1851
|
Choi SI, Kim BY, Dadakhujaev S, Oh JY, Kim TI, Kim JY, Kim EK. Impaired autophagy and delayed autophagic clearance of transforming growth factor β-induced protein (TGFBI) in granular corneal dystrophy type 2. Autophagy 2012; 8:1782-97. [PMID: 22995918 DOI: 10.4161/auto.22067] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease characterized by a progressive age-dependent extracellular accumulation of transforming growth factor β-induced protein (TGFBI). Corneal fibroblasts from GCD2 patients also have progressive degenerative features, but the mechanism underlying this degeneration remains unknown. Here we observed that TGFBI was degraded by autophagy, but not by the ubiquitin/proteasome-dependent pathway. We also found that GCD2 homozygous corneal fibroblasts displayed a greater number of fragmented mitochondria. Most notably, mutant TGFBI (mut-TGFBI) extensively colocalized with microtubule-associated protein 1 light chain 3β (MAP1LC3B, hereafter referred to as LC3)-enriched cytosolic vesicles and CTSD in primary cultured GCD2 corneal fibroblasts. Levels of LC3-II, a marker of autophagy activation, were significantly increased in GCD2 corneal fibroblasts. Nevertheless, levels of SQSTM1/p62 and of polyubiquitinated protein were also significantly increased in GCD2 corneal fibroblasts compared with wild-type (WT) cells. However, LC3-II levels did not differ significantly between WT and GCD2 cells, as assessed by the presence of bafilomycin A 1, the fusion blocker of autophagosomes and lysosomes. Likewise, bafilomycin A 1 caused a similar change in levels of SQSTM1. Thus, the increase in autophagosomes containing mut-TGFBI may be due to inefficient fusion between autophagosomes and lysosomes. Rapamycin, an autophagy activator, decreased mut-TGFBI, whereas inhibition of autophagy increased active caspase-3, poly (ADP-ribose) polymerase 1 (PARP1) and reduced the viability of GCD2 corneal fibroblasts compared with WT controls. These data suggest that defective autophagy may play a critical role in the pathogenesis of GCD2.
Collapse
Affiliation(s)
- Seung-Il Choi
- Corneal Dystrophy Research Institute and Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
1852
|
Ozkan H, Tuzun F, Kumral A, Duman N. Milk kinship hypothesis in light of epigenetic knowledge. Clin Epigenetics 2012; 4:14. [PMID: 22989202 PMCID: PMC3495834 DOI: 10.1186/1868-7083-4-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 07/11/2012] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED BACKGROUND A wet nurse can be used if a baby's natural mother is unable or chooses not to breastfeed her infant. The practice of using wet nurses is ancient and common to many cultures. PRESENTATION OF THE HYPOTHESIS We hypothesize that infants breastfeeding from the same woman may develop consanguinity even in cases in which they are not blood relatives, and that children of two individuals breastfed by the same woman may thus be at risk of several genetic diseases because of such consanguinity. TESTING THE HYPOTHESIS Possible evidence for the milk kinship hypothesis is to be found in the composition of breast milk, which is composed of living substances such as stem cells or substances that can affect epigenetic regulation such as microRNAs. IMPLICATIONS OF THE HYPOTHESIS If these epigenetic modifications are heritable, marriages between individuals breastfed by the same woman may result in the same consequences as consanguineous marriages. In this paper, we attempt to assess this possibility.
Collapse
Affiliation(s)
- Hasan Ozkan
- Department of Pediatrics, Division of Neonatology, Dokuz Eylul University Faculty of Medicine, Mithatpasa Street, Inciralti, 35340, Izmir, Turkey.
| | | | | | | |
Collapse
|
1853
|
Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1154-63. [PMID: 22982408 DOI: 10.1016/j.bbagrm.2012.08.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/07/2012] [Accepted: 08/31/2012] [Indexed: 01/23/2023]
Abstract
Exosomes are small extracellular vesicles released to the extracellular milieu through fusion of multivesicular bodies with the plasma membrane. These vesicles contain microRNAs and might therefore be vehicles transferring genetic information between cells. The aim of this study was to investigate whether there was a sorting of microRNAs into exosomes in the prostate cancer cell line PC-3. In addition, microRNAs in PC-3 cells and in the non-cancerous prostate cell line RWPE-1 were compared. Exosomes were isolated from the conditioned media from PC-3 cells by ultracentrifugation and inspected by electron microscopy. Total RNA was isolated and microRNAs were analyzed by microarray analysis and real time RT-PCR. MicroRNA microarray analysis revealed that the microRNA profile of PC-3 released exosomes was similar to the profile of the corresponding parent cells. Nevertheless, a sorting of certain microRNAs into exosomes was observed, and low number microRNAs (microRNAs with a low number in their name) were found to be underrepresented in these vesicles. Moreover, the miRNA profile of PC-3 cells resembled the miRNA profile of RWPE-1 cells, though some miRNAs were found to be differently expressed in these cell lines. These results show that exosomes from PC-3 cells, in agreement with previous reports from other cell types, contain microRNAs. Furthermore, this study supports the idea that there is a sorting of microRNAs into exosomes and adds a new perspective by pointing at the underrepresentation of low number miRNAs in PC-3 released exosomes.
Collapse
|
1854
|
de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci 2012; 69:2879-94. [PMID: 22441408 PMCID: PMC11114939 DOI: 10.1007/s00018-012-0958-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.
Collapse
Affiliation(s)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven P. Wichert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
1855
|
Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 2012; 7:42. [PMID: 22920859 PMCID: PMC3483256 DOI: 10.1186/1750-1326-7-42] [Citation(s) in RCA: 669] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/14/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aggregation of alpha-synuclein (αsyn) and resulting cytotoxicity is a hallmark of sporadic and familial Parkinson's disease (PD) as well as dementia with Lewy bodies, with recent evidence implicating oligomeric and pre-fibrillar forms of αsyn as the pathogenic species. Recent in vitro studies support the idea of transcellular spread of extracellular, secreted αsyn across membranes. The aim of this study is to characterize the transcellular spread of αsyn oligomers and determine their extracellular location. RESULTS Using a novel protein fragment complementation assay where αsyn is fused to non-bioluminescent amino-or carboxy-terminus fragments of humanized Gaussia Luciferase we demonstrate here that αsyn oligomers can be found in at least two extracellular fractions: either associated with exosomes or free. Exosome-associated αsyn oligomers are more likely to be taken up by recipient cells and can induce more toxicity compared to free αsyn oligomers. Specifically, we determine that αsyn oligomers are present on both the outside as well as inside of exosomes. Notably, the pathway of secretion of αsyn oligomers is strongly influenced by autophagic activity. CONCLUSIONS Our data suggest that αsyn may be secreted via different secretory pathways. We hypothesize that exosome-mediated release of αsyn oligomers is a mechanism whereby cells clear toxic αsyn oligomers when autophagic mechanisms fail to be sufficient. Preventing the early events in αsyn exosomal release and uptake by inducing autophagy may be a novel approach to halt disease spreading in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Karin M Danzer
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
1856
|
Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One 2012; 7:e43691. [PMID: 22937080 PMCID: PMC3427246 DOI: 10.1371/journal.pone.0043691] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 12/18/2022] Open
Abstract
Breast milk is the primary source of nutrition for newborns, and is rich in immunological components. MicroRNAs (miRNAs) are present in various body fluids and are selectively packaged inside the exosomes, a type of membrane vesicles, secreted by most cell types. These exosomal miRNAs could be actively delivered into recipient cells, and could regulate target gene expression and recipient cell function. Here, we analyzed the lactation-related miRNA expression profiles in porcine milk exosomes across the entire lactation period (newborn to 28 days after birth) by a deep sequencing. We found that immune-related miRNAs are present and enriched in breast milk exosomes (p<10−16, χ2 test) and are generally resistant to relatively harsh conditions. Notably, these exosomal miRNAs are present in higher numbers in the colostrums than in mature milk. It was higher in the serum of colostrum-only fed piglets compared with the mature milk-only fed piglets. These immune-related miRNA-loaded exosomes in breast milk may be transferred into the infant body via the digestive tract. These observations are a prelude to in-depth investigations of the essential roles of breast milk in the development of the infant’s immune system.
Collapse
|
1857
|
Chua CEL, Lim YS, Lee MG, Tang BL. Non-classical membrane trafficking processes galore. J Cell Physiol 2012; 227:3722-30. [DOI: 10.1002/jcp.24082] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1858
|
Shtam TA, Naryzhny SN, Landa SB, Burdakov VS, Artamonova TO, Filatov MV. Purification and in vitro analysis of exosomes secreted by malignantly transformed human cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12040116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
1859
|
Chang YH, Lee SH, Liao IC, Huang SH, Cheng HC, Liao PC. Secretomic analysis identifies alpha-1 antitrypsin (A1AT) as a required protein in cancer cell migration, invasion, and pericellular fibronectin assembly for facilitating lung colonization of lung adenocarcinoma cells. Mol Cell Proteomics 2012; 11:1320-39. [PMID: 22896658 DOI: 10.1074/mcp.m112.017384] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metastasis is a major obstacle that must be overcome for the successful treatment of lung cancer. Proteins secreted by cancer cells may facilitate the progression of metastasis, particularly within the phases of migration and invasion. To discover metastasis-promoting secretory proteins within cancer cells, we used the label-free quantitative proteomics approach and compared the secretomes from the lung adenocarcinoma cell lines CL1-0 and CL1-5, which exhibit low and high metastatic properties, respectively. By employing quantitative analyses, we identified 660 proteins, 68 of which were considered to be expressed at different levels between the two cell lines. High levels of A1AT were secreted by CL1-5, and the roles of A1AT in the influence of lung adenocarcinoma metastasis were investigated. Molecular and pathological confirmation demonstrated that altered expression of A1AT correlates with the metastatic potential of lung adenocarcinoma. The migration and invasion properties of CL1-5 cells were significantly diminished by reducing the expression and secretion of their A1AT proteins. Conversely, the migration and invasion properties of CL1-0 cells were significantly increased through the overexpression and secretion of A1AT proteins. Furthermore, the assembly levels of the metastasis-promoting pericellular fibronectin (FN1), which facilitates colonization of lung capillary endothelia by adhering to the cell surface receptor dipeptidyl peptidase IV (DPP IV), were higher on the surfaces of suspended CL1-5 cells than on those of the CL1-0 cells. This discovery reflects previous findings in breast cancer. In line with this finding, FN1 assembly and the lung colonization of suspended CL1-5 cells were inhibited when endogenous A1AT protein was knocked down using siRNA. The major thrust of this study is to demonstrate the effects of coupling the label-free proteomics strategy with the secretomes of cancer cells that differentially exhibit invasive and metastatic properties. This provides a new opportunity for the effective identification of metastasis-associated proteins that are secreted by cancer cells and promote experimental metastasis.
Collapse
Affiliation(s)
- Ying-Hua Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
1860
|
Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol 2012; 44:2060-4. [PMID: 22903023 DOI: 10.1016/j.biocel.2012.08.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 12/15/2022]
Abstract
Exosomes are small membrane vesicles of endosomal origin, which are secreted from a variety of cell types. During the 1980s exosomes were first described as organelles to remove cell debris and unwanted molecules. The discovery that exosomes contain proteins, messenger and microRNAs suggests a role as mediators in cell-to-cell communication. Exosomes can be transported between different cells and influence physiological pathways in the recipient cells. In the present review, we will summarize the biological function of exosomes and their involvement in physiological and pathological processes. Moreover, the potential clinical application of exosomes as biomarkers and therapeutic tools will be discussed.
Collapse
Affiliation(s)
- Claudia Bang
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
1861
|
Chiba M, Kimura M, Asari S. Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep 2012; 28:1551-8. [PMID: 22895844 PMCID: PMC3583404 DOI: 10.3892/or.2012.1967] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
Exosomes are microvesicles that are released from various cells into the extracellular space. It has been reported that the components within exosomes vary according to the type of secreted cell. In the present study, we investigated the tetraspanin family proteins CD63, CD9 and CD81 as useful collection markers of exosomes derived from the three colorectal cancer (CRC) cell lines HCT-15, SW480 and WiDr. In addition, we aimed to detect the mRNAs, microRNAs and natural antisense RNAs within the exosomes secreted from the three CRC cell lines. Furthermore, we examined whether exosomes containing their RNAs were transferred into the hepatoma cell line HepG2 and lung cancer cell line A549. CD81 was detected in exosomes secreted from the three CRC cell lines. This result indicates that CD81 can be a collection marker of exosomes derived from the three CRC cell lines. When the RNA species within exosomes derived from the three CRC cell lines were examined, the mRNAs of housekeeping genes such as ACTB and GAPDH, the microRNAs such as miR-21, miR-192 and miR-221, and the natural antisense RNAs of LRRC24, MDM2 and CDKN1A genes, were detected. We discovered their natural antisense RNAs within exosomes for the first time in the present study. Furthermore, PKH67-labeled exosomes derived from the CRC cell lines were taken up into HepG2 and A549 cells. These findings indicate that the intracellular RNAs enclosed within exosomes are secreted to the outside, and exosomes derived from the CRC cell lines are transferred into HepG2 and A549 cells. In conclusion, we reveal that exosomes derived from the CRC cell lines contain mRNAs, microRNAs and natural antisense RNAs, and can be delivered into HepG2 and A549 cells. These findings indicate that exosomal RNAs can shuttle between cells, and may be involved in the regulation of gene expression in recipient cells.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Biomedical Sciences, Division of Medical Life Sciences, Hirosaki University School of Health Sciences, Hirosaki, Aomori 036-8564, Japan.
| | | | | |
Collapse
|
1862
|
Redis RS, Calin S, Yang Y, You MJ, Calin GA. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Ther 2012; 136:169-74. [PMID: 22903157 DOI: 10.1016/j.pharmthera.2012.08.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/17/2022]
Abstract
The role of non-protein coding RNAs (ncRNAs), microRNAs (miRNAs) in particular, as fine-tuners of both pathological and physiological processes is no longer a matter of debate. With the recent discovery of miRNAs in a wide variety of body fluids and considering them as tools employed in horizontal gene transfer between cells, a new horizon opens in the field of diagnosis and therapeutics. Circulating miRNAs not only enable the communication among cells, but also provide insight into the pathological and physiological state of the originating cells. In this review we summarize the recent advances made in this field, arguing for compelling translation of miRNAs into clinical practice. Moreover, we provide overview of their characteristics and how they impact the evolution of tumor microenvironment and cell-to-cell communication, advancing the idea that miRNAs may function as hormones.
Collapse
Affiliation(s)
- Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
1863
|
Al-Mayah AHJ, Irons SL, Pink RC, Carter DRF, Kadhim MA. Possible role of exosomes containing RNA in mediating nontargeted effect of ionizing radiation. Radiat Res 2012; 177:539-45. [PMID: 22612287 DOI: 10.1667/rr2868.1] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Communication between irradiated and un-irradiated (bystander) cells can cause damage in cells that are not directly targeted by ionizing radiation, a process known as the bystander effect. Bystander effects can also lead to chromosomal/genomic instability within the progeny of bystander cells, similar to the progeny of directly irradiated cells. The factors that mediate this cellular communication can be transferred between cells via gap junctions or released into the extracellular media following irradiation, but their nature has not been fully characterized. In this study we tested the hypothesis that the bystander effect mediator contains an RNA molecule that may be carried by exosomes. MCF7 cells were irradiated with 2 Gy of X rays and the extracellular media was harvested. RNase treatment abrogated the ability of the media to induce early and late chromosomal damage in bystander cells. Furthermore, treatment of bystander cells with exosomes isolated from this media increased the levels of genomic damage. These results suggest that the bystander effect, and genomic instability, are at least in part mediated by exosomes and implicate a role for RNA.
Collapse
Affiliation(s)
- Ammar H J Al-Mayah
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, United Kingdom
| | | | | | | | | |
Collapse
|
1864
|
Abstract
OBJECTIVES Pancreatic interstitial cells are located among acini, ducts, nerves, and blood vessels. They are essential for pancreas development, physiology, and for oncogenic microenvironment. We identified cells with characteristic ultrastructural features of telocytes in pancreatic interstitium. Telocytes were initially described as interstitial Cajal-like cells, but it gradually became clear that they were a distinct novel cell type not directly related to canonical interstitial Cajal cells. METHODS Serial ultrathin sections of human pancreatic tissue were studied by transmission electron microscopy. Computer analysis software was used to obtain 2-dimensional compositions from serial micrographs and to perform morphometry. RESULTS Pancreatic telocytes appear as small-body cells with prolongations called telopodes. The ultrastructural features of telopodes are the following: (a) number: 1 to 3; (b) length: tens of micrometers; (c) moniliform aspect: with podoms (thicker portions) and podomers (thin segments, with a mean width of 60 nm, undetectable by light microscopy); (d) dichotomous branching forming a network; (e) establish homocellular and heterocellular junctions; (f) release of microvesicles/multivesicular bodies. Telopodes pass close to blood vessels, nerves, and pancreatic acinar cells and ducts. CONCLUSIONS Telocytes are present as distinct interstitial cells in the exocrine pancreatic stroma. They act as important players in intercellular signaling via stromal synapses and shed vesicle transfer.
Collapse
|
1865
|
Wurdinger T, Gatson NN, Balaj L, Kaur B, Breakefield XO, Pegtel DM. Extracellular vesicles and their convergence with viral pathways. Adv Virol 2012; 2012:767694. [PMID: 22888349 PMCID: PMC3410301 DOI: 10.1155/2012/767694] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (microvesicles), such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.
Collapse
Affiliation(s)
- Thomas Wurdinger
- Departments of Neurology and Radiology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
- Neuro-oncology Research Group, Department of Neurosurgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - NaTosha N. Gatson
- Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Leonora Balaj
- Departments of Neurology and Radiology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xandra O. Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
1866
|
D’Asti E, Garnier D, Lee TH, Montermini L, Meehan B, Rak J. Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 2012; 3:294. [PMID: 22934045 PMCID: PMC3429065 DOI: 10.3389/fphys.2012.00294] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/06/2012] [Indexed: 12/14/2022] Open
Abstract
The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | - Janusz Rak
- Pediatrics, Cancer and Angiogenesis Laboratory, RI MUHC, Montreal Children’s Hospital, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
1867
|
Royo F, Falcon-Perez JM. Liver extracellular vesicles in health and disease. J Extracell Vesicles 2012; 1:18825. [PMID: 24009882 PMCID: PMC3760641 DOI: 10.3402/jev.v1i0.18825] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in cell-to-cell communication. Although there are different kinds of vesicles, each with their own secretion and capture biology, all of them carry a cargo of proteins, lipids, metabolites and nucleic acids. They act as vehicles for exchange of biological materials and signals and are involved in the regulation of various physiological processes. Liver is an essential organ containing different cell populations fulfilling various functions, which need to be strictly controlled and coordinated. There are a few articles showing the role of liver-derived EVs. On the basis of them, we present here a hypothesis of the implication of such vesicles in the physiology of the liver. Different liver cell types, including hepatocytes, cholangiocytes and stellate cells, secrete and capture EVs and interact with them. Liver injury changes the abundance and cargo of EVs; these changes are likely to be important for the outcome of stress response. Although a substantial effort has been put into the characterization of EVs in isolated populations, it is only recently that some more comprehensive information has begun to appear. In this article, we hypothesize about the role of EVs in liver microenvironment and their possible function using published data from both hepatic and non-hepatic systems.
Collapse
Affiliation(s)
- Felix Royo
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | | |
Collapse
|
1868
|
Vingtdeux V, Sergeant N, Buée L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer's disease. Front Physiol 2012; 3:229. [PMID: 22783199 PMCID: PMC3389776 DOI: 10.3389/fphys.2012.00229] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/06/2012] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of prion diseases, the concept has emerged that a protein could be a transmissible pathogen. As such, this transmissible pathogen agent can transfer its pathological mis-folded shape to the same but normally folded protein thus leading to the propagation of a disease. This idea is now extrapolated to several neurological diseases associated with protein mis-folding and aggregation, such as Alzheimer’s disease (AD). AD is a slowly developing dementing disease characterized by the coexistence of two types of lesions: the parenchymal amyloid deposits and the intraneuronal neurofibrillary tangles (NFT). Amyloid deposits are composed of amyloid-beta peptides that derive from sequential cleavages of its precursor named amyloid protein precursor. NFT are characterized by intraneuronal aggregation of abnormally modified microtubule-associated Tau proteins. A synergistic relationship between the two lesions may trigger the progression of the disease. Thus, starting in the medial temporal lobe and slowly progressing through temporal, frontal, parietal, and occipital cortex, the spreading of NFT is well correlated with clinical expression of the disease and likely follows cortico-cortical neuronal circuitry. However, little is known about the mechanism driving the spatiotemporal propagation of these lesions ultimately leading to the disease. A growing number of studies suggest that amyloid deposits and NFT are resulting from a prion-like spreading. In the present chapter, we will develop the current hypotheses regarding the molecular and cellular mechanisms driving the development and spreading of AD lesions from the window of multivesicular endosomes/bodies and exosomes.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Manhasset, NY, USA
| | | | | |
Collapse
|
1869
|
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64:676-705. [PMID: 22722893 DOI: 10.1124/pr.112.005983] [Citation(s) in RCA: 1340] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the vesicles can also be a danger to their environment, for instance in blood, where vesicles can provide a surface supporting coagulation. Evidence is accumulating that vesicles are cargo containers used by eukaryotic cells to exchange biomolecules as transmembrane receptors and genetic information. Because also bacteria communicate to each other via extracellular vesicles, the intercellular communication via extracellular cargo carriers seems to be conserved throughout evolution, and therefore vesicles are likely to be a highly efficient, robust, and economic manner of exchanging information between cells. Furthermore, vesicles protect cells from accumulation of waste or drugs, they contribute to physiology and pathology, and they have a myriad of potential clinical applications, ranging from biomarkers to anticancer therapy. Because vesicles may pass the blood-brain barrier, they can perhaps even be considered naturally occurring liposomes. Unfortunately, pathways of vesicle release and vesicles themselves are also being used by tumors and infectious diseases to facilitate spreading, and to escape from immune surveillance. In this review, the different types, nomenclature, functions, and clinical relevance of vesicles will be discussed.
Collapse
Affiliation(s)
- Edwin van der Pol
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
1870
|
Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 2012; 161:635-44. [DOI: 10.1016/j.jconrel.2011.11.021] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/17/2011] [Accepted: 11/19/2011] [Indexed: 01/19/2023]
|
1871
|
Abstract
NSP 5a3a is a novel structural protein found to be over-expressed in certain cancer cell lines in-vitro such as Hela, Saos-2, and MCF-7 while barely detectable levels in normal body tissues except for Testis. This particular isoform has been known to interact with cyto- nuclear proteins B23, known to be involved in multi-faceted cellular processes such as cell division, apoptosis, ribosome biogenesis, and rRNA processing, as well as with hnRNP-L, known to be involved with RNA metabolism and rRNA processing. A previous preliminary investigation of NSP 5a3a as a potential target in Head and Neck Carcinoma revealed a novel p73 dependent mechanism through which NSP 5a3a induced apoptosis in Head and Neck cell lines when over-expressed in-vitro. Our present investigation further elucidated a novel dual axis signaling point by which NSP 5a3a induces apoptosis in Head and Neck cell line HN30 through p73-DAXX and TRAF2-TRADD. Interestingly, this novel mechanism appears independent of canonical caspases involved in the intrinsic mitochondrial pathway as well as those in the death receptor pathway thru TRAF2 and TRADD.
Collapse
|
1872
|
Lim JWE, Mathias RA, Kapp EA, Layton MJ, Faux MC, Burgess AW, Ji H, Simpson RJ. Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. Electrophoresis 2012; 33:1873-80. [PMID: 22740476 DOI: 10.1002/elps.201100687] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Eugene A. Kapp
- Bioinformatics Group, The Walter and Eliza Hall Institute of Medical Research; Parkville; Victoria; Australia
| | - Meredith J. Layton
- Department of Biochemistry and Molecular Biology; Monash University; Clayton; Victoria; Australia
| | - Maree C. Faux
- Epithelial Biochemistry Laboratory, Ludwig Institute for Cancer Research; Parkville; Victoria; Australia
| | - Antony W. Burgess
- Epithelial Biochemistry Laboratory, Ludwig Institute for Cancer Research; Parkville; Victoria; Australia
| | | | | |
Collapse
|
1873
|
Lai CPK, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012; 3:228. [PMID: 22754538 PMCID: PMC3384085 DOI: 10.3389/fphys.2012.00228] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are nanometer sized vesicles, including exosomes and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs, proteins, and lipids among cells without direct cell-to-cell contact, thereby representing a novel form of intercellular communication. Many cells in the nervous system have been shown to release EMVs, implicating their active roles in development, function, and pathologies of this system. While substantial progress has been made in understanding the biogenesis, biophysical properties, and involvement of EMVs in diseases, relatively less information is known about their biological function in the normal nervous system. In addition, since EMVs are endogenous vehicles with low immunogenicity, they have also been actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer and neurological diseases. The present review summarizes current knowledge about EMV functions in the nervous system under both physiological and pathological conditions, as well as emerging EMV-based therapies that could be applied to the nervous system in the foreseeable future.
Collapse
Affiliation(s)
- Charles Pin-Kuang Lai
- Department of Neurology, Neuroscience Center, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
1874
|
Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 2012; 44:1574-84. [PMID: 22728313 DOI: 10.1016/j.biocel.2012.06.018] [Citation(s) in RCA: 513] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/02/2012] [Accepted: 06/12/2012] [Indexed: 12/11/2022]
Abstract
Exosomes are discussed as potent therapeutics due to efficient transfer of proteins, mRNA and miRNA in selective targets. However, therapeutic exosome application requires knowledge on target structures to avoid undue delivery. Previous work suggesting exosomal tetraspanin-integrin complexes to be involved in target cell binding, we aimed to control this hypothesis and to define target cell ligands. Exosomes are rich in tetraspanins that associate besides other molecules with integrins. Co-immunoprecipitation of exosome lysates from rat tumor lines that differ only with respect to Tspan8 and beta4 revealed promiscuity of tetraspanin-integrin associations, but also few preferential interactions like that of Tspan8 with alpha4 and beta4 integrin chains. These minor differences in exosomal tetraspanin-complexes strongly influence target cell selection in vitro and in vivo, efficient exosome-uptake being seen in hematopoietic cells and solid organs. Exosomes expressing the Tspan8-alpha4 complex are most readily taken up by endothelial and pancreas cells, CD54 serving as a major ligand. Selectivity of uptake was confirmed with exosomes from an alpha4 cDNA transfected Tspan8(+) lymph node stroma line. Distinct from exosomes from the parental line, the latter preferentially targeted endothelial cells and in vivo the pancreas. Importantly, pulldown experiments provided strong evidence that exosome-uptake occurs in internalization-prone membrane domains. This is the first report on the exosomal tetraspanin web contributing to target cell selection such that predictions can be made on potential targets, which will facilitate tailoring exosomes for drug delivery.
Collapse
|
1875
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
1876
|
Loveday EK, Svinti V, Diederich S, Pasick J, Jean F. Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection. J Virol 2012; 86:6109-22. [PMID: 22438559 PMCID: PMC3372180 DOI: 10.1128/jvi.06892-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/08/2012] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to virus-associated diseases involving members of the Hepacivirus, Herpesvirus, and Retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the life cycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenicity swine-origin infA (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin infA (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral life cycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time points during the viral life cycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including the immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.
Collapse
Affiliation(s)
- Emma-Kate Loveday
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Svinti
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra Diederich
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Pasick
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
1877
|
Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 2012; 80:1948-57. [PMID: 22409932 PMCID: PMC3370574 DOI: 10.1128/iai.06014-11] [Citation(s) in RCA: 543] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.
Collapse
Affiliation(s)
| | - Brad T. Cookson
- Department of Microbiology
- Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
1878
|
Ranghino A, Cantaluppi V, Grange C, Vitillo L, Fop F, Biancone L, Deregibus MC, Tetta C, Segoloni GP, Camussi G. Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int J Immunopathol Pharmacol 2012; 25:75-85. [PMID: 22507320 DOI: 10.1177/039463201202500110] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Paracrine mediators released from endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis following ischemia. Recently, we demonstrated that microvesicles (MVs) derived from EPCs are able to activate an angiogenic program in quiescent endothelial cells by a horizontal transfer of RNA. In this study we aim to investigate whether EPC-derived MVs are able to induce neoangiogenesis and to enhance recovery in a murine model of hindlimb ischemia. Hindlimb ischemia was induced in severe combined immunodeficient (SCID) mice by ligation and resection of the left femoral artery and mice were treated with EPC-derived MVs (MVs), RNase-inactivated MVs (RnaseMVs), fibroblast-derived MVs or vehicle alone as control (CTL). Since MVs contained the angiogenic miR-126 and miR-296, we evaluated whether microRNAs may account for the angiogenic activities by treating mice with MVs obtained from DICER-knock-down EPC (DICER-MVs). The limb perfusion evaluated by laserdoppler analysis demonstrated that MVs significantly enhanced perfusion in respect to CTL (0.50±0.08 vs 0.39±0.03, p<0.05). After 7 days, immunohistochemical analyses on the gastrocnemius muscle of the ischemic hindlimb showed that MVs but not fibroblast-MVs significantly increased the capillary density in respect to CTL (MVs vs CTL: 24.7±10.3 vs 13.5±6, p<0.0001) and (fibroblast-MVs vs CTL: 10.2±3.4 vs 13.5±6, ns); RNaseMVs and DICER-MVs significantly reduced the effect of MVs (RNaseMVs vs CTL: 15.7±4.1 vs 13.5±6, ns) (MVs vs DICER-MVs 24.7±10.3 vs 18.1±5.8, p <0.05), suggesting a role of RNAs shuttled by MVs. Morphometric analysis confirmed that MVs enhanced limb perfusion and reduced injury. The results of the present study indicate that treatment with EPC-derived MVs improves neovascularization and favors regeneration in severe hindlimb ischemia induced in SCID mice. This suggests a possible use of EPCs-derived MVs for treatment of peripheral arterial disease.
Collapse
Affiliation(s)
- A Ranghino
- Department of Internal Medicine, Research Center for Experimental Medicine (CeRMS) and Center for Molecular Biotechnology, and University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1879
|
Burns JS, Safwat A, Grisendi G, Kassem M, Dominici M. Sarcomas as a mise en abyme of mesenchymal stem cells: exploiting interrelationships for cell mediated anticancer therapy. Cancer Lett 2012; 325:1-10. [PMID: 22659735 DOI: 10.1016/j.canlet.2012.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
Mise en abyme meaning "placed into abyss or infinite recurrence" is an apt paradigm for the relentless growth of sarcoma cells. Its alternative meaning, "self-reflexive embedding" fits the central role attributed to cancer stem cells (CSCs). Diversely sourced and defined, mesenchymal stem cells (MSCs) may be the cells of sarcoma origin, evolve a CSC phenotype and/or contribute to tumor growth through inherent qualities for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, cell fusion, entosis and immune modulation. Exploiting these qualities, MSC expressing modified forms of the TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) are being developed to complement more conventional radiation and chemotherapy.
Collapse
Affiliation(s)
- Jorge S Burns
- Laboratory of Cell Biology and Advanced Cancer Therapies, Department of Oncology, Hematology and Respiratory Disease, University Hospital of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | |
Collapse
|
1880
|
Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 2012; 352:33-47. [PMID: 22610588 PMCID: PMC3602607 DOI: 10.1007/s00441-012-1428-2] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer's, Parkinson's and Huntington's disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results in the seeded assembly of the cognate soluble protein in target cells, similar to that proposed for transmissible prion diseases. The molecular mechanisms underlying the intercellular transfer of these proteinaceous aggregates are poorly understood. Various transfer modes of misfolded proteins including continuous cell-cell contacts such as nanotubes, unconventional secretion or microvesicle/exosome-associated dissemination have been suggested. Cells can release proteins, lipids and nucleic acids by vesicular exocytosis pathways destined for horizontal transfer. Encapsulation into microvesicular/exosomal vehicles not only protects these molecules from degradation and dilution in the extracellular space but also facilitates delivery over large distances, e.g. within the blood flow or interstitial fluid. Specific surface ligands might allow the highly efficient and targeted uptake of these vesicles by recipient cells. In this review, we focus on the cell biology and function of neuronal microvesicles/exosomes and discuss the evidence for pathogenic intercellular protein transfer mediated by vesicular carriers.
Collapse
Affiliation(s)
- Anja Schneider
- Department of Psychiatry and Psychotherapy, University Medicine Goettingen, Von-Siebold-Str.5, 37075, Goettingen, Germany.
| | | |
Collapse
|
1881
|
Abstract
Diabetes is a chronic disease that manifests when insulin production by the pancreas is insufficient or when the body cannot effectively utilize the secreted insulin. The onset of diabetes often goes undetected until the later stages where subsequent glucose accumulation in the system (hyperglycemia) is observed. Over time, it leads to serious multi-organ damage, especially to the nerves and blood vessels. The WHO reports that approximately 346 million people worldwide are diagnosed with diabetes. With no cure available, long-term medical care for diabetes has become a global economic challenge globally. Hence, there is a need to explore novel early biomarkers and therapeutics for diabetes. One such potential molecule is the miRNAs. miRNAs are endogenous, noncoding RNAs that predominantly inhibit gene expression. Compelling evidence showed that altered miRNA expressions are linked to pathological conditions, including diabetes manifestation. This review focuses on the implications of miRNAs in diabetes and their related complications.
Collapse
Affiliation(s)
- Dwi Setyowati Karolina
- a Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Arunmozhiarasi Armugam
- a Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Sugunavathi Sepramaniam
- a Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Kandiah Jeyaseelan
- b Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
1882
|
Federico M. From virus-like particles to engineered exosomes for a new generation of vaccines. Future Virol 2012. [DOI: 10.2217/fvl.12.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last two decades, virus-like particles (VLPs) have been the focus of countless investigations on innovative vaccines. The number of monotypic, multipartite and chimeric VLP-based vaccines proposed have increased even further in the last few years as part of the continuous effort to improve the safety, efficacy and cost–effectiveness of immunogens. As compared with monomer- or subunit-based vaccines, VLPs show several advantages in terms of potency of the elicited immune responses. Chimeric VLPs are quite flexible tools to accommodate foreign peptides, cell proteins and nonself-assembling viral products. However, their use often meets with still unresolved hurdles such as induction of undesired immune responses, neutralization by pre-existing immunity and complex methods of production. Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles constitutively released by eukaryotic cells that originate from intraluminal vesicles accumulating in multivesicular bodies. Exosomes have immunogenic properties, the strength of which correlates with the amounts of associated antigens. Engineering antigens of interest to target them in exosomes represents the last frontier in terms of nanoparticle-based vaccines.
Collapse
Affiliation(s)
- Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
1883
|
Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, De Leo G, Alessandro R. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer 2012; 130:2033-43. [PMID: 21630268 PMCID: PMC3236253 DOI: 10.1002/ijc.26217] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/19/2011] [Indexed: 01/04/2023]
Abstract
Our study is designed to assess if exosomes released from chronic myelogenous leukemia (CML) cells may modulate angiogenesis. We have isolated and characterized the exosomes generated from LAMA84 CML cells and demonstrated that addition of exosomes to human vascular endothelial cells (HUVEC) induces an increase of both ICAM-1 and VCAM-1 cell adhesion molecules and interleukin-8 expression. The stimulation of cell-cell adhesion molecules was paralleled by a dose-dependent increase of adhesion of CML cells to a HUVEC monolayer. We further showed that the treatment with exosomes from CML cells caused an increase in endothelial cell motility accompanied by a loss of VE-cadherin and β-catenin from the endothelial cell surface. Functional characterization of exosomes isolated from CML patients confirmed the data obtained with exosomes derived from CML cell line. CML exosomes caused reorganization into tubes of HUVEC cells cultured on Matrigel. When added to Matrigel plugs in vivo, exosomes induced ingrowth of murine endothelial cells and vascularization of the Matrigel plugs. Our results suggest for the first time that exosomes released from CML cells directly affect endothelial cells modulating the process of neovascularization.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Cadherins/metabolism
- Cell Adhesion
- Cell Line, Tumor
- Cell Movement/genetics
- Collagen/metabolism
- Drug Combinations
- Exosomes/metabolism
- Exosomes/ultrastructure
- Gene Expression Regulation
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Laminin/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Proteoglycans/metabolism
- Tumor Microenvironment
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Simona Taverna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Italy
| | - Anna Flugy
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Italy
| | - Laura Saieva
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Italy
| | - Elise C Kohn
- Molecular Signaling Section, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alessandra Santoro
- Laboratorio di Diagnostica Integrata Oncoematologica,Ospedali Riuniti “;Villa Sofia-Cervello”
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Italy
| | - Giacomo De Leo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Italy
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Italy
| |
Collapse
|
1884
|
Lässer C. Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opin Biol Ther 2012; 12 Suppl 1:S189-97. [PMID: 22506888 DOI: 10.1517/14712598.2012.680018] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Exosomes are nano-sized (40 - 100 nm), extracellular vesicles, of endosomal origin. They are released by cells and found in many body fluids, including plasma. Exosomes contain proteins, microRNAs (miRNAs), and messenger RNAs (mRNAs) that can be transferred between cells. The discovery that exosomes contain RNA, and that this encapsulated RNA could potentially be transferred over distances in vivo, reinforced the importance of exosomes in cell-to-cell communication. AREAS COVERED The existence of exosomes, as a naturally occurring delivery system of RNA, enables their use as both biomarkers and vectors in gene therapy. This review provides an overview of studies reporting that exosomal miRNA and mRNA in plasma can serve as a diagnostic marker in various types of cancers. In addition, the recent finding that exosomes can be used as vectors for delivery of small interfering RNA (siRNA) in mice, with therapeutic effects, is also reviewed. EXPERT OPINION The data reviewed here suggest that exosomal RNA has the potential to play an important role in the diagnosis, prognosis, and treatment of diseases in the future.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
1885
|
Simpson RJ, Kalra H, Mathivanan S. ExoCarta as a resource for exosomal research. J Extracell Vesicles 2012; 1:18374. [PMID: 24009883 PMCID: PMC3760644 DOI: 10.3402/jev.v1i0.18374] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 12/14/2022] Open
Abstract
Exosomes are a class of extracellular vesicles that are secreted by various cell types. Unlike other extracellular vesicles (ectosomes and apoptotic blebs), exosomes are of endocytic origin. The roles of exosomes in vaccine/drug delivery, intercellular communication and as a possible source of disease biomarkers have sparked immense interest in them, resulting in a plethora of studies. Whilst multidimensional datasets are continuously generated, it is difficult to harness the true potential of the data until they are compiled and made accessible to the biomedical researchers. Here, we describe ExoCarta (http://www.exocarta.org), a manually curated database of exosomal proteins, RNA and lipids. Datasets currently present in ExoCarta are integrated from both published and unpublished exosomal studies. Since its launch in 2009, ExoCarta has been accessed by more than 16,000 unique users. In this article, we discuss the utility of ExoCarta for exosomal research and urge biomedical researchers in the field to deposit their datasets directly to ExoCarta.
Collapse
Affiliation(s)
- Richard J Simpson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
1886
|
Santa-Maria I, Varghese M, Ksiezak-Reding H, Dzhun A, Wang J, Pasinetti GM. Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes. J Biol Chem 2012; 287:20522-33. [PMID: 22496370 DOI: 10.1074/jbc.m111.323279] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology.
Collapse
Affiliation(s)
- Ismael Santa-Maria
- Center of Excellence for Novel Approaches to Neurodiagnostics and Neurotherapeutics, Brain Institute, Center of Excellence for Research in Complementary and Alternative Medicine in Alzheimer's Disease, Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
1887
|
Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta Rev Cancer 2012; 1826:103-11. [PMID: 22503823 DOI: 10.1016/j.bbcan.2012.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 12/11/2022]
Abstract
Exosomes constitute the newest mode of intercellular communication, transmitting information between cells. This exchange of molecular information is facilitated by their unique composition which is enriched with enzymes, structural proteins, adhesion molecules, lipid rafts and RNAs. Following the discovery that cancer cells secrete excessive amounts of exosomes compared to normal cells, it became evident that i) these vesicles can be used as diagnostic markers; ii) their active secretion has functional implications, albeit unknown whether they are tumor promoting or suppressing. Notably, the interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma may promote the transfer of oncogenes (e.g. β-catenin, CEA, HER2, Melan-A/Mart-1 and LMP-1) and onco-microRNAs (e.g. let7, miR1, miR15, miR16 and miR375) from one cell to another, leading to the reprogramming of the recipient cells. The molecular composition and functional role of tumor cell-derived exosomes in tumorigenesis, metastasis and response to therapy are slowly decrypted and the latest findings as well as potential therapeutic strategies are discussed in this review.
Collapse
|
1888
|
|
1889
|
Lambertz U, Silverman JM, Nandan D, McMaster WR, Clos J, Foster LJ, Reiner NE. Secreted virulence factors and immune evasion in visceral leishmaniasis. J Leukoc Biol 2012; 91:887-99. [PMID: 22442494 DOI: 10.1189/jlb.0611326] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Evasion or subversion of host immune responses is a well-established paradigm in infection with visceralizing leishmania. In this review, we summarize current findings supporting a model in which leishmania target host regulatory molecules and pathways, such as the PTP SHP-1 and the PI3K/Akt signaling cascade, to prevent effective macrophage activation. Furthermore, we describe how virulence factors, secreted by leishmania, interfere with macrophage intracellular signaling. Finally, we discuss mechanisms of secretion and provide evidence that leishmania use a remarkably adept, exosome-based secretion mechanism to export and deliver effector molecules to host cells. In addition to representing a novel mechanism for trafficking of virulence factors across membranes, recent findings indicate that leishmania exosomes may have potential as vaccine candidates.
Collapse
Affiliation(s)
- Ulrike Lambertz
- Department of Medicine Division of Infectious Diseases and the Experimental Medicine Program, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
1890
|
Lau CS, Wong DTW. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS One 2012; 7:e33037. [PMID: 22448232 PMCID: PMC3308964 DOI: 10.1371/journal.pone.0033037] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 02/08/2012] [Indexed: 11/18/2022] Open
Abstract
Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles encapsulating both protein and mRNA. We also showed that the interaction with breast cancer-derived exosome-like microvesicles communicated and activated the transcriptional machinery of the salivary gland cells. Thus, the interaction altered the composition of the salivary gland cell-derived exosome-like microvesicles on both the transcriptomically and proteomically.
Collapse
Affiliation(s)
- Chang S. Lau
- University of California Los Angeles School of Dentistry and Dental Research Institute, Los Angeles, California, United States of America
| | - David T. W. Wong
- University of California Los Angeles School of Dentistry and Dental Research Institute, Los Angeles, California, United States of America
- University of California Los Angeles's Jonsson Comprehensive Cancer Center, Los Angeles, California, United States of America
- The Molecular Biology Institute at University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles Division of Head and Neck Surgery/Otolaryngology, Los Angeles, California, United States of America
| |
Collapse
|
1891
|
da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 2012; 86:71. [PMID: 22116803 DOI: 10.1095/biolreprod.111.093252] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proper cell communication within the ovarian follicle is critical for the growth and maturation of a healthy oocyte that can be fertilized and develop into an embryo. Cell communication within the follicle involves many signaling molecules and is affected by maternal age. Recent studies indicate that cell communication can be mediated through secretion and uptake of small membrane-enclosed vesicles. The goals of this study were to 1) identify cell-secreted vesicles (microvesicles and exosomes) containing miRNAs and proteins within ovarian follicular fluid and 2) determine if miRNA level differs in exosomes isolated from follicular fluid in young compared to old mares. We demonstrate the presence of vesicles resembling microvesicles and exosomes in ovarian follicular fluid using transmission electron microscopy and CD63-positive and RNA containing vesicles using flow cytometry. Moreover, proteomics analysis reveals that follicular fluid-isolated exosomes contain both known exosomal proteins and proteins not previously reported in isolated exosomes. MicroRNAs were detected in microvesicle and exosomes preparations isolated from follicular fluid by real-time PCR analysis. Uptake of fluorescent-labeled microvesicles by granulosa cells was examined using in vitro and in vivo approaches. MicroRNA expression profiling reveals that miRNAs in microvesicle and exosome preparations isolated from follicular fluid also are present within surrounding granulosa and cumulus cells. These studies revealed that cell communication within the mammalian ovarian follicle may involve transfer of bioactive material by microvesicles and exosomes. Finally, miRNAs present in exosomes from ovarian follicular fluid varied with the age of the mare, and a number of different miRNAs were detected in young vs. old mare follicular fluid.
Collapse
Affiliation(s)
- Juliano C da Silveira
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
1892
|
Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity. Matrix Biol 2012; 31:229-33. [PMID: 22406378 PMCID: PMC3391679 DOI: 10.1016/j.matbio.2012.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 11/21/2022]
Abstract
Membrane microvesicle shedding is an active process and occurs in viable cells with no signs of apoptosis or necrosis. We report here that microvesicles shed by oligodendroglioma cells contain an 'aggrecanase' activity, cleaving aggrecan at sites previously identified as targets for adamalysin metalloproteinases with disintegrin and thrombospondin domains (ADAMTSs). Degradation was inhibited by EDTA, the metalloproteinase inhibitor GM6001 and by tissue inhibitor of metalloproteinases (TIMP)-3, but not by TIMP-1 or TIMP-2. This inhibitor profile indicates that the shed microvesicles contain aggrecanolytic ADAMTS(s) or related TIMP-3-sensitive metalloproteinase(s). The oligodendroglioma cells were shown to express the three most active aggrecanases, namely Adamts1, Adamts4 and Adamts5, suggesting that one or more of these enzymes may be responsible for the microvesicle activity. Microvesicles shed by rheumatoid synovial fibroblasts similarly degraded aggrecan in a TIMP-3-sensitive manner. Our findings raise the novel possibility that microvesicles may assist oligodendroglioma and rheumatoid synovial fibroblasts to invade through aggrecan-rich extracellular matrices.
Collapse
|
1893
|
Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012; 22:125-32. [PMID: 22260888 DOI: 10.1016/j.tcb.2011.12.001] [Citation(s) in RCA: 627] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/01/2011] [Accepted: 12/12/2011] [Indexed: 01/01/2023]
|
1894
|
Diaz-Cano SJ. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13:1951-2011. [PMID: 22408433 PMCID: PMC3292002 DOI: 10.3390/ijms13021951] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 12/22/2022] Open
Abstract
Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.
Collapse
Affiliation(s)
- Salvador J. Diaz-Cano
- Department Histopathology, King’s College Hospital and King’s Health Partners, Denmark Hill, London SE5 9RS, UK; E-Mail: ; Tel.: +44-20-3299-3041; Fax: +44-20-3299-3670
| |
Collapse
|
1895
|
Tatischeff I. Cell-derived microvesicles and antitumoral multidrug resistance. C R Biol 2012; 335:103-6. [DOI: 10.1016/j.crvi.2011.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 12/29/2022]
|
1896
|
Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 2012; 56:293-304. [PMID: 22285593 DOI: 10.1016/j.ymeth.2012.01.002] [Citation(s) in RCA: 899] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 12/14/2022] Open
Abstract
Exosomes are 40-100nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of oncogenic proteins as well as mRNA and miRNA. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. However, all preparations invariably contain varying proportions of other membranous vesicles that co-purify with exosomes such as shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, in this study we performed a comprehensive evaluation of current methods used for exosome isolation including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM coated magnetic beads (IAC-Exos). Notably, all isolations contained 40-100nm vesicles, and were positive for exosome markers (Alix, TSG101, HSP70) based on electron microscopy and Western blotting. We employed a proteomic approach to profile the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, we found IAC-Exos to be the most effective method to isolate exosomes. For example, Alix, TSG101, CD9 and CD81 were significantly higher (at least 2-fold) in IAC-Exos, compared to UG-Exos and DG-Exos. Application of immunoaffinity capture has enabled the identification of proteins including the ESCRT-III component VPS32C/CHMP4C, and the SNARE synaptobrevin 2 (VAMP2) in exosomes for the first time. Additionally, several cancer-related proteins were identified in IAC-Exos including various ephrins (EFNB1, EFNB2) and Eph receptors (EPHA2-8, EPHB1-4), and components involved in Wnt (CTNNB1, TNIK) and Ras (CRK, GRB2) signalling.
Collapse
|
1897
|
Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J 2012; 2:e53. [PMID: 22829237 PMCID: PMC3270255 DOI: 10.1038/bcj.2011.51] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022] Open
Abstract
Recent studies have demonstrated that one-third of known microRNAs (miRNAs) are stably detectable in plasma. Therefore, we assessed plasma miRNAs to investigate the dynamics of oncomir 17-92a, which is highly expressed in multiple myeloma (MM) patients. The plasma miR-92a level in symptomatic MM patients was significantly downregulated compared with normal subjects (P<0.0001), regardless of immunoglobulin subtypes or disease stage at diagnosis. In contrast, miR-92a levels in peripheral blood CD8+ or CD4+ cells from MM patients were lower than those of normal subjects, and the miR-92a levels of the cells tended to correlate with plasma miR-92a levels. The plasma miR-92a level in the complete remission group became normalized, whereas the partial response (PR) and very good PR groups did not reach the normal range. In smoldering MM, the plasma miR-92a level did not show a significant difference compared with normal subjects. Our findings suggest that measurement of the plasma miR-92a level in MM patients could be useful for initiation of chemotherapy and monitoring disease status, and the level may represent, in part, the T-cell immunity status of these patients.
Collapse
|
1898
|
Agnati LF, Guidolin D, Leo G, Guescini M, Pizzi M, Stocchi V, Spano PF, Ghidoni R, Ciruela F, Genedani S, Fuxe K. Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. J Recept Signal Transduct Res 2012; 31:315-31. [PMID: 21929287 DOI: 10.3109/10799893.2011.599393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has been estimated that at least 50% of the drugs available on the market act on G-protein coupled receptors (GPCRs) and most of these are basically or agonists or antagonists of this type of receptors. Herein, we propose new putative targets for drug development based on recent data on GPCR allosterism and on the existence of receptor mosaics (RMs). The main target for drug development is still GPCRs, but the focus is not the orthosteric binding pocket. According to the mosaic model of the plasma membrane, we mainly discuss the possibility of indirect modulatory pharmacological actions on expression/function of GPCRs. In particular, the following two new targets will be analyzed: a) The possibility of pharmacological interventions on the roamer-type of volume transmission (VT), which allow the intercellular transfer of set of signal molecules such as GPCRs, tetraspanins and ribonucleic acids. Thus, there is the possibility of pharmacological interventions on the decoding capabilities of neurons and/or glial cells by means of an action on composition and release of micro-vesicles. b) The possibility of pharmacological interventions on epigenetic mechanisms by taking into account their inter-relationships with GPCRs. As a matter of fact, there are epigenetic changes that are characteristic of periods of developmental plasticity that could provide a target for therapeutic intervention in the event of brain damage. We believe that almost all the biochemical knowledge presently available on GPCRs can be used in the development of these new pharmacological approaches.
Collapse
|
1899
|
Billing AM, Revets D, Hoffmann C, Turner JD, Vernocchi S, Muller CP. Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat thymocytes. J Proteomics 2012; 75:2064-79. [PMID: 22270012 DOI: 10.1016/j.jprot.2012.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/16/2011] [Accepted: 01/07/2012] [Indexed: 02/06/2023]
Abstract
In order to investigate rapid non-genomic effects of acute stress, rats were restrained for 15 min which was sufficient to activate the hypothalamus-pituitary-adrenal (HPA) axis but too short to induce massive genomic effects of cortisol. Subcellular fractions of thymocytes (cytosol, nucleus, membrane) were investigated using quantitative 2D DIGE with MALDI-TOF/TOF mass spectrometry. In total, 108 proteins with differential subcellular localizations were identified. The specificity of the changes induced by psychological stress was reflected by the prominent modulation of proteins involved in the HPA and sympathoadrenal medullar (SAM) axis such as HMGB1 and NHERF1. Intracellular trafficking was characterized by a dominant protein exodus from the cytosol. Real translocation was observed for 9 proteins with 6 that shuttled from the cytosol to the nucleus (HYOU1, HNRPF, HNRPC, STRAP, PSA1, PPA1) and 3 from the nucleus to the cytosol (HMGB1, NHERF1, PSMA1). Proteins showing subcellular reshuffling were largely involved in transcription and translation processes (39 of 108) with a significant enrichment of RNA splicing factors. Bioinformatics analysis revealed significant enrichment for protein kinase A and 14-3-3 signaling, probably reflecting real non-genomic effects. This is the first study investigating rapid effects of stress-induced HPA activation in vivo at the proteome level.
Collapse
Affiliation(s)
- Anja M Billing
- Institute of Immunology, Centre de Recherche Public de la Santé/National Public Health Laboratory, 20A, rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
1900
|
Breakefield XO, Frederickson RM, Simpson RJ. Gesicles: Microvesicle "cookies" for transient information transfer between cells. Mol Ther 2012; 19:1574-6. [PMID: 21886114 DOI: 10.1038/mt.2011.169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Xandra O Breakefield
- Neuroscience Center and Molecular Neurogenetics Unit, Department of Neurology, and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | |
Collapse
|