1901
|
Calloway NT, Choob M, Sanz A, Sheetz MP, Miller LW, Cornish VW. Optimized fluorescent trimethoprim derivatives for in vivo protein labeling. Chembiochem 2007; 8:767-74. [PMID: 17378009 DOI: 10.1002/cbic.200600414] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The combined technologies of optical microscopy and selective probes allow for real-time analysis of protein function in living cells. Synthetic chemistry offers a means to develop specific, protein-targeted probes that exhibit greater optical and chemical functionality than the widely used fluorescent proteins. Here we describe pharmacokinetically optimized, fluorescent trimethoprim (TMP) analogues that can be used to specifically label recombinant proteins fused to E. coli dihydrofolate reductase (eDHFR) in living, wild-type mammalian cells. These improved fluorescent tags exhibited high specificity and fast labeling kinetics, and they could be detected at a high signal-to-noise ratio by using fluorescence microscopy and fluorescence-activated cell sorting (FACS). We also show that fluorescent TMP-eDHFR complexes are complements to green fluorescent protein (GFP) for two-color protein labeling experiments in cells.
Collapse
Affiliation(s)
- Nathaniel T Calloway
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
1902
|
Abstract
Adhesion of a biological cell to another cell or the extracellular matrix involves complex couplings between cell biochemistry, structural mechanics, and surface bonding. The interactions are dynamic and act through association and dissociation of bonds between very large molecules at rates that change considerably under stress. Combining molecular cell biology with single-molecule force spectroscopy provides a powerful tool for exploring the complexity of cell adhesion, that is, how cell signaling processes strengthen adhesion bonds and how forces applied to cell-surface bonds act on intracellular sites to catalyze chemical processes or switch molecular interactions on and off. Probing adhesion receptors on strategically engineered cells with force during functional stimulation can reveal key nodes of communication between the mechanical and chemical circuitry of a cell.
Collapse
Affiliation(s)
- Evan A Evans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
1903
|
Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, Bowler C. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 2007; 406:23-35. [PMID: 17658702 DOI: 10.1016/j.gene.2007.05.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/20/2007] [Accepted: 05/18/2007] [Indexed: 11/16/2022]
Abstract
Research into diatom biology has now entered the post-genomics era, following the recent completion of the Thalassiosira pseudonana and Phaeodactylum tricornutum whole genome sequences and the establishment of Expressed Sequence Tag (EST) databases. The thorough exploitation of these resources will require the development of molecular tools to analyze and modulate the function of diatom genes in vivo. Towards this objective, we report here the identification of several reference genes that can be used as internal standards for gene expression studies by quantitative real-time PCR (qRT-PCR) in P. tricornutum cells grown over a diel cycle. In addition, we describe a series of diatom expression vectors based on Invitrogen Gateway technology for high-throughput protein tagging and overexpression studies in P. tricornutum. We demonstrate the utility of the diatom Destination vectors for determining the subcellular localization of a protein of interest and for immunodetection. The availability of these new resources significantly enriches the molecular toolbox for P. tricornutum and provides the diatom research community with well defined high-throughput methods for the analysis of diatom genes and proteins in vivo.
Collapse
Affiliation(s)
- Magali Siaut
- Laboratory of Cell Signalling, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
1904
|
Lemercier G, Gendreizig S, Kindermann M, Johnsson K. Inducing and Sensing Protein–Protein Interactions in Living Cells by Selective Cross-linking. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
1905
|
Kim L, Toh YC, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. LAB ON A CHIP 2007; 7:681-94. [PMID: 17538709 DOI: 10.1039/b704602b] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Culturing cells at microscales allows control over microenvironmental cues, such as cell-cell and cell-matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecules in the extracellular microenvironment, and controlled application of mechanical forces exerted via fluid flow. There are many challenges to designing and operating a robust microfluidic perfusion culture system for routine culture of adherent mammalian cells. The current literature on microfluidic perfusion culture treats microfluidic design, device fabrication, cell culture, and micro-assays independently. Here we systematically present and discuss important design considerations in the context of the entire microfluidic perfusion culture system. These design considerations include the choice of materials, culture configurations, microfluidic network fabrication and micro-assays. We also present technical issues such as sterilization; seeding cells in both 2D and 3D configurations; and operating the system under optimized mass transport and shear stress conditions, free of air-bubbles. The integrative and systematic treatment of the microfluidic system design and fabrication, cell culture, and micro-assays provides novices with an effective starting point to build and operate a robust microfludic perfusion culture system for various applications.
Collapse
Affiliation(s)
- Lily Kim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm 36-824, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
1906
|
Ghosh I, Wirth MJ. Parsing the motion of single molecules: a novel algorithm for deconvoluting the dynamics of individual receptors at the cell surface. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2007; 2007:pe28. [PMID: 17536098 DOI: 10.1126/stke.3882007pe28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To truly understand signal transduction, we will ultimately need to understand the dynamics and kinetics of individual proteins as they perform their functions in a single cell. Groundbreaking advances in single-molecule biophysics now allow us to follow the motion of many individual proteins on the cell surface with the use of fluorescent probes, such as quantum dots. However, discriminating the directed movement of single molecules from their natural Brownian motion remains a challenge. A recent paper provides a powerful statistical approach for distinguishing periods of directed motion of individual gamma-aminobutyric acid (GABA) receptors from periods during which they undergo Brownian motion. This new methodology should help single-molecule researchers determine the dynamics of individual proteins participating in signaling cascades.
Collapse
Affiliation(s)
- Indraneel Ghosh
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
1907
|
Kimura RH, Steenblock ER, Camarero JA. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease. Anal Biochem 2007; 369:60-70. [PMID: 17586456 DOI: 10.1016/j.ab.2007.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/23/2007] [Accepted: 05/14/2007] [Indexed: 11/23/2022]
Abstract
We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased five times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.
Collapse
Affiliation(s)
- Richard H Kimura
- Biosciences and Biotechnology Division, Livermore National Laboratory, University of California, Livermore, CA 94550, USA
| | | | | |
Collapse
|
1908
|
Rieter WJ, Kim JS, Taylor KML, An H, Lin W, Tarrant T, Lin W. Hybrid Silica Nanoparticles for Multimodal Imaging. Angew Chem Int Ed Engl 2007; 46:3680-2. [PMID: 17415734 DOI: 10.1002/anie.200604738] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- William J Rieter
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
1909
|
Rieter W, Kim J, Taylor K, An H, Lin W, Tarrant T, Lin W. Hybrid Silica Nanoparticles for Multimodal Imaging. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604738] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1910
|
Huebsch ND, Mooney DJ. Fluorescent resonance energy transfer: A tool for probing molecular cell-biomaterial interactions in three dimensions. Biomaterials 2007; 28:2424-37. [PMID: 17270268 PMCID: PMC2176075 DOI: 10.1016/j.biomaterials.2007.01.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/04/2007] [Indexed: 12/11/2022]
Abstract
The current paradigm in designing biomaterials is to optimize material chemical and physical parameters based on correlations between these parameters and downstream biological responses, whether in vitro or in vivo. Extensive developments in molecular design of biomaterials have facilitated identification of several biophysical and biochemical variables (e.g. adhesion peptide density, substrate elastic modulus) as being critical to cell response. However, these empirical observations do not indicate whether different parameters elicit cell responses by modulating redundant variables of the cell-material interface (e.g. number of cell-material bonds, cell-matrix mechanics). Recently, fluorescence resonance energy transfer (FRET) has been applied to quantitatively analyze parameters of the cell-material interface for both two- and three-dimensional adhesion substrates. Tools based on FRET have been utilized to quantify several parameters of the cell-material interface relevant to cell response, including molecular changes in matrix proteins induced by interactions both with surfaces and cells, the number of bonds between integrins and their adhesion ligands, and changes in the crosslink density of hydrogel synthetic extracellular matrix analogs. As such techniques allow both dynamic and 3-D analyses they will be useful to quantitatively relate downstream cellular responses (e.g. gene expression) to the composition of this interface. Such understanding will allow bioengineers to fully exploit the potential of biomaterials engineered on the molecular scale, by optimizing material chemical and physical properties to a measurable set of interfacial parameters known to elicit a predictable response in a specific cell population. This will facilitate the rational design of complex, multi-functional biomaterials used as model systems for studying diseases or for clinical applications.
Collapse
Affiliation(s)
- Nathaniel D Huebsch
- Division of Engineering and Applied Sciences, Harvard University, USA; Harvard-MIT Division of Health Sciences and Technology, USA
| | | |
Collapse
|
1911
|
Quesada E, Delgado J, Hornillos V, Acuña AU, Amat-Guerri F. Synthesis and Spectral Properties of Amphiphilic Lipids with Linear Conjugated Polyene and Phenylpolyene Fluorescent Groups. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1912
|
Willemse M, Janssen E, de Lange F, Wieringa B, Fransen J. ATP and FRET--a cautionary note. Nat Biotechnol 2007; 25:170-2. [PMID: 17287746 DOI: 10.1038/nbt0207-170] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1913
|
Westmeyer GG, Jasanoff A. Genetically controlled MRI contrast mechanisms and their prospects in systems neuroscience research. Magn Reson Imaging 2007; 25:1004-10. [PMID: 17451901 DOI: 10.1016/j.mri.2006.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 11/03/2006] [Indexed: 12/31/2022]
Abstract
Application of MRI contrast agents to neural systems research is complicated by the need to deliver agents past the blood-brain barrier or into cells, and the difficulty of targeting agents to specific brain structures or cell types. In the future, these barriers may be wholly or partially overcome using genetic methods for producing and directing MRI contrast. Here we review MRI contrast mechanisms that have used gene expression to manipulate MRI signal in cultured cells or in living animals. We discuss both fully genetic systems involving endogenous biosynthesis of contrast agents, and semi-genetic systems in which expressed proteins influence the localization or activity of exogenous contrast agents. We close by considering which contrast-generating mechanisms might be most suitable for applications in neuroscience, and we ask how genetic control machinery could be productively combined with existing molecular agents to enable next-generation neuroimaging experiments.
Collapse
Affiliation(s)
- Gil G Westmeyer
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
1914
|
Martone ME, Sargis J, Tran J, Wong WW, Jiles H, Mangir C. Database resources for cellular electron microscopy. Methods Cell Biol 2007; 79:799-822. [PMID: 17327184 DOI: 10.1016/s0091-679x(06)79031-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Maryann E Martone
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
1915
|
Anai T, Nakata E, Koshi Y, Ojida A, Hamachi I. Design of a Hybrid Biosensor for Enhanced Phosphopeptide Recognition Based on a Phosphoprotein Binding Domain Coupled with a Fluorescent Chemosensor. J Am Chem Soc 2007; 129:6232-9. [PMID: 17441721 DOI: 10.1021/ja0693284] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-based fluorescent biosensors with sufficient sensing specificity are useful analytical tools for detection of biologically important substances in complicated biological systems. Here, we present the design of a hybrid biosensor, specific for a bis-phosphorylated peptide, based on a natural phosphoprotein binding domain coupled with an artificial fluorescent chemosensor. The hybrid biosensor consists of a phosphoprotein binding domain, the WW domain, into which has been introduced a fluorescent stilbazole having Zn(II)-dipicolylamine (Dpa) as a phosphate binding motif. It showed strong binding affinity and high sensing selectivity toward a specific bis-phosphorylated peptide in the presence of various phosphate species such as the monophosphorylated peptide, ATP, and others. Detailed fluorescence titration experiments clearly indicate that the binding-induced fluorescence enhancement and the sensing selectivity were achieved by the cooperative action of both binding sites of the hybrid biosensor, i.e., the WW domain and the Zn(II)-Dpa chemosensor unit. Thus, it is clear that the tethered Zn(II)-Dpa-stilbazole unit operated not only as a fluorescence signal transducer, but also as a sub-binding site in the hybrid biosensor. Taking advantage of its selective sensing property, the hybrid biosensor was successfully applied to real-time and label-free fluorescence monitoring of a protein kinase-catalyzed phosphorylation.
Collapse
Affiliation(s)
- Takahiro Anai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
1916
|
Wittig I, Karas M, Schägger H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 2007; 6:1215-25. [PMID: 17426019 DOI: 10.1074/mcp.m700076-mcp200] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clear native electrophoresis and blue native electrophoresis are microscale techniques for the isolation of membrane protein complexes. The Coomassie Blue G-250 dye, used in blue native electrophoresis, interferes with in-gel fluorescence detection and in-gel catalytic activity assays. This problem can be overcome by omitting the dye in clear native electrophoresis. However, clear native electrophoresis suffers from enhanced protein aggregation and broadening of protein bands during electrophoresis and therefore has been used rarely. To preserve the advantages of both electrophoresis techniques we substituted Coomassie dye in the cathode buffer of blue native electrophoresis by non-colored mixtures of anionic and neutral detergents. Like Coomassie dye, these mixed micelles imposed a charge shift on the membrane proteins to enhance their anodic migration and improved membrane protein solubility during electrophoresis. This improved clear native electrophoresis offers a high resolution of membrane protein complexes comparable to that of blue native electrophoresis. We demonstrate the superiority of high resolution clear native electrophoresis for in-gel catalytic activity assays of mitochondrial complexes I-V. We present the first in-gel histochemical staining protocol for respiratory complex III. Moreover we demonstrate the special advantages of high resolution clear native electrophoresis for in-gel detection of fluorescent labeled proteins labeled by reactive fluorescent dyes and tagged by fluorescent proteins. The advantages of high resolution clear native electrophoresis make this technique superior for functional proteomics analyses.
Collapse
Affiliation(s)
- Ilka Wittig
- Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Centre of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität Frankfurt, D-60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
1917
|
Abstract
New genetic technologies are transforming nervous system studies in mice, impacting fields from neural development to the neurobiology of disease. Of necessity, alongside these methodological advances, new concepts are taking shape with respect to both vocabulary and form. Here we review aspects of both burgeoning areas. Presented are technologies which, by co-opting site-specific recombinase systems, enable select genes to be turned on or off in specific brain cells of otherwise undisturbed mouse embryos or adults. Manipulated genes can be endogenous loci or inserted transgenes encoding reporter, sensor, or effector molecules, making it now possible to assess not only gene function, but also cell function, origin, fate, connectivity, and behavioral output. From these methodological advances, a new form of molecular neuroscience is emerging that may be said to lean on the concepts of genetic access, genetic lineage, and genetic anatomy – the three ‘Gs’ – much like a general education rests on the basics of reading, ‘riting and ‘rithmetic.
Collapse
Affiliation(s)
- Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
1918
|
Abstract
Despite advancements in genetics, chemistry, and protein engineering, recent years have seen fewer approvals of new drugs, increases in development costs, and high-profile drug withdrawals. This article focuses on technologic methods for improving drug development efficiency. These technologies include high-content cell screening, expression profiling, mass spectroscopy, mouse models of disease, and a post-launch screening program that enables investigations of adverse drug effects. Implementation of these new technologies promises to improve performance in drug development and safety.
Collapse
Affiliation(s)
- C Thomas Caskey
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| |
Collapse
|
1919
|
Abstract
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chemical and functional families is presented, along with a summary of key signaling events mediating migration. Extracellular molecules that modulate migration include small biogenic amines, peptide growth factors, cytokines, extracellular matrix components, and drugs used in cardiovascular medicine. Promigratory stimuli activate signal transduction cascades that trigger remodeling of the cytoskeleton, change the adhesiveness of the cell to the matrix, and activate motor proteins. This review focuses on the signaling pathways and effector proteins regulated by promigratory and antimigratory molecules. Prominent pathways include phosphatidylinositol 3-kinases, calcium-dependent protein kinases, Rho-activated protein kinase, p21-activated protein kinases, LIM kinase, and mitogen-activated protein kinases. Important downstream targets include myosin II motors, actin capping and severing proteins, formins, profilin, cofilin, and the actin-related protein-2/3 complex. Actin filament remodeling, focal contact remodeling, and molecular motors are coordinated to cause cells to migrate along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. The result is recruitment of cells to areas where the vessel wall is being remodeled. Vessel wall remodeling can be antagonized by common cardiovascular drugs that act in part by inhibiting vascular smooth muscle cell migration. Several therapeutically important drugs act by inhibiting cell cycle progression, which may reduce the population of migrating cells.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
1920
|
Abstract
A goal of modern biology is to understand the molecular mechanisms underlying cellular function. The ability to manipulate and analyze single cells is crucial for this task. The advent of microengineering is providing biologists with unprecedented opportunities for cell handling and investigation on a cell-by-cell basis. For this reason, lab-on-a-chip (LOC) technologies are emerging as the next revolution in tools for biological discovery. In the current discussion, we seek to summarize the state of the art for conventional technologies in use by biologists for the analysis of single, mammalian cells, and then compare LOC devices engineered for these same single-cell studies. While a review of the technical progress is included, a major goal is to present the view point of the practicing biologist and the advances that might increase adoption by these individuals. The LOC field is expanding rapidly, and we have focused on areas of broad interest to the biology community where the technology is sufficiently far advanced to contemplate near-term application in biological experimentation. Focus areas to be covered include flow cytometry, electrophoretic analysis of cell contents, fluorescent-indicator-based analyses, cells as small volume reactors, control of the cellular microenvironment, and single-cell PCR.
Collapse
Affiliation(s)
- Christopher E Sims
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
1921
|
Teng CY, Wu TY. Secretory fluorescent protein, a secretion green fluorescent fusion protein with alkaline phosphatase activity as a sensitive and traceable reporter in baculovirus expression system. Biotechnol Lett 2007; 29:1019-24. [PMID: 17401545 DOI: 10.1007/s10529-007-9349-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
The advantages of using traceable fluorescent protein (enhanced green fluorescent protein; EGFP) and a secretory alkaline phosphatase (SEAP) have been used to generate a reporter gene: the secretory fluorescent protein (SEFP). Sf21 cells, infected with the recombinant baculovirus containing the SEFP gene, revealed both traceable fluorescence and easily detectable alkaline phosphatase activity in the culture medium. The distribution of SEFP within the cells revealed that it was excluded from the nucleus, implying that the accumulation of SEFP in a secretory pathway, similar to that of the secretion signal-tagged FPs. Furthermore, the time- and dose-dependent release from the blockage of brefeldin A (BFA) confirmed that the secretion of SEFP was mediated by the secretion pathway and excluded leakage from viral infection. This SEFP reporter gene with traceable fluorescence and alkaline phosphatase activity may become a useful tool for studies on secretory protein production.
Collapse
Affiliation(s)
- Chao-Yi Teng
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
| | | |
Collapse
|
1922
|
Abstract
The ability to sense and respond to the environment is a hallmark of living systems. These processes occur at the levels of the organism, cells and individual molecules. Sensing of extracellular changes could result in a structural or chemical alteration in a molecule, which could in turn trigger a cascade of intracellular signals or regulated trafficking of molecules at the cell surface. These and other such processes allow cells to sense and respond to environmental changes. Often, these changes and the responses to them are spatially and/or temporally localized, and visualization of such events necessitates the use of high-resolution imaging approaches. Here we discuss optical imaging approaches and tools for imaging individual events at the cell surface with improved speed and resolution.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
1923
|
DeGeorge BR, Koch WJ. Beta blocker specificity: a building block toward personalized medicine. J Clin Invest 2007; 117:86-9. [PMID: 17200711 PMCID: PMC1716219 DOI: 10.1172/jci30476] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Drugs known as beta blockers, which antagonize the beta-adrenergic receptor (beta-AR), are an important component of the treatment regimen for chronic heart failure (HF). However, a significant body of evidence indicates that genetic heterogeneity at the level of the beta(1)-AR may be a factor in explaining the variable responses of HF patients to beta blockade. In this issue of the JCI, Rochais et al. describe how a single amino acid change in beta(1)-AR alters its structural conformation and improves its functional response to carvedilol, a beta blocker currently used in the treatment of HF (see the related article beginning on page 229). This may explain why some HF patients have better responses not only to carvedilol but to certain other beta blockers as well. The data greatly enhance our mechanistic understanding of myocardial adrenergic signaling and support the development of "tailored" or "personalized" medicine, in which specific therapies could be prescribed based on a patient's genotype.
Collapse
Affiliation(s)
- Brent R DeGeorge
- Center for Translational Medicine and George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
1924
|
Hauser CT, Tsien RY. A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure. Proc Natl Acad Sci U S A 2007; 104:3693-7. [PMID: 17360414 PMCID: PMC1805700 DOI: 10.1073/pnas.0611713104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Indexed: 01/31/2023] Open
Abstract
Site-specific fluorescent labeling of proteins in vivo remains one of the most powerful techniques for imaging complex processes in live cells. Although fluorescent proteins in many colors are useful tools for tracking expression and localization of fusion proteins in cells, these relatively large tags (>220 aa) can perturb protein folding, trafficking and function. Much smaller genetically encodable domains (<15 aa) offer complementary advantages. We introduce a small fluorescent chelator whose membrane-impermeant complex with nontoxic Zn(2+) ions binds tightly but reversibly to hexahistidine (His(6)) motifs on surface-exposed proteins. This live-cell label helps to resolve a current controversy concerning externalization of the stromal interaction molecule STIM1 upon depletion of Ca(2+) from the endoplasmic reticulum. Whereas N-terminal fluorescent protein fusions interfere with surface exposure of STIM1, short His(6) tags are accessible to the dye or antibodies, demonstrating externalization.
Collapse
Affiliation(s)
| | - Roger Y. Tsien
- Departments of *Pharmacology and
- Chemistry and Biochemistry, and
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093-0647
| |
Collapse
|
1925
|
Abstract
What could be a better way to study virus trafficking than 'miniaturizing oneself' and 'taking a ride with the virus particle' on its journey into the cell? Single-virus tracking in living cells potentially provides us with the means to visualize the virus journey. This approach allows us to follow the fate of individual virus particles and monitor dynamic interactions between viruses and cellular structures, revealing previously unobservable infection steps. The entry, trafficking and egress mechanisms of various animal viruses have been elucidated using this method. The combination of single-virus trafficking with systems approaches and state-of-the-art imaging technologies should prove exciting in the future.
Collapse
Affiliation(s)
- Boerries Brandenburg
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
1926
|
Storch KN, Taatjes DJ, Bouffard NA, Locknar S, Bishop NM, Langevin HM. Alpha smooth muscle actin distribution in cytoplasm and nuclear invaginations of connective tissue fibroblasts. Histochem Cell Biol 2007; 127:523-30. [PMID: 17310383 DOI: 10.1007/s00418-007-0275-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Alpha smooth muscle actin (alpha-SMA) was recently shown to be present in mouse subcutaneous tissue fibroblasts in the absence of tissue injury. In this study, we used a combination of immunohistochemistry and correlative confocal scanning laser and electron microscopy to investigate the structural organization of alpha-SMA in relation to the nucleus. Furthermore, we explored colocalization analysis as a method for quantifying the amount of alpha-SMA in close approximation to the nucleic acid marker, 4',6-diamidino-2-phenyl-indole, dihydrochloride. Our findings indicate the presence of alpha-SMA within nuclear invaginations in close proximity to the nuclear membrane, but not in the nucleoplasm. Although the function of these alpha-SMA-rich nuclear invaginations is at present unknown, the morphology of these structures suggests their possible involvement in cellular and nuclear mechanotransduction as well as nuclear transport.
Collapse
Affiliation(s)
- Kirsten N Storch
- Department of Neurology, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
1927
|
Affiliation(s)
- Estelle Glory
- Center for Bioimage Informatics, Molecular Biosensor and Imaging Center, and Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
1928
|
Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci U S A 2007; 104:2667-72. [PMID: 17307879 PMCID: PMC1815239 DOI: 10.1073/pnas.0607826104] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pairs of Au nanoparticles have recently been proposed as "plasmon rulers" based on the dependence of their light scattering on the interparticle distance. Preliminary work has suggested that plasmon rulers can be used to measure and monitor dynamic distance changes over the 1- to 100-nm length scale in biology. Here, we substantiate that plasmon rulers can be used to measure dynamical biophysical processes by applying the ruler to a system that has been investigated extensively by using ensemble kinetic measurements: the cleavage of DNA by the restriction enzyme EcoRV. Temporal resolutions of up to 240 Hz were obtained, and the end-to-end extension of up to 1,000 individual dsDNA enzyme substrates could be simultaneously monitored for hours. The kinetic parameters extracted from our single-molecule cleavage trajectories agree well with values obtained in bulk through other methods and confirm well known features of the cleavage process, such as DNA bending before cleavage. Previously unreported dynamical information is revealed as well, for instance, the degree of softening of the DNA just before cleavage. The unlimited lifetime, high temporal resolution, and high signal/noise ratio make the plasmon ruler a unique tool for studying macromolecular assemblies and conformational changes at the single-molecule level.
Collapse
Affiliation(s)
- Björn M. Reinhard
- Departments of *Physics and
- Chemistry, University of California, Berkeley, CA 94720; and
- Divisions of Physical Biosciences and
| | - Sassan Sheikholeslami
- Chemistry, University of California, Berkeley, CA 94720; and
- Materials Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alexander Mastroianni
- Chemistry, University of California, Berkeley, CA 94720; and
- Materials Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - A. Paul Alivisatos
- Chemistry, University of California, Berkeley, CA 94720; and
- Materials Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jan Liphardt
- Departments of *Physics and
- Divisions of Physical Biosciences and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1929
|
Contag CH. Molecular imaging using visible light to reveal biological changes in the brain. Neuroimaging Clin N Am 2007; 16:633-54, ix. [PMID: 17148024 DOI: 10.1016/j.nic.2006.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Advances in imaging have enabled the study of cellular and molecular processes in the context of the living body that include cell migration patterns, location and extent of gene expression, degree of protein-protein interaction, and levels of enzyme activity. These tools, which operate over a range of scales, resolutions, and sensitivities, have opened up broad new areas of investigation where the influence of organ systems and functional circulation is intact. There are a myriad of imaging modalities available, each with its own advantages and disadvantages, depending on the specific application. Among these modalities, optical imaging techniques, including in vivo bioluminescence imaging and fluorescence imaging, use visible light to interrogate biology in the living body. Optimal imaging with these modalities require that the appropriate marker be used to tag the process of interest to make it uniquely visible using a particular imaging technology. For each optical modality, there are various labels to choose from that range from dyes that permit tissue contrast and dyes that can be activated by enzymatic activity, to gene-encoding proteins with optical signatures that can be engineered into specific biological processes. This article provides and overview of optical imaging technologies and commonly used labels, focusing on bioluminescence and fluorescence, and describes several examples of how these tools are applied to biological questions relating to the central nervous system.
Collapse
Affiliation(s)
- Christopher H Contag
- Departments of Pediatrics, Microbiology & Immunology and Radiology, E150 Clark Center, MC 5427, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
1930
|
Choi AO, Cho SJ, Desbarats J, Lovrić J, Maysinger D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 2007; 5:1. [PMID: 17295922 PMCID: PMC1802956 DOI: 10.1186/1477-3155-5-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 02/12/2007] [Indexed: 01/11/2023] Open
Abstract
Background Neuroblastoma, a frequently occurring solid tumour in children, remains a therapeutic challenge as existing imaging tools are inadequate for proper and accurate diagnosis, resulting in treatment failures. Nanoparticles have recently been introduced to the field of cancer research and promise remarkable improvements in diagnostics, targeting and drug delivery. Among these nanoparticles, quantum dots (QDs) are highly appealing due to their manipulatable surfaces, yielding multifunctional QDs applicable in different biological models. The biocompatibility of these QDs, however, remains questionable. Results We show here that QD surface modifications with N-acetylcysteine (NAC) alter QD physical and biological properties. In human neuroblastoma (SH-SY5Y) cells, NAC modified QDs were internalized to a lesser extent and were less cytotoxic than unmodified QDs. Cytotoxicity was correlated with Fas upregulation on the surface of treated cells. Alongside the increased expression of Fas, QD treated cells had increased membrane lipid peroxidation, as measured by the fluorescent BODIPY-C11 dye. Moreover, peroxidized lipids were detected at the mitochondrial level, contributing to the impairment of mitochondrial functions as shown by the MTT reduction assay and imaged with confocal microscopy using the fluorescent JC-1 dye. Conclusion QD core and surface compositions, as well as QD stability, all influence nanoparticle internalization and the consequent cytotoxicity. Cadmium telluride QD-induced toxicity involves the upregulation of the Fas receptor and lipid peroxidation, leading to impaired neuroblastoma cell functions. Further improvements of nanoparticles and our understanding of the underlying mechanisms of QD-toxicity are critical for the development of new nanotherapeutics or diagnostics in nano-oncology.
Collapse
Affiliation(s)
- Angela O Choi
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Sung Ju Cho
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
- Faculty of Pharmacy and Department of Chemistry, University of Montreal, Pavillon J. A. Bombardier, C.P. 6128 Succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada
| | - Julie Desbarats
- Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jasmina Lovrić
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
1931
|
Zinner R, Teller K, Versteeg R, Cremer T, Cremer M. Biochemistry meets nuclear architecture: multicolor immuno-FISH for co-localization analysis of chromosome segments and differentially expressed gene loci with various histone methylations. ACTA ACUST UNITED AC 2007; 47:223-41. [PMID: 17442381 DOI: 10.1016/j.advenzreg.2007.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Roman Zinner
- Anthropology and Human Genetics, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
1932
|
Böhme I, Mörl K, Bamming D, Meyer C, Beck-Sickinger AG. Tracking of human Y receptors in living cells--a fluorescence approach. Peptides 2007; 28:226-34. [PMID: 17207557 DOI: 10.1016/j.peptides.2006.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 08/20/2006] [Indexed: 11/25/2022]
Abstract
Non-invasive methods for studying biological processes in living cells have become very important, also in the field of GPCR biochemistry. Great advancements in the application of fluorescence techniques as well as in the development and improvement of novel fluorophores allow the visualization of dynamic processes. Using these technologies, problems concerning receptor biosynthesis, internalization, recycling and degradation can be investigated. Here we compare the application of the different fluorescent tags EYFP, Lumiotrade mark and SNAPtrade mark to track hY(1) and hY(5) receptors in living cells.
Collapse
Affiliation(s)
- Ilka Böhme
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
1933
|
Kyoung M, Karunwi K, Sheets ED. A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules. J Microsc 2007; 225:137-46. [PMID: 17359248 DOI: 10.1111/j.1365-2818.2007.01725.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe a flexible, multifaceted optical setup that allows quantitative measurement and manipulation of biomolecules and nanoparticles in biomimetic and cellular systems. We have implemented integrated biophotonics techniques (i.e. differential interference contrast, wide-field fluorescence, prism- and objective-based total internal reflection excitation, single particle tracking, fluorescence correlation spectroscopy and dynamic holographic optical trapping) on a single platform. The adaptability of this versatile, custom-designed system allows us to simultaneously monitor cell morphology, while measuring lateral diffusion of biomolecules or controlling their cellular location or interaction partners.
Collapse
Affiliation(s)
- M Kyoung
- Department of Chemistry, Pennsylvania State University, University Park PA 16802, USA
| | | | | |
Collapse
|
1934
|
Abstract
The visualization of biologically relevant molecules and activities inside living cells continues to transform cell biology into a truly quantitative science. However, despite the spectacular achievements in some areas of cell biology, the majority of cellular processes still operate invisibly, not illuminated by even our brightest laser beams. Further progress therefore will depend not only on improvements in instrumentation but also increasingly on the development of new fluorophores and fluorescent sensors to target these activities. In the following, we review some of the recent approaches to generating such sensors, the methods to attach them to selected biomolecules, and their applications to various biological problems.
Collapse
Affiliation(s)
- Nils Johnsson
- Center for Molecular Biology of Inflammation, Cellular Biochemistry, University of Muenster, Von-Esmarch-Strasse 56, 48149 Muenster, Germany.
| | | |
Collapse
|
1935
|
Bednar B, Zhang GJ, Williams Jr DL, Hargreaves R, Sur C. Optical molecular imaging in drug discovery and clinical development. Expert Opin Drug Discov 2007; 2:65-85. [DOI: 10.1517/17460441.2.1.65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
1936
|
Bannai H, Lévi S, Schweizer C, Dahan M, Triller A. Imaging the lateral diffusion of membrane molecules with quantum dots. Nat Protoc 2007; 1:2628-34. [PMID: 17406518 DOI: 10.1038/nprot.2006.429] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This protocol describes a sensitive approach to tracking the motion of membrane molecules such as lipids and proteins with molecular resolution in live cells. This technique makes use of fluorescent semiconductor nanocrystals, quantum dots (QDs), as a probe to detect membrane molecules of interest. The photostability and brightness of QDs allow them to be tracked at a single particle level for longer periods than previous fluorophores, such as fluorescent proteins and organic dyes. QDs are bound to the extracellular part of the object to be followed, and their movements can be recorded with a fluorescence microscope equipped with a spectral lamp and a sensitive cooled charge-coupled device camera. The experimental procedure described for neurons below takes about 45 min. This technique is applicable to various cultured cells.
Collapse
Affiliation(s)
- Hiroko Bannai
- INSERM U789, Biologie Cellulaire de la Synapse N&P, Ecole Normale Supérieure Paris, 46, Rue d'Ulm 75005 Paris, France
| | | | | | | | | |
Collapse
|
1937
|
Wolff H, Hartl A, Eilken HM, Hadian K, Ziegler M, Brack-Werner R. Live-cell assay for simultaneous monitoring of expression and interaction of proteins. Biotechniques 2007; 41:688, 690, 692. [PMID: 17191610 DOI: 10.2144/000112291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Horst Wolff
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
1938
|
Intravital imaging of fluorescent markers and FRET probes by DNA tattooing. BMC Biotechnol 2007; 7:2. [PMID: 17201912 PMCID: PMC1779781 DOI: 10.1186/1472-6750-7-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/03/2007] [Indexed: 11/13/2022] Open
Abstract
Background Advances in fluorescence microscopy and mouse transgenesis have made it possible to image molecular events in living animals. However, the generation of transgenic mice is a lengthy process and intravital imaging requires specialized knowledge and equipment. Here, we report a rapid and undemanding intravital imaging method using generally available equipment. Results By DNA tattooing we transfect keratinocytes of living mice with DNA encoding fluorescent biosensors. Subsequently, the behavior of individual cells expressing these biosensors can be visualized within hours and using conventional microscopy equipment. Using this "instant transgenic" model in combination with a corrected coordinate system, we followed the in vivo behavior of individual cells expressing either FRET- or location-based biosensors for several days. The utility of this approach was demonstrated by assessment of in vivo caspase-3 activation upon induction of apoptosis. Conclusion This "instant skin transgenic" model can be used to follow the in vivo behavior of individual cells expressing either FRET- or location-based probes for several days after tattooing and provides a rapid and inexpensive method for intravital imaging in murine skin.
Collapse
|
1939
|
Affiliation(s)
- Ivan Rasnik
- Physics Department, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
1940
|
Bark SJ, Hook V. The future of proteomic analysis in biological systems and molecular medicine. ACTA ACUST UNITED AC 2007; 3:14-7. [PMID: 17216050 DOI: 10.1039/b611446f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteomics is the study of proteins and their interactions within complex biological systems. While this field is often associated with mass spectrometry, it is more useful to consider proteomics in the context of an objective: to identify and understand the molecular basis of health and disease at the protein level in vivo. Achieving this objective will require (1) technological developments to resolve current instrument limitations and (2) multidisciplinary integration of biological and protein analysis technologies to answer important questions in both the biological sciences and molecular medicine.
Collapse
Affiliation(s)
- Steven J Bark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., MC 0744, La Jolla, CA 92093-0744, USA.
| | | |
Collapse
|
1941
|
|
1942
|
Abstract
Engineered nanoparticles are emerging as useful tools for different purposes in life sciences, medicine and agriculture. Nanomedicine, an emerging discipline, involves the application of nanotechnology (usually regarded within the size range of 1-1000 nm) in the design of systems and devices that can facilitate our understanding of disease pathophysiology, nano-imaging, nanomedicines and nano-diagnostics. Among the different nanomaterials used to construct nanoparticles, are organic polymers, co-polymers and metals. Some of these materials can self assemble, and depending on the conditions under which the self-assembly process occurs, a vast array of shapes can be formed. Frequently, the nanoparticle morphology is spherical or tubular, mimicking the shape, but thus far, not the functions of subcellular organelles. We discuss here several representative nanoparticles, made of block copolymers and metals, highlighting some of their current uses, advantages and limitations in medicine. Nano-oncology and nano-neurosciences will also be discussed in more detail in the context of the intracellular fate of nanoparticles and possible long-term consequences on cell functions.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Canada
| |
Collapse
|
1943
|
Johnson JR, Fu N, Arunkumar E, Leevy WM, Gammon ST, Piwnica-Worms D, Smith BD. Squaraine rotaxanes: superior substitutes for Cy-5 in molecular probes for near-infrared fluorescence cell imaging. Angew Chem Int Ed Engl 2007; 46:5528-31. [PMID: 17585399 PMCID: PMC2854038 DOI: 10.1002/anie.200701491] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James R Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
1944
|
Abstract
As cellular machines and processes that regulate the flow of genomic information have come into sharper focus, a new level of chemical control has become possible. The scope of such chemical intervention extends from the mechanistic dissection of biochemical processes in living cells to the targeted control of gene networks and cell fate.
Collapse
Affiliation(s)
- Aseem Z Ansari
- Genome Center of Wisconsin, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
1945
|
Quantum Dots and Other Fluorescent Nanoparticles: Quo Vadis in the Cell? BIO-APPLICATIONS OF NANOPARTICLES 2007; 620:156-67. [DOI: 10.1007/978-0-387-76713-0_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
1946
|
Abstract
Fluorescence resonance energy transfer (FRET) has been proven to be a powerful tool to visualize and quantify the signaling cascades in live cells with high spatiotemporal resolutions. Here we describe the development of the genetically encoded and FRET-based biosensors for imaging of integrin-related signaling cascades. The construction of a FRET biosensor for Src kinase, an important tyrosine kinase involved in integrin-related signaling pathways, is used as an example to illustrate the construction procedure and the pitfalls involved. The design strategies and considerations on improvements of sensitivity and specificity are also discussed. The FRET-based biosensors provide a complementary approach to traditional biochemical assays for the analysis of the functions of integrins and their associated signaling molecules. The dynamic and subcellular visualization enabled by FRET can shed new light on the molecular mechanisms regulating integrin signaling and advance our knowledge in the understanding of integrin-related pathophysiological processes.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Bioengineering and Molecular & Integrative Physiology, Neuroscience Program, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, USA
| | | |
Collapse
|
1947
|
|
1948
|
Sosinsky GE, Giepmans BNG, Deerinck TJ, Gaietta GM, Ellisman MH. Markers for correlated light and electron microscopy. Methods Cell Biol 2007; 79:575-91. [PMID: 17327175 DOI: 10.1016/s0091-679x(06)79023-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research and Center for Research in Biological Systems, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
1949
|
Magidson V, Loncarek J, Hergert P, Rieder CL, Khodjakov A. Laser microsurgery in the GFP era: a cell biologist's perspective. Methods Cell Biol 2007; 82:239-66. [PMID: 17586259 PMCID: PMC2570757 DOI: 10.1016/s0091-679x(06)82007-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Modern biology is based largely on a reductionistic "dissection" approach-most cell biologists try to determine how complex biological systems work by removing their individual parts and studying the effects of this removal on the system. A variety of enzymatic and mechanical methods have been developed to dissect large cell assemblies like tissues and organs. Further, individual proteins can be inactivated or removed within a cell by genetic manipulations (e.g., RNAi or gene knockouts). However, there is a growing demand for tools that allow intracellular manipulations at the level of individual organelles. Laser microsurgery is ideally suited for this purpose and the popularity of this approach is on the rise among cell biologists. In this chapter, we review some of the applications for laser microsurgery at the subcellular level and describe practical requirements for laser microsurgery instrumentation demanded in the field. We also outline a relatively inexpensive but versatile laser microsurgery workstation that is being used in our laboratory. Our major thesis is that the limitations of the technology are no longer at the level of the laser, microscope, or software, but instead only in defining creative questions and in visualizing the target to be destroyed.
Collapse
Affiliation(s)
- Valentin Magidson
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201, USA.
| | | | | | | | | |
Collapse
|
1950
|
Lohse MJ, Hoffmann C, Nikolaev VO, Vilardaga JP, Bünemann M. Kinetic Analysis of G Protein–Coupled Receptor Signaling Using Fluorescence Resonance Energy Transfer in Living Cells. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:167-88. [PMID: 17854658 DOI: 10.1016/s0065-3233(07)74005-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe and review methods for the kinetic analysis of G protein-coupled receptor (GPCR) activation and signaling that are based on optical methods. In particular, we describe the use of fluorescence resonance energy transfer (FRET) as a means of analyzing conformational changes within a single protein (for example a receptor) or between subunits of a protein complex (such as a G protein heterotrimer) and finally between distinct proteins (such as a receptor and a G protein). These methods allow the analysis of signaling kinetics in intact cells with proteins that retain their essential functional properties. They have produced a number of unexpected results: fast receptor activation kinetics in the millisecond range, similarly fast kinetics for receptor-G protein interactions, but much slower activation kinetics for G protein activation.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|