151
|
Dzhashiashvili Y, Monckton CP, Shah HS, Kunjamma RB, Popko B. The UPR-PERK pathway is not a promising therapeutic target for mutant SOD1-induced ALS. Neurobiol Dis 2019; 127:527-544. [PMID: 30923003 DOI: 10.1016/j.nbd.2019.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/26/2019] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, characterized by motor neuron death in the brain and spinal cord. Mutations in the Cu/Zn superoxide dismutase (SOD1) gene account for ~20% of all familial ALS forms, corresponding to 1%-2% of all ALS cases. One of the suggested mechanisms by which mutant SOD1 (mtSOD1) exerts its toxic effects involves intracellular accumulation of abnormal mtSOD1 aggregates, which trigger endoplasmic reticulum (ER) stress and activate its adaptive signal transduction pathways, including the unfolded protein response (UPR). PERK, an eIF2α kinase, is central to the UPR and is the most rapidly activated pathway in response to ER stress. Previous reports using mtSOD1 transgenic mice indicated that genetic or pharmacological enhancement of the UPR-PERK pathway may be effective in treating ALS. We investigated the response to PERK haploinsufficiency, and the response to deficiency of its downstream effectors GADD34 and CHOP, in five distinct lines of mtSOD1 mice. We demonstrate that, in contrast to a previously published study, PERK haploinsufficiency has no effect on disease in all mtSOD1 lines examined. We also show that deficiency of GADD34, which enhances the UPR by prolonging the phosphorylation of eIF2α, does not ameliorate disease in these mtSOD1 mouse lines. Finally, we demonstrate that genetic ablation of CHOP transcription factor, which is known to be pro-apoptotic, does not ameliorate disease in mtSOD1 mice. Cumulatively, our studies reveal that neither genetic inhibition of the UPR via ablation of PERK, nor genetic UPR enhancement via ablation of GADD34, is beneficial for mtSOD1-induced motor neuron disease. Therefore, the PERK pathway is not a likely target for therapeutic intervention in mtSOD1-induced ALS.
Collapse
Affiliation(s)
- Yulia Dzhashiashvili
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Chase P Monckton
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Harini S Shah
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Rejani B Kunjamma
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| | - Brian Popko
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
152
|
Zhou J, Li A, Li X, Yi J. Dysregulated mitochondrial Ca 2+ and ROS signaling in skeletal muscle of ALS mouse model. Arch Biochem Biophys 2019; 663:249-258. [PMID: 30682329 PMCID: PMC6506190 DOI: 10.1016/j.abb.2019.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by motor neuron loss and prominent skeletal muscle wasting. Despite more than one hundred years of research efforts, the pathogenic mechanisms underlying neuromuscular degeneration in ALS remain elusive. While the death of motor neuron is a defining hallmark of ALS, accumulated evidences suggested that in addition to being a victim of motor neuron axonal withdrawal, the intrinsic skeletal muscle degeneration may also actively contribute to ALS disease pathogenesis and progression. Examination of spinal cord and muscle autopsy/biopsy samples of ALS patients revealed similar mitochondrial abnormalities in morphology, quantity and disposition, which are accompanied by defective mitochondrial respiratory chain complex and elevated oxidative stress. Detailing the molecular/cellular mechanisms and the role of mitochondrial dysfunction in ALS relies on ALS animal model studies. This review article discusses the dysregulated mitochondrial Ca2+ and reactive oxygen species (ROS) signaling revealed in live skeletal muscle derived from ALS mouse models, and a potential role of the vicious cycle formed between the dysregulated mitochondrial Ca2+ signaling and excessive ROS production in promoting muscle wasting during ALS progression.
Collapse
Affiliation(s)
- Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Ang Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
153
|
Mesenchymal Stem Cells: A Potential Therapeutic Approach for Amyotrophic Lateral Sclerosis? Stem Cells Int 2019; 2019:3675627. [PMID: 30956667 PMCID: PMC6431432 DOI: 10.1155/2019/3675627] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of both upper and lower motor neurons. Patients show both motor and extra-motor symptoms. A cure is not available at this time, and the disease leads to death within 3-5 years, mainly due to respiratory failure. Stem cell therapy is arising as a new promising approach for the treatment of neurodegenerative disorders. In particular, mesenchymal stem cells (MSCs) seem the most suitable type of stem cells, thanks to their demonstrated beneficial effects in different experimental models, to the easy availability, and to the lack of ethical problems. In this review, we focused on the studies involving ALS rodent models and clinical trials in order to understand the potential beneficial effects of MSC transplantation. In different ALS rodent models, the administration of MSCs induced a delay in disease progression and at least a partial recovery of the motor function. In addition, clinical trials evidenced the feasibility and safety of MSC transplantation in ALS patients, given that no major adverse events were recorded. However, only partial improvements were shown. For this reason, more studies and trials are needed to clarify the real effectiveness of MSC-based therapy in ALS.
Collapse
|
154
|
van den Berg LH, Sorenson E, Gronseth G, Macklin EA, Andrews J, Baloh RH, Benatar M, Berry JD, Chio A, Corcia P, Genge A, Gubitz AK, Lomen-Hoerth C, McDermott CJ, Pioro EP, Rosenfeld J, Silani V, Turner MR, Weber M, Brooks BR, Miller RG, Mitsumoto H. Revised Airlie House consensus guidelines for design and implementation of ALS clinical trials. Neurology 2019; 92:e1610-e1623. [PMID: 30850440 PMCID: PMC6448453 DOI: 10.1212/wnl.0000000000007242] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To revise the 1999 Airlie House consensus guidelines for the design and implementation of preclinical therapeutic studies and clinical trials in amyotrophic lateral sclerosis (ALS). METHODS A consensus committee comprising 140 key members of the international ALS community (ALS researchers, clinicians, patient representatives, research funding representatives, industry, and regulatory agencies) addressed 9 areas of need within ALS research: (1) preclinical studies; (2) biological and phenotypic heterogeneity; (3) outcome measures; (4) disease-modifying and symptomatic interventions; (5) recruitment and retention; (6) biomarkers; (7) clinical trial phases; (8) beyond traditional trial designs; and (9) statistical considerations. Assigned to 1 of 8 sections, committee members generated a draft set of guidelines based on a "background" of developing a (pre)clinical question and a "rationale" outlining the evidence and expert opinion. Following a 2-day, face-to-face workshop at the Airlie House Conference Center, a modified Delphi process was used to develop draft consensus research guidelines, which were subsequently reviewed and modified based on comments from the public. Statistical experts drafted a separate document of statistical considerations (section 9). RESULTS In this report, we summarize 112 guidelines and their associated backgrounds and rationales. The full list of guidelines, the statistical considerations, and a glossary of terms can be found in data available from Dryad (appendices e-3-e-5, doi.org/10.5061/dryad.32q9q5d). The authors prioritized 15 guidelines with the greatest potential to improve ALS clinical research. CONCLUSION The revised Airlie House ALS Clinical Trials Consensus Guidelines should serve to improve clinical trial design and accelerate the development of effective treatments for patients with ALS.
Collapse
Affiliation(s)
- Leonard H van den Berg
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA.
| | - Eric Sorenson
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Gary Gronseth
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Eric A Macklin
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Jinsy Andrews
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Robert H Baloh
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Michael Benatar
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - James D Berry
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Adriano Chio
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Philippe Corcia
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Angela Genge
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Amelie K Gubitz
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Catherine Lomen-Hoerth
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Christopher J McDermott
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Erik P Pioro
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Jeffrey Rosenfeld
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Vincenzo Silani
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Martin R Turner
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Markus Weber
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Benjamin Rix Brooks
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Robert G Miller
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | - Hiroshi Mitsumoto
- From the Department of Neurology (L.H.v.d.B.), Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands; Department of Neurology (E.S.), Mayo Clinic, Rochester, MN; Department of Neurology (G.G.), University of Kansas Medical Center, Kansas City; Department of Medicine (E.A.M.), Massachusetts General Hospital, Biostatistics Center, Harvard Medical School, Boston; Department of Neurology (J.A., H.M.), Columbia University, Eleanor and Lou Gehrig ALS Center, New York, NY; Department of Neurology (R.H.B.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (M.B.), University of Miami, FL; Neurological Clinical Research Institute (J.D.B.), Massachusetts General Hospital, Boston; Rita Levi Montalcini Department of Neuroscience (A.C.), University of Torino, Italy; Centre Constitutif SLA (P.C.), Université de Tours, France; Department of Neurology (A.G.), Clinical Research Unit, Montreal Neurological Institute, Neurosurgery, McGill University, Montreal, Canada; National Institute of Neurological Disorders and Stroke (A.K.G.), National Institutes of Health, Bethesda, MD; ALS Center (C.L.-H.), University of California San Francisco; Department of Neuroscience (C.J.M.), Sheffield Institute for Translational Neuroscience, University of Sheffield, UK; Department of Neurology (E.P.P.), Section of ALS & Related Disorders, Cleveland Clinic, OH; Department of Neurology (J.R.), The Center for Restorative Neurology, Loma Linda University School of Medicine, CA; Department of Neurology and Laboratory of Neuroscience (V.S.), Istituto Auxologico Italiano, IRCCS, Milan; Department of Pathophysiology and Transplantation (V.S.), "Dino Ferrari" Centre, Università degli Studi di Milano, Milan, Italy; Nuffield Department of Clinical Neurosciences (M.R.T.), University of Oxford, UK; Neuromuscular Diseases Unit/ALS Clinic (M.W.), Kantonsspital St. Gallen, Switzerland; Carolinas Neuromuscular/ALS-MDA Care Center (B.R.B.), Charlotte; Department of Neurology (B.R.B.), Carolinas Medical Center, University of North Carolina School of Medicine, Charlotte; Forbes Norris ALS Treatment and Research Center (R.G.M.), California Pacific Medical Center San Francisco; and Department of Neurosciences (R.G.M.), Stanford University, CA
| | | |
Collapse
|
155
|
Chen KS, McGinley LM, Kashlan ON, Hayes JM, Bruno ES, Chang JS, Mendelson FE, Tabbey MA, Johe K, Sakowski SA, Feldman EL. Targeted intraspinal injections to assess therapies in rodent models of neurological disorders. Nat Protoc 2019; 14:331-349. [PMID: 30610242 DOI: 10.1038/s41596-018-0095-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite decades of research, pharmacological therapies for spinal cord motor pathologies are limited. Alternatives using macromolecular, viral, or cell-based therapies show early promise. However, introducing these substances into the spinal cord, past the blood-brain barrier, without causing injury is challenging. We describe a technique for intraspinal injection targeting the lumbar ventral horn in rodents. This technique preserves motor performance and has a proven track record of translation into phase 1 and 2 clinical trials in amyotrophic lateral sclerosis (ALS) patients. The procedure, in brief, involves exposure of the thoracolumbar spine and dissection of paraspinous muscles over the target vertebrae. Following laminectomy, the spine is affixed to a stereotactic frame, permitting precise and reproducible injection throughout the lumbar spine. We have used this protocol to inject various stem cell types, primarily human spinal stem cells (HSSCs); however, the injection is adaptable to any candidate therapeutic cell, virus, or macromolecule product. In addition to a detailed procedure, we provide stereotactic coordinates that assist in targeting of the lumbar spine and instructional videos. The protocol takes ~2 h per animal.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Josh S Chang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Maegan A Tabbey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
156
|
Miller SJ, Glatzer JC, Hsieh YC, Rothstein JD. Cortical astroglia undergo transcriptomic dysregulation in the G93A SOD1 ALS mouse model. J Neurogenet 2018; 32:322-335. [PMID: 30398075 PMCID: PMC6444185 DOI: 10.1080/01677063.2018.1513508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Astroglia are the most abundant glia cell in the central nervous system, playing essential roles in maintaining homeostasis. Key functions of astroglia include, but are not limited to, neurotransmitter recycling, ion buffering, immune modulation, neurotrophin secretion, neuronal synaptogenesis and elimination, and blood-brain barrier maintenance. In neurological diseases, it is well appreciated that astroglia play crucial roles in the disease pathogenesis. In amyotrophic lateral sclerosis (ALS), a motor neuron degenerative disease, astroglia in the spinal cord and cortex downregulate essential transporters, among other proteins, that exacerbate disease progression. Spinal cord astroglia undergo dramatic transcriptome dysregulation. However, in the cortex, it has not been well studied what effects glia, especially astroglia, have on upper motor neurons in the pathology of ALS. To begin to shed light on the involvement and dysregulation that astroglia undergo in ALS, we isolated pure grey-matter cortical astroglia and subjected them to microarray analysis. We uncovered a vast number of genes that show dysregulation at end-stage in the ALS mouse model, G93A SOD1. Many of these genes play essential roles in ion homeostasis and the Wnt-signaling pathway. Several of these dysregulated genes are common in ALS spinal cord astroglia, while many of them are unique. This database serves as an approach for understanding the significance of dysfunctional genes and pathways in cortical astroglia in the context of motor neuron disease, as well as determining regional astroglia heterogeneity, and providing insight into ALS pathogenesis.
Collapse
Affiliation(s)
- Sean J. Miller
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
| | - Jenna C. Glatzer
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
| | - Yi-chun Hsieh
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
| | - Jeffrey D. Rothstein
- Dept. of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD 21205
- Dept. of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
157
|
Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis. Acta Neuropathol 2018; 136:939-953. [PMID: 30284034 PMCID: PMC6280858 DOI: 10.1007/s00401-018-1915-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Motor neurons containing aggregates of superoxide dismutase 1 (SOD1) are hallmarks of amyotrophic lateral sclerosis (ALS) caused by mutations in the gene encoding SOD1. We have previously reported that two strains of mutant human (h) SOD1 aggregates (denoted A and B) can arise in hSOD1-transgenic models for ALS and that inoculation of such aggregates into the lumbar spinal cord of mice results in rostrally spreading, templated hSOD1 aggregation and premature fatal ALS-like disease. Here, we explored whether mutant hSOD1 aggregates with prion-like properties also exist in human ALS. Aggregate seeds were prepared from spinal cords from an ALS patient carrying the hSOD1G127Gfs*7 truncation mutation and from mice transgenic for the same mutation. To separate from mono-, di- or any oligomeric hSOD1 species, the seed preparation protocol included ultracentrifugation through a density cushion. The core structure of hSOD1G127Gfs*7 aggregates present in mice was strain A-like. Inoculation of the patient- or mouse-derived seeds into lumbar spinal cord of adult hSOD1-expressing mice induced strain A aggregation propagating along the neuraxis and premature fatal ALS-like disease (p < 0.0001). Inoculation of human or murine control seeds had no effect. The potencies of the ALS patient-derived seed preparations were high and disease was initiated in the transgenic mice by levels of hSOD1G127Gfs*7 aggregates much lower than those found in the motor system of patients carrying the mutation. The results suggest that prion-like growth and spread of hSOD1 aggregation could be the primary pathogenic mechanism, not only in hSOD1 transgenic rodent models, but also in human ALS.
Collapse
|
158
|
Hu W, Liu X, Wang S, Sun G, Zhao R, Lu H. SecinH3 Attenuates TDP-43 p.Q331K-Induced Neuronal Toxicity by Suppressing Endoplasmic Reticulum Stress and Enhancing Autophagic Flux. IUBMB Life 2018; 71:192-199. [PMID: 30376609 DOI: 10.1002/iub.1951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset, neurodegenerative disease. The transactivating response region DNA binding protein 43 (TDP-43) p.Q331K mutation (TDP-43 Q331K) has previously been identified in ALS as a disease-causing mutation with neurotoxicity. SecinH3, a cytohesin inhibitor, has neuroprotective effects against mutant superoxide dismutase 1 (SOD1) toxicity. However, whether SecinH3 protects against mutant TDP-43 p.Q331K protein toxicity and its potential molecular mechanisms have not yet been investigated. To determine whether TDP-43 Q331K induces neuronal toxicity, SH-SY5Y, a human derived neuronal cell line were selected as an in vitro model of neuronal function. SH-SY5Y cells were transiently transfected with TDP-43 wild-type or TDP-43 Q331K. Remarkably, TDP-43 Q331K induced neuronal damage via endoplasmic reticulum (ER) stress-mediated apoptosis and the impairment of the autophagic flux. SecinH3 was demonstrated to successfully attenuate the TDP-43 Q331K-induced neuronal toxicity by suppressing ER stress-mediated apoptosis and enhancing the autophagic flux. Taken together, our in vitro study provided evidence that SecinH3 exerts neuroprotective effects against TDP-43 Q331K-mediated neuronal toxicity and was able to elucidate its mode of action. SecinH3 could, therefore, be considered a promising candidate as a therapeutic agent of ALS. © 2018 IUBMB Life, 71(1):192-199, 2019.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Shang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ran Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
159
|
Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci 2018; 21:1370-1379. [PMID: 30250265 PMCID: PMC6615039 DOI: 10.1038/s41593-018-0236-8] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Animal models of adult-onset neurodegenerative diseases have enhanced the understanding of the molecular pathogenesis of Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Nevertheless, our understanding of these disorders and the development of mechanistically designed therapeutics can still benefit from more rigorous use of the models and from generation of animals that more faithfully recapitulate human disease. Here we review the current state of rodent models for Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. We discuss the limitations and utility of current models, issues regarding translatability, and future directions for developing animal models of these human disorders.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology; and Department of Pharmacology and Molecular Sciences, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA.
| | - Todd E Golde
- McKnight Brain Institute Center for Translational Research in Neurodegenerative Disease Department of Neuroscience and Neurology, University of Florida, Gainesville, FL, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| |
Collapse
|
160
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a disabling progressive disease characterized by the degeneration of motor neurons, leading to muscle atrophy and paralysis. The majority of cases are sporadic, but also a familiar form of ALS exists, and some genes causative of the pathology were found. In particular, mutations in superoxide dismutase 1 (SOD1) were found in 20% of familiar cases. It is known that neuroinflammation plays a pivotal role in several neurodegenerative disorders, including ALS. Inflammasomes are protein complexes that induce inflammation in response to various stimuli, involved also in neuroinflammation. The NLRP3 inflammasome, which is the best known, after assembly, induces the activation of caspase 1, which in turn activates interleukin (IL)-1β and IL-18. The aim of this work was the evaluation of inflammasome activation in the brain of SOD1G93A rats, a transgenic model of ALS. We observed the increase in TLR4 and nuclear NF-κB levels in SOD1G93A rats. Their activation is known as priming signal for inflammasome induction. Moreover, NLRP3 protein increased, associated with the presence of active caspase 1, leading to an increase in IL-18 and IL-1β levels. In addition, IL-1β, IL-18, and IFN-γ amount increased in the spleen of SOD1G93A rats, together with an increased expression of CD4, CD8, CD44, and CD68 markers. In conclusion, our results showed the activation of the NLRP3 inflammasome in the brain of SOD1G93A rats, indicating that inflammation plays a main role in ALS.
Collapse
|
161
|
Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med 2018; 24:1579-1589. [PMID: 30127392 DOI: 10.1038/s41591-018-0140-5] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous motor neuron disease for which no effective treatment is available, despite decades of research into SOD1-mutant familial ALS (FALS). The majority of ALS patients have no familial history, making the modeling of sporadic ALS (SALS) essential to the development of ALS therapeutics. However, as mutations underlying ALS pathogenesis have not yet been identified, it remains difficult to establish useful models of SALS. Using induced pluripotent stem cell (iPSC) technology to generate stem and differentiated cells retaining the patients' full genetic information, we have established a large number of in vitro cellular models of SALS. These models showed phenotypic differences in their pattern of neuronal degeneration, types of abnormal protein aggregates, cell death mechanisms, and onset and progression of these phenotypes in vitro among cases. We therefore developed a system for case clustering capable of subdividing these heterogeneous SALS models by their in vitro characteristics. We further evaluated multiple-phenotype rescue of these subclassified SALS models using agents selected from non-SOD1 FALS models, and identified ropinirole as a potential therapeutic candidate. Integration of the datasets acquired in this study permitted the visualization of molecular pathologies shared across a wide range of SALS models.
Collapse
|
162
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
163
|
Funikov SY, Rezvykh AP, Mazin PV, Morozov AV, Maltsev AV, Chicheva MM, Vikhareva EA, Evgen’ev MB, Ustyugov AA. FUS(1-359) transgenic mice as a model of ALS: pathophysiological and molecular aspects of the proteinopathy. Neurogenetics 2018; 19:189-204. [DOI: 10.1007/s10048-018-0553-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
|
164
|
Bojungikgi-tang Improves Muscle and Spinal Cord Function in an Amyotrophic Lateral Sclerosis Model. Mol Neurobiol 2018; 56:2394-2407. [PMID: 30030751 DOI: 10.1007/s12035-018-1236-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive motor function impairment, dysphagia, and respiratory failure. Owing to the complexity of its pathogenic mechanisms, an effective therapy for ALS is lacking. Herbal medicines with multiple targets have good efficacy and low adverse reactions for the treatment of neurodegenerative diseases. In this study, the effects of Bojungikgi-tang (BJIGT), an herbal medicine with eight component herbs, on muscle and spinal cord function were evaluated in an ALS animal model. Animals were randomly divided into three groups: a non-transgenic group (nTg, n = 24), a hSOD1G93A transgenic group (Tg, n = 24), and a hSOD1G93A transgenic group in which 8-week-old mice were orally administered BJIGT (1 mg/g) once daily for 6 weeks (Tg+BJIGT, n = 24). The effects of BJIGT were evaluated using a rotarod test, foot-printing, and survival analyses based on Kaplan-Meier survival curves. To determine the biological mechanism underlying the effects of BJIGT in hSOD1G93A mice, western blotting, transmission electron microscopy, and Bungarotoxin staining were used. BJIGT improved motor function and extended the survival duration of hSOD1G93A mice. In addition, BJIGT had protective effects, including anti-oxidative and anti-inflammatory effects, in both the spinal cord and muscle of hSOD1G93A mice. Our results demonstrated that BJIGT causes muscle atrophy and the denervation of neuromuscular junctions in the gastrocnemius of hSOD1G93A mice. The components of BJIGT may alleviate the symptoms of ALS via different mechanisms, and accordingly, BJIGT treatment may be an effective therapeutic approach.
Collapse
|
165
|
D'Ambrosi N, Cozzolino M, Carrì MT. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation. Antioxid Redox Signal 2018; 29:15-36. [PMID: 28895473 DOI: 10.1089/ars.2017.7271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Amyotrophic lateral sclerosis (ALS) is due to degeneration of upper and lower motor neurons in the anterior horn of the spinal cord and in the motor cortex. Mechanisms leading to motor neuron death are complex and currently the disease is untreatable. Recent Advances: Work in genetic models of ALS indicates that an imbalance in the cross talk that physiologically exists between motor neurons and the surrounding cells is eventually detrimental to motor neurons. In particular, the cascade of events collectively known as neuroinflammation and mainly characterized by a reactive phenotype of astrocytes and microglia, moderate infiltration of peripheral immune cells, and elevated levels of inflammatory mediators has been consistently observed in motor regions of the central nervous system (CNS) in sporadic and familial ALS, constituting a hallmark of the disease. Resident glial cells and infiltrated immune cells are considered among the major producers of reactive species of oxygen and nitrogen in pathological conditions of the CNS, including motor neuron diseases. CRITICAL ISSUES The timing and exact role of oxidative stress-mediated neuroinflammation and damage to motor neurons in ALS are still not fully elucidated. FUTURE DIRECTIONS It is clear that a major challenge in the next future will be to envisage effective strategies to modulate the neuroinflammatory response in the symptomatic stage of disease, to prevent progression of neurodegeneration through the propagation of oxidative damage. Antioxid. Redox Signal. 29, 15-36.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy
| | - Mauro Cozzolino
- 2 Institute of Translational Pharmacology , CNR, Rome, Italy
| | - Maria Teresa Carrì
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy .,3 Fondazione Santa Lucia , IRCCS, Rome, Italy
| |
Collapse
|
166
|
Kjældgaard AL, Pilely K, Olsen KS, Pedersen SW, Lauritsen AØ, Møller K, Garred P. Amyotrophic lateral sclerosis: The complement and inflammatory hypothesis. Mol Immunol 2018; 102:14-25. [PMID: 29933890 DOI: 10.1016/j.molimm.2018.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, neurodegenerative motor neuron disease. The aetiology of ALS remains an enigma which hinders the design of an effective treatment to prevent, postpone, or reverse the pathophysiological changes occurring during the aggressive progression of this disease. During the last decade, basic research within the innate immune system, and in particular the complement system, has revealed new, important roles of the innate immune system during development, homeostasis, and ageing within as well as outside the central nervous system. Several lines of evidence indicate that aberrant activation of the complement system locally in the central nervous system as well as systemically may be involved in the pathophysiology of ALS. This exciting new knowledge could point towards the innate immune system as a potential target of medical intervention in ALS. Recently, the historic perception of ALS as a central neurodegenerative disease has been challenged due to the significant amount of evidence of a dying-back mechanism causing the selective destruction of the motor neurons, indicating that disease onset occurs outside the borders of the blood-brain-barrier. This review addresses the function of the innate immune system during ALS. We emphasize the role of the complement system and specifically suggest the involvement of ficolin-3 from the lectin pathway in the pathophysiology of ALS.
Collapse
Affiliation(s)
- Anne-Lene Kjældgaard
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Diagnostic Centre, Section 7631; Department of Neuroanaesthesiology.
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Diagnostic Centre, Section 7631
| | | | - Stephen Wørlich Pedersen
- Department of Neurology, Neuroscience Centre, Rigshospitalet, Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Diagnostic Centre, Section 7631
| |
Collapse
|
167
|
Van Damme P, Robberecht W, Van Den Bosch L. Modelling amyotrophic lateral sclerosis: progress and possibilities. Dis Model Mech 2018; 10:537-549. [PMID: 28468939 PMCID: PMC5451175 DOI: 10.1242/dmm.029058] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects the motor system and presents with progressive muscle weakness. Most patients survive for only 2-5 years after disease onset, often due to failure of the respiratory muscles. ALS is a familial disease in ∼10% of patients, with the remaining 90% developing sporadic ALS. Over the past decade, major advances have been made in our understanding of the genetics and neuropathology of ALS. To date, around 20 genes are associated with ALS, with the most common causes of typical ALS associated with mutations in SOD1, TARDBP, FUS and C9orf72. Advances in our understanding of the genetic basis of ALS have led to the creation of different models of this disease. The molecular pathways that have emerged from these systems are more heterogeneous than previously anticipated, ranging from protein aggregation and defects in multiple key cellular processes in neurons, to dysfunction of surrounding non-neuronal cells. Here, we review the different model systems used to study ALS and discuss how they have contributed to our current knowledge of ALS disease mechanisms. A better understanding of emerging disease pathways, the detrimental effects of the various gene mutations and the causes underlying motor neuron denegation in sporadic ALS will accelerate progress in the development of novel treatments. Summary: In this Review, Ludo Van Den Bosch and colleagues discuss the different model systems for studying ALS and how they have contributed to our current understanding of the etiology and pathology of this neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Van Damme
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium .,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| |
Collapse
|
168
|
Izrael M, Slutsky SG, Admoni T, Cohen L, Granit A, Hasson A, Itskovitz-Eldor J, Krush Paker L, Kuperstein G, Lavon N, Yehezkel Ionescu S, Solmesky LJ, Zaguri R, Zhuravlev A, Volman E, Chebath J, Revel M. Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1 G93A and NSG animal models. Stem Cell Res Ther 2018; 9:152. [PMID: 29871694 PMCID: PMC5989413 DOI: 10.1186/s13287-018-0890-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease characterized by the loss of MNs in the central nervous system. As MNs die, patients progressively lose their ability to control voluntary movements, become paralyzed and eventually die from respiratory/deglutition failure. Despite the selective MN death in ALS, there is growing evidence that malfunctional astrocytes play a crucial role in disease progression. Thus, transplantation of healthy astrocytes may compensate for the diseased astrocytes. METHODS We developed a good manufacturing practice-grade protocol for generation of astrocytes from human embryonic stem cells (hESCs). The first stage of our protocol is derivation of astrocyte progenitor cells (APCs) from hESCs. These APCs can be expanded in large quantities and stored frozen as cell banks. Further differentiation of the APCs yields an enriched population of astrocytes with more than 90% GFAP expression (hES-AS). hES-AS were injected intrathecally into hSOD1G93A transgenic mice and rats to evaluate their therapeutic potential. The safety and biodistribution of hES-AS were evaluated in a 9-month study conducted in immunodeficient NSG mice under good laboratory practice conditions. RESULTS In vitro, hES-AS possess the activities of functional healthy astrocytes, including glutamate uptake, promotion of axon outgrowth and protection of MNs from oxidative stress. A secretome analysis shows that these hES-AS also secrete several inhibitors of metalloproteases as well as a variety of neuroprotective factors (e.g. TIMP-1, TIMP-2, OPN, MIF and Midkine). Intrathecal injections of the hES-AS into transgenic hSOD1G93A mice and rats significantly delayed disease onset and improved motor performance compared to sham-injected animals. A safety study in immunodeficient mice showed that intrathecal transplantation of hES-AS is safe. Transplanted hES-AS attached to the meninges along the neuroaxis and survived for the entire duration of the study without formation of tumors or teratomas. Cell-injected mice gained similar body weight to the sham-injected group and did not exhibit clinical signs that could be related to the treatment. No differences from the vehicle control were observed in hematological parameters or blood chemistry. CONCLUSION Our findings demonstrate the safety and potential therapeutic benefits of intrathecal injection of hES-AS for the treatment of ALS.
Collapse
Affiliation(s)
- Michal Izrael
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shalom Guy Slutsky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Tamar Admoni
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Louisa Cohen
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Avital Granit
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Arik Hasson
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Joseph Itskovitz-Eldor
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Lena Krush Paker
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Graciela Kuperstein
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Neta Lavon
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shiran Yehezkel Ionescu
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Leonardo Javier Solmesky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Rachel Zaguri
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Alina Zhuravlev
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Ella Volman
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Judith Chebath
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
169
|
Ghezzi F, Monni L, Nistri A. Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons. J Physiol 2018; 596:2611-2629. [PMID: 29736957 DOI: 10.1113/jp275906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Excessive neuronal excitability characterizes several neuropathological conditions, including neurodegenerative diseases such as amyotrophic lateral sclerosis. Hypoglossal motoneurons (HMs), which control tongue muscles, are extremely vulnerable to this disease and undergo damage and death when exposed to an excessive glutamate extracellular concentration that causes excitotoxicity. Our laboratory devised an in vitro model of excitotoxicity obtained by pharmacological blockade of glutamate transporters. In this paradigm, HMs display hyperexcitability, collective bursting and eventually cell death. The results of the present study show that pharmacological up-regulation of a K+ current (M-current), via application of the anti-convulsant retigabine, prevented all hallmarks of HM excitotoxicity, comprising bursting, generation of reactive oxygen species, expression of toxic markers and cell death. ○Our data may have translational value to develop new treatments against neurological diseases by using positive pharmacological modulators of the M-current. ABSTRACT Neuronal hyperexcitability is a symptom characterizing several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In the ALS bulbar form, hypoglossal motoneurons (HMs) are an early target for neurodegeneration because of their high vulnerability to metabolic insults. In recent years, our laboratory has developed an in vitro model of a brainstem slice comprising the hypoglossal nucleus in which HM neurodegeneration is achieved by blocking glutamate clearance with dl-threo-β-benzyloxyaspartate (TBOA), thus leading to delayed excitotoxicity. During this process, HMs display a set of hallmarks such as hyperexcitability (and network bursting), reactive oxygen species (ROS) generation and, finally, cell death. The present study aimed to investigate whether blocking early hyperexcitability and bursting with the anti-convulsant drug retigabine was sufficient to achieve neuroprotection against excitotoxicity. Retigabine is a selective positive allosteric modulator of the M-current (IM ), an endogenous mechanism that neurons (comprising HMs) express to dampen excitability. Retigabine (10 μm; co-applied with TBOA) contrasted ROS generation, release of endogenous toxic factors into the HM cytoplasm and excitotoxicity-induced HM death. Electrophysiological experiments showed that retigabine readily contrasted and arrested bursting evoked by TBOA administration. Because neuronal IM subunits (Kv7.2, Kv7.3 and Kv7.5) were expressed in the hypoglossal nucleus and in functionally connected medullary nuclei, we suggest that they were responsible for the strong reduction in network excitability, a potent phenomenon for achieving neuroprotection against TBOA-induced excitotoxicity. The results of the present study may have translational value for testing novel positive pharmacological modulators of the IM under pathological conditions (including neurodegenerative disorders) characterized by excessive neuronal excitability.
Collapse
Affiliation(s)
- Filippo Ghezzi
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Laura Monni
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
170
|
miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS. J Neurosci 2018; 38:5478-5494. [PMID: 29773756 PMCID: PMC6001038 DOI: 10.1523/jneurosci.3037-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS.SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo.
Collapse
|
171
|
Trostchansky A, Mastrogiovanni M, Miquel E, Rodríguez-Bottero S, Martínez-Palma L, Cassina P, Rubbo H. Profile of Arachidonic Acid-Derived Inflammatory Markers and Its Modulation by Nitro-Oleic Acid in an Inherited Model of Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2018; 11:131. [PMID: 29760648 PMCID: PMC5936757 DOI: 10.3389/fnmol.2018.00131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
The lack of current treatments for amyotrophic lateral sclerosis (ALS) highlights the need of a comprehensive understanding of the biological mechanisms of the disease. A consistent neuropathological feature of ALS is the extensive inflammation around motor neurons and axonal degeneration, evidenced by accumulation of reactive astrocytes and activated microglia. Final products of inflammatory processes may be detected as a screening tool to identify treatment response. Herein, we focus on (a) detection of arachidonic acid (AA) metabolization products by lipoxygenase (LOX) and prostaglandin endoperoxide H synthase in SOD1G93A mice and (b) evaluate its response to the electrophilic nitro-oleic acid (NO2-OA). Regarding LOX-derived products, a significant increase in 12-hydroxyeicosatetraenoic acid (12-HETE) levels was detected in SOD1G93A mice both in plasma and brain whereas no changes were observed in age-matched non-Tg mice at the onset of motor symptoms (90 days-old). In addition, 15-hydroxyeicosatetraenoic acid (15-HETE) levels were greater in SOD1G93A brains compared to non-Tg. Prostaglandin levels were also increased at day 90 in plasma from SOD1G93A compared to non-Tg being similar in both types of animals at later stages of the disease. Administration of NO2-OA 16 mg/kg, subcutaneously (s/c) three times a week to SOD1G93A female mice, lowered the observed increase in brain 12-HETE levels compared to the non-nitrated fatty acid condition, and modified many others inflammatory markers. In addition, NO2-OA significantly improved grip strength and rotarod performance compared to vehicle or OA treated animals. These beneficial effects were associated with increased hemeoxygenase 1 (HO-1) expression in the spinal cord of treated mice co-localized with reactive astrocytes. Furthermore, significant levels of NO2-OA were detected in brain and spinal cord from NO2-OA -treated mice indicating that nitro-fatty acids (NFA) cross brain–blood barrier and reach the central nervous system to induce neuroprotective actions. In summary, we demonstrate that LOX-derived oxidation products correlate with disease progression. Overall, we are proposing that key inflammatory mediators of AA-derived pathways may be useful as novel footprints of ALS onset and progression as well as NO2-OA as a promising therapeutic compound.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Miquel
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Rodríguez-Bottero
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Cassina
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
172
|
Kelley KW, Ben Haim L, Schirmer L, Tyzack GE, Tolman M, Miller JG, Tsai HH, Chang SM, Molofsky AV, Yang Y, Patani R, Lakatos A, Ullian EM, Rowitch DH. Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength. Neuron 2018; 98:306-319.e7. [PMID: 29606582 PMCID: PMC5919779 DOI: 10.1016/j.neuron.2018.03.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/08/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Diversified neurons are essential for sensorimotor function, but whether astrocytes become specialized to optimize circuit performance remains unclear. Large fast α-motor neurons (FαMNs) of spinal cord innervate fast-twitch muscles that generate peak strength. We report that ventral horn astrocytes express the inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) around MNs in a VGLUT1-dependent manner. Loss of astrocyte-encoded Kir4.1 selectively altered FαMN size and function and led to reduced peak strength. Overexpression of Kir4.1 in astrocytes was sufficient to increase MN size through activation of the PI3K/mTOR/pS6 pathway. Kir4.1 was downregulated cell autonomously in astrocytes derived from amyotrophic lateral sclerosis (ALS) patients with SOD1 mutation. However, astrocyte Kir4.1 was dispensable for FαMN survival even in the mutant SOD1 background. These findings show that astrocyte Kir4.1 is essential for maintenance of peak strength and suggest that Kir4.1 downregulation might uncouple symptoms of muscle weakness from MN cell death in diseases like ALS.
Collapse
Affiliation(s)
- Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucile Ben Haim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucas Schirmer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giulia E Tyzack
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Michaela Tolman
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - John G Miller
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hui-Hsin Tsai
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sandra M Chang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna V Molofsky
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongjie Yang
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rickie Patani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Andras Lakatos
- John van Geest Centre for Brain Repair and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB20QQ, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Paediatrics and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB20QQ, UK.
| |
Collapse
|
173
|
Ravera S, Bonifacino T, Bartolucci M, Milanese M, Gallia E, Provenzano F, Cortese K, Panfoli I, Bonanno G. Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2018; 55:9220-9233. [PMID: 29656361 DOI: 10.1007/s12035-018-1059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by muscle wasting, weakness, and spasticity due to a progressive degeneration of cortical, brainstem, and spinal motor neurons. The etiopathological causes are still largely obscure, although astrocytes definitely play a role in neuronal damage. Several mechanisms have been proposed to concur to neurodegeneration in ALS, including mitochondrial dysfunction. We have previously shown profound modifications of glutamate release and presynaptic plasticity in the spinal cord of the SOD1G93A mouse model of ALS. In this work, we characterized, for the first time, the aerobic metabolism in two specific compartments actively involved in neurotransmission (i.e. the presynaptic district, using purified synaptosomes, and the perisynaptic astrocyte processes, using purified gliosomes) in SOD1G93A mice at different stages of the disease. ATP/AMP ratio was lower in synaptosomes isolated from the spinal cord, but not from other brain areas, of SOD1G93A vs. control mice. The energy impairment was linked to altered oxidative phosphorylation (OxPhos) and increment of lipid peroxidation. These metabolic dysfunctions were present during disease progression, starting at the very pre-symptomatic stages, and did not depend on a different number of mitochondria or a different expression of OxPhos proteins. Conversely, gliosomes showed a reduction of the ATP/AMP ratio only at the late stages of the disease and an increment of oxidative stress also in the absence of a significant decrement in OxPhos activity. Data suggest that the presynaptic neuronal moiety plays a pivotal role for synaptic energy metabolism dysfunctions in ALS. Changes in the perisynaptic compartment seem subordinated to neuronal damage.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Martina Bartolucci
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy
| | - Elena Gallia
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy. .,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy.
| |
Collapse
|
174
|
White MA, Kim E, Duffy A, Adalbert R, Phillips BU, Peters OM, Stephenson J, Yang S, Massenzio F, Lin Z, Andrews S, Segonds-Pichon A, Metterville J, Saksida LM, Mead R, Ribchester RR, Barhomi Y, Serre T, Coleman MP, Fallon JR, Bussey TJ, Brown RH, Sreedharan J. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci 2018; 21:552-563. [PMID: 29556029 PMCID: PMC5884423 DOI: 10.1038/s41593-018-0113-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterized by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here we have created a TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43Q331K mice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed, leading to a gain of TDP-43 function and altered splicing of Mapt, another pivotal dementia-associated gene. Furthermore, a new approach to stratify transcriptomic data by phenotype in differentially affected mutant mice revealed 471 changes linked with improved behavior. These changes included downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew A White
- The Babraham Institute, Cambridge, UK
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eosu Kim
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Amanda Duffy
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Robert Adalbert
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Benjamin U Phillips
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Owen M Peters
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- School of Biosciences, Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Jodie Stephenson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sujeong Yang
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Francesca Massenzio
- The Babraham Institute, Cambridge, UK
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ziqiang Lin
- The Babraham Institute, Cambridge, UK
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | - Jake Metterville
- Department of Neurology, UMass Medical School, Worcester, MA, USA
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Richard Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Youssef Barhomi
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | - Thomas Serre
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | - Michael P Coleman
- The Babraham Institute, Cambridge, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Robert H Brown
- Department of Neurology, UMass Medical School, Worcester, MA, USA
| | - Jemeen Sreedharan
- The Babraham Institute, Cambridge, UK.
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
175
|
Lutz C. Mouse models of ALS: Past, present and future. Brain Res 2018; 1693:1-10. [PMID: 29577886 DOI: 10.1016/j.brainres.2018.03.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
Abstract
Genome sequencing of both sporadic and familial patients of Amyotrophic Lateral Sclerosis (ALS) has led to the identification of new genes that are both contributing and causative in the disease. This gene discovery has come at an unprecedented rate, and much of it in recent years. Knowledge of these genetic mutations provides us with opportunities to uncover new and related mechanisms, increasing our understanding of the disease and bringing us closer to defined therapies for patients. Mouse models have played an important role in our current understanding of the pathophysiology of ALS and have served as important preclinical models in testing new therapeutics. With these new gene discoveries, new mouse models will follow. The information derived from these new models will depend on the careful construction and importantly, an understanding of the capabilities and limitations of each of the models. The genetic discovery in ALS comes at a time when genetic engineering technologies in mice are highly efficient through CRISPR/Cas9 and can be applied to a wide array of genetic backgrounds. New mouse resources in the forms of the Collaborative Cross and Diversity Outbred panels provide us with unique opportunities to study these mutations on diverse genetic backgrounds, and importantly in the context of a population. This review focuses on the mouse models of the past and present, and discusses exciting new opportunities for mouse models of the future.
Collapse
Affiliation(s)
- Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| |
Collapse
|
176
|
Szelechowski M, Amoedo N, Obre E, Léger C, Allard L, Bonneu M, Claverol S, Lacombe D, Oliet S, Chevallier S, Le Masson G, Rossignol R. Metabolic Reprogramming in Amyotrophic Lateral Sclerosis. Sci Rep 2018; 8:3953. [PMID: 29500423 PMCID: PMC5834494 DOI: 10.1038/s41598-018-22318-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction in the spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the neurometabolic alterations during early stages of the disease remain unknown. Here, we investigated the bioenergetic and proteomic changes in ALS mouse motor neurons and patients' skin fibroblasts. We first observed that SODG93A mice presymptomatic motor neurons display alterations in the coupling efficiency of oxidative phosphorylation, along with fragmentation of the mitochondrial network. The proteome of presymptomatic ALS mice motor neurons also revealed a peculiar metabolic signature with upregulation of most energy-transducing enzymes, including the fatty acid oxidation (FAO) and the ketogenic components HADHA and ACAT2, respectively. Accordingly, FAO inhibition altered cell viability specifically in ALS mice motor neurons, while uncoupling protein 2 (UCP2) inhibition recovered cellular ATP levels and mitochondrial network morphology. These findings suggest a novel hypothesis of ALS bioenergetics linking FAO and UCP2. Lastly, we provide a unique set of data comparing the molecular alterations found in human ALS patients' skin fibroblasts and SODG93A mouse motor neurons, revealing conserved changes in protein translation, folding and assembly, tRNA aminoacylation and cell adhesion processes.
Collapse
Affiliation(s)
- M Szelechowski
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - N Amoedo
- Bordeaux University, 33000, Bordeaux, France
- INSERM U1211, MRGM, 33000, Bordeaux, France
| | - E Obre
- CELLOMET, Center of Functional Genomics (CGFB), 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - C Léger
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - L Allard
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - M Bonneu
- Bordeaux University, 33000, Bordeaux, France
- Center of Functional Genomics (CGFB), Proteomic Facility, Bordeaux University, 33000, Bordeaux, France
| | - S Claverol
- Bordeaux University, 33000, Bordeaux, France
- Center of Functional Genomics (CGFB), Proteomic Facility, Bordeaux University, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France
- INSERM U1211, MRGM, 33000, Bordeaux, France
| | - S Oliet
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - S Chevallier
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - G Le Masson
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France.
- Bordeaux University, 33000, Bordeaux, France.
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France.
- INSERM U1211, MRGM, 33000, Bordeaux, France.
| |
Collapse
|
177
|
Iyer AK, Jones KJ, Sanders VM, Walker CL. Temporospatial Analysis and New Players in the Immunology of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:ijms19020631. [PMID: 29473876 PMCID: PMC5855853 DOI: 10.3390/ijms19020631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it broadly manifests itself as sporadic and familial forms that have evident similarities in clinical symptoms and disease progression. There is a tremendous amount of knowledge on molecular mechanisms leading to loss of MNs and neuromuscular junctions (NMJ) as major determinants of disease onset, severity and progression in ALS. Specifically, two main opposing hypotheses, the dying forward and dying back phenomena, exist to account for NMJ denervation. The former hypothesis proposes that the earliest degeneration occurs at the central MNs and proceeds to the NMJ, whereas in the latter, the peripheral NMJ is the site of precipitating degeneration progressing backwards to the MN cell body. A large body of literature strongly indicates a role for the immune system in disease onset and progression via regulatory involvement at the level of both the central and peripheral nervous systems (CNS and PNS). In this review, we discuss the earliest reported immune responses with an emphasis on newly identified immune players in mutant superoxide dismutase 1 (mSOD1) transgenic mice, the gold standard mouse model for ALS.
Collapse
Affiliation(s)
- Abhirami K Iyer
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Kathryn J Jones
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
| | - Virginia M Sanders
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Chandler L Walker
- Anatomy and Cell Biology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA.
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
| |
Collapse
|
178
|
RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis. Biomedicines 2018; 6:biomedicines6010009. [PMID: 29342921 PMCID: PMC5874666 DOI: 10.3390/biomedicines6010009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor disease in adults. Its pathophysiology remains mysterious, but tremendous advances have been made with the discovery of the most frequent mutations of its more common familial form linked to the C9ORF72 gene. Although most cases are still considered sporadic, these genetic mutations have revealed the role of RNA production, processing and transport in ALS, and may be important players in all ALS forms. There are no disease-modifying treatments for adult human neurodegenerative diseases, including ALS. As in spinal muscular atrophy, RNA-targeted therapies have been proposed as potential strategies for treating this neurodegenerative disorder. Successes achieved in various animal models of ALS have proven that RNA therapies are both safe and effective. With careful consideration of the applicability of such therapies in humans, it is possible to anticipate ongoing in vivo research and clinical trial development of RNA therapies for treating ALS.
Collapse
|
179
|
Morrice JR, Gregory-Evans CY, Shaw CA. Animal models of amyotrophic lateral sclerosis: A comparison of model validity. Neural Regen Res 2018; 13:2050-2054. [PMID: 30323119 PMCID: PMC6199948 DOI: 10.4103/1673-5374.241445] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animal models are necessary to investigate the pathogenic features underlying motor neuron degeneration and for therapeutic development in amyotrophic lateral sclerosis (ALS). Measures of model validity allow for a critical interpretation of results from each model and caution from over-interpretation of experimental models. Face and construct validity refer to the similarity in phenotype and the proposed causal factor to the human disease, respectively. More recently developed models are restricted by limited phenotype characterization, yet new models hold promise for novel disease insights, thus highlighting their importance. In this article, we evaluate the features of face and construct validity of our new zebrafish model of environmentally-induced motor neuron degeneration and discuss this in the context of current environmental and genetic ALS models, including C9orf72, mutant Cu/Zn superoxide dismutase 1 and TAR DNA-binding protein 43 mouse and zebrafish models. In this mini-review, we discuss the pros and cons to validity criteria in each model. Our zebrafish model of environmentally-induced motor neuron degeneration displays convincing features of face validity with many hallmarks of ALS-like features, and weakness in construct validity. However, the value of this model may lie in its potential to be more representative of the pathogenic features underlying sporadic ALS cases, where environmental factors may be more likely to be involved in disease etiology than single dominant gene mutations. It may be necessary to compare findings between different strains and species modeling specific genes or environmental factors to confirm findings from ALS animal models and tease out arbitrary strain- and overexpression-specific effects.
Collapse
Affiliation(s)
- Jessica R Morrice
- Experimental Medicine Program, University of British Columbia, Vancouver, Canada
| | - Cheryl Y Gregory-Evans
- Experimental Medicine Program; Department of Ophthalmology and Visual Sciences; Neuroscience Program, University of British Columbia, Vancouver, Canada
| | - Christopher A Shaw
- Experimental Medicine Program; Department of Ophthalmology and Visual Sciences; Neuroscience Program; Department of Pathology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
180
|
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390:2084-2098. [PMID: 28552366 DOI: 10.1016/s0140-6736(17)31287-4] [Citation(s) in RCA: 872] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is characterised by the progressive loss of motor neurons in the brain and spinal cord. This neurodegenerative syndrome shares pathobiological features with frontotemporal dementia and, indeed, many patients show features of both diseases. Many different genes and pathophysiological processes contribute to the disease, and it will be necessary to understand this heterogeneity to find effective treatments. In this Seminar, we discuss clinical and diagnostic approaches as well as scientific advances in the research fields of genetics, disease modelling, biomarkers, and therapeutic strategies.
Collapse
Affiliation(s)
- Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Beaumont, Ireland
| | - Adriano Chio
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
181
|
Gasco S, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Inflammatory and non-inflammatory monocytes as novel prognostic biomarkers of survival in SOD1G93A mouse model of Amyotrophic Lateral Sclerosis. PLoS One 2017; 12:e0184626. [PMID: 28886177 PMCID: PMC5591000 DOI: 10.1371/journal.pone.0184626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) has lately become a suitable scenario to study the interplay between the hematopoietic system and disease progression. Recent studies in C9orf72 null mice have demonstrated that C9orf72 is necessary for the normal function of myeloid cells. In this study, we aimed to analyze in depth the connection between the hematopoietic system and secondary lymphoid (spleen) and non-lymphoid (liver and skeletal muscle) organs and tissues along the disease progression in the transgenic SOD1G93A mice. Our findings suggested that the inflammatory response due to the neurodegeneration in this animal model affected all three organs and tissues, especially the liver and the skeletal muscle. However, the liver was able to compensate this inflammatory response by means of the action of non-inflammatory monocytes, while in the skeletal muscle inflammatory monocytes prompted a further inflammation process until the terminal state of the animals. Interestingly, in blood, a positive correlation was found between non-inflammatory monocytes and survival of the transgenic SOD1G93A mice, while the contrary (a negative correlation) was found in the case of inflammatory monocytes, supporting their potential role as biomarkers of disease progression and survival in this animal model. These findings could prompt future translational studies in ALS patients, promoting the identification of new reliable biomarkers of disease progression.
Collapse
Affiliation(s)
- Samanta Gasco
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
- * E-mail:
| | - Pilar Zaragoza
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
| | - Alberto García-Redondo
- Biochemistry Department, CIBERER U-723. Health Research Institute, October 12th Hospital, Madrid, Spain
| | - Ana C. Calvo
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
182
|
Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 2017; 28:324-337. [PMID: 28378063 PMCID: PMC5569151 DOI: 10.1007/s00335-017-9687-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
The world health organisation has declared neurological disorders as one of the greatest public health risks in the world today. Yet, despite this growing concern, the mechanisms underpinning many of these conditions are still poorly understood. This may in part be due to the seemingly diverse nature of the initiating insults ranging from genetic (such as the Ataxia's and Lysosomal storage disorders) through to protein misfolding and aggregation (i.e. Prions), and those of a predominantly unknown aetiology (i.e. Alzheimer's and Parkinson's disease). However, efforts to elucidate mechanistic regulation are also likely to be hampered because of the complexity of the human nervous system, the apparent selective regional vulnerability and differential degenerative progression. The key to elucidating these aetiologies is determining the regional molecular cascades, which are occurring from the early through to terminal stages of disease progression. Whilst much molecular data have been captured at the end stage of disease from post-mortem analysis in humans, the very early stages of disease are often conspicuously asymptomatic, and even if they were not, repeated sampling from multiple brain regions of "affected" patients and "controls" is neither ethical nor possible. Model systems therefore become fundamental for elucidating the mechanisms governing these complex neurodegenerative conditions. However, finding a model that precisely mimics the human condition can be challenging and expensive. Whilst cellular and invertebrate models are frequently used in neurodegenerative research and have undoubtedly yielded much useful data, the comparatively simplistic nature of these systems makes insights gained from such a stand alone model limited when it comes to translation. Given the recent advances in gene editing technology, the options for novel model generation in higher order species have opened up new and exciting possibilities for the field. In this review, we therefore explain some of the reasons why larger animal models often appear to give a more robust recapitulation of human neurological disorders and why they may be a critical stepping stone for effective therapeutic translation.
Collapse
Affiliation(s)
- S L Eaton
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - T M Wishart
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Euan MacDonald Centre for MND Research, Chancellor's Building, 49 Little France, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
183
|
Schoch KM, Miller TM. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases. Neuron 2017. [PMID: 28641106 DOI: 10.1016/j.neuron.2017.04.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple neurodegenerative diseases are characterized by single-protein dysfunction and aggregation. Treatment strategies for these diseases have often targeted downstream pathways to ameliorate consequences of protein dysfunction; however, targeting the source of that dysfunction, the affected protein itself, seems most judicious to achieve a highly effective therapeutic outcome. Antisense oligonucleotides (ASOs) are small sequences of DNA able to target RNA transcripts, resulting in reduced or modified protein expression. ASOs are ideal candidates for the treatment of neurodegenerative diseases, given numerous advancements made to their chemical modifications and delivery methods. Successes achieved in both animal models and human clinical trials have proven ASOs both safe and effective. With proper considerations in mind regarding the human applicability of ASOs, we anticipate ongoing in vivo research and clinical trial development of ASOs for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kathleen M Schoch
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Timothy M Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
184
|
Geloso MC, Corvino V, Marchese E, Serrano A, Michetti F, D'Ambrosi N. The Dual Role of Microglia in ALS: Mechanisms and Therapeutic Approaches. Front Aging Neurosci 2017; 9:242. [PMID: 28790913 PMCID: PMC5524666 DOI: 10.3389/fnagi.2017.00242] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a non-cell autonomous motor neuron loss. While it is generally believed that the disease onset takes place inside motor neurons, different cell types mediating neuroinflammatory processes are considered deeply involved in the progression of the disease. On these grounds, many treatments have been tested on ALS animals with the aim of inhibiting or reducing the pro-inflammatory action of microglia and astrocytes and counteract the progression of the disease. Unfortunately, these anti-inflammatory therapies have been only modestly successful. The non-univocal role played by microglia during stress and injuries might explain this failure. Indeed, it is now well recognized that, during ALS, microglia displays different phenotypes, from surveillant in early stages, to activated states, M1 and M2, characterized by the expression of respectively harmful and protective genes in later phases of the disease. Consistently, the inhibition of microglial function seems to be a valid strategy only if the different stages of microglia polarization are taken into account, interfering with the reactivity of microglia specifically targeting only the harmful pathways and/or potentiating the trophic ones. In this review article, we will analyze the features and timing of microglia activation in the light of M1/M2 phenotypes in the main mice models of ALS. Moreover, we will also revise the results obtained by different anti-inflammatory therapies aimed to unbalance the M1/M2 ratio, shifting it towards a protective outcome.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Alessia Serrano
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy.,IRCCS San Raffaele Scientific Institute, Università Vita-Salute San RaffaeleMilan, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
185
|
Medinas DB, González JV, Falcon P, Hetz C. Fine-Tuning ER Stress Signal Transducers to Treat Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:216. [PMID: 28725179 PMCID: PMC5496948 DOI: 10.3389/fnmol.2017.00216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motoneurons and paralysis. The mechanisms underlying neuronal degeneration in ALS are starting to be elucidated, highlighting disturbances in motoneuron proteostasis. Endoplasmic reticulum (ER) stress has emerged as an early pathogenic event underlying motoneuron vulnerability and denervation in ALS. Maintenance of ER proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER-located kinase and endoribonuclease that operates as a major ER stress transducer, mediating the establishment of adaptive and pro-apoptotic programs. Here we discuss current evidence supporting the role of ER stress in motoneuron demise in ALS and build the rational to target IRE1 to ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Danilo B Medinas
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Jose V González
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Paulina Falcon
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile.,Buck Institute for Research on AgingNovato, CA, United States.,Department of Immunology and Infectious Diseases, Harvard School of Public HealthBoston, MA, United States
| |
Collapse
|
186
|
Heyburn L, Moussa CEH. TDP-43 in the spectrum of MND-FTLD pathologies. Mol Cell Neurosci 2017; 83:46-54. [PMID: 28687523 DOI: 10.1016/j.mcn.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
The relationship between RNA-binding proteins, particularly TAR DNA binding protein 43 (TDP-43), and neurodegeneration is an important area of research. TDP-43 is involved in so many cellular processes that perturbation of protein homeostasis can lead to countless downstream effects. Understanding what leads to this disease-related protein imbalance and the resulting cellular and molecular effects will help to develop targets for disease intervention, whether it be prevention of protein accumulation, or addressing a secondary effect of protein accumulation. Here we review the current literature of TDP-43 and TDP-43 pathologies, the effects of TDP-43 overexpression and disruption of synaptic proteins through its binding of messenger RNA, leading to synaptic dysfunction. This review highlights some of the still-limited knowledge of the protein TDP-43 and how it can contribute to disease.
Collapse
Affiliation(s)
- Lanier Heyburn
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C. 20007, USA; Department of Pathology, Georgetown University Medical Center, Washington D.C., USA 20007.
| | - Charbel E-H Moussa
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C. 20007, USA
| |
Collapse
|
187
|
Agrawal S, Berggren KL, Marks E, Fox JH. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: a systematic review. Nutr Rev 2017; 75:456-470. [PMID: 28505363 PMCID: PMC5914328 DOI: 10.1093/nutrit/nux015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Context Accumulation of brain iron is linked to aging and protein-misfolding neurodegenerative diseases. High iron intake may influence important brain health outcomes in later life. Objective The aim of this systematic review was to examine evidence from animal and human studies of the effects of high iron intake or peripheral iron status on adult cognition, brain aging, and neurodegeneration. Data Sources MEDLINE, Scopus, CAB Abstracts, the Cochrane Central Register of Clinical Trials, and OpenGrey databases were searched. Study Selection Studies investigating the effect of elevated iron intake at all postnatal life stages in mammalian models and humans on measures of adult brain health were included. Data Extraction Data were extracted and evaluated by two authors independently, with discrepancies resolved by discussion. Neurodegenerative disease diagnosis and/or behavioral/cognitive, biochemical, and brain morphologic findings were used to study the effects of iron intake or peripheral iron status on brain health. Risk of bias was assessed for animal and human studies. PRISMA guidelines for reporting systematic reviews were followed. Results Thirty-four preclinical and 14 clinical studies were identified from database searches. Thirty-three preclinical studies provided evidence supporting an adverse effect of nutritionally relevant high iron intake in neonates on brain-health-related outcomes in adults. Human studies varied considerably in design, quality, and findings; none investigated the effects of high iron intake in neonates/infants. Conclusions Human studies are needed to verify whether dietary iron intake levels used in neonates/infants to prevent iron deficiency have effects on brain aging and neurodegenerative disease outcomes.
Collapse
Affiliation(s)
- Sonal Agrawal
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kiersten L. Berggren
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eileen Marks
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jonathan H. Fox
- S. Agrawal and J.H. Fox are with the Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA. K.L. Berggren is with the Department of Radiation Oncology, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA. E. Marks is with the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
188
|
Gonzalez D, Contreras O, Rebolledo DL, Espinoza JP, van Zundert B, Brandan E. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS One 2017; 12:e0177649. [PMID: 28520806 PMCID: PMC5433732 DOI: 10.1371/journal.pone.0177649] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motoneurons degenerate leading to muscle wasting, paralysis and eventually death from respiratory failure. Several studies indicate that skeletal muscle contributes to disease progression; however the molecular mechanisms remain elusive. Fibrosis is a common feature in skeletal muscle under chronic damage conditions such as those caused by muscular dystrophies or denervation. However, the exact mechanisms of fibrosis induction and the cellular bases of this pathological response are unknown. We show that extracellular matrix (ECM) components are augmented in skeletal muscles of symptomatic hSOD1G93A mice, a widely used murine model of ALS. These mice also show increased TGF-β1 mRNA levels, total Smad3 protein levels and p-Smad3 positive nuclei. Furthermore, platelet-derived growth factor receptor-α (PDGFRα), Tcf4 and α-smooth muscle actin (α-SMA) levels are augmented in the skeletal muscle of symptomatic hSOD1G93A mice. Additionally, the fibro/adipogenic progenitors (FAPs), which are the main producers of ECM constituents, are also increased in these pathogenic conditions. Therefore, FAPs and ECM components are more abundant in symptomatic stages of the disease than in pre-symptomatic stages. We present evidence that fibrosis observed in skeletal muscle of symptomatic hSOD1G93A mice is accompanied with an induction of TGF-β signaling, and also that FAPs might be involved in triggering a fibrotic response. Co-localization of p-Smad3 positive cells together with PDGFRα was observed in the interstitial cells of skeletal muscles from symptomatic hSOD1G93A mice. Finally, the targeting of pro-fibrotic factors such as TGF-β, CTGF/CCN2 and platelet-derived growth factor (PDGF) signaling pathway might be a suitable therapeutic approach to improve muscle function in several degenerative diseases.
Collapse
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Osvaldo Contreras
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Espinoza
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Brigitte van Zundert
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
189
|
Martinez A, Palomo Ruiz MDV, Perez DI, Gil C. Drugs in clinical development for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2017; 26:403-414. [PMID: 28277881 DOI: 10.1080/13543784.2017.1302426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron progressive disorder for which no treatment exists to date. However, there are other investigational drugs and therapies currently under clinical development may offer hope in the near future. Areas covered: We have reviewed all the ALS ongoing clinical trials (until November 2016) and collected in Clinicaltrials.gov or EudraCT. We have described them in a comprehensive way and have grouped them in the following sections: biomarkers, biological therapies, cell therapy, drug repurposing and new drugs. Expert opinion: Despite multiple obstacles that explain the absence of effective drugs for the treatment of ALS, joint efforts among patient's associations, public and private sectors have fueled innovative research in this field, resulting in several compounds that are in the late stages of clinical trials. Drug repositioning is also playing an important role, having achieved the approval of some orphan drug applications, in late phases of clinical development. Endaravone has been recently approved in Japan and is pending in USA.
Collapse
Affiliation(s)
- Ana Martinez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | | | - Daniel I Perez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | - Carmen Gil
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| |
Collapse
|
190
|
Altered Intracellular Milieu of ADAR2-Deficient Motor Neurons in Amyotrophic Lateral Sclerosis. Genes (Basel) 2017; 8:genes8020060. [PMID: 28208729 PMCID: PMC5333049 DOI: 10.3390/genes8020060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA-binding protein (TDP-43) pathology, and failure of A-to-I conversion (RNA editing) at the glutamine/arginine (Q/R) site of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit GluA2, are etiology-linked molecular abnormalities that concomitantly occur in the motor neurons of most patients with amyotrophic lateral sclerosis (ALS). Adenosine deaminase acting on RNA 2 (ADAR2) specifically catalyzes GluA2 Q/R site-RNA editing. Furthermore, conditional ADAR2 knockout mice (AR2) exhibit a progressive ALS phenotype with TDP-43 pathology in the motor neurons, which is the most reliable pathological marker of ALS. Therefore, the evidence indicates that ADAR2 downregulation is a causative factor in ALS, and AR2 mice exhibit causative molecular changes that occur in ALS. We discuss the contributors to ADAR2 downregulation and TDP-43 pathology in AR2 mouse motor neurons. We describe mechanisms of exaggerated Ca2+ influx amelioration via AMPA receptors, which is neuroprotective in ADAR2-deficient motor neurons with normalization of TDP-43 pathology in AR2 mice. Development of drugs to treat diseases requires appropriate animal models and a sensitive method of evaluating efficacy. Therefore, normalization of disrupted intracellular environments resulting from ADAR2 downregulation may be a therapeutic target for ALS. We discuss the development of targeted therapy for ALS using the AR2 mouse model.
Collapse
|
191
|
Tan RH, Ke YD, Ittner LM, Halliday GM. ALS/FTLD: experimental models and reality. Acta Neuropathol 2017; 133:177-196. [PMID: 28058507 DOI: 10.1007/s00401-016-1666-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is characterised by a loss of upper and lower motor neurons and characteristic muscle weakness and wasting, the most common form being sporadic disease with neuronal inclusions containing the tar DNA-binding protein 43 (TDP-43). Frontotemporal lobar degeneration is characterised by atrophy of the frontal and/or temporal lobes, the most common clinical form being the behavioural variant, in which neuronal inclusions containing either TDP-43 or 3-repeat tau are most prevalent. Although the genetic mutations associated with these diseases have allowed various experimental models to be developed, the initial genetic forms identified remain the most common models employed to date. It is now known that these first models faithfully recapitulate only some aspects of these diseases and do not represent the majority of cases or the most common overlapping pathologies. Newer models targeting the main molecular pathologies are still rare and in some instances, lack significant aspects of the molecular pathology. However, these diseases are complex and multigenic, indicating that experimental models may need to be targeted to different disease aspects. This would allow information to be gleaned from a variety of different yet relevant models, each of which has the capacity to capture a certain aspect of the disease, and together will enable a more complete understanding of these complex and multi-layered diseases.
Collapse
Affiliation(s)
- Rachel H Tan
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of NSW, Sydney, NSW, 2052, Australia
- Brain and Mind Centre, Sydney Medical School, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, Department of Anatomy, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| | - Glenda M Halliday
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- School of Medical Sciences, University of NSW, Sydney, NSW, 2052, Australia.
- Brain and Mind Centre, Sydney Medical School, the University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
192
|
Gowing G, Svendsen S, Svendsen CN. Ex vivo gene therapy for the treatment of neurological disorders. PROGRESS IN BRAIN RESEARCH 2017; 230:99-132. [PMID: 28552237 DOI: 10.1016/bs.pbr.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ex vivo gene therapy involves the genetic modification of cells outside of the body to produce therapeutic factors and their subsequent transplantation back into patients. Various cell types can be genetically engineered. However, with the explosion in stem cell technologies, neural stem/progenitor cells and mesenchymal stem cells are most often used. The synergy between the effect of the new cell and the additional engineered properties can often provide significant benefits to neurodegenerative changes in the brain. In this review, we cover both preclinical animal studies and clinical human trials that have used ex vivo gene therapy to treat neurological disorders with a focus on Parkinson's disease, Huntington's disease, Alzheimer's disease, ALS, and stroke. We highlight some of the major advances in this field including new autologous sources of pluripotent stem cells, safer ways to introduce therapeutic transgenes, and various methods of gene regulation. We also address some of the remaining hurdles including tunable gene regulation, in vivo cell tracking, and rigorous experimental design. Overall, given the current outcomes from researchers and clinical trials, along with exciting new developments in ex vivo gene and cell therapy, we anticipate that successful treatments for neurological diseases will arise in the near future.
Collapse
Affiliation(s)
- Genevieve Gowing
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Soshana Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
193
|
Abstract
ALS is a relentless neurodegenerative disease in which motor neurons are the susceptible neuronal population. Their death results in progressive paresis of voluntary and respiratory muscles. The unprecedented rate of discoveries over the last two decades have broadened our knowledge of genetic causes and helped delineate molecular pathways. Here we critically review ALS epidemiology, genetics, pathogenic mechanisms, available animal models, and iPS cell technologies with a focus on their translational therapeutic potential. Despite limited clinical success in treatments to date, the new discoveries detailed here offer new models for uncovering disease mechanisms as well as novel strategies for intervention.
Collapse
|
194
|
Ringer C, Tune S, Bertoune MA, Schwarzbach H, Tsujikawa K, Weihe E, Schütz B. Disruption of calcitonin gene-related peptide signaling accelerates muscle denervation and dampens cytotoxic neuroinflammation in SOD1 mutant mice. Cell Mol Life Sci 2017; 74:339-358. [PMID: 27554772 PMCID: PMC11107523 DOI: 10.1007/s00018-016-2337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Neuronal vacuolization and glial activation are pathologic hallmarks in the superoxide dismutase 1 (SOD1) mouse model of ALS. Previously, we found the neuropeptide calcitonin gene-related peptide (CGRP) associated with vacuolization and astrogliosis in the spinal cord of these mice. We now show that CGRP abundance positively correlated with the severity of astrogliosis, but not vacuolization, in several motor and non-motor areas throughout the brain. SOD1 mice harboring a genetic depletion of the βCGRP isoform showed reduced CGRP immunoreactivity associated with vacuolization, while motor functions, body weight, survival, and astrogliosis were not altered. When CGRP signaling was completely disrupted through genetic depletion of the CGRP receptor component, receptor activity-modifying protein 1 (RAMP1), hind limb muscle denervation, and loss of muscle performance were accelerated, while body weight and survival were not affected. Dampened neuroinflammation, i.e., reduced levels of astrogliosis in the brain stem already in the pre-symptomatic disease stage, and reduced microgliosis and lymphocyte infiltrations during the late disease phase were additional neuropathology features in these mice. On the molecular level, mRNA expression levels of brain-derived neurotrophic factor (BDNF) and those of the anti-inflammatory cytokine interleukin 6 (IL-6) were elevated, while those of several pro-inflammatory cytokines found reduced in the brain stem of RAMP1-deficient SOD1 mice at disease end stage. Our results thus identify an important, possibly dual role of CGRP in ALS pathogenesis.
Collapse
Affiliation(s)
- Cornelia Ringer
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Sarah Tune
- Department of Physiology, University of Lübeck, Lübeck, Germany
| | - Mirjam A Bertoune
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Eberhard Weihe
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| | - Burkhard Schütz
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| |
Collapse
|
195
|
Alfieri JA, Silva PR, Igaz LM. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice. Front Aging Neurosci 2016; 8:310. [PMID: 28066234 PMCID: PMC5167738 DOI: 10.3389/fnagi.2016.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julio A Alfieri
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET Buenos Aires, Argentina
| | - Pablo R Silva
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET Buenos Aires, Argentina
| |
Collapse
|
196
|
Bendotti C, Bonetto V, Migheli A. Introduction. Brain Pathol 2016; 26:224-6. [PMID: 26780164 DOI: 10.1111/bpa.12349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 11/27/2022] Open
Affiliation(s)
- Caterina Bendotti
- Laboratory Molecular Neurobiology, Department of Neuroscience-IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Valentina Bonetto
- Laboratory of Translational Proteomics, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Antonio Migheli
- Centro Regionale Diagnosi ed Osservazione delle Malattie Prioniche DOMP-ASL TO2, Turin, Italy
| |
Collapse
|
197
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
198
|
Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc Natl Acad Sci U S A 2016; 113:E6209-E6218. [PMID: 27681617 DOI: 10.1073/pnas.1605964113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease caused by the loss of motor neurons leading to paralysis and eventually death. PFN1 is a small actin-binding protein that promotes formin-based actin polymerization and regulates numerous cellular functions, but how the mutations in PFN1 cause ALS is unclear. To investigate this problem, we have generated transgenic mice expressing either the ALS-associated mutant (C71G) or wild-type protein. Here, we report that mice expressing the mutant, but not the wild-type, protein had relentless progression of motor neuron loss with concomitant progressive muscle weakness ending in paralysis and death. Furthermore, mutant, but not wild-type, PFN1 forms insoluble aggregates, disrupts cytoskeletal structure, and elevates ubiquitin and p62/SQSTM levels in motor neurons. Unexpectedly, the acceleration of motor neuron degeneration precedes the accumulation of mutant PFN1 aggregates. These results suggest that although mutant PFN1 aggregation may contribute to neurodegeneration, it does not trigger its onset. Importantly, these experiments establish a progressive disease model that can contribute toward identifying the mechanisms of ALS pathogenesis and the development of therapeutic treatments.
Collapse
|
199
|
Patterson KC, Hawkins VE, Arps KM, Mulkey DK, Olsen ML. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum Mol Genet 2016; 25:3303-3320. [PMID: 27329765 PMCID: PMC5179928 DOI: 10.1093/hmg/ddw179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Since the identification of MECP2 as the causative gene in the majority of Rett Syndrome (RTT) cases, transgenic mouse models have played a critical role in our understanding of this disease. The use of additional mammalian RTT models offers the promise of further elucidating critical early mechanisms of disease as well as providing new avenues for translational studies. We have identified significant abnormalities in growth as well as motor and behavioural function in a novel zinc-finger nuclease model of RTT utilizing both male and female rats throughout development. Male rats lacking MeCP2 (Mecp2ZFN/y) were noticeably symptomatic as early as postnatal day 21, with most dying by postnatal day 55, while females lacking one copy of Mecp2 (Mecp2ZFN/+) displayed a more protracted disease course. Brain weights of Mecp2ZFN/y and Mecp2ZFN/+ rats were significantly reduced by postnatal day 14 and 21, respectively. Early motor and breathing abnormalities were apparent in Mecp2ZFN/y rats, whereas Mecp2ZFN/+ rats displayed functional irregularities later in development. The large size of this species will provide profound advantages in the identification of early disease mechanisms and the development of appropriately timed therapeutics. The current study establishes a foundational basis for the continued utilization of this rat model in future RTT research.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia E Hawkins
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Kara M Arps
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
200
|
Yasuda K, Mili S. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:589-603. [PMID: 27038103 PMCID: PMC5071740 DOI: 10.1002/wrna.1352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult‐onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA‐binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589–603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kyota Yasuda
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Stavroula Mili
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|