151
|
Abstract
We followed the development of axonal arbors of layer 6 pyramidal neurons in ferret striate cortex to determine whether early developing axon collaterals are formed specifically in the correct target layers from the outset or achieve their adult specificity by the elimination of initially exuberant projections. These neurons were chosen for study because they are amongst the first to be generated in the developing ferret's striate cortex, and, in mature animals, these cells have axonal arbors that are highly specific for layer 4 and to a lesser extent layers 2/3 but have few collateral branches in layer 5. The axonal arbors of individual layer 6 pyramidal neurons were reconstructed following labeling in living slices prepared from the striate cortex of ferrets aged 13-35 days postnatal (P13-35). At the earliest ages (P13-15), axonal arbors consisted of a simple axon extending from the base of the cell body into the subplate or white matter and usually forming a few collateral branches but never ascending into layer 5. By P19-20, about one-half of the cells had extended axon collaterals into layer 5 or higher, and these already appeared to branch preferentially in layer 4. All of the cells from older animals had substantial axonal arbors in layers 2-4. By P26-28, there were approximately ten times as many axonal branches in layer 4 as in layer 5. Between P26-28 and P35, there was no significant change in the number of branches in layer 5, but the numbers of both branches and of axon collateral terminations in layer 4 approximately doubled. Thus, the extent of axonal arborization in layer 4 increases dramatically between P13 and P35, and growth is highly specific for correct target layers, with few branches formed in layer 5.
Collapse
Affiliation(s)
- E M Callaway
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA.
| | | |
Collapse
|
152
|
Abstract
Neurons generate diverse firing patterns to perform a range of specialized tasks. Experiments show that many features of these firing patterns arise from distinctive membrane properties, but theoretical work predicts that differences in neuronal morphology are also important.
Collapse
Affiliation(s)
- B W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
153
|
Kimura A, Hamada Y, Kawai Y, Tamai Y. Sensory response properties of cortical neurons in the anterior ectosylvian sulcus of cats: intracellular recording and labeling. Neurosci Res 1996; 26:357-67. [PMID: 9004274 DOI: 10.1016/s0168-0102(96)01120-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Visual and auditory sensory responses of cortical neurons in the caudal half of the anterior ectosylvian sulcus (AES) of cats were examined under alpha-chloralose anesthesia, using intracellular recording and labeling techniques. Stable intracellular recordings were obtained from 155 neurons, and 141 neurons exhibited responses to sensory stimuli. Of 141 sensory neurons, 74 (52%) were bimodal neurons that responded to both visual and auditory stimuli, and 67 (48%) were unimodal showing sensory responses only to visual (25) or auditory stimulation (42). Forty-five neurons (35 pyramidal neurons, 5 non-pyramidal neurons, 5 not classified) responsive to sensory stimuli were labeled with biocytin. The percentage of bimodal neurons of the biocytin-labeled neurons was 40% (4/10) in layer II, 50% (10/20) in layer III-IV, 70% (7/10) in layer V and 60% (3/5) in layer VI. Thus the convergence of visual and auditory inputs on single neurons was most intense in layer V. Auditory response latencies were in a narrow range from 10 to 40 ms, whereas visual response latencies were in a wide range from 15 to 100 ms. Late visual responses (> 60 ms) were more commonly elicited in biomodal neurons than in visual unimodal neurons. Visual responses in layer II were all elicited over 40 ms, whereas early visual responses within 40 ms were observed in the other cortical layers. A subgroup of neurons (22/141) had a propensity to exhibit a burst discharge, a train of three to seven action potentials on a depolarizing envelope in response to sensory stimuli. Their specific distribution in cortical tissue was suggested by the result that six out of nine biocytin-labeled neurons (seven pyramidal neurons, two non-pyramidal neurons) showing burst discharges to sensory stimuli were observed in layer V. These results are considered to signify some aspects of intracortical organization related to the cross-modal integration of sensory inputs.
Collapse
Affiliation(s)
- A Kimura
- Department of Physiology, Wakayama Medical College, Japan.
| | | | | | | |
Collapse
|
154
|
Properties of convergent thalamocortical and intracortical synaptic potentials in single neurons of neocortex. J Neurosci 1996. [PMID: 8815933 DOI: 10.1523/jneurosci.16-20-06567.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We explored differences in the properties of convergent afferent inputs to single neurons in the barrel area of the neocortex. Thalamocortical slices were prepared from mature mice. Recordings were made from neurons in layer V, and either thalamocortical afferents or horizontal intracortical axons were stimulated. Monosynaptic EPSPs from both sources had latencies shorter than 1.8 msec and low shape variance. Disynaptic thalamocortical IPSPs had latencies longer than 1.8 msec. All neuronal types, as defined by intrinsic firing patterns, received both thalamocortical and intracortical monosynaptic input. The shape parameters (rate of rise and half-width) of monosynaptic EPSPs from the two inputs did not differ significantly. The rate of rise of EPSPs varied considerably across cells, but the rates of rise of thalamocortical and intracortical EPSPs onto single cells were strongly correlated. The relative thresholds for activation of synaptic excitation and inhibition were strikingly different between the two tracts: thalamocortical stimulation induced GABAA-dependent IPSPs at stimulus intensities equal to or less than those required for evoking EPSPs in 35% (24 of 68) of the cells. In contrast, the threshold response to intracortical stimulation was always an EPSP, and only stronger stimuli could generate di- or polysynaptic IPSPs. We suggest that postsynaptic factors may tend to equalize the waveforms of EPSPs from thalamocortical and intracortical synapses onto single neurons. A major difference between the two convergent tracts is that the thalamocortical pathway much more effectively activates feedforward inhibitory circuits than does the horizontal intracortical pathway.
Collapse
|
155
|
Nishimura Y, Kitagawa H, Saitoh K, Asahi M, Itoh K, Yoshioka K, Asahara T, Tanaka T, Yamamoto T. The burst firing in the layer III and V pyramidal neurons of the cat sensorimotor cortex in vitro. Brain Res 1996; 727:212-6. [PMID: 8842400 DOI: 10.1016/0006-8993(96)00505-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We identified the burst and single-spiking cells, and the repetitive bursting cells in layers III and V of the cat sensorimotor cortex with intracellular recording and staining techniques. Both types of the bursting cells were found in 22.7% of the recorded layer V neurons and in 23.1% of the recorded neurons in layer III. The bursting cells were characterized by the prominent afterdepolarization (ADP) which was usually reaching the threshold depolarization. Intracellular staining revealed that the morphology of the bursting cells was not so different from that of the regular-spiking cells in the cat.
Collapse
Affiliation(s)
- Y Nishimura
- Department of Physiology, School of Medicine Mie University, Tsu Mie, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class. J Neurosci 1996. [PMID: 8627359 DOI: 10.1523/jneurosci.16-10-03209.1996] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic contacts formed by the axon of a neuron on its own dendrites are known as autapses. Autaptic contacts occur frequently in cultured neurons and have been considered to be aberrant structures. We examined the regular occurrence, dendritic distribution, and fine structure of autapses established on layer 5 pyramidal neurons in the developing rat neocortex. Whole-cell recordings were made from single neurons and synaptically coupled pairs of pyramidal cells, which were filled with biocytin, morphologically reconstructed, and quantitatively analyzed. Autapses were found in most neurons (in 80% of all cells analyzed; n = 41). On average, 2.3 +/- 0.9 autapses per neuron were found, located primarily on basal dendrites (64%; 50-70 microns from the soma), to a lesser extent on apical oblique dendrites (31%; 130-200 microns from the soma), and rarely on the main apical dendrite (5% 480-540 microns from the soma). About three times more synaptic than autaptic contacts (ratio 2.4:1) were formed by a single adjacent synaptically coupled neuron of the same type. The dendritic locations of these synapses were remarkably similar to those of autapses. Electron microscopic examination of serial ultrathin sections confirmed the formation of autapses and synapses, respectively, and showed that both types of contacts were located either on dendritic spines or shafts. The similarities between autapses and synapses suggest that autaptic and synaptic circuits are governed by some common principles of synapse formation.
Collapse
|
157
|
Deuchars J, Thomson AM. Innervation of burst firing spiny interneurons by pyramidal cells in deep layers of rat somatomotor cortex: paired intracellular recordings with biocytin filling. Neuroscience 1995; 69:739-55. [PMID: 8596644 DOI: 10.1016/0306-4522(95)00288-t] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intracellular recordings were obtained from a class of neuron defined electrophysiologically as burst firing interneurons in layers V and VI in slices of adult rat somatomotor cortex. Four of these cells were recovered histologically. These four cells had resting membrane potentials between -68 and -80 mV, a mean input resistance of 77 +/- 16.2 M omega (measured from the voltage deflection produced by a 100 ms, 0.5 nA hyperpolarizing pulse delivered from a membrane potential of -80 mV) and responded to injections of depolarizing current from membrane potentials negative of -70 to -75 mV with an initial burst of action potentials followed by a complex afterhyperpolarization. In response to injection of larger (0.5-1.5 nA) hyperpolarizing current pulses from membrane potentials between -60 and -70 mV, 15 of 20 burst firing cells (three of four recovered histologically) that were tested displayed delayed inward rectification, and in all 20 cells of this type, responses to large negative current pulses were followed by a rebound depolarization that could initiate action potentials. Filling of four of these cells with biocytin and subsequent histological processing revealed that they were bitufted with sparsely to medium spiny dendrites and extensive local axon ramifications. These neurons are similar to low threshold spiking cells [Kawaguchi (1993) J. Neurophysiol. 69, 416-431]. Ultrastructural examination of the axons of three cells revealed that of 53 labelled terminals studied, the majority formed synaptic contacts with dendritic shafts. Filling neurons with biocytin during paired intracellular recordings resulted in three well labelled interneurons, each of which was postsynaptic to a simultaneously recorded pyramidal neuron. In these pairs both cells were identified, but the presynaptic axon was poorly labelled in one. In one of the two pairs in which the pre- and postsynaptic neurons were fully recovered, light microscopic assessment indicated that the axon of the presynaptic pyramid formed 12 close appositions with dendrites of the postsynaptic interneuron. Six of these appositions were examined at the electron microscopic level and were identified as possible synaptic contacts. In the other pair three of six close appositions observed at the light level were verified as possible synaptic connections at the ultrastructural level. These correlated electrophysiological and anatomical studies provide the first evidence for connections from pyramid to burst firing interneurons in the neocortex and indicate that these connections can be mediated by multiple synaptic contacts. The accompanying paper describes the functional properties of these connections.
Collapse
Affiliation(s)
- J Deuchars
- Department of Physiology, Royal Free Hospital School of Medicine, London, U.K
| | | |
Collapse
|
158
|
vogt Weisenhorn DM, Illing RB, Spatz WB. Morphology and connections of neurons in area 17 projecting to the extrastriate areas MT and 19DM and to the superior colliculus in the monkey Callithrix jacchus. J Comp Neurol 1995; 362:233-55. [PMID: 8576436 DOI: 10.1002/cne.903620207] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurons of area 17, the primary visual cortex, project to various anatomically and physiologically different extrastriate areas and subcortical regions. In the present investigation, we addressed the question of whether the efferent neurons in area 17 can contribute to functional diversity between these regions. We approached this question by analyzing the dendritic morphology of neurons in area 17 projecting to area MT, area 19DM, and the superior colliculus in the new world simian primate Callithrix jacchus, because dendritic morphology is an important factor in determining physiological properties of nerve cells. Retrograde transport of fluorochromes injected into the target regions, and intracellular injections of Lucifer yellow in the prelabelled neurons, revealed the following. 1) Morphologically identical large pyramidal cells in layer VI of area 17 project to all three targets. Some of them possess axon collaterals to two or all three targets, suggesting that they provide common information to all three areas. 2) Pyramidal cells in layer IIIc projecting to area MT form a morphologically homogeneous population. 3) Three small to medium-sized pyramidal cell types in layers IIIa-c, spiny stellate cells in layer IIIc, and another large pyramidal cell type in layer VI project to area 19DM. 4) Pyramidal cells in the lower two-thirds of layer V in area 17 project to the superior colliculus. In conclusion, we have shown that in Callithrix one efferent pathway may originate from several cell types. However, with the exception of the large cells in layer VI, efferent cells projecting to area MT, area 19DM, and the superior colliculus were morphologically distinct. This suggests that functional differences between brain regions could arise in part from morphological heterogeneity between and within the efferent cell populations.
Collapse
Affiliation(s)
- D M vogt Weisenhorn
- Department of Oto-Rhino-Laryngology, University of Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
159
|
Montero VM, Jian S. Induction of c-fos protein by patterned visual stimulation in central visual pathways of the rat. Brain Res 1995; 690:189-99. [PMID: 8535836 DOI: 10.1016/0006-8993(95)00620-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Localized patterned visual stimulation was used in rats to investigate the feasibility of stimulus-dependent induction of the immediate early gene c-fos in neurons of cortical and subcortical visual centers of this mammal. Moving and stationary visual patterns, consisting of gratings and arrays of dark dots, induced Fos-like immunoreactivity in populations of neurons in retinotopically corresponding stimulated regions of the dorsal and ventral lateral geniculate nucleus (dLGN, vLGN), stratum griseum superficiale of the superior colliculus, nucleus of the optic tract, and primary (striate) visual cortex. Only moving stimuli induced Fos-like immunoreactive (FLI) neurons in extrastriate visual areas, particularly in the anterolateral (AL) visual area. This suggests that area AL is equivalent to the motion sensitive areas MT and PMLS of the monkey and cat. Stimulus-induced FLI neurons in the striate cortex were predominantly distributed in layers 4 and 6, while few labeled neurons were present in layers 2-3, and almost none in layer 5. The laminar distribution of stimulus-induced FLI cells in the extrastriate cortical area AL was similar to that of the striate cortex, with the exception that more FLI cells were present in layer 5. Statistical comparison of somata size of the stimulus-induced FLI neurons in dLGN with that of Cresyl violet stained neurons in the same sections revealed that the population of geniculate FLI neurons is composed of relay cells and interneurons.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison 53705, USA
| | | |
Collapse
|
160
|
Amitai Y, Connors BW. Intrinsic Physiology and Morphology of Single Neurons in Neocortex. Cereb Cortex 1995. [DOI: 10.1007/978-1-4757-9616-2_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
161
|
Martínez-García F, González-Hernández T, Martínez-Millán L. Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat. J Comp Neurol 1994; 350:439-51. [PMID: 7533799 DOI: 10.1002/cne.903500308] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study has been to determine the neuronal types (pyramidal and nonpyramidal) within the rat's visual cortex, which project through the corpus callosum. To this end, the morphology and laminar distribution of callosal cells have been investigated by combining Diamidino Yellow retrograde tracing with intracellular injection of Lucifer Yellow in slightly fixed tissue slices. The visual callosal projection arises from pyramidal cells of diverse morphology in layers II to VIb, as well as from several modified pyramids located mainly in layers II, IV (star pyramids) and VIb (horizontal or inverted pyramids and related forms of spiny stellate cells). Our results indicate that in rats, as in other mammals, several types of nonpyramidal neurons also contribute to the contralateral projection. Bitufted cells in layers II-III and V were found to project contralaterally. Moreover, a spine-free layer V cell and a sparsely spiny multipolar neuron of layer IV were also labeled. In both stellate cells, partial axonal labeling reveals that these callosal cells display a local axonal arborization. Finally, our results of retrograde transport with Diamidino Yellow and with another sensitive retrograde tracer, the beta subunit of the cholera toxin, demonstrate for the first time that the two main neuronal types of layer I participate in the callosal projection. In layer I, several small horizontal cells of the inner half of layer I and a large subpial cell displaying long radiating dendrites were also injected. The latter cell may correspond to the Cajal-Retzius cell of the adult rat. In spite of the important differences in the organization of the visual system between rodents and cats, the callosal projection in both mammals is composed of a large variety of pyramidal cells and several nonpyramidal neurons. This high morphological diversity suggests that the callosal projection is much more physiologically complex than the extracortical efferents of the visual cortex, resembling other cortico-cortical connections. The roles that the different callosal cells may play in the processing of visual information are discussed in relation to the known functions of the corpus callosum.
Collapse
Affiliation(s)
- F Martínez-García
- Universitat de València, Department de Biologia Animal, Burjassot, Spain
| | | | | |
Collapse
|
162
|
Nieuwenhuys R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. ANATOMY AND EMBRYOLOGY 1994; 190:307-37. [PMID: 7840420 DOI: 10.1007/bf00187291] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By way of introduction, an outline is presented of the origin and evolutionary development of the neocortex. A cortical formation is lacking in amphibians, but a simple three-layered cortex is present throughout the pallium of reptiles. In mammals, two three-layered cortical structures, i.e. the prepiriform cortex and the hippocampus, are separated from each other by a six-layered neocortex. Still small in marsupials and insectivores, this "new" structure attains amazing dimensions in anthropoids and cetaceans. Neocortical neurons can be allocated to one of two basic categories: pyramidal and nonpyramidal cells. The pyramidal neurons form the principal elements in neocortical circuitry, accounting for at least 70% of the total neocortical population. The evolutionary development of the pyramidal neurons can be traced from simple, "extraverted" neurons in the amphibian pallium, via pyramid-like neurons in the reptilian cortex to the fully developed neocortical elements designated by Cajal as "psychic cells". Typical mammalian pyramidal neurons have the following eight features in common: (1) spiny dendrites, (2) a stout radially oriented apical dendrite, forming (3) a terminal bouquet in the most superficial cortical layer, (4) a set of basal dendrites, (5) an axon descending to the subcortical white matter, (6) a number of intracortical axon collaterals, (7) terminals establishing synaptic contacts of the round vesicle/asymmetric variety, and (8) the use of the excitatory aminoacids glutamate and/or aspartate as their neurotransmitter. The pyramidal neurons constitute the sole output and the largest input system of the neocortex. They form the principal targets of the axon collaterals of other pyramidal neurons, as well as of the endings of the main axons of cortico-cortical neurons. Indeed, the pyramidal neurons constitute together a continuous network extending over the entire neocortex, justifying the generalization: the neocortex communicates first and foremost within itself. The typical pyramidal neurons represent the end stage of a progressive evolutionary process. During further development many of these elements have become transformed by reduction into various kinds of atypical or aberrant pyramidal neurons. Interestingly, none of the six morphological characteristics, mentioned above under 1-6, has appeared to be unassailable; pyramidal neurons lacking spines, apical dendrites, long axons and intracortical axon collaterals etc. have all been described. From an evolutionary point of view the typical pyramidal neurons represent not only the principal neocortical elements, but also the source of various excitatory local circuit neurons. The spiny stellate cells, which are abundant in highly specialized primary sensory areas, form a remarkable case in point.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Nieuwenhuys
- Department of Anatomy and Embryology, University of Nijmegen, The Netherlands
| |
Collapse
|
163
|
Kasper EM, Lübke J, Larkman AU, Blakemore C. Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J Comp Neurol 1994; 339:495-518. [PMID: 8144743 DOI: 10.1002/cne.903390404] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This paper describes the early morphological and physiological development of pyramidal neurons in layer 5 of the rat visual cortex in relation to the targets chosen by their axons. Cells were prelabeled by retrograde transport from the superior colliculus or the contralateral visual cortex and intracellularly injected either in fixed slices or after recording in living slices. In the adult, corticotectal cells have thick apical dendrites with an extensive terminal arborization extending into layer 1, and fire characteristic bursts of action potentials when injected with a depolarizing current; interhemispheric cells have slender apical dendrites that terminate without a terminal tuft, usually in layer 2/3, and they display a more regular firing pattern (Kasper et al.: J Comp Neurol, this issue, 339:459-474). At embryonic day E18 (when axons of the two classes of cells are already taking different routes towards their targets) and E21, pyramidal-like cells throughout the cortical plate all have similar soma-dendritic morphology, with spindle-shaped cell bodies and few, short basal dendrites but apical dendrites that all end in distinct tufts in the marginal zone. At postnatal day P3, after the axons of both cell classes have reached their targets, all pyramidal neurons in layer 5 still have distinct terminal arborizations in layer 1, though they vary in complexity and extent. The somata are now more mature (round to ovoid in shape), and the basal dendritic tree has extended. As early as P5, all cells studied could be clearly classified as tufted or untufted (considerably earlier than previously reported; Koester and O'Leary: J Neurosci 12:1382, '92), and these features correlated precisely with the projection target, as in the adult. Measurement showed that although interhemispheric cells lose their terminal tufts, in general the trunks of their apical dendrites do not withdraw but continue to grow, at roughly the same rate as those of corticotectal cells. The two classes of layer 5 pyramidal neurons differentiate from each other in three distinct phases: pathway selection by axons precedes the loss of the apical tuft by interhemispheric cells, and these morphological characteristics are established 10 days before the onset of burst-firing in corticotectal cells. These three steps may be guided by different molecular signals.
Collapse
Affiliation(s)
- E M Kasper
- University Laboratory of Physiology, Oxford University, United Kingdom
| | | | | | | |
Collapse
|
164
|
Kasper EM, Larkman AU, Lübke J, Blakemore C. Pyramidal neurons in layer 5 of the rat visual cortex. II. Development of electrophysiological properties. J Comp Neurol 1994; 339:475-94. [PMID: 8144742 DOI: 10.1002/cne.903390403] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two major classes of pyramidal neurons can be distinguished in layer 5 of the adult rat visual cortex. Cells of the "thick/tufted" type have stout apical dendrites with terminal tufts, and most of them project to the superior colliculus (Larkman and Mason: J Neurosci 10:407, '90; Kasper et al.: J Comp Neurol, this issue, 339:459-474). "Slender/untufted" cells have thinner apical trunks with no obvious terminal tufts, and a substantial proportion of them project to the contralateral visual cortex. These two types also differ in their intrinsic electrophysiological features. In this study we describe the postnatal maturation of the electrophysiological and synaptic properties of layer 5 pyramidal neurons and relate these findings to the morphological development and divergence of the two cell types. Living slices were prepared from the visual cortex of rats aged between postnatal day 3 (P3) and young adults and maintained in vitro. Stable intracellular impalements were obtained from a total of 63 pyramidal cells of layer 5 at various ages, which were injected with biocytin so that morphological and electrophysiological data could be obtained from the same cell. Before P15, injection of a single cell sometimes stained a cluster of neurons of similar morphology, probably as a result of dye coupling. The incidence of such clustering and the number of neurons within each cluster decreased with age. There was no obvious difference in electrophysiological properties between cells in clusters and age-matched, noncoupled neurons. From P5, the apical dendrites of neurons could easily be classified as "thick/tufted" or "slender/untufted." On average, the resting potential became more negative, and membrane time constant and input resistance decreased with age. Electrophysiological differences between the "thick/tufted" and "slender/untufted" cell types did not become apparent until the third postnatal week, after which the "thick/tufted" cells on average had lower input resistances and slightly faster time constants than "slender/untufted" cells. The current-voltage relations of the neurons became progressively more nonlinear during maturation, with both rapid inward rectification and time-dependent rectification or "sag" becoming more prominent. There were also changes in the amplitude and waveform of action potentials, which generally approached adult values by 3 weeks of age. Action potential threshold became more negative, both in absolute terms and relative to the resting membrane potential. Action potentials became larger in peak amplitude and of shorter duration, with both rise and fall times decreasing progressively during development.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E M Kasper
- University Laboratory of Physiology, Oxford University, United Kingdom
| | | | | | | |
Collapse
|