151
|
Kim Y, Kim H, Kim EH, Jang H, Jang Y, Chi SG, Yang Y, Kim SH. The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14061271. [PMID: 35745843 PMCID: PMC9227323 DOI: 10.3390/pharmaceutics14061271] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
In vitro transcribed mRNA for the synthesis of any given protein has shown great potential in cancer gene therapy, especially in cancer vaccines for immunotherapy. To overcome physiological barriers, such as rapid degradation by enzymatic attack and poor cellular uptake due to their large size and hydrophilic properties, many delivery carriers for mRNAs are being investigated for improving the bioavailability of mRNA. Recently, cell-penetrating peptides (CPPs) have received attention as promising tools for gene delivery. In terms of their biocompatibility and the ability to target specific cells with the versatility of peptide sequences, they may provide clues to address the challenges of conventional delivery systems for cancer mRNA delivery. In this study, optimal conditions for the CPP/mRNA complexes were identified in terms of complexation capacity and N/P ratio, and protection against RNase was confirmed. When cancer cells were treated at a concentration of 6.8 nM, which could deliver the highest amount of mRNA without toxicity, the amphipathic CPP/mRNA complexes with a size less than 200 nm showed high cellular uptake and protein expression. With advances in our understanding of CPPs, CPPs designed to target tumor tissues will be promising for use in developing a new class of mRNA delivery vehicles in cancer therapy.
Collapse
Affiliation(s)
- Yelee Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Hyosuk Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
| | - Eun Hye Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Hochung Jang
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Yeongji Jang
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Yoosoo Yang
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (Y.Y.); (S.H.K.); Tel.: +82-2-958-6655 (Y.Y.); +82-2-958-6639 (S.H.K.)
| | - Sun Hwa Kim
- Medical Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (H.K.); (E.H.K.); (H.J.); (Y.J.)
- Correspondence: (Y.Y.); (S.H.K.); Tel.: +82-2-958-6655 (Y.Y.); +82-2-958-6639 (S.H.K.)
| |
Collapse
|
152
|
Zhang W, Lin L, Zhang Y, Zhao T, Zhan Y, Wang H, Fang J, Du B. Dioscin potentiates the antitumor effect of suicide gene therapy in melanoma by gap junction intercellular communication-mediated antigen cross-presentation. Biomed Pharmacother 2022; 150:112973. [PMID: 35468581 DOI: 10.1016/j.biopha.2022.112973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dioscin (Dio), steroid saponin, exists in several medicinal herbs with potent anticancer efficacy. This study aimed to explore the effect of Dio on the immune-related modulation and synergistic therapeutic effects of the herpes simplex virus thymidine kinase/ganciclovir (HSV-Tk/GCV) suicide gene therapy system in murine melanoma, thereby providing a research basis to improve the potential immunomodulatory mechanism underlying combination therapy. Using both in vitro and in vivo experiments, we confirmed the immunocidal effect of Dio-potentiated suicide gene therapy on melanoma. The results showed that Dio upregulated connexin 43 (Cx43) expression and improved gap junction intercellular communication (GJIC) in B16 cells while increasing the cross-presentation of antigens by dendritic cells (DCs), eventually promoting the activation and antitumor immune killing effects of CD8+ T lymphocytes. In contrast, inhibition or blockade of the GJIC function (overexpression of mutant Cx43 tumor cells/Gap26) partially reversed the potentiating effect. The significant synergistic effect of Dio on HSV-Tk/GCV suicide gene therapy was further investigated in a B16 xenograft mouse model. The increased number and activation ratio of CD8+ T lymphocytes and the levels of Gzms-B, IFN-γ, and TNF-α in mice reconfirmed the potential modulatory effects of Dio on the immune system. Taken together, Dio targets Cx43 to enhance GJIC function, improve the antigens cross-presentation of DCs, and activate the antitumor immune effect of CD8+ T lymphocytes, thereby providing insights into the potential immunomodulatory mechanism underlying combination therapy.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingyun Lin
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yujian Zhang
- Panyu Hospital of Chinese Medicine, Guangzhou 511400, China
| | - Tingxiu Zhao
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yujuan Zhan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huiqi Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junfeng Fang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Biaoyan Du
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
153
|
Munir M, Kett VL, Dunne NJ, McCarthy HO. Development of a Spray-Dried Formulation of Peptide-DNA Nanoparticles into a Dry Powder for Pulmonary Delivery Using Factorial Design. Pharm Res 2022; 39:1215-1232. [PMID: 35441318 PMCID: PMC9197895 DOI: 10.1007/s11095-022-03256-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gene therapy via pulmonary delivery holds the potential to treat various lung pathologies. To date, spray drying has been the most promising method to produce inhalable powders. The present study determined the parameters required to spray dry nanoparticles (NPs) that contain the delivery peptide, termed RALA (N-WEARLARALARALARHLARALARALRACEA-C), complexed with plasmid DNA into a dry powder form designed for inhalation. METHODS The spray drying process was optimised using full factorial design with 19 randomly ordered experiments based on the combination of four parameters and three centre points per block. Specifically, mannitol concentration, inlet temperature, spray rate, and spray frequency were varied to observe their effects on process yield, moisture content, a median of particle size distribution, Z-average, zeta potential, encapsulation efficiency of DNA NPs, and DNA recovery. The impact of mannitol concentration was also examined on the spray-dried NPs and evaluated via biological functionality in vitro. RESULTS The results demonstrated that mannitol concentration was the strongest variable impacting all responses apart from encapsulation efficiency. All measured responses demonstrated a strong dependency on the experimental variables. Furthermore, spray drying with the optimal variables in combination with a low mannitol concentration (1% and 3%, w/v) produced functional RALA/pDNA NPs. CONCLUSION The optimal parameters have been determined to spray dry RALA/pDNA NPs into an dry powder with excellent biological functionality, which have the potential to be used for gene therapy applications via pulmonary delivery.
Collapse
Affiliation(s)
- Miftakul Munir
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Research and Technology Center for Radioisotope and Radiopharmaceutical, National Research and Innovation Agency, South Tangerang, Indonesia
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
154
|
Cornetta K, Bonamino M, Mahlangu J, Mingozzi F, Rangarajan S, Rao J. Gene therapy access: Global challenges, opportunities, and views from Brazil, South Africa, and India. Mol Ther 2022; 30:2122-2129. [PMID: 35390542 PMCID: PMC9171243 DOI: 10.1016/j.ymthe.2022.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Gene and cell therapies for a variety of life-limiting illnesses are under investigation, and a small number of commercial products have successfully obtained regulatory approval. The cost of treatment is high, and clinical studies evaluating safety and efficacy are performed predominately in high-income countries. We reviewed the current status of gene and cell therapies in low- and middle-income countries and highlighted the need and current barriers to access. The state of product development in Brazil, South Africa, and India is discussed, including lessons learned from American Society of Gene and Cell Therapy (ASGCT)-sponsored virtual symposia in each of these countries.
Collapse
Affiliation(s)
- Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Martín Bonamino
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil; Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Johnny Mahlangu
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Savita Rangarajan
- Faculty of Medicine University of Southampton, UK & KJ Somaiya Super Speciality Hospital and Research Centre, Mumbai, India
| | - Jayandharan Rao
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kapur, UP, India
| |
Collapse
|
155
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
156
|
Shupe J, Zhang A, Odenwelder DC, Dobrowsky T. Gene therapy: challenges in cell culture scale-up. Curr Opin Biotechnol 2022; 75:102721. [DOI: 10.1016/j.copbio.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
|
157
|
Ahmad MZ, Rizwanullah M, Ahmad J, Alasmary MY, Akhter MH, Abdel-Wahab BA, Warsi MH, Haque A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. INT J POLYM MATER PO 2022; 71:602-623. [DOI: 10.1080/00914037.2020.1869737] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | | | | | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Musarrat Husain Warsi
- Department of Pharmaceutics, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam bin Abdulaziz University College of Pharmacy, Alkharj Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
158
|
Dooms M, Saesen R, Steemans I, Lansens J, Huys I. Characteristics of Early Phase Clinical Trials for Rare Cancers: Insights From Interviews With Stakeholders. Front Pharmacol 2022; 13:775217. [PMID: 35586057 PMCID: PMC9108391 DOI: 10.3389/fphar.2022.775217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Rare cancers occur with an incidence of no more than six cases per 100,000 people according to the definition used by the Surveillance of Rare Cancers in Europe project. For a variety of reasons (low prevalence, cytotoxicity), it is challenging to perform the necessary clinical studies to investigate the safety and efficacy of investigational medicines against such rare malignancies, reformulating even at the earliest stages of the drug development process. This article investigates the differences between phase I rare cancer trials performed in commercial (companies) and non-commercial settings (academic hospitals).Materials and Methods: The differences were explored through the conduct of semi-structured interviews with three different stakeholder groups: representatives from academia (n = 7), representatives from companies (n = 4) and representatives from patient organizations (n = 4). All the interviews were transcribed verbatim and analyzed in NVivo using the framework method.Results: According to the interviewees, the academic and commercial stakeholders collaborate in the majority of phase I rare cancer trials. In general, the commercial partner finances the trial, whereas academia is responsible for the execution of the study procedures. The average cost of undertaking these trials is difficult to estimate because it depends on what is specifically requested during the trial. The 3 + 3 study design remains the most widely used design and the use of expansion cohorts is controversial. With regard to the regulatory aspects of phase I rare cancer trials, it was expressed that a good regulatory framework facilitates the conduct of these studies, but that increased regulation and oversight also has drawbacks, e.g., differences in standards between different ethics committees, over interpretation of the rules, insufficient availability of qualified personnel and higher workloads. The patient organization representatives claimed that patients experience no differences in terms of accommodation, compensation and paperwork between the academic and commercial settings or the degree of follow-up. They also believed that the direct input of patients can bring added value to such studies not only with regard to the recruitment process and the feasibility of the study but also the legibility of the informed consent forms.Conclusion: The growing need for first-in-man trials in rare malignancies needs to be highlighted, as difficult as they are to undertake and to co-develop, not only because rare cancer patients deserve an appropriate treatment, but also because these medicines represent the future of cancer therapy in the precision medicine era. Cooperation of commercial and academic sites are needed. Patient organizations need to be educated to take part in this process.
Collapse
|
159
|
FitzPatrick L, Bird A. Genetic therapies for neurological disorders. Hum Genet 2022; 141:1085-1091. [PMID: 34807307 PMCID: PMC8607967 DOI: 10.1007/s00439-021-02399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022]
Abstract
In recent years, it has become increasingly apparent that many neurological disorders are underpinned by a genetic aetiology. This has resulted in considerable efforts to develop therapeutic strategies which can treat the disease-causing mutation, either by supplying a functional copy of the mutated gene or editing the genomic sequence. In this review, we will discuss the main genetic strategies which are currently being explored for the treatment of monogenic neurological disorders, as well as some of the challenges they face. In addition, we will address some of the ethical difficulties which may arise.
Collapse
Affiliation(s)
- Laura FitzPatrick
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
160
|
Rajapaksha IG, Gunarathne LS, Asadi K, Laybutt R, Andrikopoulous S, Alexander IE, Watt MJ, Angus PW, Herath CB. Angiotensin Converting Enzyme-2 Therapy Improves Liver Fibrosis and Glycemic Control in Diabetic Mice With Fatty Liver. Hepatol Commun 2022; 6:1056-1072. [PMID: 34951153 PMCID: PMC9035567 DOI: 10.1002/hep4.1884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is frequently associated with type 2 diabetes. However, there is no specific medical therapy to treat this condition. Angiotensin-converting enzyme 2 (ACE2) of the protective renin angiotensin system generates the antifibrotic peptide angiotensin-(1-7) from profibrotic angiotensin II peptide. In this study, we investigated the therapeutic potential of ACE2 in diabetic NAFLD mice fed a high-fat (20%), high-cholesterol (2%) diet for 40 weeks. Mice were given a single intraperitoneal injection of ACE2 using an adeno-associated viral vector at 30 weeks of high-fat, high-cholesterol diet (15 weeks after induction of diabetes) and sacrificed 10 weeks later. ACE2 significantly reduced liver injury and fibrosis in diabetic NAFLD mice compared with the control vector injected mice. This was accompanied by reductions in proinflammatory cytokine expressions, hepatic stellate cell activation, and collagen 1 expression. Moreover, ACE2 therapy significantly increased islet numbers, leading to an increased insulin protein content in β-cells and plasma insulin levels with subsequent reduction in plasma glucose levels compared with controls. Conclusion: We conclude that ACE2 gene therapy reduces liver fibrosis and hyperglycemia in diabetic NAFLD mice and has potential as a therapy for patients with NAFLD with diabetes.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Lakmie S Gunarathne
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | | | - Ross Laybutt
- Garvan Institute of Medical ResearchSydneyNSWAustralia.,St. Vincent's Clinical SchoolUniversity of New South WalesSydneyNSWAustralia
| | - Sof Andrikopoulous
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Ian E Alexander
- School of MedicineUniversity of SydneyChildren's Medical Research InstituteSydneyNSWAustralia
| | - Mathew J Watt
- Department Anatomy and PhysiologyThe University of MelbourneMelbourneVICAustralia
| | - Peter W Angus
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,Department GastroenterologyAustin HealthHeidelbergVICAustralia
| | - Chandana B Herath
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,South Western Sydney Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia.,Ingham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| |
Collapse
|
161
|
Pouya FD, Rasmi Y, Gazouli M, Zografos E, Nemati M. MicroRNAs as therapeutic targets in breast cancer metastasis. Drug Deliv Transl Res 2022; 12:1029-1046. [PMID: 33987801 DOI: 10.1007/s13346-021-00999-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is a complex disease with multiple risk factors involved in its pathogenesis. Among these factors, microRNAs are considered for playing a fundamental role in the development and progression of malignant breast tumors. In recent years, various studies have demonstrated that several microRNAs exhibit increased or decreased expression in metastatic breast cancer, acting as indicators of metastatic potential in body fluids and tissue samples. The identification of these microRNA expression patterns could prove instrumental for the development of novel therapeutic molecules that either mimic or inhibit microRNA action. Additionally, an efficient delivery system mediated by viral vectors, nonviral carriers, or scaffold biomaterials is a prerequisite for implementing microRNA-based therapies; therefore, this review attempts to highlight essential microRNA molecules involved in the metastatic process of breast cancer and discuss recent advances in microRNA-based therapeutic approaches with potential future applications to the treatment sequence of breast cancer.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eleni Zografos
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
162
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Ahmad MZ, Patowary P, Das A. Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomed Pharmacother 2022; 149:112901. [DOI: 10.1016/j.biopha.2022.112901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
|
163
|
An SI-traceable reference material for virus-like particles. iScience 2022; 25:104294. [PMID: 35573192 PMCID: PMC9095743 DOI: 10.1016/j.isci.2022.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
A reference material for virus-like particles traceable to the International System of Units (Système International d'Unités – the SI) is reported. The material addresses the need for developing reference standards to benchmark virus-like gene delivery systems and help harmonize measurement approaches for characterization and testing. The material is a major component of synthetic polypeptide virus-like particles produced by the state-of-the-art synthetic and analytical chemistry methods used to generate gene delivery systems. The purity profile of the material is evaluated to the highest metrological order demonstrating traceability to the SI. The material adds to the emerging toolkit of reference standards for quantitative biology. A reference material for virus-like particles with traceability to the SI The material is a major component of virus-like particles capable of gene delivery Purity profile of the material is evaluated to the highest metrological order The material allows comparability of physicochemical properties of virus-like systems
Collapse
|
164
|
Schindeler A, Lee LR, O'Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:826-836. [PMID: 35306687 PMCID: PMC9324990 DOI: 10.1002/jbmr.4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) describes a series of genetic bone fragility disorders that can have a substantive impact on patient quality of life. The multidisciplinary approach to management of children and adults with OI primarily involves the administration of antiresorptive medication, allied health (physiotherapy and occupational therapy), and orthopedic surgery. However, advances in gene editing technology and gene therapy vectors bring with them the promise of gene-targeted interventions to provide an enduring or perhaps permanent cure for OI. This review describes emergent technologies for cell- and gene-targeted therapies, major hurdles to their implementation, and the prospects of their future success with a focus on bone disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadAustralia
| | - Craig F Munns
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Endocrinology and DiabetesQueensland Children's HospitalBrisbaneQLDAustralia
- Child Health Research Centre and Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
165
|
Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. NATURE REVIEWS. METHODS PRIMERS 2022; 2:24. [PMID: 35480987 PMCID: PMC9038125 DOI: 10.1038/s43586-022-00104-y] [Citation(s) in RCA: 293] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
There is growing need for a safe, efficient, specific and non-pathogenic means for delivery of gene therapy materials. Nanomaterials for nucleic acid delivery offer an unprecedented opportunity to overcome these drawbacks; owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. Nucleic acid therapeutics such as antisense DNA, mRNA, small interfering RNA (siRNA) or microRNA (miRNA) have been widely explored to modulate DNA or RNA expression Strikingly, gene therapies combined with nanoscale delivery systems have broadened the therapeutic and biomedical applications of these molecules, such as bioanalysis, gene silencing, protein replacement and vaccines. Here, we overview how to design smart nucleic acid delivery methods, which provide functionality and efficacy in the layout of molecular diagnostics and therapeutic systems. It is crucial to outline some of the general design considerations of nucleic acid delivery nanoparticles, their extraordinary properties and the structure-function relationships of these nanomaterials with biological systems and diseased cells and tissues.
Collapse
Affiliation(s)
- Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Aviram Avital
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Dongbao Yao
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xiang Zhou
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Noga Sharf-Pauker
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Omer Adir
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Haojun Liang
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
166
|
Chung Liang L, Sulaiman N, Yazid MD. A Decade of Progress in Gene Targeted Therapeutic Strategies in Duchenne Muscular Dystrophy: A Systematic Review. Front Bioeng Biotechnol 2022; 10:833833. [PMID: 35402409 PMCID: PMC8984139 DOI: 10.3389/fbioe.2022.833833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the most severe forms of muscle dystrophy, Duchenne muscular dystrophy (DMD) results in progressive muscle wasting, ultimately resulting in premature death due to cardiomyopathy. In the many years of research, the solution to DMD remains palliative. Although numerous studies including clinical trials have provided promising results, approved drugs, even, the therapeutic window is still minimal with many shortcomings to be addressed. Logically, to combat DMD that arose from a single genetic mutation with gene therapy made sense. However, gene-based strategies as a treatment option are no stranger to drawbacks and limitations such as the size of the dystrophin gene and possibilities of vectors to elicit immune responses. In this systematic review, we aim to provide a comprehensive compilation on gene-based therapeutic strategies and critically evaluate the approaches relative to its efficacy and feasibility while addressing their current limitations. With the keywords “DMD AND Gene OR Genetic AND Therapy OR Treatment,” we reviewed papers published in Science Direct, PubMed, and ProQuest over the past decade (2012–2021).
Collapse
Affiliation(s)
- Lam Chung Liang
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
167
|
Yang O, Tao Y, Qadan M, Ierapetritou M. Process Design and Comparison for Batch and Continuous Manufacturing of Recombinant Adeno-Associated Virus. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
168
|
Deng L, Liang P, Cui H. Pseudotyped lentiviral vectors: Ready for translation into targeted cancer gene therapy? Genes Dis 2022. [PMID: 37492721 PMCID: PMC10363566 DOI: 10.1016/j.gendis.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy holds great promise for curing cancer by editing the deleterious genes of tumor cells, but the lack of vector systems for efficient delivery of genetic material into specific tumor sites in vivo has limited its full therapeutic potential in cancer gene therapy. Over the past two decades, increasing studies have shown that lentiviral vectors (LVs) modified with different glycoproteins from a donating virus, a process referred to as pseudotyping, have altered tropism and display cell-type specificity in transduction, leading to selective tumor cell killing. This feature of LVs together with their ability to enable high efficient gene delivery in dividing and non-dividing mammalian cells in vivo make them to be attractive tools in future cancer gene therapy. This review is intended to summarize the status quo of some typical pseudotypings of LVs and their applications in basic anti-cancer studies across many malignancies. The opportunities of translating pseudotyped LVs into clinic use in cancer therapy have also been discussed.
Collapse
|
169
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
170
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
171
|
Pathak K, Pathak MP, Saikia R, Gogoi U, Sahariah JJ, Zothantluanga JH, Samanta A, Das A. Cancer Chemotherapy via Natural Bioactive Compounds. Curr Drug Discov Technol 2022; 19:e310322202888. [PMID: 35362385 DOI: 10.2174/1570163819666220331095744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer-induced mortality is increasingly prevalent globally which skyrocketed the necessity to discover new/novel safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human which is unable to control. Scientific research is drawing its attention towards naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy. OBJECTIVE Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article. METHODS With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedy including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and others including colchicine, artesunate, homoharringtonine, ellipticine, roscovitine, maytanasin, tapsigargin,andbruceantin. RESULTS Compounds (psammaplin, didemnin, dolastin, ecteinascidin,and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug induced manipulation of epigenetic markers plays an important role in the treatment of cancer. CONCLUSION The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Abhishek Samanta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| |
Collapse
|
172
|
Pol T, Chonkaew W, Hocharoen L, Niamnont N, Butkhot N, Roshorm YM, Kiatkamjornwong S, Hoven VP, Pratumyot K. Amphiphilic Chitosan Bearing Double Palmitoyl Chains and Quaternary Ammonium Moieties as a Nanocarrier for Plasmid DNA. ACS OMEGA 2022; 7:10056-10068. [PMID: 35382269 PMCID: PMC8973028 DOI: 10.1021/acsomega.1c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Amphiphilic chitosan, bPalm-CS-HTAP, having N-(2-((2,3-bis(palmitoyloxy)propyl)amino)-2-oxoethyl) (bPalm) groups as double hydrophobic tails and O-[(2-hydroxyl-3-trimethylammonium)] propyl (HTAP) groups as hydrophilic heads was synthesized and evaluated for its self-assembly properties and potential as a gene carrier. The degree of bis-palmitoyl group substitution (DS bPalm) and the degree of quaternization (DQ) were approximately 2 and 56%, respectively. bPalm-CS-HTAP was found to assemble into nanosized spherical particles with a hydrodynamic diameter (D H) of 265.5 ± 7.40 nm (PDI = 0.5) and a surface charge potential of 40.1 ± 0.04 mV. bPalm-CS-HTAP condensed the plasmid pVAX1.CoV2RBDme completely at a bPalm-CS-HTAP:pDNA ratio of 2:1. The self-assembled bPalm-CS-HTAP/pDNA complexes could enter HEK 293A and CHO cells and enabled gene expression at negligible cytotoxicity compared to commercial PEI (20 kDa). These results suggested that bPalm-CS-HTAP can be used as a promising nonviral gene carrier.
Collapse
Affiliation(s)
- Thev Pol
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| | - Wunpen Chonkaew
- Sustainable
Polymer & Innovative Composite Materials Research Group, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Lalintip Hocharoen
- Bioprocess
Research and Innovation Centre (BRIC), National Biopharmaceutical
Facility (NBF), King Mongkut’s University
of Technology Thonburi (KMUTT), Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Nakorn Niamnont
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| | - Namphueng Butkhot
- Division
of Biotechnology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Yaowaluck Maprang Roshorm
- Division
of Biotechnology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Suda Kiatkamjornwong
- FRST,
Academy of Science, Office of the Royal Society, Sanam Suea Pa, Khet Dusit, Bangkok 10300, Thailand
- Office of
Research Affairs, Chulalongkorn University, Phayathai Road,
Pathumwan, Bangkok 10330, Thailand
| | - Voravee P. Hoven
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Kornkanya Pratumyot
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| |
Collapse
|
173
|
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AM, Ming LC, Goh KW, Hadi MA. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel) 2022; 14:1732. [PMID: 35406504 PMCID: PMC8996939 DOI: 10.3390/cancers14071732] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer. Global incidence and mortality are likely to be increased in the coming decades. Although the deaths associated with CRC are very high in high-income countries, the incidence and fatalities related to CRC are growing in developing countries too. CRC detected early is entirely curable by surgery and subsequent medications. However, the recurrence rate is high, and cancer drug resistance increases the treatment failure rate. Access to early diagnosis and treatment of CRC for survival is somewhat possible in developed countries. However, these facilities are rarely available in developing countries. Highlighting the current status of CRC, its development, risk factors, and management is crucial in creating public awareness. Therefore, in this review, we have comprehensively discussed the current global epidemiology, drug resistance, challenges, risk factors, and preventive and treatment strategies of CRC. Additionally, there is a brief discussion on the CRC development pathways and recommendations for preventing and treating CRC.
Collapse
Affiliation(s)
- Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
| | - Hidayah Karuniawati
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia
| | - Ammar Abdulrahman Jairoun
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; (H.K.); (A.A.J.)
- Health and Safety Department, Dubai Municipality, Dubai 67, United Arab Emirates
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia;
| | - Der Jiun Ooi
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Ya Chee Lim
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - K. M. Kaderi Kibria
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - A.K. M. Mohiuddin
- Department of Biotechnology & Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh; (K.M.K.K.); (A.K.M.M.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | | |
Collapse
|
174
|
Fioretti I, Müller-Späth T, Weldon R, Vogg S, Morbidelli M, Sponchioni M. Continuous countercurrent chromatographic twin-column purification of oligonucleotides: the role of the displacement effect. Biotechnol Bioeng 2022; 119:1861-1872. [PMID: 35338661 PMCID: PMC9322279 DOI: 10.1002/bit.28093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022]
Abstract
Oligonucleotides (ONs) are breaking through in the biopharmaceutical industry as a promising class of biotherapeutics. The main success of these molecules is due to their peculiar way of acting in the cellular process, regulating the gene expression and hence influencing the protein synthesis at a pre-translational level. Although the Food and Drug Administration (FDA) already approved a few ON-based therapeutics, their production cost strongly limits large scale manufacturing: a situation that can be alleviated through process intensification. In this work, we address this problem by developing an efficient and continuous chromatographic purification process for ONs. In particular, we considered the chromatographic purification of a ON crude prepared by chemical synthesis using anion exchange resins. We demonstrate that in this system the competitive adsorption of the various species on the same sites of the resin leads to the displacement of the more weakly adsorbing species by the more strongly adsorbing ones. This phenomenon affects the behavior of the chromatographic units and it has been investigated in detail. Then, we developed a continuous countercurrent solvent gradient purification (MCSGP) process, which can significantly improve the productivity and buffer consumption compared to a classical single-column, batch chromatographic process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ismaele Fioretti
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | | | - Richard Weldon
- YMC ChromaCon, Technoparkstrasse 1, 8005, Zürich, Switzerland
| | - Sebastian Vogg
- YMC ChromaCon, Technoparkstrasse 1, 8005, Zürich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
175
|
Claes M, De Groef L, Moons L. The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells 2022; 11:1110. [PMID: 35406674 PMCID: PMC8998042 DOI: 10.3390/cells11071110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The chronic character of chemogenetics has been put forward as one of the assets of the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic studies have focused on acute applications, while repeated, long-term neuromodulation has only been booming in the past few years. Unfortunately, together with the rising number of studies, various hurdles have also been uncovered, especially in relation to its chronic application. It becomes increasingly clear that chronic neuromodulation warrants caution and that the effects of acute neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we are only scratching the surface of what is possible with chemogenetic research. For example, most investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of chemogenetic experiments, as well as the unexplored research questions for which chemogenetics offers the ideal research platform, with a particular focus on its long-term application.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| | - Lies De Groef
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
- Laboratory of Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
176
|
Gene-Delivery Ability of New Hydrogenated and Partially Fluorinated Gemini bispyridinium Surfactants with Six Methylene Spacers. Int J Mol Sci 2022; 23:ijms23063062. [PMID: 35328483 PMCID: PMC8949414 DOI: 10.3390/ijms23063062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.
Collapse
|
177
|
Proof-of-Concept of Continuous Transfection for Adeno-Associated Virus Production in Microcarrier-Based Culture. Processes (Basel) 2022. [DOI: 10.3390/pr10030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adeno-associated virus vectors (AAV) are reported to have a great potential for gene therapy, however, a major bottleneck for this kind of therapy is the limitation of production capacity. Higher specific AAV vector yield is often reported for adherent cell systems compared to cells in suspension, and a microcarrier-based culture is well established for the culture of anchored cells on a larger scale. The purpose of the present study was to explore how microcarrier cultures could provide a solution for the production of AAV vectors based on the triple plasmid transfection of HEK293T cells in a stirred tank bioreactor. In the present study, cells were grown and expanded in suspension, offering the ease of this type of operation, and were then anchored on microcarriers in order to proceed with transfection of the plasmids for transient AAV vector production. This process was developed in view of a bioreactor application in a 200 mL stirred-tank vessel where shear stress aspects were studied. Furthermore, amenability to a continuous process was studied. The present investigation provided a proof-of-concept of a continuous process based on microcarriers in a stirred-tank bioreactor.
Collapse
|
178
|
Abstract
PURPOSE OF REVIEW The aim of this study was to summarize recent findings in kidney gene therapy while proposing cystinuria as a model kidney disease target for genome engineering therapeutics. RECENT FINDINGS Despite the advances of gene therapy for treating diseases of other organs, the kidney lags behind. Kidney-targeted gene delivery remains an obstacle to gene therapy of kidney disease. Nanoparticle and adeno-associated viral vector technologies offer emerging hope for kidney gene therapy. Cystinuria represents a model potential target for kidney gene therapy due to its known genetic and molecular basis, targetability, and capacity for phenotypic rescue. SUMMARY Although gene therapy for kidney disease remains a major challenge, new and evolving technologies may actualize treatment for cystinuria and other kidney diseases.
Collapse
Affiliation(s)
- Jennifer L. Peek
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Matthew H. Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN, 37212
| |
Collapse
|
179
|
Avances en terapia génica en humanos: algunos conceptos básicos y un recorrido histórico. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
180
|
Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS APPLIED BIO MATERIALS 2022; 5:413-437. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of CRISPR/Cas technology has enabled scientists to precisely edit genomic DNA sequences. This approach can be used to modulate gene expression for the treatment of genetic disorders and incurable diseases such as cancer. This potent genome-editing tool is based on a single guide RNA (sgRNA) strand that recognizes the targeted DNA, plus a Cas nuclease protein for binding and processing the target. CRISPR/Cas has great potential for editing many genes in different types of cells and organisms both in vitro and in vivo. Despite these remarkable advances, the risk of off-target effects has hindered the translation of CRISPR/Cas technology into clinical applications. To overcome this hurdle, researchers have devised gene regulatory systems that can be controlled in a spatiotemporal manner, by designing special sgRNA, Cas, and CRISPR/Cas delivery vehicles that are responsive to different stimuli, such as temperature, light, magnetic fields, ultrasound (US), pH, redox, and enzymatic activity. These systems can even respond to dual or multiple stimuli simultaneously, thereby providing superior spatial and temporal control over CRISPR/Cas gene editing. Herein, we summarize the latest advances on smart sgRNA, Cas, and CRISPR/Cas nanocarriers, categorized according to their stimulus type (physical, chemical, or biological).
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Atefeh Jahandideh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Niloofar Haeri Moghaddam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyede Mahtab Kamrani Mousavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
181
|
Bezeljak U. Cancer gene therapy goes viral: viral vector platforms come of age. Radiol Oncol 2022; 56:1-13. [PMID: 35148469 PMCID: PMC8884858 DOI: 10.2478/raon-2022-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Since the advent of viral vector gene therapy in 1990s, cancer treatment with viral vectors promised to revolutionize the field of oncology. Notably, viral vectors offer a unique combination of efficient gene delivery and engagement of the immune system for anti-tumour response. Despite the early potential, viral vector-based cancer treatments are only recently making a big impact, most prominently as gene delivery devices in approved CAR-T cell therapies, cancer vaccines and targeted oncolytic therapeutics. To reach this broad spectrum of applications, a number of challenges have been overcome - from our understanding of cancer biology to vector design, manufacture and engineering. Here, we take an overview of viral vector usage in cancer therapy and discuss the latest advancements. We also consider production platforms that enable mainstream adoption of viral vectors for cancer gene therapy. CONCLUSIONS Viral vectors offer numerous opportunities in cancer therapy. Recent advances in vector production platforms open new avenues in safe and efficient viral therapeutic strategies, streamlining the transition from lab bench to bedside. As viral vectors come of age, they could become a standard tool in the cancer treatment arsenal.
Collapse
|
182
|
Sakuma S, Okamoto M, Matsushita N, Ukawa M, Tomono T, Kawamoto K, Ikeda T, Sakuma S. Evaluation of a D-Octaarginine-linked polymer as a transfection tool for transient and stable transgene expression in human and murine cell lines. J Vet Med Sci 2022; 84:484-493. [PMID: 35135938 PMCID: PMC9096039 DOI: 10.1292/jvms.21-0647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Poly(N-vinylacetamide-co-acrylic acid) coupled with d-octaarginine (VP-R8) promotes the cellular uptake of peptides/proteins in vitro; however, details of the transfection efficacy of VP-R8, such as the cell types possessing high gene transfer, are not known. Herein, we compared the ability of VP-R8 to induce the cellular uptake of plasmid DNA in mouse and human cell lines from different tissues and organs. A green fluorescent protein (GFP)-expression plasmid was used as model genetic material, and fluorescence as an indicator of uptake and plasmid-derived protein expression. Three mouse and three human cell lines were incubated with a mixture of plasmid and VP-R8, and fluorescence analysis were performed two days after transfection. To confirm stable transgene expression, we performed drug selection three days after transfection. A commercially available polymer-based DNA transfection reagent (PTR) was used as the transfection control and standard for comparing transgene expression efficiency. In the case of transient transgene expression, slight-to-moderate GFP expression was observed in all cell lines transfected with plasmid via VP-R8; however, transfection efficiency was lower using the PTR for gene delivery. In the case of stable transgene expression, VP-R8 promoted drug-resistance acquisition more efficiently than the PTR did. Cells that developed drug resistance after VP-R8‒mediated gene transfection expressed GFP more efficiently than cells that developed drug resistance after transfection with the PTR. Thus, VP-R8 shows potential as an in vitro or ex vivo nonviral transfection tool for generating cell lines with stable transgene expression.
Collapse
Affiliation(s)
- Saki Sakuma
- Laboratory of Immunology and Infection Control, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University.,Present address: Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization
| | - Mariko Okamoto
- Laboratory of Immunology and Infection Control, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University
| | | | - Masami Ukawa
- Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takumi Tomono
- Faculty of Pharmaceutical Sciences, Setsunan University
| | - Keiko Kawamoto
- Laboratory of Immunology and Infection Control, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University
| | - Teruo Ikeda
- Laboratory of Immunology and Infection Control, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University
| | - Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
183
|
Hooshmand SE, Sabet MJ, Hasanzadeh A, Mousavi SMK, Moghadam NH, Hooshmand SA, Rabiee N, Liu Y, Hamblin MR, Karimi M. Histidine‐enhanced gene delivery systems: The state of the art. J Gene Med 2022; 24:e3415. [DOI: 10.1002/jgm.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyyed Emad Hooshmand
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Makkieh Jahanpeimay Sabet
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyede Mahtab Kamrani Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Niloofar Haeri Moghadam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyed Aghil Hooshmand
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics University of Tehran Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Yong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences Tehran Iran
- Research Center for Science and Technology in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
184
|
Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, Khurana I, Banothu AK, Weiskirchen R, Bharani KK. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294:120375. [PMID: 35123997 DOI: 10.1016/j.lfs.2022.120375] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik 400020, Maharashtra, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | | | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India.
| |
Collapse
|
185
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
186
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
187
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
188
|
Khajanchi N, Saha K. Controlling CRISPR with small molecule regulation for somatic cell genome editing. Mol Ther 2022; 30:17-31. [PMID: 34174442 PMCID: PMC8753294 DOI: 10.1016/j.ymthe.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Biomedical research has been revolutionized by the introduction of many CRISPR-Cas systems that induce programmable edits to nearly any gene in the human genome. Nuclease-based CRISPR-Cas editors can produce on-target genomic changes but can also generate unwanted genotoxicity and adverse events, in part by cleaving non-targeted sites in the genome. Additional translational challenges for in vivo somatic cell editing include limited packaging capacity of viral vectors and host immune responses. Altogether, these challenges motivate recent efforts to control the expression and activity of different Cas systems in vivo. Current strategies utilize small molecules, light, magnetism, and temperature to conditionally control Cas systems through various activation, inhibition, or degradation mechanisms. This review focuses on small molecules that can be incorporated as regulatory switches to control Cas genome editors. Additional development of CRISPR-Cas-based therapeutic approaches with small molecule regulation have high potential to increase editing efficiency with less adverse effects for somatic cell genome editing strategies in vivo.
Collapse
Affiliation(s)
- Namita Khajanchi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
189
|
Dang L, Zhou X, Zhong X, Yu W, Huang S, Liu H, Chen Y, Zhang W, Yuan L, Li L, Huang X, Li G, Liu J, Tong G. Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos. Mol Ther 2022; 30:175-183. [PMID: 33974999 PMCID: PMC8753292 DOI: 10.1016/j.ymthe.2021.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
A couple diagnosed as carriers for lamellar ichthyosis, an autosomal recessive rare disease, encountered two pregnancy losses. Their blood samples showed the same heterozygous c.607C>T mutation in the TGM1 gene. However, we found that about 98.4% of the sperm had mutations, suggesting possible de novo germline mutation. To explore the probability of correcting this mutation, we used two different adenine base editors (ABEs) combined with related truncated single guide RNA (sgRNA) to repair the pathogenic mutation in mutant zygotes. Our results showed that the editing efficiency was 73.8% for ABEmax-NG combined with 20-bp-length sgRNA and 78.7% for Sc-ABEmax combined with 19-bp-length sgRNA. The whole-genome sequencing (WGS) and deep sequencing analysis demonstrated precise DNA editing. This study reveals the possibility of correcting the genetic mutation in embryos with the ABE system.
Collapse
Affiliation(s)
- Lu Dang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueliang Zhou
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiufang Zhong
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenxia Yu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shisheng Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanyan Liu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Chen
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wuwen Zhang
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihua Yuan
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guanglei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Guoqing Tong
- Department of Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
190
|
OUP accepted manuscript. Med Mycol 2022; 60:6576775. [DOI: 10.1093/mmy/myac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
|
191
|
Davidsson M, Heuer A. Small scale adeno-associated virus-vector production for preclinical gene delivery based on chloroform precipitation. Neural Regen Res 2022; 17:99-100. [PMID: 34100439 PMCID: PMC8451573 DOI: 10.4103/1673-5374.314309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
192
|
Coelho F, Salonen LM, Silva BFB. Hemiacetal-linked pH-sensitive PEG-lipids for non-viral gene delivery. NEW J CHEM 2022. [DOI: 10.1039/d2nj02217f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic lipid–DNA complexes containing a novel hemiacetal PEG-lipid for endosomal escape were characterized in terms of pH-response, stability, and biological activity.
Collapse
Affiliation(s)
- Filipe Coelho
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Bruno F. B. Silva
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
193
|
Huang L, Zhang L, Li W, Li S, Wen J, Li H, Liu Z. Advances in Development of mRNA-Based Therapeutics. Curr Top Microbiol Immunol 2022; 440:147-166. [PMID: 32683507 DOI: 10.1007/82_2020_222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, mRNA-based therapeutics have been greatly boosted since the development of novel technologies of both mRNA synthesis and delivery system. Promising results were showed in both preclinical and clinical studies in the field of cancer vaccine, tumor immunotherapy, infectious disease prevention and protein replacement therapy. Recent advancements in clinical trials also encouraged scientists to attempt new applications of mRNA therapy such as gene editing and cell programming. These studies bring mRNA therapeutics closer to real-world application. Herein, we provide an overview of recent advances in mRNA-based therapeutics.
Collapse
Affiliation(s)
- Lei Huang
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Luyao Zhang
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Weiwei Li
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Shiqiang Li
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Jianguo Wen
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Hangwen Li
- Stemirna Therapeutics Inc, Shanghai, 201206, China.
| | | |
Collapse
|
194
|
Schmeer M, Schleef M, Shankar R, Kobelt D, Walther W. Capillary Gel Electrophoresis (CGE) for Quality Control of Plasmid DNA in Gene Therapy: Quality Control of 20 Years Stored GMP-Grade Plasmid DNA. Methods Mol Biol 2022; 2521:317-328. [PMID: 35733006 DOI: 10.1007/978-1-0716-2441-8_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmid DNA in any form (plasmid DNA, minicircle, miniplasmid) does experience renewed and increasing attention for use in gene therapy and DNA vaccination. For such applications, stability analyses and quality control are essential prerequisites for clinical use. In this context we analyzed the stability of good manufacturing practice (GMP)-grade pCMVβ reporter plasmid DNA by capillary gel electrophoresis. The plasmid DNA was produced for a clinical gene transfer study for treatment of malignant melanoma. The pCMVβ plasmid DNA was stored at -20 °C for 20 years under continuous, controlled monitoring. Another plasmid., pCMV-Luc, stored for 15 years, served as reference. The stability of plasmid DNA was analyzed by capillary gel electrophoresis (CGE) and functionally tested in vitro by LacZ functional assay. In this chapter we provide the detailed description of CGE and functional analysis of the GMP-grade pCMVβ and also pCMV-Luc plasmid DNA. By this the proportion of open circular and supercoiled or covalently closed circular forms of plasmid DNA is analyzed. Functionality of the plasmid was tested by in vitro transfection and LacZ functional assay. In result of this, the 20-year-old plasmid DNA showed topology and expression performance, which revealed significant alterations in topology while maintaining functionality regarding transgene expression. Therefore, stable storage conditions are effective to mainly preserve the integrity of the plasmid DNA as important parameter for long-term storage of, for example, reference samples.
Collapse
Affiliation(s)
| | | | - Ram Shankar
- PlasmidFactory GmbH & Co. KG, Bielefeld, Germany
| | - Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
195
|
Chen XT, Dai SY, Zhan Y, Yang R, Chen DQ, Li Y, Zhou EQ, Dong R. Progress of oncolytic virotherapy for neuroblastoma. Front Pediatr 2022; 10:1055729. [PMID: 36467495 PMCID: PMC9716318 DOI: 10.3389/fped.2022.1055729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
As a neuroendocrine tumor derived from the neural crest, neuroblastoma (NB) is the most common extracranial solid tumor in children. The prognosis in patients with low- and intermediate-risk NB is favorable while that in high-risk patients is often detrimental. However, the management of the considerably large proportion of high-risk patients remains challenging in clinical practice. Among various new approaches, oncolytic virus (OV) therapy offers great advantages in tumor treatment, especially for high-risk NB. Genetic modified OVs can target NB specifically without affecting normal tissue and avoid the widespread drug resistance issue in anticancer monotherapy. Meanwhile, its safety profile provides great potential in combination therapy with chemo-, radio-, and immunotherapy. The therapeutic efficacy of OV for NB is impressive from bench to bedside. The effectiveness and safety of OVs have been demonstrated and reported in studies on children with NB. Furthermore, clinical trials on some OVs (Celyvir, Pexa-Vec (JX-594) and Seneca Valley Virus (NTX-010)) have reported great results. This review summarizes the latest evidence in the therapeutic application of OVs in NB, including those generated in cell lines, animal models and clinical trials.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Shu-Yang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - De-Qian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - En-Qing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
196
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
197
|
Tortajada L, Felip C, Vicent MJ. Polymer-based Non-viral Vectors for Gene Therapy in the Skin. Polym Chem 2022. [DOI: 10.1039/d1py01485d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy has emerged as a versatile technique with the potential to treat a range of human diseases; however, examples of the topical application of gene therapy as a treatment...
Collapse
|
198
|
AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 2022; 25:106-115. [PMID: 34887588 DOI: 10.1038/s41593-021-00969-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies rely upon expressing a transgene in affected cells while minimizing off-target expression. Here we show organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery, which we achieved by employing a Cre-transgenic-based screening platform and sequential engineering of AAV-PHP.eB between the surface-exposed AA452 and AA460 of VP3. From this selection, we identified capsid variants that were enriched in the brain and targeted away from the liver in C57BL/6J mice. This tropism extends to marmoset (Callithrix jacchus), enabling robust, non-invasive gene delivery to the marmoset brain after intravenous administration. Notably, the capsids identified result in distinct transgene expression profiles within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood-brain barrier with neuronal specificity in rodents and non-human primates enables new avenues for basic research and therapeutic possibilities unattainable with naturally occurring serotypes.
Collapse
|
199
|
Spellerberg R, Benli-Hoppe T, Kitzberger C, Berger S, Schmohl KA, Schwenk N, Yen HY, Zach C, Schilling F, Weber WA, Kälin RE, Glass R, Nelson PJ, Wagner E, Spitzweg C. Selective sodium iodide symporter ( NIS) genetherapy of glioblastoma mediatedby EGFR-targeted lipopolyplexes. Mol Ther Oncolytics 2021; 23:432-446. [PMID: 34853814 PMCID: PMC8604759 DOI: 10.1016/j.omto.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Lipo-oligomers, post-functionalized with ligands to enhance targeting, represent promising new vehicles for the tumor-specific delivery of therapeutic genes such as the sodium iodide symporter (NIS). Due to its iodide trapping activity, NIS is a powerful theranostic tool for diagnostic imaging and the application of therapeutic radionuclides. 124I PET imaging allows non-invasive monitoring of the in vivo biodistribution of functional NIS expression, and application of 131I enables cytoreduction. In our experimental design, we used epidermal growth factor receptor (EGFR)-targeted polyplexes (GE11) initially characterized in vitro using 125I uptake assays. Mice bearing an orthotopic glioblastoma were treated subsequently with mono-dibenzocyclooctyne (DBCO)-PEG24-GE11/NIS or bisDBCO-PEG24-GE11/NIS, and 24-48 h later, 124I uptake was assessed by positron emission tomography (PET) imaging. The best-performing polyplex in the imaging studies was then selected for 131I therapy studies. The in vitro studies showed EGFR-dependent and NIS-specific transfection efficiency of the polyplexes. The injection of monoDBCO-PEG24-GE11/NIS polyplexes 48 h before 124I application was characterized to be the optimal regime in the imaging studies and was therefore used for an 131I therapy study, showing a significant decrease in tumor growth and a significant extension of survival in the therapy group. These studies demonstrate the potential of EGFR-targeted polyplex-mediated NIS gene therapy as a new strategy for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rebekka Spellerberg
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, 81377 Munich, Germany
| | - Carolin Kitzberger
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, 81377 Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Hsi-Yu Yen
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Roland E Kälin
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), partner site 80336 Munich and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, 81377 Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany.,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
200
|
Activation of Innate Immunity by Therapeutic Nucleic Acids. Int J Mol Sci 2021; 22:ijms222413360. [PMID: 34948156 PMCID: PMC8704878 DOI: 10.3390/ijms222413360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid-based therapeutics have gained increased attention during recent decades because of their wide range of application prospects. Immunostimulatory nucleic acids represent a promising class of potential drugs for the treatment of tumoral and viral diseases due to their low toxicity and stimulation of the body’s own innate immunity by acting on the natural mechanisms of its activation. The repertoire of nucleic acids that directly interact with the components of the immune system is expanding with the improvement of both analytical methods and methods for the synthesis of nucleic acids and their derivatives. Despite the obvious progress in this area, the problem of delivering therapeutic acids to target cells as well as the unresolved issue of achieving a specific therapeutic effect based on activating the mechanism of interferon and anti-inflammatory cytokine synthesis. Minimizing the undesirable effects of excessive secretion of inflammatory cytokines remains an unsolved task. This review examines recent data on the types of immunostimulatory nucleic acids, the receptors interacting with them, and the mechanisms of immunity activation under the action of these molecules. Finally, data on immunostimulatory nucleic acids in ongoing and completed clinical trials will be summarized.
Collapse
|