151
|
Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 2005; 67:289-98. [PMID: 15635462 DOI: 10.1007/s00253-004-1814-0] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/22/2004] [Accepted: 10/23/2004] [Indexed: 11/24/2022]
Abstract
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Production of these proteins has a remarkable demand in the market. Escherichia coli offers a means for the rapid and economical production of recombinant proteins. These advantages, coupled with a wealth of biochemical and genetic knowledge, have enabled the production of such economically therapeutic proteins such as insulin and bovine growth hormone. These demands have driven the development of a variety of strategies for achieving high-level expression of protein, particularly involving several aspects such as expression vectors design, gene dosage, promoter strength (transcriptional regulation), mRNA stability, translation initiation and termination (translational regulation), host design considerations, codon usage, and fermentation factors available for manipulating the expression conditions, which are the major challenges is obtaining the high yield of protein at low cost.
Collapse
Affiliation(s)
- S Jana
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
152
|
Yang J, Kanter G, Voloshin A, Michel-Reydellet N, Velkeen H, Levy R, Swartz JR. Rapid expression of vaccine proteins for B-cell lymphoma in a cell-free system. Biotechnol Bioeng 2005; 89:503-11. [PMID: 15669088 DOI: 10.1002/bit.20283] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The idiotype (Id)-granulocyte-macrophage colony-stimulating factor (GM-CSF) fusion proteins are potential vaccines for immunotherapy of B-cell lymphoma. In this study, four vaccine candidates were constructed by fusing murine GM-CSF to the amino- or carboxy-terminus of the 38C13 murine B-lymphocyte Id scFv with two different arrangements of the variable regions of the heavy chain and light chain (VL-VH and VH-VL). scFv (VH-VL) and GM-CSF/scFv fusion proteins were expressed in an Escherichia coli cell-free protein synthesis system. In order to promote disulfide bond formation during cell-free expression, cell extract was pretreated with iodoacetamide (IAM), and a sulfhydryl redox buffer composed of oxidized and reduced glutathione was added. The E. coli periplasmic disulfide isomerase, DsbC, was also added to rearrange incorrectly formed disulfide linkages. The 38C13 B-lymphocyte Id scFv was expressed with 30% of its soluble yield in active form (43 microg/ml) when tested with an anti-idiotypic mAb, S1C5, as the capture antibody in radioimmunoassay. It was found that the amino-terminal GM-CSF fusion proteins, GM-VL-VH and GM-VH-VL, showed much higher activity than the carboxy-terminal GM-CSF fusion proteins, VL-VH-GM and VH-VL-GM, in stimulating the cell proliferation of a GM-CSF-dependent cell line, NFS-60. Between the two amino-terminal GM-CSF fusion proteins, GM-VL-VH showed a higher total and soluble yield than GM-VH-VL.
Collapse
Affiliation(s)
- Junhao Yang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Calhoun KA, Swartz JR. Energizing cell-free protein synthesis with glucose metabolism. Biotechnol Bioeng 2005; 90:606-13. [PMID: 15830344 DOI: 10.1002/bit.20449] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In traditional cell-free protein synthesis reactions, the energy source (typically phosphoenolpyruvate (PEP) or creatine phosphate) is the most expensive substrate. However, for most biotechnology applications glucose is the preferred commercial substrate. Previous attempts to use glucose in cell-free protein synthesis reactions have been unsuccessful. We have now developed a cell-free protein synthesis reaction where PEP is replaced by either glucose or glucose-6-phosphate (G6P) as the energy source, thus allowing these reactions to compete more effectively with in vivo protein production technologies. We demonstrate high protein yields in a simple batch-format reaction through pH control and alleviation of phosphate limitation. G6P reactions can produce high protein levels ( approximately 700 microg/mL of chloramphenical acetyl transferase (CAT)) when pH is stabilized through replacement of the HEPES buffer with Bis-Tris. Protein synthesis with glucose as an energy source is also possible, and CAT yields of approximately 550 mug/mL are seen when both 10 mM phosphate is added to alleviate phosphate limitations and the Bis-Tris buffer concentration is increased to stabilize pH. By following radioactivity from [U-(14)C]-glucose, we find that glucose is primarily metabolized to the anaerobic products, acetate and lactate. The ability to use glucose as an energy source in cell-free reactions is important not only for inexpensive ATP generation during protein synthesis, but also as an example of how complex biological systems can be understood and exploited through cell-free biology.
Collapse
Affiliation(s)
- Kara A Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA
| | | |
Collapse
|
154
|
Voloshin AM, Swartz JR. Efficient and scalable method for scaling up cell free protein synthesis in batch mode. Biotechnol Bioeng 2005; 91:516-21. [PMID: 15937883 DOI: 10.1002/bit.20528] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel method for general cell free system scale-up in batch mode was applied to expression of E. coli chloramphenicol acetyl transferase (CAT) and a GMCSF-scFv fusion protein being developed as a B-cell lymphoma vaccine candidate (GLH). Performance of two different E. coli based cell-free systems was evaluated using the new scale-up approach. Reaction volumes from 15 to 500 microL were tested for both products and both reaction systems. In each case, the new scale-up method preserved total, soluble, and active volumetric yields of GLH and CAT at every reaction volume. At the 500 microL reaction volume, the PANOx SP system produced 560 +/- 36 microg/mL of active CAT and 99 +/- 10 microg/mL of active GLH protein using the new thin film approach whereas 500 microL test tube reactions produced 250 +/- 42 microg/mL and 72 +/- 7 microg/mL of active CAT and GLH respectively. Similarly, 500 microL cell-free synthesis reactions with the Cytomim system produced 481 +/- 38 microg/mL of active CAT and 109 +/- 15 microg/mL active GLH respectively in thin films compared to 29 +/- 7 microg/mL of active CAT and 5 +/- 2 microg/mL of active GLH protein in 500 microL test tube reactions. The new thin film approach improves oxygen supply for the Cytomim system, and increases the availability of hydrophobic surfaces. Analysis suggests that these surfaces provide significant benefit for protein expression and folding. We believe that this approach provides a general reaction scale-up technology that will be suitable for any protein target, cell free system, and reaction volume.
Collapse
Affiliation(s)
- Alexei M Voloshin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA
| | | |
Collapse
|
155
|
Jewett MC, Swartz JR. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 2004; 86:19-26. [PMID: 15007837 DOI: 10.1002/bit.20026] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cell-free translation systems generally utilize high-energy phosphate compounds to regenerate the adenosine triphosphate (ATP) necessary to drive protein synthesis. This hampers the widespread use and practical implementation of this technology in a batch format due to expensive reagent costs; the accumulation of inhibitory byproducts, such as phosphate; and pH change. To address these problems, a cell-free protein synthesis system has been engineered that is capable of using pyruvate as an energy source to produce high yields of protein. The "Cytomim" system, synthesizes chloramphenicol acetyltransferase (CAT) for up to 6 h in a batch reaction to yield 700 microg/mL of protein. By more closely replicating the physiological conditions of the cytoplasm of Escherichia coli, the Cytomim system provides a stable energy supply for protein expression without phosphate accumulation, pH change, exogenous enzyme addition, or the need for expensive high-energy phosphate compounds.
Collapse
Affiliation(s)
- Michael C Jewett
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA
| | | |
Collapse
|
156
|
Yin G, Swartz JR. Enhancing multiple disulfide bonded protein folding in a cell-free system. Biotechnol Bioeng 2004; 86:188-95. [PMID: 15052638 DOI: 10.1002/bit.10827] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A recombinant plasminogen activator (PA) protein with nine disulfide bonds was expressed in our cell-free protein synthesis system. Due to the unstable and reducing environment in the initial E. coli-based cell-free system, disulfide bonds could not be formed efficiently. By treating the cell extract with iodoacetamide and utilizing a mixture of oxidized and reduced glutathione, a stabilized redox potential was optimized. Addition of DsbC, replacing polyethylene glycol with spermidine and putrescine to create a more natural environment, adding Skp, an E. coli periplasmic chaperone, and expressing PA at 30 degrees C increased the solubility of the protein product as well as the yield of active PA. Taken together, the modifications enabled the production of more than 60 microg/mL of bioactive PA in a simple 3-h batch reaction.
Collapse
Affiliation(s)
- Gang Yin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA
| | | |
Collapse
|
157
|
Jewett MC, Swartz JR. Rapid expression and purification of 100 nmol quantities of active protein using cell-free protein synthesis. Biotechnol Prog 2004; 20:102-9. [PMID: 14763830 DOI: 10.1021/bp0341693] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two strategies for ATP regeneration during cell-free protein synthesis were applied to the large-scale production and single-column purification of active chloramphenicol acetyl transferase (CAT). Fed-batch reactions were performed on a 5-10 mL scale, approximately 2 orders of magnitude greater than the typical reaction volume. The pyruvate oxidase system produced 104 nmol of active CAT in a 5 mL reaction over the course of 5 h. The PANOx system produced 261 +/- 42 nmol, about 7 mg, of active CAT in a 10 mL reaction over the course of 4 h. The reaction product was purified to apparent homogeneity with approximately 70% yield by a simple affinity chromatography adsorption and elution. To our knowledge, this is the largest amount of actively expressed protein to be reported in a simple, fed-batch cell-free protein synthesis reaction.
Collapse
Affiliation(s)
- Michael C Jewett
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA
| | | |
Collapse
|
158
|
Abstract
Cofactor-dependent enzymes catalyze many synthetically useful reactions. The high cost of cofactors, however, necessitates in situ cofactor regeneration for preparative applications. After two decades of research, several cofactors can now be effectively regenerated using enzyme or whole-cell based methods. Significant advances have been made in this area in the past three years and include the development of novel or improved methods for regenerating ATP, sugar nucleotides and 3-phosphoadenosine-5'-phosphosulphate. These approaches have found novel applications in biocatalysis.
Collapse
Affiliation(s)
- Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
159
|
Nakashima N, Tamura T. Cell-free protein synthesis using cell extract of Pseudomonas fluorescens and CspA promoter. Biochem Biophys Res Commun 2004; 319:671-6. [PMID: 15178458 DOI: 10.1016/j.bbrc.2004.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 10/26/2022]
Abstract
We have modified the cell-free coupled transcription/translation system of bacteria. The cell-free extract of Pseudomonas fluorescens was used for translation instead of Escherichia coli. In addition, transcription of the target gene was regulated by CspA promoter with endogenous RNA polymerase instead of by T7 promoter with exogenous T7 RNA polymerase. We could increase the yields of soluble proteins using different combinations of the S30 extract and the promoter and different temperatures for protein synthesis. Increasing the variety of synthesis systems allows production of large quantities of soluble proteins. In order to carry out efficient cell-free protein synthesis, versatile pCop-plasmids carrying CspA promoter were constructed and these plasmids were applicable to expression of recombinant proteins in E. coli cells.
Collapse
Affiliation(s)
- Nobutaka Nakashima
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan.
| | | |
Collapse
|
160
|
Sitaraman K, Esposito D, Klarmann G, Le Grice SF, Hartley JL, Chatterjee DK. A novel cell-free protein synthesis system. J Biotechnol 2004; 110:257-63. [PMID: 15163516 DOI: 10.1016/j.jbiotec.2004.02.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 02/19/2004] [Accepted: 02/27/2004] [Indexed: 11/22/2022]
Abstract
An efficient cell-free protein synthesis system has been developed using a novel energy-regenerating source. Using the new energy source, 3-phosphoglycerate (3-PGA), protein synthesis continues beyond 2 h. In contrast, the reaction rate slowed down considerably within 30-45 min using a conventional energy source, phosphoenol pyruvate (PEP) under identical reaction conditions. This improvement results in the production of twice the amount of protein obtained with PEP as an energy source. We have also shown that Gam protein of phage lambda, an inhibitor of RecBCD (ExoV), protects linear PCR DNA templates from degradation in vitro. Furthermore, addition of purified Gam protein in extracts of Escherichia coli BL21 improves protein synthesis from PCR templates to a level comparable to plasmid DNA template. Therefore, combination of these improvements should be amenable to rapid expression of proteins in a high-throughput manner for proteomics and structural genomics applications.
Collapse
Affiliation(s)
- Kalavathy Sitaraman
- SAIC-National Cancer Institute at Frederick, 1050 Boyles Street, Building 327, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
161
|
Chumpolkulwong N, Hori-Takemoto C, Hosaka T, Inaoka T, Kigawa T, Shirouzu M, Ochi K, Yokoyama S. Effects of Escherichia coli ribosomal protein S12 mutations on cell-free protein synthesis. ACTA ACUST UNITED AC 2004; 271:1127-34. [PMID: 15009191 DOI: 10.1111/j.1432-1033.2004.04016.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We examined the effects of Escherichia coli ribosomal protein S12 mutations on the efficiency of cell-free protein synthesis. By screening 150 spontaneous streptomycin-resistant isolates from E. coli BL21, we successfully obtained seven mutants of the S12 protein, including two streptomycin-dependent mutants. The mutations occurred at Lys42, Lys87, Pro90 and Gly91 of the 30S ribosomal protein S12. We prepared S30 extracts from mutant cells harvested in the mid-log phase. Their protein synthesis activities were compared by measuring the yields of the active chloramphenicol acetyltransferase. Higher protein production (1.3-fold) than the wild-type was observed with the mutant that replaced Lys42 with Thr (K42T). The K42R, K42N, and K42I strains showed lower activities, while the other mutant strains with Lys87, Pro90 and Pro91 did not show any significant difference from the wild-type. We also assessed the frequency of Leu misincorporation in poly(U)-dependent poly(Phe) synthesis. In this assay system, almost all mutants showed higher accuracy and lower activity than the wild-type. However, K42T offered higher activity, in addition to high accuracy. Furthermore, when 14 mouse cDNA sequences were used as test templates, the protein yields of nine templates in the K42T system were 1.2-2 times higher than that of the wild-type.
Collapse
|
162
|
Knapp KG, Swartz JR. Cell-free production of active E. coli thioredoxin reductase and glutathione reductase. FEBS Lett 2004; 559:66-70. [PMID: 14960309 DOI: 10.1016/s0014-5793(04)00025-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 11/14/2003] [Accepted: 11/24/2003] [Indexed: 10/26/2022]
Abstract
Escherichia coli thioredoxin reductase (TR) and glutathione reductase (GR) are dimeric proteins that require a flavin adenine dinucleotide (FAD) cofactor for activity. A cell-free protein synthesis (CFPS) reaction supplemented with FAD was used to produce TR at 760 microg/ml with 89% of the protein being soluble. GR accumulated to 521 microg/ml in a cell-free reaction with 71% solubility. The TR produced was fully active with a specific activity of 1390 min(-1). The GR had a specific activity of 139 U/mg, which is significantly more active than reported for GR purified from cells. The specific activity for both TR and GR decreased without FAD supplementation. This research demonstrates that CFPS can be used to produce enzymes that are multimeric and require a cofactor.
Collapse
Affiliation(s)
- Kurtis G Knapp
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | | |
Collapse
|
163
|
Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K. Ribosome Engineering and Secondary Metabolite Production. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:155-84. [PMID: 15566979 DOI: 10.1016/s0065-2164(04)56005-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kozo Ochi
- National Food Research Institute Ibaraki 305-8642, Japan.
| | | | | | | | | | | | | |
Collapse
|
164
|
Kim DM, Swartz JR. Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts ofEscherichia coli. Biotechnol Bioeng 2003; 85:122-9. [PMID: 14704994 DOI: 10.1002/bit.10865] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this report, we demonstrate that a complex mammalian protein containing multiple disulfide bonds is successfully expressed in an E.coli-based cell-free protein synthesis system. Initially, disulfide-reducing activities in the cell extract prevented the formation of disulfide bonds. However, a simple pretreatment of the cell extract with iodoacetamide abolished the reducing activity. This extract was still active for protein synthesis even under oxidizing conditions. The use of a glutathione redox buffer coupled with the DsbC disulfide isomerase and pH optimization produced 40 microg/mL of active urokinase protease in a simple batch reaction. This result not only demonstrates efficient production of complex proteins, it also emphasizes the control and flexibility offered by the cell-free approach.
Collapse
Affiliation(s)
- Dong-Myung Kim
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
165
|
Kiga D, Sakamoto K, Kodama K, Kigawa T, Matsuda T, Yabuki T, Shirouzu M, Harada Y, Nakayama H, Takio K, Hasegawa Y, Endo Y, Hirao I, Yokoyama S. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A 2002; 99:9715-20. [PMID: 12097643 PMCID: PMC124990 DOI: 10.1073/pnas.142220099] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Indexed: 11/18/2022] Open
Abstract
Tyrosyl-tRNA synthetase (TyrRS) from Escherichia coli was engineered to preferentially recognize 3-iodo-L-tyrosine rather than L-tyrosine for the site-specific incorporation of 3-iodo-L-tyrosine into proteins in eukaryotic translation systems. The wild-type TyrRS does not recognize 3-iodo-L-tyrosine, because of the bulky iodine substitution. On the basis of the reported crystal structure of Bacillus stearothermophilus TyrRS, three residues, Y37, Q179, and Q195, in the L-tyrosine-binding site were chosen for mutagenesis. Thirty-four single amino acid replacements and 16 of their combinations were screened by in vitro biochemical assays. A combination of the Y37V and Q195C mutations changed the amino acid specificity in such a way that the variant TyrRS activates 3-iodo-L-tyrosine 10-fold more efficiently than L-tyrosine. This engineered enzyme, TyrRS(V37C195), was tested for use in the wheat germ cell-free translation system, which has recently been significantly improved, and is now as productive as conventional recombinant systems. During the translation in the wheat germ system, an E. coli suppressor tRNA(Tyr) was not aminoacylated by the wheat germ enzymes, but was aminoacylated by the E. coli TyrRS(V37C195) variant with 3-iodo-l-tyrosine. After the use of the 3-iodotyrosyl-tRNA in translation, the resultant uncharged tRNA could be aminoacylated again in the system. A mass spectrometric analysis of the produced protein revealed that more than 95% of the amino acids incorporated for an amber codon were iodotyrosine, whose concentration was only twice that of L-tyrosine in the translation. Therefore, the variant enzyme, 3-iodo-L-tyrosine, and the suppressor tRNA can serve as an additional set orthogonal to the 20 endogenous sets in eukaryotic in vitro translation systems.
Collapse
Affiliation(s)
- Daisuke Kiga
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Many of these applications involve complex glycoproteins and antibodies with relatively high production needs. These demands have driven the development of a variety of improvements in protein expression technology, particularly involving mammalian and microbial culture systems.
Collapse
Affiliation(s)
- Dana C Andersen
- Cell Culture & Fermentation Research & Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
167
|
Affiliation(s)
- J Swartz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|