151
|
Wu C, Zhang Y, Wei X, Li N, Huang H, Xie Z, Zhang H, Yang G, Li M, Li T, Yang H, Li S, Qin X, Liu Y. Tumor Homing-Penetrating and Nanoenzyme-Augmented 2D Phototheranostics Against Hypoxic Solid Tumors. Acta Biomater 2022; 150:391-401. [DOI: 10.1016/j.actbio.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
|
152
|
Lin YJ, Chang Chien BY, Lee YH. Injectable and thermoresponsive hybrid hydrogel with Antibacterial, Anti-inflammatory, oxygen Transport, and enhanced cell growth activities for improved diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
153
|
Shi J, Nie W, Zhao X, Yang X, Cheng H, Zhou T, Zhang Y, Zhang K, Liu J. An Intracellular Self-Assembly-Driven Uninterrupted ROS Generator Augments 5-Aminolevulinic-Acid-Based Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201049. [PMID: 35488781 DOI: 10.1002/adma.202201049] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Free radical therapy based on 5-aminolevulinic acid (ALA, a precursor of the photosensitizer protoporphyrin IX (PpIX)) has been approved by the US Food and Drug Administration for clinical tumor treatment. However, PpIX can be quickly converted into photoinactive heme, leading to unexpectedly paused production of free radicals and severely hindering its therapeutic benefits. Here, inspired by the natural biotransformation of ALA (ALA-PpIX-heme), an uninterrupted reactive oxygen species generator (URG) that converts useless heme to peroxidase mimics via intracellular self-assembly is developed. The URG is prepared by enwrapping ALA-loaded polyamide-amine dendrimers in red blood cell membrane vesicles with a further surface modification of G-quadruplex-structured AS1411. The URGs realize "1 O2 -•OH" uninterrupted generation through "recycling waste" in two steps: i) PpIX generates 1 O2 under laser irradiation; and ii) the photoinactive metabolite heme self-assembled with AS1411 to catalyze H2 O2 conversion into •OH. Interestingly, the specific generation of 1 O2 in mitochondria and •OH in nuclei further augments the free-radical-induced damage. It is demonstrated that URG can continuously produce free radicals for 6 h postirradiation, and shows 3.3-times more than that of the nonassembly group, achieving nearly 80% regression of tumors in vivo.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tonghai Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| |
Collapse
|
154
|
Zhang S, Li Z, Wang Q, Liu Q, Yuan W, Feng W, Li F. An NIR-II Photothermally Triggered "Oxygen Bomb" for Hypoxic Tumor Programmed Cascade Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201978. [PMID: 35606680 DOI: 10.1002/adma.202201978] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia, as a characteristic feature of solid tumors, has a close relationship with tumor resistance to photodynamic therapy (PDT) and chemotherapy. Perfluorocarbon (PFC) is reported to relieve hypoxic in solid tumors by acting as an oxygen carrier via several nanostructures. However, the oxygen delivery process is mostly driven by a concentration gradient, which is uncontrollable. Herein, a photothermally controlled "oxygen bomb" PSPP-Au980 -D is designed by encapsulating a PFC core within a functionalized bilayer polymer shell. Near-infrared second window photothermal agent gold nanorods with excellent photo-to-heat energy-conversion ability are fabricated on the surface of the polymer shell via an innovative modified two-step seedless ex situ growth process to thermally trigger O2 release. Then, a programmed cascade therapy strategy is customized for hypoxic orthotopic pancreatic cancer. First, PSPP-Au980 -D is irradiated by a 980 nm laser to photothermally trigger O2 infusing into the hypoxic tumor microenvironment, which is accompanied by local hyperemia and doxorubicin release. Subsequently, a 680 nm laser is used to generate singlet oxygen in the oxygenated tumor microenvironment for PDT. This choreographed programmed cascade therapy strategy will provide a new route for suppressing hypoxic tumor growth under mild conditions based on controllable and effective oxygen release.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Zhenhua Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025, China
| | - Qian Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Wei Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Wei Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
155
|
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, Du Y, Ling L. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surf B Biointerfaces 2022; 215:112503. [PMID: 35429736 DOI: 10.1016/j.colsurfb.2022.112503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022]
Abstract
Natural types of cells display distinct characteristics with homotypic targeting and extended circulation in the blood, which are worthy of being explored as promising drug delivery systems (DDSs) for cancer therapy. To enhance their delivery efficiency, these cells can be combined with therapeutic agents and artificial nanocarriers to construct the next generation of DDSs in the form of biomimetic nanomedicines. In this review, we present the recent advances in cell membrane-based DDSs (CDDSs) and their applications for efficient cancer therapy. Different sources of cell membranes are discussed, mainly including red blood cells (RBC), leukocytes, cancer cells, stem cells and hybrid cells. Moreover, the extraction methods used for obtaining such cells and the mechanism contributing to the functional action of these biomimetic CDDSs are explained. Finally, a future perspective is proposed to highlight the limitations of CDDSs and the possible resolutions toward clinical transformation of currently developed biomimetic chemotherapies.
Collapse
Affiliation(s)
- Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
156
|
Xie H, Li W, Liu H, Chen Y, Ma M, Wang Y, Luo Y, Song D, Hou Q, Lu W, Bai Y, Li B, Ma J, Huang C, Yang T, Liu Z, Zhao X, Ding P. Erythrocyte Membrane-Coated Invisible Acoustic-Sensitive Nanoparticle for Inducing Tumor Thrombotic Infarction by Precisely Damaging Tumor Vascular Endothelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201933. [PMID: 35789094 DOI: 10.1002/smll.202201933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Selective induction of tumor thrombus infarction is a promising antitumor strategy. Non-persistent embolism due to non-compacted thrombus and activated fibrinolytic system within the tumor large blood vessels and tumor margin recurrence are the main therapeutic bottlenecks. Herein, an erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle (TXA+DOX/PFH/RBCM@cRGD) is described, which can induce tumor thrombus infarction by precisely damaging tumor vascular endothelium. It is revealed that TXA+DOX/PFH/RBCM@cRGD can effectively accumulate on the endothelial surface of tumor vessels with the help of the red blood cell membrane (RBCM) stealth coating and RGD cyclic peptide (cRGD), which can be delivered in a targeted manner as nanoparticle missiles. As a kind of phase-change material, perfluorohexane (PFH) nanodroplets possess excellent acoustic responsiveness. Acoustic-sensitive missiles can undergo an acoustic phase transition and intense cavitation with response to low-intensity focused ultrasound (LIFU), damaging the tumor vascular endothelium, rapidly initiating the coagulation cascade, and forming thromboembolism in the tumor vessels. The drugs loaded in the inner water phase are released explosively. Tranexamic acid (TXA) inhibits the fibrinolytic system, and doxorubicin (DOX) eliminates the margin survival. In summary, a stealthy and acoustically responsive multifunctional nanoparticle delivery platform is successfully developed for inducing thrombus infarction by precisely damaging tumor vascular endothelium.
Collapse
Affiliation(s)
- Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengrui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yichen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yucen Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Di Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qianqian Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenwen Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Bai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jizhuang Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chi Huang
- Ultrasound Department of Shengjing Hospital, China Medical University, Shenyang, 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, 04401, USA
| | - Zhining Liu
- Ultrasound Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
157
|
Zhang L, Chen X, Cai P, Sun H, Shen S, Guo B, Jiang Q. Reprogramming Mitochondrial Metabolism in Synovial Macrophages of Early Osteoarthritis by a Camouflaged Meta-Defensome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202715. [PMID: 35671349 DOI: 10.1002/adma.202202715] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Osteoarthritis (OA) is a low-grade inflammatory and progressive joint disease, and its progression is closely associated with an imbalance in M1/M2 synovial macrophages. Repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype is emerging as a strategy to alleviate OA progression but is compromised by unsatisfactory efficiency. In this study, the reprogramming of mitochondrial dysfunction is pioneered with a camouflaged meta-Defensome, which can transform M1 synovial macrophages into the M2 phenotype with a high efficiency of 82.3%. The meta-Defensome recognizes activated macrophages via receptor-ligand interactions and accumulates in the mitochondria through electrostatic attractions. These meta-Defensomes are macrophage-membrane-coated polymeric nanoparticles decorated with dual ligands and co-loaded with S-methylisothiourea and MnO2 . Meta-Defensomes are demonstrated to successfully reprogram the mitochondrial metabolism of M1 macrophages by scavenging mitochondrial reactive oxygen species and inhibiting mitochondrial NO synthase, thereby increasing mitochondrial transcription factor A expression and restoring aerobic respiration. Furthermore, meta-Defensomes are intravenously injected into collagenase-induced osteoarthritis mice and effectively suppress synovial inflammation and progression of early OA, as evident from the Osteoarthritis Research Society International score. Therefore, reprogramming the mitochondrial metabolism can serve as a novel and practical approach to repolarize M1 synovial macrophages. The camouflaged meta-Defensomes are a promising therapeutic agent for impeding OA progression in tclinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Pingqiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, P. R. China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Baosheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
158
|
Ren C, Xu X, Yan D, Gu M, Zhang J, Zhang H, Han C, Kong L. Dual-action nanoplatform with a synergetic strategy to promote oxygen accumulation for enhanced photodynamic therapy against hypoxic tumors. Acta Biomater 2022; 146:465-477. [PMID: 35526738 DOI: 10.1016/j.actbio.2022.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
With the development of redox-related therapy modalities in cancer therapy, photodynamic therapy (PDT) has gradually become the most widely used type in the clinic. However, the hypoxic tumor microenvironment restricted the curative effect of PDT. Here, a strategic hypoxia relief nanodrug delivery system (SHRN) with a synergetic strategy was designed to alleviate tumor hypoxia on the basis of PDT. Specifically, the oxygen producer MnO2, oxygen consumption inhibitor atovaquone (ATO) and photosensitizer hypericin (HY) were loaded in SHRN. MnO2 reacted with excess H2O2 in the tumor microenvironment to increase oxygen generation, while ATO inhibited electron transfer in the aerobic respiratory chain to decrease oxygen consumption. Then, HY utilized this sufficient oxygen to produce ROS under irradiation to enhance the PDT effect. In vitro and in vivo assays confirmed that SHRN exhibits powerful and overall antitumor PDT effects. This formulation may provide an alternative strategy for the development of PDT effects in hypoxic tumor microenvironments. STATEMENT OF SIGNIFICANCE: We constructed a strategic hypoxia relief nanodrug delivery system (SHRN) with a synergetic strategy to alleviate tumor hypoxia on the basis of photodynamic therapy (PDT). This work uniquely aimed at not only increased O2 generation in hypoxic tumor microenvironment but also reduced O2 consumption. Moreover, we designed a nanodrug delivery system to enhance the tumor permeability of SHRN. In vitro and in vivo assays all confirmed that SHRN exhibited powerful and overall antitumor effects. This formulation may provide an alternative strategy for the development of the PDT effect in hypoxic solid tumor.
Collapse
|
159
|
Marshall SK, Panrak Y, Makchuchit N, Jaroenpakdee P, Saelim B, Taweesap M, Pachana V. Anti-EpCAM Functionalized I-131 Radiolabeled Biomimetic Nanocarrier Sodium/Iodide-Symporter-Mediated Breast-Cancer Treatment. Bioengineering (Basel) 2022; 9:294. [PMID: 35877345 PMCID: PMC9311516 DOI: 10.3390/bioengineering9070294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Currently, breast-cancer treatment has a number of adverse side effects and is associated with poor rates of progression-free survival. Therefore, a radiolabeled anti-EpCAM targeted biomimetic coated nanocarrier (EINP) was developed in this study to overcome some of the treatment challenges. The double emulsion method synthesized the poly(lactic-co-glycolic acid) (PLGA) nanoparticle with Na131I entrapped in the core. The PLGA nanoparticle was coated in human red blood cell membranes and labeled with epithelial cell adhesion molecule (EpCAM) antibody to enable it to target EpCAM overexpression by breast-cancer cells. Characterization determined the EINP size as 295 nm, zeta potential as −35.9 mV, and polydispersity as 0.297. EINP radiochemical purity was >95%. Results determined the EINP efficacy against EpCAM positive MCF-7 breast cancer at 24, 48, and 72 h were 69.11%, 77.84%, and 74.6%, respectively, demonstrating that the EINPs achieved greater cytotoxic efficacy supported by NIS-mediated Na131I uptake than the non-targeted 131INPs and Na131I. In comparison, fibroblast (EpCAM negative) treated with EINPs had significantly lower cytotoxicity than Na131I and 131INPs (p < 0.05). Flow cytometry fluorescence imaging visually signified delivery by EINPs specifically to breast-cancer cells as a result of anti-EpCAM targeting. Additionally, the EINP had a favorable safety profile, as determined by hemolysis.
Collapse
Affiliation(s)
- Suphalak Khamruang Marshall
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yada Panrak
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Naritsara Makchuchit
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Passara Jaroenpakdee
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Boonyisa Saelim
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Maneerat Taweesap
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Verachai Pachana
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| |
Collapse
|
160
|
Zhang Y, Yue X, Yang S, Li X, Cui L, Cui X, Shi Y, Liu Z, Guo X, Li Y. Long circulation and tumor-targeting biomimetic nanoparticles for efficient chemo/photothermal synergistic therapy. J Mater Chem B 2022; 10:5035-5044. [PMID: 35726686 DOI: 10.1039/d2tb00748g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy combined with chemotherapy based on nanomedicine has been considered a promising strategy for improving therapeutic efficacy in a tumor. However, nanomedicine can be easily cleared by the immune system without specific surface engineering modifications, thus affecting the ultimate efficacy. Herein, multifunctional biomimetic nanoparticles (Bio-RBCm@PDA@MSN-DOX) with enhanced long circulation and targeting ability are constructed by coating large pore-sized mesoporous silica (MSN) with polydopamine (PDA) layers in a biotin modified red blood cell membrane (Bio-RBCm) for efficient chemo/photothermal synergistic therapy. It is demonstrated that Bio-RBCm@PDA@MSN-DOX presents high photothermal conversion efficiency (40.17%) and enhanced capability to accelerate the release of the anticancer drug (doxorubicin, DOX), thus showing a good synergistic therapeutic effect in cell experiments. More importantly, with the assistance of the biotin and RBC membrane, Bio-RBCm@PDA@MSN-DOX can successfully evade immune clearance and effectively target transport to HeLa tumor sites, finally accomplishing up to 98.95% tumor inhibition with negligible side effects to normal tissues. This multilayer structure presents a valuable model for future therapeutic applications with safe and effective tumor chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuanyu Yue
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xiaobin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
161
|
Raju GSR, Pavitra E, Varaprasad GL, Bandaru SS, Nagaraju GP, Farran B, Huh YS, Han YK. Nanoparticles mediated tumor microenvironment modulation: current advances and applications. J Nanobiotechnology 2022; 20:274. [PMID: 35701781 PMCID: PMC9195263 DOI: 10.1186/s12951-022-01476-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and emergence of drug resistance. TME modulation has recently garnered attention as a potential approach for reprogramming the TME and resensitizing resistant neoplastic niches to existing cancer therapies such as immunotherapy or chemotherapy. Nano-based solutions have important advantages over traditional platform and can be specifically targeted and delivered to desired sites. This review explores novel nano-based approaches aimed at targeting and reprogramming aberrant TME components such as macrophages, fibroblasts, tumor vasculature, hypoxia and ROS pathways. We also discuss how nanoplatforms can be combined with existing anti-tumor regimens such as radiotherapy, immunotherapy, phototherapy or chemotherapy to enhance clinical outcomes in solid tumors.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Ganji Lakshmi Varaprasad
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | | | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
162
|
Li X, Hong G, Zhao G, Pei H, Qu J, Chun C, Huang Z, Lu Z. Red Blood Cell Membrane-Camouflaged PLGA Nanoparticles Loaded With Basic Fibroblast Growth Factor for Attenuating Sepsis-Induced Cardiac Injury. Front Pharmacol 2022; 13:881320. [PMID: 35656291 PMCID: PMC9152292 DOI: 10.3389/fphar.2022.881320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac injury is recognized as a major contributor to septic shock and a major component of the multiple organ dysfunction associated with sepsis. Emerging evidence shows that regulation of the intramyocardial oxidative stress and inflammatory response has a promising prospect. Basic fibroblast growth factor (bFGF) exhibits anti-inflammatory and antioxidant properties. In this study, red blood cell membrane-camouflaged poly (lactide-co-glycolide) nanoparticles were synthesized to deliver bFGF (bFGF-RBC/NP) for sepsis-induced cardiac injury. The in vitro experiments revealed that bFGF-RBC/NP could protect cardiomyocytes from oxidative and inflammatory damage. In addition, the antioxidant and anti-inflammatory properties of bFGF-RBC/NP against cardiac injury were validated using data from in vivo experiments. Collectively, our study used bFGF for the treatment of sepsis-induced cardiac injury and confirmed that bFGF-RBC/NP has therapeutic benefits in the treatment of myocardial dysfunction. This study provides a novel strategy for preventing and treating cardiac injury in sepsis.
Collapse
Affiliation(s)
- Xinze Li
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Hui Pei
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Jie Qu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Zhiwei Huang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| |
Collapse
|
163
|
Wang H, Liu H, Guo Y, Zai W, Li X, Xiong W, Zhao X, Yao Y, Hu Y, Zou Z, Wu J. Photosynthetic microorganisms coupled photodynamic therapy for enhanced antitumor immune effect. Bioact Mater 2022; 12:97-106. [PMID: 35087966 PMCID: PMC8777206 DOI: 10.1016/j.bioactmat.2021.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/09/2023] Open
Abstract
The ideal photodynamic therapy (PDT) should effectively remove the primary tumor, and produce a stronger immune memory effect to inhibit the tumor recurrence and tumor metastasis. However, limited by the hypoxic and immunosuppressive microenvironment, the PDT efficiency is apparently low. Here, Chlorella (Chl.) is exploited to enhance local effect by producing oxygen to reverse hypoxia, and release adjuvants to reverse immunosuppressive microenvironment to enhance abscopal effect afterwards. Results from different animal models indicated that Chl. could enhance local effect and PDT related immune response. Ultimately, Chl. coupled PDT elicited anti-tumor effects toward established primary tumors (inhibition rate: 90%) and abscopal tumors (75%), controlled the challenged tumors (100%) and alleviated metastatic tumors (90%). This Chl. coupled PDT strategy can also produce a stronger anti-tumor immune memory effect. Overall, this Chl. coupled PDT strategy generates enhanced local tumor killing, boosts PDT-induced immune responses and promotes anti-tumor immune memory effect, which may be a great progress for realizing systemic effect of PDT. Chlorella can act as oxygen supplier and release adjuvants under light irradiation to enhance photodynamic therapy (PDT). The dual characteristics of Chlorella strengthen the occurrence of effective anti-tumor immune responses. Enhanced local and abscopal anti-tumor effect can be achieved by Chlorella with good biocompatibility.
Collapse
|
164
|
Wang YQ, Huang C, Ye PJ, Long JR, Xu CH, Liu Y, Ling XL, Lv SY, He DX, Wei H, Yu CY. Prolonged blood circulation outperforms active targeting for nanocarriers-mediated enhanced hepatocellular carcinoma therapy in vivo. J Control Release 2022; 347:400-413. [PMID: 35577150 DOI: 10.1016/j.jconrel.2022.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 01/10/2023]
Abstract
Successful hepatocellular carcinoma (HCC) therapy in vivo remains a significant challenge due to the down-regulated expression of the receptors on the surface of tumor cells for compromised active targeting efficiency and cellular uptake of nanoparticles (NPs)-based drug delivery systems (DDSs) and "accelerated blood clearance" and premature unpackaging of NPs in vivo induced by the poly(ethylene glycol)ylation (PEGylation). Inspired by the repeatedly highlighted prolonged blood circulation property of RBCm-camouflaged NPs, we hypothesis that the prolonged blood circulation property resulting from RBCm coating outperforms the active targeting mechanisms of various targeting ligands for enhanced HCC therapy in vivo. Clarification of this hypothesis is therefore of great significance and urgency to break the afore mentioned bottlenecks that hamper the efficient HCC treatment in vivo. For this purpose, we reported in this study the first identification of a determining factor of nanocarriers for enhanced HCC therapy in vivo by the use of the previously fabricated pectin-doxorubicin nanoparticles (PDC-NPs) as a typical example, i.e., the natural RBCm was used as a stealth coating of PDC-NPs for the fabrication of biomimetic DDSs, PDC@RBC-NPs via hypotonic dialysis and mechanical co-extrusion methods. Comprehensive in vitro and in vivo evaluation and comparison of the properties and performance of PDC@RBC-NPs and PDC-NPs were performed in terms of colloidal stability, biosafety, drug release profiles, macrophage escape, anti-HCC effect. The resulting PDC@RBC-NPs outperformed PDC-NPs for HCC therapy in vitro and in vivo. Notably, PDC@RBC-NPs-treated BALB/c nude mice showed a significantly smaller final average tumor volume of 613 mm3 after 16 days than the PDC-NPs-treated group with an average value of 957 mm3. Therefore, the PDC@RBC-NPs developed herein showed great potential for clinical transformations due to the facile preparation and superior therapeutic efficiency against HCC. Most importantly, prolonged blood circulation was identified as a determining factor of nanocarriers instead of active targeting for enhanced HCC therapy in vivo, which could be used to direct the future design and development of advanced DDSs with greater therapeutic efficiency for HCC.
Collapse
Affiliation(s)
- Yue-Qing Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Peng-Ju Ye
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jin-Rong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cheng-Hu Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Ying Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Xiao-Li Ling
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Shao-Yang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
165
|
Peng C, Liang Y, Su N, Chen S, Yuan Z, Chen Y, Wu D, Wu B, Zhang Y, Xu Z, Zheng S, Li Y, Zhao B. Dual nanoenzymes loaded hollow mesoporous organotantalum nanospheres for chemo-radio sensitization. J Control Release 2022; 347:369-378. [PMID: 35577149 DOI: 10.1016/j.jconrel.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Chemo-radiotherapy has been extensively used in clinics, displaying substantial advantages in treatment and prognosis. Stimuli-responsive biodegradable nanoagents that can achieve not only delivery and controlled release of chemotherapeutics, but also hypoxia alleviation to enhance chemoradiotherapy therefore has tremendous potential. Herein, glutathione (GSH)-responsive, biodegradable, doxorubicin-carrying hollow mesoporous organotantalum nanospheres modified with Au and Pt dual nanoenzymes (HMOTP@Pt@Au@Dox) were constructed for chemo-radio sensitization. Degradation of HMOTP@Pt@Au@Dox can be self-activated through GSH stimulation and on-demand release packaged Dox owing to the disulfide bond in the hybrid framework of organotantalum nanospheres. Au and Pt nanoenzymes triggered cascade catalytic reactions that could alleviate hypoxia by utilizing β-d-glucose and H2O2, thereby sensitizing ROS-based chemoradiotherapy with synergistic starving therapy. Given the radiosensitization of high-Z elements (Ta, Pt, Au), nanoenzymes induced cascade catalytic reaction for hypoxia relief, and the depletion of the predominant antioxidant GSH, desirable tumor suppression could be achieved both in vitro and in vivo, indicating that HMOTP@Pt@Au@Dox is a promising nanoagent to boost chemo-radiotherapy.
Collapse
Affiliation(s)
- Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Cerebrovascular Diseases, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519099, China.
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ning Su
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siwen Chen
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yanqun Chen
- Department of Oncology, Kiang Wu Hospital, Macau 999078, China
| | - Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bin Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yang Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - ZiTing Xu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Si Zheng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
166
|
Wu H, Zhou H, Zhang W, Jin P, Shi Q, Miao Z, Wang H, Zha Z. Three birds with one stone: co-encapsulation of diclofenac and DL-menthol for realizing enhanced energy deposition, glycolysis inhibition and anti-inflammation in HIFU surgery. J Nanobiotechnology 2022; 20:215. [PMID: 35524259 PMCID: PMC9074192 DOI: 10.1186/s12951-022-01437-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 01/12/2023] Open
Abstract
Despite attracting increasing attention in clinic, non-invasive high-intensity focused ultrasound (HIFU) surgery still commonly suffers from tumor recurrence and even matastasis due to the generation of thermo-resistance in non-apoptotic tumor cells and adverse therapy-induced inflammation with enhanced secretion of growth factors in irradiated region. In this work, inspired by the intrinsic property that the expression of thermo-resistant heat shock proteins (HSPs) is highly dependent with adenosine triphosphate (ATP), dual-functionalized diclofenac (DC) with anti-inflammation and glycolysis-inhibition abilities was successfully co-encapsulated with phase-change dl-menthol (DLM) in poly(lactic-co-glycolic acid) nanoparticles (DC/DLM@PLGA NPs) to realize improved HIFU surgery without causing adverse inflammation. Both in vitro and in vivo studies demonstrated the great potential of DC/DLM@PLGA NPs for serving as an efficient synergistic agent for HIFU surgery, which can not only amplify HIFU ablation efficacy through DLM vaporization-induced energy deposition but also simultaneously sensitize tumor cells to hyperthermia by glycolysis inhibition as well as diminished inflammation. Thus, our study provides an efficient strategy for simultaneously improving the curative efficiency and diminishing the harmful inflammatory responses of clinical HIFU surgery.
Collapse
Affiliation(s)
- Haitao Wu
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Hu Zhou
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, Guangdong, China
| | - Wenjie Zhang
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, Guangdong, China.
| | - Qianqian Shi
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Hua Wang
- Department of Oncology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China.
| |
Collapse
|
167
|
Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Mater Today Bio 2022; 15:100279. [PMID: 35601893 PMCID: PMC9119842 DOI: 10.1016/j.mtbio.2022.100279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
|
168
|
Li J, Xie L, Sang W, Li W, Wang G, Yan J, Zhang Z, Tian H, Fan Q, Dai Y. A Metal-Phenolic Nanosensitizer Performs Hydrogen Sulfide-Reprogrammed Oxygen Metabolism for Cancer Radiotherapy Intensification and Immunogenicity. Angew Chem Int Ed Engl 2022; 61:e202200830. [PMID: 35174599 DOI: 10.1002/anie.202200830] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is hampered by the limited oxygen in tumors, which could be potentiated via reprogramming the oxygen metabolism and increasing the oxygen utilization efficiency. Herein, a metal-phenolic nanosensitizer (Hf-PSP-DTC@PLX) was integrated via an acid-sensitive hydrogen sulfide (H2 S) donor (polyethylene glycol-co-polydithiocarbamates, PEG-DTC) and a hafnium-chelated polyphenolic semiconducting polymer (Hf-PSP) in an amphiphilic polymer (poloxamer F127, PLX). Hf-PSP-DTC@PLX elicited a high imaging performance for precise RT and generated H2 S to reduce the cellular oxygen consumption rate via mitochondrial respiration inhibition, which reprogrammed the oxygen metabolism for improvement of the tumor oxygenation. Then, Hf-sensitization could fully utilize the well-preserved oxygen to intensify RT efficacy and activate immunogenicity. Such a synergistic strategy for improvement of oxygenation and oxygen utilization would have great potential in optimizing oxygen-dependent therapeutics.
Collapse
Affiliation(s)
- Jie Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 210009, China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei Sang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Wenxi Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Guohao Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Jie Yan
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Hao Tian
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.,MoE Frontiers Science Centre for Precision Oncology, University of Macau, Macau, SAR 999078, China
| |
Collapse
|
169
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
170
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
171
|
Ou M, Lin C, Wang Y, Lu Y, Wang W, Li Z, Zeng W, Zeng X, Ji X, Mei L. Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy. J Control Release 2022; 345:755-769. [PMID: 35381273 DOI: 10.1016/j.jconrel.2022.03.059] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/24/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
The hypoxic tumor microenvironment is one of most major hurdles restraining the anti-tumor efficiency of photodynamic therapy (PDT). Herein, active photosynthetic Chlorophyceae (Chlorella, Chl) functionalized with black phosphorus nanosheets (BPNSs) through polyaspartic acid (PASP) and Fe3+ mediating "Lego building method" are utilized for photocatalyzed oxygen-evolving to realize photosynthesis enhanced synergistic photodynamic/chemodynamic/immune therapy. The Chl cells with inherent photosynthesis and distinct metabolites are able to ameliorate tumor hypoxia, enhance immune cells infiltration, and stimulate the proliferation and maturation of immune cells. BPNSs loaded on the surface of Chl cells construct a type-II heterojunction with the chlorophyll in Chl cells, which improves the conversion efficiency of light through thoroughly separating photo-excited electrons and holes for 1O2 generation and O2 evolution, respectively. Additionally, the lock between "Lego bricks", Fe3+, can both consume glutathione (GSH) and catalyze Fenton reaction with H2O2 to generate ·OH, mediating chemodynamic therapy (CDT). Moreover, Chl@BP-Fe also exhibited high biocompatibility and potential biodegradability, guaranteeing high potential for clinic applications of this synergistic photodynamic/chemodynamic/immune therapy.
Collapse
Affiliation(s)
- Meitong Ou
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chuchu Lin
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Lu
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
172
|
Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol 2022; 86:624-644. [DOI: 10.1016/j.semcancer.2022.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
|
173
|
Red blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102519. [PMID: 35038590 DOI: 10.1016/j.nano.2022.102519] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
A main pathogenic factor of atherosclerosis is the local oxidative stress microenvironment. Probucol (PU) has anti-inflammatory, antioxidative and hypolipidemic effects, showing great potential to treat atherosclerosis. However, its low bioavailability limits its development. Herein, PU was encapsulated to form RP-PU with star-shaped polymers and red blood cell membranes. Star-shaped polymers show lower solution viscosity, a smaller hydrodynamic radius and a higher drug loading content than linear polymers. RP-PU had a good sustained-release effect and excellent biocompatibility. RP-PU can be efficiently internalized by cells to improve biodistribution. ApoE-/- mice were treated with RP-PU, and the contents of lipids and related metabolic enzymes were effectively reduced. The collagen fibers in the aortic root sections were reduced by RP-PU compared with control and PU. Moreover, RP-PU inhibited foam cell formation, decreased ICAM-1 and MCP-1 expression and delayed lesion formation. Consequently, RP-PU biomimetic nanoparticles can be developed as an anti-atherosclerotic nanotherapeutic.
Collapse
|
174
|
Jiang M, Liu Y, Dong Y, Wang K, Yuan Y. Bioorthogonal chemistry and illumination controlled programmed size-changeable nanomedicine for synergistic photodynamic and hypoxia-activated therapy. Biomaterials 2022; 284:121480. [DOI: 10.1016/j.biomaterials.2022.121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022]
|
175
|
Sun L, Zhou JE, Luo T, Wang J, Kang L, Wang Y, Luo S, Wang Z, Zhou Z, Zhu J, Yu J, Yu L, Yan Z. Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109969. [PMID: 35174915 DOI: 10.1002/adma.202109969] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The rapid evolution of cell-based theranostics has attracted extensive attention due to their unique advantages in biomedical applications. However, the inherent functions of cells alone cannot meet the needs of malignant tumor treatment. Thus endowing original cells with new characteristics to generate multifunctional living cells may hold a tremendous promise. Here, the nanoengineering method is used to combine customized liposomes with neutrophils, generating oxygen-carrying sonosensitizer cells with acoustic functions, which are called Acouscyte/O2 , for the visual diagnosis and treatment of cancer. Specifically, oxygen-carried perfluorocarbon and temoporfin are encapsulated into cRGD peptide modified multilayer liposomes (C-ML/HPT/O2 ), which are then loaded into live neutrophils to obtain Acouscyte/O2 . Acouscyte/O2 can not only carry a large amount of oxygen but also exhibits the ability of long circulation, inflammation-triggered recruitment, and decomposition. Importantly, Acouscyte/O2 can be selectively accumulated in tumors, effectively enhancing tumor oxygen levels, and triggering anticancer sonodynamics in response to ultrasound stimulation, leading to complete obliteration of tumors and efficient extension of the survival time of tumor-bearing mice with minimal systemic adverse effects. Meanwhile, the tumors can be monitored in real time by temoporfin-mediated fluorescence imaging and perfluorocarbon (PFC)-microbubble-enhanced ultrasound imaging. Therefore, the nanoengineered neutrophils, i.e., Acouscyte/O2 , are a new type of multifunctional cellular drug, which provides a new platform for the diagnosis and sonodynamic therapy of solid malignant tumors.
Collapse
Affiliation(s)
- Lei Sun
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Department of NanoEngineering and Chemical Engineering Program University of California, San Diego La Jolla, CA, 92093, USA
| | - Jing-E Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Tengshuo Luo
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Liqing Kang
- Shanghai Unicar-Therapy Bio-medicine Technology Co. Ltd, No 1525 Minqiang Road, Shanghai, 201612, P. R. China
| | - Yeying Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Shenggen Luo
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhehao Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Ziyu Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jiaxi Zhu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, P. R. China
| | - Jiahui Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
176
|
Wu L, Xin Y, Guo Z, Gao W, Zhu Y, Wang Y, Ran R, Yang X. Cell Membrane-camouflaged Multi-functional Dendritic Large Pore Mesoporous Silica Nanoparticles for Combined Photothermal Therapy and Radiotherapy of Cancer. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1068-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
177
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
178
|
Guo Y, Li W, Liu S, Jing D, Wang Y, Feng Q, Zhang K, Xu J. Construction of nanocarriers based on endogenous cell membrane and its application in nanomedicine. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Wenxin Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276005 China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yifan Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Qingfang Feng
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Centre of Chemistry for Life Sciences Nanjing University, 163 Xianlin Road Nanjing 210023 China
| |
Collapse
|
179
|
Almawash S, Osman SK, Mustafa G, El Hamd MA. Current and Future Prospective of Injectable Hydrogels-Design Challenges and Limitations. Pharmaceuticals (Basel) 2022; 15:371. [PMID: 35337169 PMCID: PMC8948902 DOI: 10.3390/ph15030371] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Injectable hydrogels (IHs) are smart biomaterials and are the most widely investigated and versatile technologies, which can be either implanted or inserted into living bodies with minimal invasion. Their unique features, tunable structure and stimuli-responsive biodegradation properties make these IHs promising in many biomedical applications, including tissue engineering, regenerative medicines, implants, drug/protein/gene delivery, cancer treatment, aesthetic corrections and spinal fusions. In this review, we comprehensively analyze the current development of several important types of IHs, including all those that have received FDA approval, are under clinical trials or are available commercially on the market. We also analyze the structural chemistry, synthesis, bonding, chemical/physical crosslinking and responsive release in association with current prospective research. Finally, we also review IHs' associated future prospects, hurdles, limitations and challenges in their development, fabrication, synthesis, in situ applications and regulatory affairs.
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (G.M.); (M.A.E.H.)
| | - Shaaban K. Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (G.M.); (M.A.E.H.)
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (G.M.); (M.A.E.H.)
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
180
|
Zuo H, Qiang J, Wang Y, Wang R, Wang G, Chai L, Ren G, Zhao Y, Zhang G, Zhang S. Design of red blood cell membrane-cloaked dihydroartemisinin nanoparticles with enhanced antimalarial efficacy. Int J Pharm 2022; 618:121665. [PMID: 35288223 DOI: 10.1016/j.ijpharm.2022.121665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023]
Abstract
Targeting delivery and prolonging action duration of artemisinin drugs are effective strategies for improving antimalarial treatment outcomes. Here, dihydroartemisinin (DHA) loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PDNs) were prepared and further cloaked with red blood cell (RBC) membranes via electrostatic interactions to yield RBC membrane-cloaked PDNs (RPDNs). The prepared RPDNs displayed a notable "core-shell" structure, with a negative surface charge of -29.2 ± 4.19 mV, a relatively uniform size distribution (86.4 ± 2.54 nm, polydispersity index of 0.179 ± 0.011), an average encapsulation efficiency (70.1 ± 0.79%), and a 24-h sustained-release behavior in vitro. Compared with PDNs, RPDNs showed markedly decreased phagocytic activity by RAW 264.7 cells and had prolonged blood circulation duration. The Pearson correlation coefficient of RPDNs distribution in infected red blood cells (iRBCs) was 0.7173, suggesting that RPDNs could effectively target Plasmodium-iRBCs. In PyBy265-infected mice, RPDNs showed a higher inhibition ratio (88.39 ± 2.69%) than PDNs (83.13 ± 2.12%) or DHA (58.74 ± 3.78%), at the same dose of 8.8 μmol/kg. The ED90 of RPDNs (8.13 ± 0.18 μmol/kg) was substantially lower than that of PDNs (14.48 ± 0.23 μmol/kg) and DHA (17.67 ± 3.38 μmol/kg). Furthermore, no apparent abnormalities were detected in routine blood examination, liver function indexes, and pathological analysis of tissue sections of PyBy265-infected mice following RPDNs treatment. In conclusion, the prepared RPDNs exhibited enhanced antimalarial efficacy, prolonged circulation, targeted delivery to Plasmodium-iRBCs, and satisfactory biocompatibility.
Collapse
Affiliation(s)
- Hengtong Zuo
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jihong Qiang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yidan Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Geng Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liqing Chai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yongdan Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
181
|
Li Y, Gu X, Yu F. Hypoxia Alleviating PdTe Nanoenzymes for Thermoradiotherapy. Front Bioeng Biotechnol 2022; 9:815185. [PMID: 35360649 PMCID: PMC8962630 DOI: 10.3389/fbioe.2021.815185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Hypoxia in the tumor microenvironment induces radioresistance in cancer cells, which reduces the treatment efficiency of radiotherapy. Therefore, it is critical to produce sufficient oxygen to alleviate hypoxia to enhance the effect of ionizing radiation. Here, we constructed nanorod-shaped PdTe nanoenzymes to overcome hypoxia and promote the effects of thermoradiotherapy. Both palladium and tellurium are high-Z elements, which interacted with X-rays to generate more DNA radicals in the tumor regions. Moreover, PdTe nanoenzyme could catalyze the conversion of intratumoral overexpressed H2O2 to oxygen, alleviating hypoxia in the tumor regions. Photothermal therapy mediated by PdTe nanoenzymes not only ablated tumors but also accelerated the blood flow, in turn, modulating hypoxia. With good biocompatibility, PdTe nanoenzyme exhibited remarkable oxygen generation ability both in vitro and in vivo, indicating potential ability for radiosensitization. Further investigation using MBT-2 cells and MBT-2 tumor-bearing mice demonstrated that PdTe nanoenzyme could effectively enhance the treatment efficiency of radiotherapy. Thus, our work presented a novel nanoenzyme to overcome hypoxia in tumors for effective thermoradiotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Xinquan Gu, ; Fan Yu,
| | - Fan Yu
- Department of Gartroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Xinquan Gu, ; Fan Yu,
| |
Collapse
|
182
|
Li J, Xie L, Sang W, Li W, Wang G, Yan J, Zhang Z, Tian H, Fan Q, Dai Y. A Metal‐Phenolic Nanosensitizer Performs Hydrogen Sulfide‐Reprogrammed Oxygen Metabolism for Cancer Radiotherapy Intensification and Immunogenicity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 210009 China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Wei Sang
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
| | - Wenxi Li
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
| | - Guohao Wang
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
| | - Jie Yan
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
| | - Zhan Zhang
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
| | - Hao Tian
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine Faculty of Health Sciences University of Macau Macau SAR 999078 China
- MoE Frontiers Science Centre for Precision Oncology University of Macau Macau SAR 999078 China
| |
Collapse
|
183
|
|
184
|
Yang N, Gong F, Cheng L. Recent advances in upconversion nanoparticle-based nanocomposites for gas therapy. Chem Sci 2022; 13:1883-1898. [PMID: 35308837 PMCID: PMC8848774 DOI: 10.1039/d1sc04413c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Gas therapy has attracted wide attention for the treatment of various diseases. However, a controlled gas release is highly important for biomedical applications. Upconversion nanoparticles (UCNPs) can precisely convert the long wavelength of light to ultraviolet/visible (UV/Vis) light in gas therapy for the controlled gas release owing to their unique upconversion luminescence (UCL) ability. In this review, we mainly summarized the recent progress of UCNP-based nanocomposites in gas therapy. The gases NO, O2, H2, H2S, SO2, and CO play an essential role in the physiological and pathological processes. The UCNP-based gas therapy holds great promise in cancer therapy, bacterial therapy, anti-inflammation, neuromodulation, and so on. Furthermore, the limitations and prospects of UCNP-based nanocomposites for gas therapy are also discussed.
Collapse
Affiliation(s)
- Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| |
Collapse
|
185
|
Wu T, Chen K, Jiang M, Li A, Peng X, Chen S, Yang Z, Zhou X, Zheng X, Jiang ZX. Hydrofluorocarbon nanoparticles for 19F MRI-fluorescence dual imaging and chemo-photodynamic therapy. Org Biomol Chem 2022; 20:1299-1305. [PMID: 35072680 DOI: 10.1039/d1ob02392f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The synergistic chemotherapy and photodynamic therapy (PDT) may significantly improve the cancer therapeutic efficacy, in which fluorinated nanoemulsions are highly advantageous for their ability to deliver oxygen to hypoxic tumors and provide fluorine-19 magnetic resonance imaging (19F MRI). The low solubility of chemotherapy drugs and photosensitizers in current perfluorocarbon (PFC)-based 19F MRI agents usually leads to complicated formulations or chemical modifications and low nanoemulsion stability and performance. Herein, we employ readily available partially fluorinated ethyl 2-(3,5-bis(trifluoromethyl)phenyl)acetate as the 19F MRI agent and the solvent to dissolve the cancer stem cell inhibitor salinomycin and the photosensitizer ICG for the convenient preparation of 19F MRI-fluorescence dual imaging and synergistic chemotherapy, photothermal and photodynamic therapy nanoemulsions. The chemotherapy drug salinomycin has a high solubility in the partially fluorinated reagent, facilitating its high loading and efficient delivery. Paramagnetic iron(III) (Fe3+) is incorporated into the nanoemulsion through the dissolved chelator to significantly improve the 19F MRI sensitivity. Furthermore, the dissolved fluorinated 2-pyridone enables the efficient capture and sustained release of singlet oxygen in the dark for high PDT efficacy. The multifunctional nanoemulsions show sensitive 19F MRI and fluorescence dual imaging capability and high synergistic chemotherapy, photothermal and photodynamic therapy efficacy in cancer cells, which may be valuable oxygen delivery, sustained ROS generating and release, dual imaging and multimodal therapy agents for hypoxic tumors. This study provided a convenient co-solubilization strategy for the rapid construction of multifunctional theranostics for hypoxic tumors.
Collapse
Affiliation(s)
- Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| |
Collapse
|
186
|
Fan Z, Shi D, Zuo W, Feng J, Ge D, Su G, Yang L, Hou Z. Trojan-Horse Diameter-Reducible Nanotheranostics for Macroscopic/Microscopic Imaging-Monitored Chemo-Antiangiogenic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5033-5052. [PMID: 35045703 DOI: 10.1021/acsami.1c22350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although nanotheranostics have displayed striking potential toward precise nanomedicine, their targeting delivery and tumor penetration capacities are still impeded by several biological barriers. Besides, the current antitumor strategies mainly focus on killing tumor cells rather than antiangiogenesis. Enlightened by the fact that the smart transformable self-targeting nanotheranostics can enhance their targeting efficiency, tumor penetration, and cellular uptake, we herein report carrier-free Trojan-horse diameter-reducible metal-organic nanotheranostics by the coordination-driven supramolecular sequential co-assembly of the chemo-drug pemetrexed (PEM), transition-metal ions (FeIII), and antiangiogenesis pseudolaric acid B. Such nanotheranostics with both a high dual-drug payload efficiency and outstanding physiological stability are responsively decomposed into numerous ultra-small-diameter nanotheranostics under stimuli of the moderate acidic tumor microenvironment and then internalized into tumor cells through tumor-receptor-mediated self-targeting, synergistically enhancing tumor penetration and cellular uptake. Besides, such nanotheranostics enable visualization of self-targeting capacity under the macroscopic monitor of computed tomography/magnetic resonance imaging, thereby realizing efficient oncotherapy. Moreover, tumor microvessels are precisely monitored by optical coherence tomography angiography/laser speckle imaging during chemo-antiangiogenic therapy in vivo, visually verifying that such nanotheranostics possess an excellent antiangiogenic effect. Our work will provide a promising strategy for further tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Zhongxiong Fan
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| | - Dao Shi
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| | - Wenbao Zuo
- School of Pharmaceutical Science, Xiamen University, Xiamen 361005, China
| | - Juan Feng
- The First People's Hospital Affiliated to Xiamen University, Xiamen 361005, China
| | - Dongtao Ge
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| | - Guanghao Su
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China
| | - Lichao Yang
- School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| |
Collapse
|
187
|
|
188
|
Niu P, Dai J, Wang Z, Wang Y, Feng D, Li Y, Miao W. Sensitization of Antibiotic-Resistant Gram-Negative Bacteria to Photodynamic Therapy via Perfluorocarbon Nanoemulsion. Pharmaceuticals (Basel) 2022; 15:ph15020156. [PMID: 35215269 PMCID: PMC8878207 DOI: 10.3390/ph15020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
With the merits of excellent efficacy, safety, and facile implementation, antibacterial photodynamic therapy (APDT) represents a promising means for treating bacterial infections. However, APDT shows an unsatisfactory efficacy in combating antibiotic-resistant Gram-negative bacteria due to their specific cell wall structure. In this work, we report a perfluorocarbon nanoemulsion (Ce6@FDC) used as a multifunctional nanocargo of photosensitizer and oxygen for sensitizing antibiotic-resistant Gram-negative bacteria to APDT. Ce6@FDC was fabricated via ultrasonic emulsification with good colloidal stability, efficient Ce6 and oxygen delivery, and excellent photodynamic activity. Meanwhile, Ce6@FDC could strongly bind with Gram-negative Acinetobacter baumannii (A. baumannii) and Escherichia coli (E. coli) via electrostatic interaction, thus leading to notable photodynamic bactericidal potency upon irradiation. In addition, oxygenated Ce6@FDC also exhibited a remarkable efficacy in eradicating Gram-negative bacteria biofilm, averaging five log units lower than the Ce6 group under identical conditions. Taken together, we demonstrate that photodynamic perfluorocarbon nanoemulsion with oxygen-delivery ability could effectively kill planktonic bacteria and remove biofilm, representing a novel strategy in fighting against antibiotic-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanyuan Li
- Correspondence: (Y.L.); (W.M.); Tel.: +86-25-58139399 (W.M.)
| | - Wenjun Miao
- Correspondence: (Y.L.); (W.M.); Tel.: +86-25-58139399 (W.M.)
| |
Collapse
|
189
|
Lei W, Yang C, Wu Y, Ru G, He X, Tong X, Wang S. Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. J Nanobiotechnology 2022; 20:45. [PMID: 35062958 PMCID: PMC8781141 DOI: 10.1186/s12951-022-01251-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Inspired by nature, the biomimetic approach has been incorporated into drug nanocarriers for cancer targeted chemotherapy. The nanocarriers are cloaked in cell membranes, which enables them to incorporate the functions of natural cells.
Key scientific concepts of review
Nanocarriers surface engineered with cell membranes have emerged as a fascinating source of materials for cancer targeted chemotherapy. A distinctive characteristic of cell membrane-coated nanocarriers (CMCNs) is that they include carbohydrates, proteins, and lipids, in addition to being biocompatible. CMCNs are capable of interacting with the complicated biological milieu of the tumor because they contain the signaling networks and intrinsic functions of their parent cells. Numerous cell membranes have been investigated for the purpose of masking nanocarriers with membranes, and various tumor-targeting methods have been devised to improve cancer targeted chemotherapy. Moreover, the diverse structure of the membrane from different cell sources broadens the spectrum of CMCNs and offers an entirely new class of drug-delivery systems.
Aim of review
This review will describe the manufacturing processes for CMCNs and the therapeutic uses for different kinds of cell membrane-coated nanocarrier-based drug delivery systems, as well as addressing obstacles and future prospects.
Graphical Abstract
Collapse
|
190
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
191
|
Ji Y, Zheng J, Geng Z, Tan T, Hu J, Zhang L, Zhang Y. Controllable formation of bulk perfluorohexane nanodroplets by solvent exchange. SOFT MATTER 2022; 18:425-433. [PMID: 34905593 DOI: 10.1039/d1sm01457a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfluorocarbon (PFC) nanodroplets have rapidly developed into useful ultrasound imaging agents in modern medicine due to their non-toxic and stable chemical properties that facilitate disease diagnosis and targeted therapy. In addition, with the good capacity for carrying breathing gases and the anti-infection ability, they are employed as blood substitutes and are the most ideal liquid respirators. However, it is still a challenge to prepare stable PFC nanodroplets of uniform size and high concentration for their efficient use. Herein, we developed a simple and highly reproducible method, i.e., propanol-water exchange, to prepare highly homogeneous and stable perfluorohexane (PFH) bulk nanodroplets. Interestingly, the size distribution and concentration of formed nanodroplets could be regulated by controlling the volume fraction of PFH and percentage of propanol in the propanol-water mixture. We demonstrated good reproducibility in the formation of bulk nanodroplets with PFH volume fractions of 1/2000-1/200 and propanol percentage of 5-40%, with uniform particle size distribution and high droplet concentration. Also, the prepared nanodroplets were very stable and could survive for several hours. We constructed a ternary phase diagram to describe the relationship between the PFH volume ratio, propanol concentration, and the size distribution and concentration of the formed PFH nanodroplets. This study provides a very useful method to prepare uniform size, high concentration and stable PFC nanodroplets for their medical applications.
Collapse
Affiliation(s)
- Yuwen Ji
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201204, China
| | - Tingyuan Tan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Lijuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Yi Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
192
|
Ferenz K, Karaman O, Shah SB. Artificial red blood cells. NANOTECHNOLOGY FOR HEMATOLOGY, BLOOD TRANSFUSION, AND ARTIFICIAL BLOOD 2022:397-427. [DOI: 10.1016/b978-0-12-823971-1.00018-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
193
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
194
|
Shiryaeva ES, Baranova IA, Sanochkina EV, Dement'eva OV, Kartseva ME, Shishmakova EM, Rudoy VM, Belousov AV, Morozov VN, Feldman VI. On the mechanism of radiation sensitization by gold nanoparticles under X-ray irradiation of oxygen-free aqueous organic solutions: A spin trapping study. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
195
|
Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, Liu Y, Cheng J, Wang Z, Wang S, Liu Y, Zhang W. Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. ACS NANO 2021; 15:19756-19770. [PMID: 34860006 DOI: 10.1021/acsnano.1c07180] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cell-membrane-coated nanoparticles are widely studied due to their inherent cellular properties, such as immune escape and homologous homing. A cell membrane coating can also maintain the relative stability of nanoparticles during circulation in a complex blood environment through cell membrane encapsulation technology. In this study, we fused a murine-derived ID8 ovarian cancer cell membrane with a red blood cell (RBC) membrane to create a hybrid biomimetic coating (IRM), and hybrid IRM camouflaged indocyanine green (ICG)-loaded magnetic nanoparticles (Fe3O4-ICG@IRM) were fabricated for combination therapy of ovarian cancer. Fe3O4-ICG@IRM retained both ID8 and RBC cell membrane proteins and exhibited highly specific self-recognition of ID8 cells in vitro and in vivo as well as a prolonged circulation lifetime in blood. Interestingly, in the bilateral flank tumor model, the IRM-coated nanoparticles also activated specific immunity, which killed homologous ID8 tumor cells but had no effect on B16-F10 tumor cells. Furthermore, Fe3O4-ICG@IRM showed synergistic photothermal therapy, resulting in the release of whole-cell tumor antigens by photothermal-induced tumor necrosis, which further enhanced antitumor immunotherapy for primary tumor and metastatic tumor by activating CD8+ cytotoxic T cells and reducing regulatory Foxp3+ T cells. Together, the biomimetic Fe3O4-ICG@IRM nanoparticles showed synergistic photothermal-immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Jilei Chen
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yaofa Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yurou Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanlan Fan
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenhua Wang
- Institute of Flexible Electronics, Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Yi Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Separation Membranes and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
196
|
Wen Q, Zhang Y, Muluh TA, Xiong K, Wang B, Lu Y, Wu Z, Liu Y, Shi H, Xiao S, Fu S. Erythrocyte membrane-camouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer. Int J Biol Macromol 2021; 193:228-237. [PMID: 34688683 DOI: 10.1016/j.ijbiomac.2021.10.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022]
Abstract
Conventional chemotherapeutic drugs may cause serious side effects such as hepatotoxicity and renal toxicity due to lack of targeting, which affects therapy outcome and the prognosis of patients. Therefore, biomimetic nanoparticles with long blood circulation and active targeting have attracted increasing attention. In this work, we fabricated a biomimetic R-RBC@GEF-NPs nano-system by encapsulating gefitinib-loaded albumin nanoparticles (GEF-NPs) inside cRGD-modified red blood cell (RBC) membranes. The complete RBC membrane structure and membrane proteins enabled the NPs to escape phagocytosis by macrophages. In addition, the cRGD moiety significantly improved tumor cell targeting and uptake. R-RBC@GEF-NPs inhibited the growth of A549 cells in vitro in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest at the G1 phase. Likewise, the R-RBC@GEF-NPs also decreased tumor weight and volume in the mice injected with A549 cells and prolonged survival time. In addition, the 99Tc-labeled R-RBC@GEF-NPs selectively accumulated in the tumor tissues in vivo, and enabled real time tumor imaging. Finally, blood and histological analyses showed that R-RBC@GEF-NPs did not cause any obvious systemic toxicity. Taken together, the biomimetic R-RBC@GEF-NPs is a promising therapeutic formulation for the treatment of lung cancer.
Collapse
Affiliation(s)
- Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Peoples' Hospital of Yibin, Yibin 644000, China
| | - Yan Zhang
- Department of Oncology, the Affiliated TCM Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tobias Achu Muluh
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kang Xiong
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - BiQiong Wang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ZhouXue Wu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - YanLin Liu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Huan Shi
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - SuSu Xiao
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
197
|
Pan H, Zheng M, Ma A, Liu L, Cai L. Cell/Bacteria-Based Bioactive Materials for Cancer Immune Modulation and Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100241. [PMID: 34121236 DOI: 10.1002/adma.202100241] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Numerous clinical trials for cancer precision medicine research are limited due to the drug resistance, side effects, and low efficacy. Unsatisfactory outcomes are often caused by complex physiologic barriers and abnormal immune events in tumors, such as tumor target alterations and immunosuppression. Cell/bacteria-derived materials with unique bioactive properties have emerged as attractive tools for personalized therapy in cancer. Naturally derived bioactive materials, such as cell and bacterial therapeutic agents with native tropism or good biocompatibility, can precisely target tumors and effectively modulate immune microenvironments to inhibit tumors. Here, the recent advances in the development of cell/bacteria-based bioactive materials for immune modulation and precision therapy in cancer are summarized. Cell/bacterial constituents, including cell membranes, bacterial vesicles, and other active substances have inherited their unique targeting properties and antitumor capabilities. Strategies for engineering living cell/bacteria to overcome complex biological barriers and immunosuppression to promote antitumor efficacy are also summarized. Moreover, past and ongoing trials involving personalized bioactive materials and promising agents such as cell/bacteria-based micro/nano-biorobotics are further discussed, which may become another powerful tool for treatment in the near future.
Collapse
Affiliation(s)
- Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, P. R. China
| | - Aiqing Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
198
|
Guo Y, Fan Y, Li G, Wang Z, Shi X, Shen M. "Cluster Bomb" Based on Redox-Responsive Carbon Dot Nanoclusters Coated with Cell Membranes for Enhanced Tumor Theranostics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55815-55826. [PMID: 34783516 DOI: 10.1021/acsami.1c15282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing intelligent stimuli-responsive nanoplatforms that are integrated with a biological membrane system and nanomaterials to realize efficient imaging and therapy of tumors still remains to be challenging. Herein, we report a unique strategy to prepare redox-responsive yellow fluorescent carbon dot nanoclusters (y-CDCs) loaded with anticancer drug doxorubicin (DOX) and coated with the cancer cell membrane (CCM) for precision fluorescence imaging and homologous targeting chemotherapy of tumors. The y-CDs with a size of 7.2 nm were first synthesized via a hydrothermal method and crosslinked to obtain redox-responsive y-CDCs with a size of 150.0 nm. The formulated y-CDCs were physically loaded with DOX with an efficiency of up to 81.0% and coated with CCM to endow them with antifouling properties, immune escape ability to escape from macrophage uptake, and homologous targeting capability to cancer cells. Within the reductive tumor microenvironment, the y-CDCs with quenched fluorescence can dissociate to form single y-CDs with recovered fluorescence and improved tumor penetration ability and simultaneously release DOX from the "cluster bomb", thus realizing efficient targeted tumor fluorescence imaging and chemotherapy. The designed y-CDCs/DOX@CCM may represent an updated nanomedicine formulation based on CDs for improved theranostics of different types of tumors.
Collapse
Affiliation(s)
- Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
199
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
200
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|