and TE-1 cell lines were performed using western blot and cycloheximide-based protein stability analysis. Effects of modulating miR-203 in Kyse150 and TE-1 cell lines on in vitro pro-metastatic effects were analyzed by invasion assay, scratch wound-healing assay, and chemosensitivity to 5-fluoruracil (5-FU). In vivo lung metastasis assay was used to study the effect of modulating miR-203 in Kyse150 cells. Results SNAI1 mRNA and HSA/MIR203 was higher and lower, respectively, in EC patients compared to tumor-adjacent normal tissues. No changes in expression of USP26 mRNA were observed in these datasets. MIR/203 expression was downregulated whereas protein expression of both Snail1 and USP26 were higher in EC cell lines Kyse150 and TE-1 compared to normal esophageal cell line HET-1A. USP26 was predicted as a potential target of miR-203 by TargetScan Release 2.0. Reporter assays confirmed USP26 as a target of miR-203 in the EC cell lines. Transfection of EC cell lines with MIR203 mimic decreased USP26 protein expression and Snail1 protein stability indicating the ability of miR-203 to regulate Snail1 protein levels via USP26. Exogenous increase in miR-203 in the EC cell lines significantly inhibited Snail-1 mediated in vitro pro-metastatic function of invasion, wound-healing, and increased chemosensitivity to 5-FU. Finally, overexpression of miR-203 inhibited in vivo lung metastasis of Kyse150 cells, which was reversed following overexpression of USP26, indicating a direct role of miR-203-mediated regulation of USP26 in metastatic progression of EC. Conclusions Cumulatively, these results establish an important mechanism by which decrease in miR-203 expression potentiates metastatic progression in EC via USP26-mediated stabilization of Snail1. Hence, miR-203 can serve as a biomarker of metastasis in EC and is a potential target for therapeutic intervention in EC.
Collapse
Affiliation(s)
- Gang Li
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Hong-Wei Qi
- Department of Medicine, Taian City Central Hospital, Taian, 271000 Shandong China
| | - He-Gui Dong
- Department of Outpatient, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Ping Bai
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Ming Sun
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Hai-Yan Liu
- Department of Oncology, The Second Affiliate Hospital of Shandong First Medical University, No.706, Taishan Street, Taian, 271000 Shandong China
| |
Collapse
|
1669
|
Sun X, Wang M, Wang M, Yao L, Li X, Dong H, Li M, Li X, Liu X, Xu Y. Exploring the Metabolic Vulnerabilities of Epithelial-Mesenchymal Transition in Breast Cancer. Front Cell Dev Biol 2020; 8:655. [PMID: 32793598 PMCID: PMC7393287 DOI: 10.3389/fcell.2020.00655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis and drug resistance are the leading causes of death for breast cancer patients. Epithelial-mesenchymal transition (EMT), a transition from polarized epithelial cells to motile mesenchymal cells mediated by a series of activation signals, confers breast tumor cells with enhanced stem cell, invasive, and metastatic properties. Metabolic reprogramming is an emerging hallmark of cancer cells, which have a complex mutual effect with EMT process. Under hypoxic and nutrient-deprived conditions, metabolic rewiring can rapidly provide ATP and sufficient metabolic intermediates for fueling breast cancer metastasis and progression. In this review, we primarily focus on how these altered metabolic phenotypes of breast tumor cells activate the EMT transcription factors and induce the EMT process to further promote metastasis and resistance to therapy. This review is divided to glucose, lipid, and amino acid metabolism to explore for potential metabolic vulnerabilities, which may provide new insights for blocking the EMT process in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
1670
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
1671
|
The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel) 2020; 12:cancers12082047. [PMID: 32722292 PMCID: PMC7466024 DOI: 10.3390/cancers12082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers.
Collapse
|
1672
|
Hong X, Luo H, Zhu G, Guan X, Jia Y, Yu H, Lv X, Yu T, Lan H, Zhang Q, Li H, Sun W, Huang X, Li J. SSR2 overexpression associates with tumorigenesis and metastasis of Hepatocellular Carcinoma through modulating EMT. J Cancer 2020; 11:5578-5587. [PMID: 32913453 PMCID: PMC7477445 DOI: 10.7150/jca.44788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common malignancy around the world. The molecular mechanisms underlying HCC tumorigenesis and metastasis are far from clear. Numerous studies have pointed out that signal sequence receptor (SSR) is an endoplasmic reticulum-related protein involved in protein folding and processing of eukaryotic cells. SSR2 is a subunit of SSR protein, but the role of SSR2 in hepatocellular carcinoma is largely unknown and warrants further study. Materials and Methods: Several public databases were data mined to analyze the expression of four subunits of SSR between tumor and its peritumor counterparts. Also, the expression of SSR2 in our own collected tissues from HCC patients were analyzed by IHC and quantitative PCR. Survival analyses were conducted to delineate the prognostic value of SSR2. Clinical data were obtained followed by analysis based on SSR2 expression. Afterwards, cell proliferation, migration and invasion were detected by IncuCyte and trans-well assays, respectively. RNA interference was carried out by transfecting specific siRNA targeting SSR2 into cells using lipo2000. Western blot was applied to validate the knockdown effect and regulation on EMT-related proteins. Results: We examined the expression of SSR and its correlation with recurrence and survival of patients. We discovered that SSR2 overexpression was negatively associated with survival of HCC patients from TCGA databases and the mutation of SSR2 was most among the four subunits of SSR protein. Additionally, in this study, we collected tumor and adjacent tissues from 125 cases of HCC patients. Through constructing tissue microarray, we have identified that SSR2 was highly expressed in HCC tumor tissues compared with adjacent normal tissues of hepatocellular carcinoma patients by immunohistochemistry assays. Furthermore, Kaplan-Meier survival analysis from our collected tissues revealed that the overexpression of SSR2 was inversely correlated with disease free survival and overall survival of HCC patients. We elucidated that SSR2 promotes proliferation, migration and invasion of HCC cells. SSR2 knockdown suppressed epithelial mesenchymal transition (EMT) of HCC cells. Conclusions: These results collectively show that SSR2 is overexpressed in HCC tumor tissues, and it is an important factor in predicting survival of HCC patients. Additionally, it is involved in metastasis of HCC. These findings may help to exploit SSR2 as a novel factor in predicting prognosis and metastasis of HCC.
Collapse
Affiliation(s)
- Xiaopeng Hong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Genglong Zhu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Xiaodong Guan
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Yingbin Jia
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hailing Yu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Xiufang Lv
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Ting Yu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Huimin Lan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Qianqian Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hanjie Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Weiming Sun
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Xiaofang Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| |
Collapse
|
1673
|
Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett 2020; 490:54-65. [PMID: 32682951 DOI: 10.1016/j.canlet.2020.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in young people. Recently, extracellular vesicles, especially exosomes, have been reported to play an increasingly important role in the development of many types of tumors. In this research, we found that overexpression of transformer 2β (TRA2B) was associated with tumor progression in osteosarcoma, and TRA2B was the target gene of miR-206, which was downregulated in osteosarcoma tissues. Furthermore, we observed that bone marrow mesenchymal stem cell (BMSC)-derived exosomes could carry and transport miR-206 to osteosarcoma cells. Both in vitro and in vivo results showed that BMSC-derived exosomal miR-206 could inhibit the proliferation, migration and invasion of osteosarcoma cells and induce their apoptosis. Taken together, our study demonstrates that BMSC-derived exosomal miR-206 can be transferred into osteosarcoma cells and inhibit tumor progression by targeting TRA2B, which provides new insight into the molecular mechanism of osteosarcoma and highlights the potential of miR-206 and TRA2B as new therapeutic targets.
Collapse
|
1674
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
1675
|
LY75 Suppression in Mesenchymal Epithelial Ovarian Cancer Cells Generates a Stable Hybrid EOC Cellular Phenotype, Associated with Enhanced Tumor Initiation, Spreading and Resistance to Treatment in Orthotopic Xenograft Mouse Model. Int J Mol Sci 2020; 21:ijms21144992. [PMID: 32679765 PMCID: PMC7404269 DOI: 10.3390/ijms21144992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
The implications of the epithelial-mesenchymal transition (EMT) mechanisms in the initiation and progression of epithelial ovarian cancer (EOC) remain poorly understood. We have previously shown that suppression of the antigen receptor LY75 directs mesenchymal-epithelial transition (MET) in EOC cell lines with the mesenchymal phenotype, associated with the loss of Wnt/β-catenin signaling activity. In the present study, we used the LY75-mediated modulation of EMT in EOC cells as a model in order to investigate in vivo the specific role of EOC cells, with an epithelial (E), mesenchymal (M) or mixed epithelial plus mesenchymal (E+M) phenotype, in EOC initiation, dissemination and treatment response, following intra-bursal (IB) injections of SKOV3-M (control), SKOV3-E (Ly75KD) and a mixed population of SKOV3-E+M cells, into severe combined immunodeficiency (SCID) mice. We found that the IB-injected SKOV3-E cells displayed considerably higher metastatic potential and resistance to treatment as compared to the SKOV3-M cells, due to the acquisition of a Ly75KD-mediated hybrid phenotype and stemness characteristics. We also confirmed in vivo that the LY75 depletion directs suppression of the Wnt/β-catenin pathway in EOC cells, suggestive of a protective role of this pathway in EOC etiology. Moreover, our data raise concerns regarding the use of LY75-targeted vaccines for dendritic-cell EOC immunotherapy, due to the possible occurrence of undesirable side effects.
Collapse
|
1676
|
Guan H, Liu J, Lv P, Zhou L, Zhang J, Cao W. MicroRNA‑590 inhibits migration, invasion and epithelial‑to‑mesenchymal transition of esophageal squamous cell carcinoma by targeting low‑density lipoprotein receptor‑related protein 6. Oncol Rep 2020; 44:1385-1392. [PMID: 32945478 PMCID: PMC7448422 DOI: 10.3892/or.2020.7692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-590 (miR-590) has been revealed as a tumor suppressor, while low-density lipoprotein receptor-related protein 6 (LRP6) is considered to act as a tumor promoter. However, their roles and underlying molecular regulatory mechanisms in esophageal squamous cell carcinoma (ESCC) have yet to be fully elucidated. Therefore, the present study aimed to investigate these mechanisms. The expression levels of miR-590 and LRP6 in human ESCC samples and cell lines were determined using reverse transcription-quantitative PCR. Bioinformatics analysis was used to predict the relationship between miR-590 and LRP6, and luciferase assay was performed to validate the relationship between these factors. Transwell assays were used to determine cell migration and invasion, while western blotting assays were used to detect the protein expression levels of LRP6, E-cadherin, N-cadherin and Vimentin. The present study demonstrated that miR-590 was downregulated and LRP6 was upregulated in ESCC tissues and cell lines. Furthermore, it was found that miR-590 overexpression and LRP6 knockdown inhibited cell migration, invasion and epithelial-to-mesenchymal transition (EMT) in ESCC cell lines. Additional mechanistic studies identified that LRP6 was a target of, and was inhibited by, miR-590. Collectively, the present findings suggested that miR-590 inhibited the invasion, migration and EMT of ESCC cells by mediating LRP6.
Collapse
Affiliation(s)
- Hongya Guan
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jia Liu
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Pengju Lv
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Lijuan Zhou
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wei Cao
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
1677
|
Bian J, Yan K, Liu N, Xu X. Correlations between circulating tumor cell phenotyping and 18F-fluorodeoxyglucose positron emission tomography uptake in non-small cell lung cancer. J Cancer Res Clin Oncol 2020; 146:2621-2630. [PMID: 32661602 DOI: 10.1007/s00432-020-03244-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The epithelial-to-mesenchymal transition (EMT) phenotype-based subsets of circulating tumor cells (CTCs) might be predictors of tumor progression. We evaluated the clinical properties of different phenotypic CTCs in patients with non-small cell lung cancer (NSCLC). Secondly, we explored the association between different phenotypic CTCs and the uptake of 18F-fluorodeoxyglucose (FDG) by the primary tumor on a positron emission tomographic (PET) scan. METHODS Venous blood samples from 34 pathologically confirmed Stage IIB-IVB NSCLC patients were collected prospectively. CTCs were immunoassayed using a SE-i·FISH®CTC kit. We identified CTCs into cytokeratin positive (CK+) and cytokeratin negative (CK-) phenotypes. CTC classifications were correlated with the maximum standardized uptake value (SUVmax) measured by 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Overall survival (OS) and progression-free survival (PFS) curves were produced using the Kaplan-Meier method. RESULTS CTCs were detected in 91.2% of NSCLC patients. CTC counting was associated with TNM stage (P = 0.014) and distant metastasis (P = 0.007). The number of CK-CTCs was also positively associated with TNM stage (P = 0.022) and distant metastasis (P = 0.007). Both total CTC counting and CK-CTC counting did not show association with SUVmax value (P = 0.959, P = 0.903). Kaplan-Meier survival analysis demonstrated that patients with ≥ 7 CTCs had shorter OS (P = 0.003) and PFS (P = 0.001) relative to patients with < 7 CTCs). Notably, the number of CK-CTCs can act as independent risk factors for PFS (P = 0.044) and OS (P = 0.043) in NSCLC patients. However, SUVmax value was not associated with OS (P = 0.895) and PFS (P = 0.686). CONCLUSION The CTC subpopulations could be useful evidence for testing metastasis and prognosis in NSCLC patients. The SUVmax value of the primary tumor was not related to prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Jiarong Bian
- Department of Respiratory Medicine, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, 28 Nan Tong Road, Yangzhou, 225001, People's Republic of China
| | - Ke Yan
- Department of Neurosurgery, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Na Liu
- Department of Respiratory Medicine, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, 28 Nan Tong Road, Yangzhou, 225001, People's Republic of China
| | - Xingxiang Xu
- Department of Respiratory Medicine, Northern Jiangsu Province Hospital, Clinical Medical College of Yangzhou University, 28 Nan Tong Road, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
1678
|
Zhang C, Wei S, Sun WP, Teng K, Dai MM, Wang FW, Chen JW, Ling H, Ma XD, Feng ZH, Duan JL, Cai MY, Xie D. Super-enhancer-driven AJUBA is activated by TCF4 and involved in epithelial-mesenchymal transition in the progression of Hepatocellular Carcinoma. Am J Cancer Res 2020; 10:9066-9082. [PMID: 32802179 PMCID: PMC7415796 DOI: 10.7150/thno.45349] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background and Aims: Aberrant transcriptional programs are highly regulated processes that play important roles in the development and progression of hepatocellular carcinoma (HCC). Emerging evidence suggests that super-enhancers (SEs) often drive critical oncogene expression. However, SE-associated genes in HCC pathogenesis are still poorly understood. Methods: We performed integrative ChIP-seq and Hi-C analyses of HCC cells and identified ajuba LIM protein (AJUBA) as a SE-associated gene. We evaluated AJUBA expression in HCC using immunohistochemistry, immunoblotting, and qRT-PCR. ChIP and luciferase reporter assays were performed to demonstrate that transcription factor 4 (TCF4) bound to AJUBA-associated SEs. We then assessed the role of AJUBA in HCC using both in vitro and in vivo assays. Epithelial-mesenchymal transition (EMT) was examined using immunofluorescence and immunoblotting assays. Furthermore, we used immunoprecipitation and BiFC assays to explore the underlying mechanisms. Results: We identified AJUBA as a SE-associated oncogene in HCC regulated by TCF4. High AJUBA expression was related to an aggressive phenotype and unfavorable outcome in HCC patients. AJUBA knockdown significantly reduced cell migration and invasion capacities both in vitro and in vivo. Furthermore, AJUBA overexpression in HCC recruited tumor necrosis factor associated factor 6 (TRAF6), enhancing the phosphorylation of Akt and increasing Akt activity toward GSK-3β, thus promoting EMT. Conclusions: Our results provide functional and mechanistic links between the SE-associated gene AJUBA and tumor EMT in aggressive HCC.
Collapse
|
1679
|
Frión-Herrera Y, Gabbia D, Scaffidi M, Zagni L, Cuesta-Rubio O, De Martin S, Carrara M. Cuban Brown Propolis Interferes in the Crosstalk between Colorectal Cancer Cells and M2 Macrophages. Nutrients 2020; 12:nu12072040. [PMID: 32660099 PMCID: PMC7400951 DOI: 10.3390/nu12072040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs), primarily the M2 phenotype, are involved in the progression and metastasis of colorectal cancer (CRC). Cuban brown propolis (Cp) and its main component Nemorosone (Nem) displays an antiproliferative effect on different cancer cells, including CRC cell lines. However, whether Cp and Nem could exploit its effect on CRC cells by targeting their relationship with TAMs remains to be elucidated. In this study, we differentiated the human monocytic THP-1 cells to M2 macrophages and confirmed this transition by immunofluorescence (IF) staining, qRT-PCR and zymography. An MTT assay was performed to determine the effect of Cp and Nem on the viability of CRC HT-29 cells co-cultured with M2 macrophages. Furthermore, the migration and invasion abilities of HT-29 cells were determined by Transwell assays and the expression levels of epithelial–mesenchymal transition (EMT) markers were analyzed by IF staining. We demonstrated that Cp and Nem reduced the viability of M2 macrophages and, accordingly, the activity of the MMP-9 metalloprotein. Moreover, we demonstrated that M2 macrophages produce soluble factors that positively regulate HT-29 cell growth, migration and invasion. These M2-mediated effects were counteracted by Cp and Nem treatments, which also played a role in regulating the expression of the EMT markers E-cadherin and vimentin. Taken together, our results indicate that Nem contained in Cp interferes in the crosstalk between CRC cells and TAMs, by targeting M2 macrophages.
Collapse
Affiliation(s)
- Yahima Frión-Herrera
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Michela Scaffidi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Letizia Zagni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Osmany Cuesta-Rubio
- Chemistry and Health Faculty, Technical University of Machala, Ave. Panamericana Vía a Pasaje Km. 5 1/2, Machala 070101, Ecuador;
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
- Correspondence: ; Tel.: +39-0498275077
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| |
Collapse
|
1680
|
Mao Z, Zhang J, Shi Y, Li W, Shi H, Ji R, Mao F, Qian H, Xu W, Zhang X. CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis 2020; 9:63. [PMID: 32632106 PMCID: PMC7338464 DOI: 10.1038/s41389-020-00249-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Deregulated expression of chemokines in tumor microenvironment contributes to tumor metastasis by targeting distinct cells. Epithelial-derived neutrophil-activating peptide-78 (ENA78/CXCL5) is upregulated in many cancers and involved in tumor progression. The role and underlying mechanism of CXCL5 in gastric cancer (GC) metastasis remain unclear. In this study, we reported that the expression of CXCL5 was elevated in tumor tissues and positively associated with lymphatic metastasis and tumor differentiation. Stimulation by recombinant human CXCL5 (rhCXCL5) induced epithelial-mesenchymal transition (EMT) in GC cells through the activation of ERK pathway, which enhanced their migration and invasion abilities. The culture supernatant from tumor tissues also enhanced the migration and invasion abilities of GC cells, however, this effect was reversed by pre-treatment with CXCL5 neutralizing antibody. Further studies showed that rhCXCL5 could induce the expression of IL-6 and IL-23 in neutrophils through the activation of ERK and p38 signaling pathways, which in turn facilitated GC cell migration and invasion. The culture supernatant from tumor tissues showed similar effects on neutrophils in a CXCL5-dependent manner. Blockade of IL-6 and IL-23 with neutralizing antibodies reversed the induction of EMT and the increased migration and invasion abilities in GC cells by CXCL5-activated neutrophils. Moreover, CXCL5 activated neutrophils could promote gastric cancer metastasis in vivo. Taken together, our results indicate that CXCL5 acts on gastric cancer cells to induce EMT and mediates pro-tumor activation of neutrophils, which synergistically promotes the metastatic ability of GC cells.
Collapse
Affiliation(s)
- Zheying Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wei Li
- Center of Research Laboratory, First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222001, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Runbi Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.,Department of Clinical Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
1681
|
Wei LY, Zhang XJ, Wang L, Hu LN, Zhang XD, Li L, Gao JN. A Six-Epithelial-Mesenchymal Transition Gene Signature May Predict Metastasis of Triple-Negative Breast Cancer. Onco Targets Ther 2020; 13:6497-6509. [PMID: 32753890 PMCID: PMC7342558 DOI: 10.2147/ott.s256818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pathological complete response (pCR) to neoadjuvant chemotherapy (NACT) is associated with favourable outcomes of patients with triple-negative breast cancer (TNBC). However, a proportion of TNBC patients with the residual disease do not relapse and achieve long-term survival. The aim of this study was to identify biomarkers that predict clinical outcomes in these patients. PATIENTS AND METHODS A retrospective series of 10 TNBC patients who displayed non-pCR to NACT were included in the discovery cohort. Total RNA from pre-NACT core biopsies and paired surgical specimens were subjected to the Affymetrix Human Transcriptome Array. Gene set enrichment analysis (GSEA) was used to identify signal pathways and gene signatures associated with metastasis. The Cox proportional hazard model and Kaplan-Meier survival curves were employed to assess the prognostic value of the identified signature in two independent TNBC datasets included in Gene Expression Omnibus (GEO). RESULTS The epithelial-mesenchymal transition (EMT) pathway was markedly more enriched in pre- (NES = 1.92; p.adjust = 0.019) and post-NACT samples (NES = 2.02; p.adjust = 0.010) from patients who developed metastasis after NACT. A subset of 6 EMT genes including LUM, SFRP4, COL6A3, MMP2, CXCL12, and HTRA1 were expressed constantly at higher levels in samples from patients who progressed to metastatic disease. The potential of the 6-EMT gene signature to predict TNBC metastasis after NACT was validated with a GEO dataset (HR=0.36, p=0.0008, 95% CI: 0.200-0.658). Moreover, the signature appeared of predictive value in another GEO dataset of TNBC patients who received surgery followed by adjuvant chemotherapy (HR = 0.46, 95% CI: 0.225-0.937). CONCLUSION Expression analysis of the 6-EMT gene signature at diagnosis may be of predictive value for metastasis in TNCB patients who did not achieve pCR to NACT and for patients treated with surgery in combination with adjuvant therapy.
Collapse
Affiliation(s)
- Li Yuan Wei
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, People’s Republic of China
| | - Xiao Jun Zhang
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, People’s Republic of China
| | - Li Wang
- School of Basic Medicine Sciences, Academy of Medical Science, Zhengzhou University, Henan450053, People’s Republic of China
| | - Li Na Hu
- Department of Pathology, Shanxi Bethune Hospital, Taiyuan, People’s Republic of China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Henan450053, People’s Republic of China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Li Li
- Department of Pathology, Shanxi Bethune Hospital, Taiyuan, People’s Republic of China
| | - Jin Nan Gao
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, People’s Republic of China
| |
Collapse
|
1682
|
Divella R, Daniele A, Savino E, Paradiso A. Anticancer Effects of Nutraceuticals in the Mediterranean Diet: An Epigenetic Diet Model. Cancer Genomics Proteomics 2020; 17:335-350. [PMID: 32576579 PMCID: PMC7367609 DOI: 10.21873/cgp.20193] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiological and clinical studies support the association between nutrition and development or progression of different malignancies such as colon, breast, and prostate cancer, defining these tumors as diet-associated cancer. The Mediterranean diet shows inverse associations with metabolic diseases, cardiovascular pathologies and various types of cancer. Many bioactive nutrients of the Mediterranean diet have been identified as factors protective against these types of pathologies. The epigenome has been identified as the primary goal of modulations in gene expression related to these molecular nutrients. In fact, they can modify the epigenome and can be incorporated into the 'epigenetic diet', which translates into a diet regimen that can be used therapeutically for health or preventative purposes. Most epigenetic changes are influenced by lifestyle and nutrition. Epigenetic therapy is a new area for the development of nutraceuticals whose absence of toxicity can represent a valid asset in cancer prevention strategies. Recent advances in understanding the mechanisms of nutrigenomics, nutrigenetics and nutraceuticals have led to the identification of superfoods capable of favorably conditioning gene expression. In this review, we highlight the importance of nutraceuticals present in the Mediterranean diet as epigenetic modifiers both in the mechanisms of tumor onset and as protective agents.
Collapse
Affiliation(s)
- Rosa Divella
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Antonella Daniele
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Eufemia Savino
- Clinical and Pathology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Angelo Paradiso
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| |
Collapse
|
1683
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
1684
|
Celià-Terrassa T, Jolly MK. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036905. [PMID: 31570380 DOI: 10.1101/cshperspect.a036905] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer stem cell (CSC) concept stands for undifferentiated tumor cells with the ability to initiate heterogeneous tumors. It is also relevant in metastasis and can explain how metastatic tumors mirror the heterogeneity of primary tumors. Cellular plasticity, including the epithelial-to-mesenchymal transition (EMT), enables the generation of CSCs at different steps of the metastatic process including metastatic colonization. In this review, we update the concept of CSCs and provide evidence of the existence of metastatic stem cells (MetSCs). In addition, we highlight the nuanced understanding of EMT that has been gained recently and the association of mesenchymal-to-epithelial transition (MET) with the acquisition of CSCs properties during metastasis. We also comment on the computational approaches that have profoundly influenced our understanding of CSCs and EMT; and how these studies and new experimental technologies can yield a deeper understanding of the biological aspects of metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
1685
|
Jiang Y, Ji X, Liu K, Shi Y, Wang C, Li Y, Zhang T, He Y, Xiang M, Zhao R. Exosomal miR-200c-3p negatively regulates the migraion and invasion of lipopolysaccharide (LPS)-stimulated colorectal cancer (CRC). BMC Mol Cell Biol 2020; 21:48. [PMID: 32600257 PMCID: PMC7325272 DOI: 10.1186/s12860-020-00291-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cancer and a major cause of death. Lipopolysaccharide (LPS), an abundant component in gut microbiome, is involved in CRC progression and metastasis, potentially through regulating the miRNA composition of CRC-derived exosomes. In this study, we aimed to identify miRNA species in exosome which regulates CRC progression after LPS stimulation. RESULTS Firstly, we discovered a shift of miRNA profile in CRC exosome after LPS stimulation. Among the differentially expressed miRNAs, we identified miR-200c-3p as a potential key regulator of CRC progression and metastasis. Retrospective analysis revealed that miR-200c-3p was elevated in CRC tumor tissues, but decreased in the serum exosome in CRC patients. In vitro experiments demonstrated that exosomal miR-200c-3p expression did not influence CRC cell proliferation, but negatively regulated their capacity of migration and invasion in the presence of LPS. miR-200c-3p level in exosome influenced exosomal expression of Zinc finger E-box-binding homeobox-1 (ZEB-1) mRNA, one of the miR-200c targets which affects migration and invasion capacity, and further altered ZEB-1 protein expression in CRC cell. In addition, exosomal miR-200c-3p promotes apoptosis of HCT-116 cells. CONCLUSIONS Our findings indicate that exosomal miR-200c-3p inhibits CRC migration and invasion, and promotes their apoptosis after LPS stimulation. It is suggested as a potential diagnostic marker and therapeutic target of CRC.
Collapse
Affiliation(s)
- Yimei Jiang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yiqing Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - You Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Tao Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yonggang He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ming Xiang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
1686
|
Ma ZJ, Wang Y, Li HF, Liu MH, Bi FR, Ma L, Ma H, Yan HL. LncZEB1-AS1 regulates hepatocellular carcinoma bone metastasis via regulation of the miR-302b-EGFR-PI3K-AKT axis. J Cancer 2020; 11:5118-5128. [PMID: 32742459 PMCID: PMC7378930 DOI: 10.7150/jca.45995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
In patients with hepatocellular carcinoma (HCC), disease progression and associated bone metastasis (BM) can markedly reduce quality of life. While the long non-coding RNA (lncRNA) zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) has been shown to function as a key regulator of oncogenic processes in HCC and other tumor types, whether it plays a role in controlling HCC BM remains to be established. In the current study, we detected the significant upregulation of lncZEB1-AS1 in HCC tissues, and we found this expression to be associated with BM progression. When we knocked down this lncRNA in HCC cells, we found that this significantly reduced their migratory, invasive, and metastatic activity both in vitro and in vivo. At a mechanistic level, we found that lncZEB1-AS1 was able to target miR-302b and to thereby increase PI3K-AKT pathway activation and EGFR expression, resulting in the enhanced expression of downstream matrix metalloproteinase genes in HCC cells. In summary, our results provide novel evidence that lncZEB1-AS1 can promote HCC BM through a mechanism dependent upon the activation of PI3K-AKT signaling, thus highlighting a potentially novel therapeutic avenue for the treatment of such metastatic progression in HCC patients.
Collapse
Affiliation(s)
- Zhen-Jiang Ma
- Department of Orthopedics, the Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, P.R. China.,Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Yao Wang
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China.,Department of Laboratory Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Hui-Fen Li
- Department of Interventional, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Ming-Hua Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Feng-Rui Bi
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Long Ma
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Hui Ma
- Department of Orthopedics, the Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, P.R. China
| | - Hong-Li Yan
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
1687
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
1688
|
Aneuploid Circulating Tumor-Derived Endothelial Cell (CTEC): A Novel Versatile Player in Tumor Neovascularization and Cancer Metastasis. Cells 2020; 9:cells9061539. [PMID: 32599893 PMCID: PMC7349247 DOI: 10.3390/cells9061539] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Hematogenous and lymphogenous cancer metastases are significantly impacted by tumor neovascularization, which predominantly consists of blood vessel-relevant angiogenesis, vasculogenesis, vasculogenic mimicry, and lymphatic vessel-related lymphangiogenesis. Among the endothelial cells that make up the lining of tumor vasculature, a majority of them are tumor-derived endothelial cells (TECs), exhibiting cytogenetic abnormalities of aneuploid chromosomes. Aneuploid TECs are generated from “cancerization of stromal endothelial cells” and “endothelialization of carcinoma cells” in the hypoxic tumor microenvironment. Both processes crucially engage the hypoxia-triggered epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT). Compared to the cancerization process, endothelialization of cancer cells, which comprises the fusion of tumor cells with endothelial cells and transdifferentiation of cancer cells into TECs, is the dominant pathway. Tumor-derived endothelial cells, possessing the dual properties of cancerous malignancy and endothelial vascularization ability, are thus the endothelialized cancer cells. Circulating tumor-derived endothelial cells (CTECs) are TECs shed into the peripheral circulation. Aneuploid CD31+ CTECs, together with their counterpart CD31- circulating tumor cells (CTCs), constitute a unique pair of cellular circulating tumor biomarkers. This review discusses a proposed cascaded framework that focuses on the origins of TECs and CTECs in the hypoxic tumor microenvironment and their clinical implications for tumorigenesis, neovascularization, disease progression, and cancer metastasis. Aneuploid CTECs, harboring hybridized properties of malignancy, vascularization and motility, may serve as a unique target for developing a novel metastasis blockade cancer therapy.
Collapse
|
1689
|
Interaction of cancer cells with mesenchymal stem cells: implications in metastatic progression. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
1690
|
Cavo M, Delle Cave D, D'Amone E, Gigli G, Lonardo E, Del Mercato LL. A synergic approach to enhance long-term culture and manipulation of MiaPaCa-2 pancreatic cancer spheroids. Sci Rep 2020; 10:10192. [PMID: 32576846 PMCID: PMC7311540 DOI: 10.1038/s41598-020-66908-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022] Open
Abstract
Tumour spheroids have the potential to be used as preclinical chemo-sensitivity assays. However, the production of three-dimensional (3D) tumour spheroids remains challenging as not all tumour cell lines form spheroids with regular morphologies and spheroid transfer often induces disaggregation. In the field of pancreatic cancer, the MiaPaCa-2 cell line is an interesting model for research but it is known for its difficulty to form stable spheroids; also, when formed, spheroids from this cell line are weak and arduous to manage and to harvest for further analyses such as multiple staining and imaging. In this work, we compared different methods (i.e. hanging drop, round-bottom wells and Matrigel embedding, each of them with or without methylcellulose in the media) to evaluate which one allowed to better overpass these limitations. Morphometric analysis indicated that hanging drop in presence of methylcellulose leaded to well-organized spheroids; interestingly, quantitative PCR (qPCR) analysis reflected the morphometric characterization, indicating that same spheroids expressed the highest values of CD44, VIMENTIN, TGF-β1 and Ki-67. In addition, we investigated the generation of MiaPaCa-2 spheroids when cultured on substrates of different hydrophobicity, in order to minimize the area in contact with the culture media and to further improve spheroid formation.
Collapse
Affiliation(s)
- Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Donatella Delle Cave
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.,Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
1691
|
Yanai M, Kurata M, Muto Y, Iha H, Kanao T, Tatsuzawa A, Ishibashi S, Ikeda M, Kitagawa M, Yamamoto K. Clinicopathological and molecular analysis of SIRT7 in hepatocellular carcinoma. Pathology 2020; 52:529-537. [PMID: 32586688 DOI: 10.1016/j.pathol.2020.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022]
Abstract
Sirtuin 7 (SIRT7) is a NAD+ (nicotinamide adenine dinucleotide) dependent deacetylase that is reported to contribute to tumour growth and invasion by selectively acting on histone H3K18. It is overexpressed in several cancers including hepatocellular carcinoma (HCC). In this study, we investigated the relationship between SIRT7 expression, proliferation (Ki-67 index) in human HCC tissues, and patient prognosis. We analysed 219 HCC samples obtained retrospectively, for clinicopathological features, and with immunohistochemistry. SIRT7 overexpression was observed in 73 cases (33%) and correlated with vascular invasion and poor differentiation of HCC. Ki-67 labelling index was observed to be significantly higher in SIRT7 overexpressing cases. Interestingly, the Ki-67 labelling index was higher in SIRT7 overexpressing cases regardless of the differentiation status of HCC. Multivariate analysis demonstrated SIRT7 overexpression as an independent factor predictive of poor prognosis (p=0.016). In vitro, SIRT7 knockdown led to reduced growth in cells and resulted in a lower percentage of G0/G1 cells compared to controls. In addition, the ratio of apoptotic cells following sorafenib treatment was significantly higher in SIRT7 knockdown cells than control cells (p=0.040), implying that SIRT7 knockdown potentiated the effect of sorafenib. In conclusion, our study showed that overexpression of SIRT7 was associated with increased proliferative activity in HCC and predictive of poor prognosis. In addition, our in vitro model showed that SIRT7 knockdown was associated with reduced proliferation, and suggested abrogation of SIRT7 may potentiate the effect of sorafenib. Therefore, we propose that SIRT7 expression by HCC may be used as a prognostic biomarker, and that SIRT7 may be a potential target for new therapeutic modalities.
Collapse
Affiliation(s)
- Masae Yanai
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Muto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroto Iha
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pathology and Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Toshinori Kanao
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anna Tatsuzawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
1692
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
1693
|
Kaşıkcı E, Aydemir E, Bayrak ÖF, Şahin F. Inhibition of Migration, Invasion and Drug Resistance of Pancreatic Adenocarcinoma Cells - Role of Snail, Slug and Twist and Small Molecule Inhibitors. Onco Targets Ther 2020; 13:5763-5777. [PMID: 32606788 PMCID: PMC7308789 DOI: 10.2147/ott.s253418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The main purpose of this study is to demonstrate the effects of epithelial to mesenchymal transition activating transcription factor silencing (EMT-ATF silencing) on migration, invasion, drug resistance and tumor-forming abilities of various pancreatic cancer cell lines. Additionally, the contribution of small molecule inhibitors of EMT (SD-208 and CX4945) to the effects of gene silencing was evaluated. METHODS EMT activating transcription factors "Snail, Slug and Twist" were silenced by short hairpins on Panc-1, MIA PaCa-2, BxPC-3, and AsPC-1 pancreatic cancer cell lines. The changes in migration, invasion, laminin attachment, cancer stem-like cell properties and tumor-forming abilities were investigated. Chemosensitivity assays and small molecule inhibitors of EMT were applied to the metastatic pancreatic cancer cell line AsPC-1. RESULTS EMT-ATF silencing reduced EMT and stem cell-like characteristics of pancreatic cancer cell lines. Following EMT-ATF silencing amongst the four PC cell lines, AsPC-1 showed the best response and was chosen for further chemoresistance and combinational therapy applications. EMT downregulated AsPC-1 cells showed less resistance to select chemotherapeutics compared to the control group. Both small molecule inhibitors enhanced the outcomes of EMT-ATF silencing. CONCLUSION Overall it was found that EMT-ATF silencing, either by EMT-ATF silencing or with the enhancement by small molecules, is a good candidate to treat pancreatic cancer since it simultaneously minimizes metastasis, stem cell properties, and drug resistance.
Collapse
Affiliation(s)
- Ezgi Kaşıkcı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul34755, Turkey
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Esra Aydemir
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul34755, Turkey
| | - Ömer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul34718, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul34755, Turkey
| |
Collapse
|
1694
|
A self-sustaining endocytic-based loop promotes breast cancer plasticity leading to aggressiveness and pro-metastatic behavior. Nat Commun 2020; 11:3020. [PMID: 32541686 PMCID: PMC7296024 DOI: 10.1038/s41467-020-16836-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
The subversion of endocytic routes leads to malignant transformation and has been implicated in human cancers. However, there is scarce evidence for genetic alterations of endocytic proteins as causative in high incidence human cancers. Here, we report that Epsin 3 (EPN3) is an oncogene with prognostic and therapeutic relevance in breast cancer. Mechanistically, EPN3 drives breast tumorigenesis by increasing E-cadherin endocytosis, followed by the activation of a β-catenin/TCF4-dependent partial epithelial-to-mesenchymal transition (EMT), followed by the establishment of a TGFβ-dependent autocrine loop that sustains EMT. EPN3-induced partial EMT is instrumental for the transition from in situ to invasive breast carcinoma, and, accordingly, high EPN3 levels are detected at the invasive front of human breast cancers and independently predict metastatic rather than loco-regional recurrence. Thus, we uncover an endocytic-based mechanism able to generate TGFβ-dependent regulatory loops conferring cellular plasticity and invasive behavior.
Collapse
|
1695
|
Liu J, Xu R, Mai SJ, Ma YS, Zhang MY, Cao PS, Weng NQ, Wang RQ, Cao D, Wei W, Guo RP, Zhang YJ, Xu L, Chen MS, Zhang HZ, Huang L, Fu D, Wang HY. LncRNA CSMD1-1 promotes the progression of Hepatocellular Carcinoma by activating MYC signaling. Am J Cancer Res 2020; 10:7527-7544. [PMID: 32685003 PMCID: PMC7359090 DOI: 10.7150/thno.45989] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/31/2020] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNA) play critical roles in the development and progression of diverse cancers including hepatocellular carcinoma (HCC), but the underlying molecular mechanisms of lncRNAs that are involved in hepatocarcinogenesis have not been fully explored. Methods: In this study, we profiled lncRNA expression in 127 pairs of HCC and nontumor liver tissues (a Discovery Cohort) using a custom microarray. The expression and clinical significance of lncCSMD1-1 were then validated with qRT-PCR and COX regression analysis in a Validation Cohort (n=260) and two External Validation Cohorts (n=92 and n=124, respectively). In vitro and in vivo assays were performed to explore the biological effects of lncCSMD1-1 on HCC cells. The interaction of lncCSMD1-1 with MYC was identified by RNA pull-down and RNA immunoprecipitation. The role of LncCSMD1-1 in the degradation of MYC protein was also investigated. Results: With microarray, we identified a highly upregulated lncRNA, lncCSMD1-1, which was associated with tumor progression and poor prognosis in the Discovery Cohort, and validated in another 3 HCC cohorts. Consistently, ectopic expression of lncCSMD1-1 notably promotes cell proliferation, migration, invasion, tumor growth and metastasis of HCC cells in in vitro and in vivo experiments. Gene expression profiling on HCC cells and gene sets enrichment analysis indicated that the MYC target gene set was significantly enriched in HCC cells overexpressing lncCSMD1-1, and lncCSMD1-1 was found to directly bind to MYC protein in the nucleus of HCC cells, which resulted in the elevation of MYC protein. Mechanistically, lncCSMD1-1 interacted with MYC protein to block its ubiquitin-proteasome degradation pathway, leading to activation of its downstream target genes. Conclusion: lncCSMD1-1 is upregulated in HCC and promotes progression of HCC by activating the MYC signaling pathway. These results provide the evidence that lncCSMD1-1 may serve as a novel prognostic marker and potential therapeutic target for HCC.
Collapse
|
1696
|
Huang Z, Yu P, Tang J. Characterization of Triple-Negative Breast Cancer MDA-MB-231 Cell Spheroid Model. Onco Targets Ther 2020; 13:5395-5405. [PMID: 32606757 PMCID: PMC7295545 DOI: 10.2147/ott.s249756] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
Background The tumor three-dimensional (3D) spheroid model in vitro is effective on detecting malignant cells and tumorigenesis, and assessing drug resistance. Compared with two-dimensional (2D) monolayer culture, breast cancer (BC) spheroids more accurately reflect the complex microenvironment in vivo, which have been extensively reported in BC research. MDA-MB-231 cells, the triple-negative breast cancer (TNBC) cell line, display representative epithelial to mesenchymal transition (EMT) associated with BC metastasis. However, the characterization of MDA-MB-231 spheroids has been largely unknown at present, which requires further attention. Materials and Methods Microwell array was conducted for the formation of MDA-MB-231 spheroids. In addition, H&E staining, immunohistochemistry (IHC), CellTiter-Glo® 3D cell viability assay, and flow cytometry were performed to investigate the structure and growth characteristics. Besides, Transwell and scratch healing assays were carried out to detect the migratory capacities compared with 2D culture. Western blotting and confocal fluorescence were selected to detect the expression of EMT-associated proteins. Additionally, the half maximal inhibitory concentration (IC50) values of antitumor compounds Carboplatin and Doxorubicin were measured to assess drug resistance. Results The MDA-MB-231 spheroids were viable, which maintained a compact structure with zonation features for up to 9 days. Moreover, those spheroids had a slower growth rate than those cultured as a monolayer and differential zones of proliferation. The migratory capacities were significantly enhanced by transferring the spheroids to 2D adherent culture. Compared with 2D culture, the levels of EMT-associated proteins were significantly up-regulated in spheroids. Furthermore, toxicity assessment showed that spheroids exhibited an increased resistance to the antitumor compounds. Conclusion This study develops the simple spheroids and demonstrates their structure, growth and proliferation characteristics. According to our results, the spheroids are associated with superior EMT and high resistance to toxicological response compared with the standard 2D monocultures.
Collapse
Affiliation(s)
- Zhaoming Huang
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei 437000, People's Republic of China
| | - Panpan Yu
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei 437000, People's Republic of China
| | - Jianhui Tang
- Department of Medical Cosmetology, Xianning Central Hospital, The First Affiliated Hosptial of Hubei University of Science and Technology, Xianning, Hubei 437000, People's Republic of China
| |
Collapse
|
1697
|
Sun S, Liu F, Xian S, Cai D. miR-325-3p Overexpression Inhibits Proliferation and Metastasis of Bladder Cancer Cells by Regulating MT3. Med Sci Monit 2020; 26:e920331. [PMID: 32512576 PMCID: PMC7297032 DOI: 10.12659/msm.920331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND miRNAs have been widely used in cancer treatment. Our study was designed to explore the effects of miR-325-3p in bladder cancer cells. MATERIAL AND METHODS Levels ofd miR-325-3p and MT3 in bladder cancer tissues and cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). miR-325-3p mimics were transfected into bladder cancer T24 cells, and cell migration and invasion rates and cell proliferation were assessed by transwell assay and Cell Counting Kit-8 (CCK-8). The target mRNA for miR-325-3p was predicted by Targetscan7.2 and confirmed by dual-luciferase reporter assay. More experiments were performed to confirm the effects of miR-325-3p and MT3 in T24 cells. Additionally, the levels of TIMP-2, MMP9, and E-cadherin were assessed by Western blotting to identify the effects of miR-325-3p and MT3 on epithelial-mesenchymal transition (EMT). RESULTS miR-325-3p expression was reduced and MT3 was increased in bladder cancer tissues and bladder cancer cells. miR-325-3p mimics suppressed cell proliferation ability and invasion and migration rates of T24 cells. Moreover, miR-325-3p was confirmed to target MT3. Further experiments showed that the effects of increased cell proliferation, invasion, migration, and EMT promoted by MT3 overexpression were abolished by miR-325-3p mimics, proving that miR-325-3p is a tumor suppressor through targeting MT3 in bladder cancer cells. CONCLUSIONS Downregulation of miR-325-3p in bladder cancer regulates cell proliferation, migration, invasion, and EMT by targeting MT3. Furthermore, miR-325-3p is a potential therapeutic target in treating bladder cancer.
Collapse
Affiliation(s)
- Shaopeng Sun
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Feng Liu
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| | - Dawei Cai
- Department of Urology, Beijing Luhe Hospital Affiliated to Beijing Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
1698
|
Penas C, Apraiz A, Muñoa I, Arroyo-Berdugo Y, Rasero J, Ezkurra PA, Velasco V, Subiran N, Bosserhoff AK, Alonso S, Asumendi A, Boyano MD. RKIP Regulates Differentiation-Related Features in Melanocytic Cells. Cancers (Basel) 2020; 12:cancers12061451. [PMID: 32503139 PMCID: PMC7352799 DOI: 10.3390/cancers12061451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
Raf Kinase Inhibitor Protein (RKIP) has been extensively reported as an inhibitor of key signaling pathways involved in the aggressive tumor phenotype and shows decreased expression in several types of cancers. However, little is known about RKIP in melanoma or regarding its function in normal cells. We examined the role of RKIP in both primary melanocytes and malignant melanoma cells and evaluated its diagnostic and prognostic value. IHC analysis revealed a significantly higher expression of RKIP in nevi compared with early-stage (stage I–II, AJCC 8th) melanoma biopsies. Proliferation, wound healing, and collagen-coated transwell assays uncovered the implication of RKIP on the motility but not on the proliferative capacity of melanoma cells as RKIP protein levels were inversely correlated with the migration capacity of both primary and metastatic melanoma cells but did not alter other parameters. As shown by RNA sequencing, endogenous RKIP knockdown in primary melanocytes triggered the deregulation of cellular differentiation-related processes, including genes (i.e., ZEB1, THY-1) closely related to the EMT. Interestingly, NANOG was identified as a putative transcriptional regulator of many of the deregulated genes, and RKIP was able to decrease the activation of the NANOG promoter. As a whole, our data support the utility of RKIP as a diagnostic marker for early-stage melanomas. In addition, these findings indicate its participation in the maintenance of a differentiated state of melanocytic cells by modulating genes intimately linked to the cellular motility and explain the progressive decrease of RKIP often described in tumors.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Iraia Muñoa
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Javier Rasero
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA 15213, USA
| | - Pilar A. Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Veronica Velasco
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Maria D. Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Correspondence: ; Tel.: +34-946015689
| |
Collapse
|
1699
|
Hua W, Ten Dijke P, Kostidis S, Giera M, Hornsveld M. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci 2020; 77:2103-2123. [PMID: 31822964 PMCID: PMC7256023 DOI: 10.1007/s00018-019-03398-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
Metastasis is the most frequent cause of death in cancer patients. Epithelial-to-mesenchymal transition (EMT) is the process in which cells lose epithelial integrity and become motile, a critical step for cancer cell invasion, drug resistance and immune evasion. The transforming growth factor-β (TGFβ) signaling pathway is a major driver of EMT. Increasing evidence demonstrates that metabolic reprogramming is a hallmark of cancer and extensive metabolic changes are observed during EMT. The aim of this review is to summarize and interconnect recent findings that illustrate how changes in glycolysis, mitochondrial, lipid and choline metabolism coincide and functionally contribute to TGFβ-induced EMT. We describe TGFβ signaling is involved in stimulating both glycolysis and mitochondrial respiration. Interestingly, the subsequent metabolic consequences for the redox state and lipid metabolism in cancer cells are found to be in favor of EMT as well. Combined we illustrate that a better understanding of the mechanistic links between TGFβ signaling, cancer metabolism and EMT holds promising strategies for cancer therapy, some of which are already actively being explored in the clinic.
Collapse
Affiliation(s)
- Wan Hua
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Marten Hornsveld
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
1700
|
Vykuntham NG, Suran S, Siripini S, John S, Kumar P, Paithankar K, Amere Subbarao S. Altered molecular pathways decides the treatment outcome of Hsp90 inhibitors against breast cancer cells. Toxicol In Vitro 2020; 65:104828. [DOI: 10.1016/j.tiv.2020.104828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
|