151
|
Lund CV, Popkov M, Magnenat L, Barbas CF. Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology. Mol Cell Biol 2005; 25:9082-91. [PMID: 16199884 PMCID: PMC1265768 DOI: 10.1128/mcb.25.20.9082-9091.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Signaling through the ErbB family of tyrosine kinase receptors in normal and cancer-derived cell lines contributes to cell growth and differentiation. In this work, we altered the levels of ErbB2 and ErbB3 receptors, individually and in combination, by using 6-finger and 12-finger synthetic zinc finger protein artificial transcription factors (ATFs) in an epidermoid squamous cell carcinoma line, A431. We successfully designed 12-finger ATFs capable of coregulating ErbB3 and ICAM-1 or ErbB2 and ErbB3. With ATFs, the effects of changes in ErbB2 and ErbB3 receptor levels were evaluated by using cell proliferation, cell migration, and cell signaling assays. Cell proliferation was increased when ErbB2 and ErbB3 were both overexpressed. Cell migration on collagen was decreased when ErbB2 was down-regulated, yet migration on laminin was significantly increased with ErbB3 overexpression. ErbB2 and ErbB3 overexpression also stimulated the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Our ATF approach has elucidated differences in ErbB receptor-mediated proliferation, migration, and intracellular signaling that cannot be explained merely by the presence or absence of particular ErbB receptors and emphasizes the dynamic nature of the ErbB signaling system. The transcription factor approach developed here provides a gene-economical route to the regulation of multiple genes and may be important for complex gene therapies.
Collapse
Affiliation(s)
- Caren V Lund
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
152
|
Singh AB, Harris RC. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 2005; 17:1183-93. [PMID: 15982853 DOI: 10.1016/j.cellsig.2005.03.026] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 03/09/2005] [Indexed: 11/28/2022]
Abstract
Receptor and cytoplasmic protein tyrosine kinases play prominent roles in the control of a range of cellular processes during embryonic development and in the regulation of many metabolic and physiological processes in a variety of tissues and organs. The epidermal growth factor receptor (EGFR) is a well-known and versatile signal transducer that has been highly conserved during evolution. It functions in a wide range of cellular processes, including cell fate determination, proliferation, cell migration and apoptosis. The number of ligands that can activate the EGF receptor has increased during evolution. These ligands are synthesized as membrane-anchored precursor forms that are later shed by metalloproteinase-dependent cleavage to generate soluble ligands. In certain circumstances the membrane anchored isoforms as well as soluble growth factors may also act as biologically active ligands; therefore depending on the circumstances these ligands may induce juxtacrine, autocrine, paracrine and/or endocrine signaling. In this review, we discuss the different ways that EGFR ligands can activate the receptor and the possible biological implications.
Collapse
Affiliation(s)
- Amar B Singh
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-4794, USA
| | | |
Collapse
|
153
|
Penes MC, Li X, Nagy JI. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 2005; 22:404-18. [PMID: 16045494 DOI: 10.1111/j.1460-9568.2005.04225.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PDZ domain-containing protein zonula occludens-1 (ZO-1) interacts with several members of the connexin (Cx) family of gap junction-forming proteins and has been localized to gap junctions, including those containing Cx47 in oligodendrocytes. We now provide evidence for ZO-1 expression in astrocytes in vivo and association with astrocytic connexins by confocal immunofluorescence demonstration of ZO-1 colocalization with astrocytic Cx30 and Cx43, and by ZO-1 coimmunoprecipitation with Cx30 and Cx43. Evidence for direct interaction of Cx30 with ZO-1 was obtained by pull-down assays that indicated binding of Cx30 to the second of the three PDZ domains in ZO-1. Further, we investigated mouse Y-box transcription factor MsY3, the canine ortholog of which has been termed ZO-1-associated nucleic acid-binding protein (ZONAB) and previously reported to interact with ZO-1. By immunofluorescence using specific antimouse ZONAB antibody, ZONAB was found to be associated with oligodendrocytes throughout mouse brain and spinal cord, and to be colocalized with oligodendrocytic Cx47 and Cx32 as well as with astrocytic Cx43. Our results extend the CNS cell types that express the multifunctional protein ZO-1, demonstrate an additional connexin (Cx30) that directly interacts with ZO-1, and show for the first time the association of a transcription factor (ZONAB) with ZO-1 localized to oligodendrocyte and astrocyte gap junctions. Given previous observations that ZONAB and ZO-1 in combination regulate gene expression, our results suggest roles of glial gap junction-mediated anchoring of signalling molecules in a wide variety of glial homeostatic processes.
Collapse
Affiliation(s)
- Mihai C Penes
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba R3E 3J7, Canada
| | | | | |
Collapse
|
154
|
Ma C, Bower KA, Lin H, Chen G, Huang C, Shi X, Luo J. The role of epidermal growth factor receptor in ethanol-mediated inhibition of activator protein-1 transactivation. Biochem Pharmacol 2005; 69:1785-94. [PMID: 15878157 DOI: 10.1016/j.bcp.2005.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/09/2005] [Accepted: 03/10/2005] [Indexed: 11/16/2022]
Abstract
A potential mechanism underlying ethanol-induced alterations in gene expression is the disruption of transcription factor activity. Growth factor receptors, particularly receptor tyrosine kinases, play an important role in modulating many biological effects of ethanol. We demonstrated here that the expression of epidermal growth factor receptor (EGFR) mediated the effect of ethanol on the activity of transcription factor activator protein-1 (AP-1). Ethanol had little effect on AP-1 activity in the fibroblast cells devoid of EGFR (B82); however, it significantly suppressed AP-1 activity in B82 cells that were stably transfected with either a wild-type EGFR (B82L) or a kinase-deficient receptor (B82M721) in a concentration-dependent manner. EGF activated AP-1 only in B82L cells; the activation was mediated primarily by Akt and ERK. Ethanol inhibited EGF-induced EGFR autophosphorylation, phosphorylation of ERK as well as Akt and its substrate GSK-3beta, and subsequently blocked EGF-stimulated AP-1 activation in B82L cells. On the other hand, ethanol had little effect on EGF-stimulated JNK activation. Phorbol ester 12-O-teradecanoyl-phorbol-13-acetate (TPA) activated AP-1 in B82L and B82M721 cells, but not B82 cells. TPA-induced activation of ERK and PKCdelta was dependent on the expression of EGFR although the intrinsic kinase activity of EGFR was not required. In contrast, TPA-induced phosphorylation of p38 MAPK, JNKs and other PKC isoforms was independent of EGFR. Ethanol selectively inhibited TPA-induced phosphorylation of ERK and PKCdelta, and modestly suppressed TPA-stimulated AP-1 activation in B82L and B82M721 cells. Thus, EGFR plays a critical role in the interaction between ethanol and AP-1.
Collapse
Affiliation(s)
- Cuiling Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Santin AD, Bellone S, Van Stedum S, Bushen W, De Las Casas LE, Korourian S, Tian E, Roman JJ, Burnett A, Pecorelli S. Determination of HER2/neu status in uterine serous papillary carcinoma: Comparative analysis of immunohistochemistry and fluorescence in situ hybridization. Gynecol Oncol 2005; 98:24-30. [PMID: 15894362 DOI: 10.1016/j.ygyno.2005.03.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 03/18/2005] [Accepted: 03/31/2005] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate and compare HER2/neu protein overexpression and gene amplification in uterine serous papillary endometrial cancer (USPC). STUDY DESIGN Immunohistochemical (IHC) and fluorescent in situ hybridization (FISH) assays were used to analyze and compare HER2/neu protein expression and gene amplification, respectively, in paraffin blocks from 26 women harboring stage IA to IV USPC treated at the University of Arkansas for Medical Sciences from 1997 to 2004. Chromosome 17 polysomy status by FISH was also assessed in all specimens. RESULTS Moderate-to-strong expression of HER2/neu protein was noted in 16 (62%) of 26 USPC samples evaluated, with 7 (27%) samples showing moderate staining (2+) and 9 (35%) showing strong staining (3+) for HER2/neu. Amplification of the ERBB2 gene by FISH was observed in 11 of the 26 (42%) cases. Protein overexpression and gene amplification were found to correlate in 100% (9 of 9) of the 3+ positive tumors and 2 out of 7 (29%) of the 2+ positive tumors. Heterogeneity was noted in 3 cases in the amplification of the HER2/neu gene within the same tumor samples with pockets of amplified tumor cells amidst nonamplified tumor cells. None of the 10 USPC cases scored by IHC as 0 or 1+ was found positive for ERBB2 amplification by FISH. CONCLUSIONS Amplification of the HER2/neu oncogene represents a common finding in USPC. FISH analysis should be used for confirmation of gene amplification in USPC showing 2+ expression of HER2/neu. Prior screening and selection of appropriate immunohistochemistry-positive areas may be beneficial in the selection of some USPC patients undergoing FISH analysis.
Collapse
Affiliation(s)
- Alessandro D Santin
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 518, Little Rock, AR 72205-7199, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Chang S, Bezprozvannaya S, Li S, Olson EN. An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc Natl Acad Sci U S A 2005; 102:8120-5. [PMID: 15923258 PMCID: PMC1149448 DOI: 10.1073/pnas.0503275102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class II histone deacetylases (HDACs) repress transcription by associating with a variety of transcription factors and corepressors. Phosphorylation of a set of conserved serine residues in the N-terminal extensions of class II HDACs creates binding sites for 14-3-3 chaperone proteins, which trigger nuclear export of these HDACs, thereby derepressing specific target genes in a signal-dependent manner. To identify intracellular signaling pathways that control phosphorylation of HDAC5, a class II HDAC, we designed a eukaryotic cDNA expression screen in which a GAL4-dependent luciferase reporter was expressed with the DNA-binding domain of GAL4 fused to the N-terminal extension of HDAC5 and the VP16 transcription activation domain fused to 14-3-3. The transfection of COS cells with cDNA expression libraries results in activation of luciferase expression by cDNAs encoding HDAC5 kinases or modulators of such kinases that enable phosphorylated GAL4-HDAC5 to recruit 14-3-3-VP16 with consequent reconstitution of a functional transcriptional complex. Our results reveal a remarkable variety of signaling pathways that converge on the signal-responsive phosphorylation sites in HDAC5, thereby enabling HDAC5 to connect extracellular signals to the genome.
Collapse
Affiliation(s)
- Shurong Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
157
|
Nordberg E, Steffen AC, Persson M, Sundberg AL, Carlsson J, Glimelius B. Cellular uptake of radioiodine delivered by trastuzumab can be modified by the addition of epidermal growth factor. Eur J Nucl Med Mol Imaging 2005; 32:771-7. [PMID: 15765233 DOI: 10.1007/s00259-005-1761-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this study was to analyse whether non-radiolabelled epidermal growth factor (EGF) can modify the cellular uptake of 125I when delivered as [125I]trastuzumab. 125I was used as a marker for the diagnostically and therapeutically more interesting isotopes 123I (SPECT), 124I (PET) and 131I (therapy). METHODS The cell-associated radioactivity was measured in squamous carcinoma A431 cells following addition of [125I]trastuzumab. Different concentrations of [125I]trastuzumab and unlabelled EGF were used, and the total, membrane-bound and internalised radioactivity was measured. We also analysed how EGF and trastuzumab affected the cell growth. RESULTS It was generally found that the cellular 125I uptake was decreased by the addition of EGF when [125I]trastuzumab was added for short incubation times. However, if the incubation times were longer, EGF increased the 125I uptake. This shift came earlier when higher [125I]trastuzumab concentrations were applied. The addition of EGF also influenced cell proliferation, and concentrations above 10 ng/ml reduced cell growth by approximately 20% after 24 h of incubation. CONCLUSION By adding unlabelled EGF, it was possible to modify the cellular uptake of [125I]trastuzumab. This points towards new approaches for the modification of radionuclide uptake in EGFR- and HER2-positive tumours.
Collapse
MESH Headings
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/administration & dosage
- Biomarkers, Tumor
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cell Proliferation
- Dose-Response Relationship, Drug
- Epidermal Growth Factor/administration & dosage
- Epidermal Growth Factor/metabolism
- ErbB Receptors/metabolism
- Humans
- Iodine Radioisotopes/pharmacokinetics
- Ligands
- Positron-Emission Tomography
- Receptor, ErbB-2/metabolism
- Time Factors
- Tomography, Emission-Computed, Single-Photon
- Trastuzumab
Collapse
Affiliation(s)
- Erika Nordberg
- Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
158
|
Pupa SM, Iezzi M, Di Carlo E, Invernizzi A, Cavallo F, Meazza R, Comes A, Ferrini S, Musiani P, Ménard S. Inhibition of Mammary Carcinoma Development in HER-2/ neu Transgenic Mice through Induction of Autoimmunity by Xenogeneic DNA Vaccination. Cancer Res 2005. [DOI: 10.1158/0008-5472.1071.65.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Plasmid DNA vectors encoding the full-length (VR1012/HER-2-FL) or only the extracellular and transmembrane domains (VR1012/HER-2-ECD-TM) of human (h) HER-2/neu proto-oncogene were used to vaccinate HER-2/neu transgenic mice (N202) engineered to overexpress the rat (r) neu proto-oncogene product (r-p185neu). Both the full-length and the deleted vaccines were significantly (P = 0.0001 and P = 0.06, respectively) more active than the empty vector (VR1012/EV) in preventing and delaying HER-2/neu-driven mammary carcinogenesis. A low-level intratumoral infiltrate of dendritic cells, macrophages, CD8 T cells and polymorphonuclear granulocytes in association with low-level cytokine production was observed, which was not detected in tumors from control mice. Morphologic analyses showed that vaccination with VR1012/HER-2-FL or ECD-TM also efficiently hampered the development of terminal ductal lobular units (TDLU). Analyses of sera from vaccinated mice revealed high titers of antihuman HER-2/neu antibodies, which correlated with the delayed time of tumor onset (P = 0.002). These antibodies did not cross-react with r-p185neu. Nontransgenic mice treated with the vaccines produced autoreactive antibodies targeting mouse (m)-p185neu and showed impaired function of the lactating mammary gland and accelerated involution of the gland after weaning. Together, these data indicate that xenogeneic DNA immunization breaks tolerance against the endogenous m-p185neu, impairing the development of mammary TDLU in which m-p185neu expression is concentrated. The reduction in the number of TDLU decreases the number of glandular structures available for r-p185neu-dependent mammary carcinogenesis, resulting in a significant inhibition of mammary carcinoma development.
Collapse
Affiliation(s)
- Serenella M. Pupa
- 1Molecular Targeting Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | - Manuela Iezzi
- 2Aging Research Center, CeSi, G. d'Annunzio University Foundation
- 3Department of Oncology and Neurosciences, “G. D'Annunzio” University, Chieti, Italy
| | - Emma Di Carlo
- 2Aging Research Center, CeSi, G. d'Annunzio University Foundation
- 3Department of Oncology and Neurosciences, “G. D'Annunzio” University, Chieti, Italy
| | - AnnaMaria Invernizzi
- 1Molecular Targeting Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | - Federica Cavallo
- 4Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy; and
| | | | - Alberto Comes
- 6Immuno-pharmacology Unit, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvano Ferrini
- 6Immuno-pharmacology Unit, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Piero Musiani
- 2Aging Research Center, CeSi, G. d'Annunzio University Foundation
- 3Department of Oncology and Neurosciences, “G. D'Annunzio” University, Chieti, Italy
| | - Sylvie Ménard
- 1Molecular Targeting Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
159
|
Bianchi S, Palli D, Falchetti M, Saieva C, Masala G, Mancini B, Lupi R, Noviello C, Omerovic J, Paglierani M, Vezzosi V, Alimandi M, Mariani-Costantini R, Ottini L. ErbB-receptors expression and survival in breast carcinoma: A 15-year follow-up study. J Cell Physiol 2005; 206:702-8. [PMID: 16245316 DOI: 10.1002/jcp.20535] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aberrant expression of the epidermal growth factor receptor family has been implicated in the pathogenesis and progression of breast cancer and associated with poor prognosis. To evaluate the prognostic impact of the ErbB receptors expression profile, we analyzed a well-characterized series of 145 primary breast carcinomas for the simultaneous expression of epidermal growth factor receptor (EGFR/HER-1), ErbB-2 (HER-2), ErbB-3 (HER-3), and ErbB-4 (HER-4), using immunohistochemistry. Tumors were considered negative or positive for each marker when less than or more than 25% of the cancer cells were immunopositive. Expression of EGFR, ErbB-2, ErbB-3, and ErbB-4 was observed in 31 (21.4%), 65 (44.8%), 72 (49.7%), and 81 (55.9%) of the cases, respectively. There were significant associations between EGFR expression and pT status (P = 0.01), and between ErbB-3 expression and pN (P = 0.003), menopausal (P = 0.01) and PR (P < 0.001) status. The majority of the cases co-expressed two or more receptors. ErbB-3 resulted positive in 51/81 (63.0%) of the ErbB-4 positive cases and ErbB-3/ErbB-4 co-expression was statistically significant (P = 0.0003). As expected, ErbB-2 expression was associated with reduced overall survival at 15 years of follow-up (P = 0.04), even after adjusting for a series of other prognostic factors (P = 0.05). Moreover, cumulative analysis of ErbB-2/3/4 expression showed a strong positive association between higher total ErbB-2/3/4 expression score and worse prognosis (P = 0.002). The simultaneous expression in cancer cells of more than one ErbB receptor identifies a subset of breast cancer patients at high risk for poor survival.
Collapse
Affiliation(s)
- Simonetta Bianchi
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
The tissue microenvironment regulates mammary gland development and tissue homeostasis through soluble, insoluble and cellular cues that operate within the three dimensional architecture of the gland. Disruption of these critical cues and loss of tissue architecture characterize breast tumors. The developing and lactating mammary gland are also subject to a plethora of tensional forces that shape the morphology of the gland and orchestrate its functionally differentiated state. Moreover, malignant transformation of the breast is associated with dramatic changes in gland tension that include elevated compression forces, high tensional resistance stresses and increased extracellular matrix stiffness. Chronically increased mammary gland tension may influence tumor growth, perturb tissue morphogenesis, facilitate tumor invasion, and alter tumor survival and treatment responsiveness. Because mammary tissue differentiation is compromised by high mechanical force and transformed cells exhibit altered mechanoresponsiveness, malignant transformation of the breast may be functionally linked to perturbed tensional-homeostasis. Accordingly, it will be important to define the role of tensional force in mammary gland development and tumorigenesis. Additionally, it will be critical to identify the key molecular elements regulating tensional-homeostasis of the mammary gland and thereafter to characterize their associated mechanotransduction pathways.
Collapse
Affiliation(s)
- Matthew J Paszek
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6383, USA
| | | |
Collapse
|