151
|
Cornelli U, Bondiolotti G, Battelli G, Zanoni G, Finco A, Recchia M. Activity of 30 different cheeses on cholesterol plasma levels and Oxidative Balance Risk Index (OBRI) in a rat model. Int J Food Sci Nutr 2015; 66:383-90. [DOI: 10.3109/09637486.2015.1024205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
152
|
Münger LH, Jutzi S, Lampi AM, Nyström L. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ7-Sterols. Lipids 2015; 50:735-48. [DOI: 10.1007/s11745-015-4002-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022]
|
153
|
Serum cholesterol reduction efficacy of biscuits with added plant stanol ester. CHOLESTEROL 2015; 2015:353164. [PMID: 25861469 PMCID: PMC4377436 DOI: 10.1155/2015/353164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
Abstract
This study's aim was to test the low-density lipoprotein cholesterol- (LDL-c-) lowering efficacy of biscuits containing 2 g of plant stanols, which corresponded to 3.4 g of plant stanol esters. The biscuit is a new food format that can be consumed as a snack. In a double-blind, placebo-controlled parallel design study, 119 mildly to moderately hypercholesterolemic volunteers were randomized to plant stanol or control groups. Subjects were comparable in age, gender, lipid profiles, and body mass index. They consumed a control biscuit once a day for a two-week period, followed by a four-week intervention period that either had a plant stanol ester biscuit or a control. During the habitual diet, one biscuit per day was consumed at any time that subjects wished. Serum lipid profiles were measured at the first day of run-in, at baseline, and at the study's end. Compared to the control, the total cholesterol (TC), LDL-c, and the LDL-to-high-density lipoprotein (LDL/HDL) ratio had serum reductions of 4.9%, 6.1%, and 4.3%, respectively, and were observed after 4 weeks of biscuit consumption with added plant stanols (P < 0.05). A significantly higher reduction in LDL-c (8.9%) and LDL/HDL ratio (11.4%) was measured in those taking a plant stanol biscuit with a meal compared to those who consumed a plant stanol biscuit without other food. In conclusion, incorporating plant stanols into a biscuit is an attractive, convenient, and acceptable way to modestly lower elevated cholesterol concentrations. For optimal efficacy, biscuits should be consumed with a meal as part of a healthy diet.
Collapse
|
154
|
Mackay DS, Gebauer SK, Eck PK, Baer DJ, Jones PJH. Lathosterol-to-cholesterol ratio in serum predicts cholesterol-lowering response to plant sterol consumption in a dual-center, randomized, single-blind placebo-controlled trial. Am J Clin Nutr 2015; 101:432-9. [PMID: 25733626 DOI: 10.3945/ajcn.114.095356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Benefits of plant sterols (PS) for cholesterol lowering are compromised by large variability in efficacy across individuals. High fractional cholesterol synthesis measured by deuterium incorporation has been associated with nonresponse to PS consumption; however, prospective studies that show this association have yet to be conducted. OBJECTIVE The goal was to test whether the lathosterol-to-cholesterol ratio (L:C ratio), a surrogate marker of endogenous cholesterol synthesis, serves as an a priori predictor of cholesterol lowering in response to PS consumption. DESIGN Sixty-three mildly hypercholesterolemic adults who were preselected as possessing either high endogenous cholesterol synthesis [HS; n = 24; L:C = 2.03 ± 0.39 μmol/mmol (mean ± SD)] or low endogenous cholesterol synthesis (LS; n = 39; L:C = 0.99 ± 0.28 μmol/mmol) on the basis of baseline L:C consumed 2 g PS/d or a placebo for 28 d with the use of a dual-center, single-blind, randomized crossover design. Plasma lipid and noncholesterol sterol concentrations were measured at the end of each phase. RESULTS PS consumption lowered total cholesterol (TC; -0.25 ± 0.05 mmol/L; P < 0.0001) and LDL cholesterol (-0.17 ± 0.04 mmol/L; P < 0.0001) overall. Specifically, LS individuals responded to PS treatment with a reduction in TC (-0.40 ± 0.07 mmol/L; P < 0.0001) and LDL cholesterol (-0.29 ± 0.05 mmol/L; P = 0.0002), whereas HS individuals failed to show cholesterol lowering (TC: -0.09 ± 0.09 mmol/L; P = 0.2843; LDL cholesterol: -0.05 ± 0.07 mmol/L; P = 0.4917). The odds of LS participants responding to PS consumption with cholesterol lowering better than the mean cholesterol lowering in all participants were 4.25 (95% CI: 1.242, 14.556; P = 0.0211) for TC and 3.36 (95% CI: 1.112, 10.161; P = 0.0317) for LDL cholesterol, which was higher than for HS participants. CONCLUSIONS The L:C ratio predicts the extent of reduction in circulating TC and LDL cholesterol in response to PS consumption. Cholesterol synthesis assessment may thus have a use in identifying responders and nonresponders to PS therapy.
Collapse
Affiliation(s)
- Dylan S Mackay
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - Sarah K Gebauer
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - Peter K Eck
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - David J Baer
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| | - Peter J H Jones
- From the Richardson Centre for Functional Foods and Nutraceuticals (DSM, PKE, and PJHJ) and the Departments of Food Science (PJHJ) and Human Nutritional Sciences (DSM, PKE, and PJHJ), University of Manitoba, Winnipeg, Manitoba, Canada, and the USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD (SKG and DJB)
| |
Collapse
|
155
|
An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers. Br J Nutr 2015; 113:794-802. [DOI: 10.1017/s000711451400350x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant sterols and stanols inhibit intestinal cholesterol absorption and consequently lower serum LDL-cholesterol (LDL-C) concentrations. The underlying mechanisms are not yet known. In vitro and animal studies have suggested that changes in intestinal sterol metabolism are attributed to the LDL-C-lowering effects of plant stanol esters. However, similar studies in human subjects are lacking. Therefore, we examined the effects of an acute intake of plant stanol esters on gene expression profiles of the upper small intestine in healthy volunteers. In a double-blind cross-over design, fourteen healthy subjects (eight female and six male; age 21–55 years), with a BMI ranging from 21 to 29 kg/m2, received in random order a shake with or without plant stanol esters (4 g). At 5 h after consumption of the shake, biopsies were taken from the duodenum (around the papilla of Vater) and from the jejunum (20 cm distal from the papilla of Vater). Microarray analysis showed that the expression profiles of genes involved in sterol metabolism were not altered. Surprisingly, the pathways involved in T-cell functions were down-regulated in the jejunum. Furthermore, immunohistochemical analysis showed that the number of CD3 (cluster of differentiation number 3), CD4 (cluster of differentiation number 4) and Foxp3+ (forkhead box P3-positive) cells was reduced in the plant stanol ester condition compared with the control condition, which is in line with the microarray data. The physiological and functional consequences of the plant stanol ester-induced reduction of intestinal T-cell-based immune activity in healthy subjects deserve further investigation.
Collapse
|
156
|
Rideout TC, Carrier B, Wen S, Raslawsky A, Browne RW, Harding SV. Complementary Cholesterol-Lowering Response of a Phytosterol/α-Lipoic Acid Combination in Obese Zucker Rats. J Diet Suppl 2015; 13:283-99. [PMID: 25664679 DOI: 10.3109/19390211.2015.1008616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the cholesterol-lowering effectiveness of a phytosterol/α-lipoic acid (PS/αLA) therapy, thirty-two male Zucker rats were randomly assigned to 1 of 4 diets for 30 days: (i) high fat diet (HF, 40% energy from fat); (ii) HF diet supplemented with 3% phytosterols; (iii) HF diet supplemented with 0.25% αLA; or (iv) HF diet supplemented with PS (3%) and αLA (0.25%, PS/αLA). Compared with the HF diet, combination PS/αLA proved more effective in reducing non-HDL cholesterol (-55%) than either the PS (-24%) or the αLA (-25%) therapies alone. PS supplementation did not affect LDL particle number, however, αLA supplementation reduced LDL particle number when supplemented alone (-47%) or in combination with PS (-54%). Compared with the HF-fed animals, evidence of increased HDL-particle number was evident in all treatment groups to a similar extent (21-22%). PS-mediated interruption of intestinal cholesterol absorption was evident by increased fecal cholesterol loss (+52%) and compensatory increase in HMG-CoA reductase mRNA (1.6 fold of HF), however, αLA supplementation did not affect fecal cholesterol loss. Hepatic mRNA and protein expression patterns suggested that αLA modulated multiple aspects of cholesterol homeostasis including reduced synthesis (HMG-CoA reductase mRNA, 0.7 fold of HF), reduced bile acid synthesis (CYP7a1 expression, 0.17 of HF), and increased cholesterol clearance (reduced PCSK9 mRNA, 0.5 fold of HF; increased LDLr protein, 2 fold of HF). Taken together, this data suggests that PS and αLA work through unique and complementary mechanisms to provide a superior and more comprehensive cholesterol lowering response than either therapy alone.
Collapse
Affiliation(s)
- Todd C Rideout
- a 1 Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions , University at Buffalo , Buffalo , NY , USA
| | - Bradley Carrier
- a 1 Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions , University at Buffalo , Buffalo , NY , USA
| | - Shin Wen
- a 1 Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions , University at Buffalo , Buffalo , NY , USA
| | - Amy Raslawsky
- a 1 Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions , University at Buffalo , Buffalo , NY , USA
| | - Richard W Browne
- b 2 Biotechnical and Clinical Laboratory Sciences, University at Buffalo , Buffalo, NY, USA
| | - Scott V Harding
- c 3 Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
157
|
Liu Y, Lei L, Wang X, Ma KY, Li YM, Wang L, Man SW, Huang Y, Chen ZY. Plasma cholesterol-raising potency of dietary free cholesterol versus cholesteryl ester and effect of β-sitosterol. Food Chem 2015; 169:277-82. [DOI: 10.1016/j.foodchem.2014.07.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
|
158
|
Caimari A, Puiggròs F, Suárez M, Crescenti A, Laos S, Ruiz JA, Alonso V, Moragas J, del Bas JM, Arola L. The intake of a hazelnut skin extract improves the plasma lipid profile and reduces the lithocholic/deoxycholic bile acid faecal ratio, a risk factor for colon cancer, in hamsters fed a high-fat diet. Food Chem 2015; 167:138-44. [DOI: 10.1016/j.foodchem.2014.06.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 11/15/2022]
|
159
|
Lei L, Wang X, Huang W, Liu Y, Zheng F, Ma KY, Li YM, Wang L, Man SW, Zhang C, Chen ZY. Cholesterol side chain analogs but not its ether analogs possess cholesterol-lowering activity. Food Funct 2015; 6:630-4. [DOI: 10.1039/c4fo01044b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SI is hypocholesterolemic with little absorption, while CE and CM are well absorbed and have no effect on plasma cholesterol.
Collapse
Affiliation(s)
- Lin Lei
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Xiaobo Wang
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Weihuan Huang
- Institute of Traditional Chinese Medicine and Natural Products
- Jinan University
- Guangzhou
- China
| | - Yuwei Liu
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Fangrui Zheng
- Department of Chemistry
- Chinese University of Hong Kong
- Shatin, NT
- China
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Yuk Man Li
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Lijun Wang
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Sun Wa Man
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Chengnan Zhang
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin, NT
- China
| |
Collapse
|
160
|
Wang X, Huang W, Lei L, Liu Y, Ma KY, Li YM, Wang L, Huang Y, Chen ZY. Blockage of hydroxyl group partially abolishes the cholesterol-lowering activity of β-sitosterol. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
161
|
Maki KC, Lawless AL, Kelley KM, Kaden VN, Geiger CJ, Dicklin MR. Corn oil improves the plasma lipoprotein lipid profile compared with extra-virgin olive oil consumption in men and women with elevated cholesterol: Results from a randomized controlled feeding trial. J Clin Lipidol 2015; 9:49-57. [DOI: 10.1016/j.jacl.2014.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/10/2014] [Accepted: 10/20/2014] [Indexed: 01/15/2023]
|
162
|
Liu Y, Guan L, Zhao Y, Lei L, Wang X, Ma KY, Li YM, Wang L, Man SW, Wang J, Huang Y, Chen ZY. Fatty acid moieties have little effect on cholesterol-lowering potency of plant sterol esters. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuwei Liu
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Lei Guan
- R&D; Nestle; Beijing P. R. China
| | | | - Lin Lei
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Xiaobo Wang
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Yuk Man Li
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Lijun Wang
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Sun Wa Man
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | | | - Yu Huang
- School of Biomedical Sciences; Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| |
Collapse
|
163
|
Schonewille M, Brufau G, Shiri-Sverdlov R, Groen AK, Plat J. Serum TG-lowering properties of plant sterols and stanols are associated with decreased hepatic VLDL secretion. J Lipid Res 2014; 55:2554-61. [PMID: 25348863 DOI: 10.1194/jlr.m052407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant sterols and stanols are structurally similar to cholesterol and when added to the diet they are able to reduce serum total- and LDL-cholesterol concentrations. They also lower serum triglyceride concentrations in humans, particularly under conditions of hypertriglyceridemia. The aim of this study was to unravel the mechanism by which plant sterols and stanols reduce serum triglyceride concentrations in high-fat diet (HFD) fed mice. Male C57BL/6J mice were fed HFD for 4 weeks. Subsequently, they received HFD, HFD supplemented with 3.1% plant sterol ester (PSE) or HFD supplemented with 3.1% plant stanol ester (PSA) for another three weeks. Both PSE and PSA feeding resulted in decreased plasma triglyceride concentrations compared with HFD, while plasma cholesterol levels were unchanged. Interestingly, hepatic cholesterol levels were decreased in the PSE/PSA groups compared with HFD and no differences were found in hepatic triglyceride levels between groups. To investigate the mechanism underlying the hypotriglyceridemic effects from PSE/PSA feeding, we measured chylomicron and VLDL secretion. PSE and PSA feeding resulted in reduced VLDL secretion, while no differences were found between groups in chylomicron secretion. In conclusion, our data indicate that plasma triglyceride-lowering resulting from PSE and PSA feeding is associated with decreased hepatic VLDL secretion.
Collapse
Affiliation(s)
- Marleen Schonewille
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma Brufau
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Albert K Groen
- Departments of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
164
|
De Smet E, Mensink RP, Lütjohann D, Plat J. Acute effects of plant stanol esters on postprandial metabolism and its relation with changes in serum lipids after chronic intake. Eur J Clin Nutr 2014; 69:127-33. [DOI: 10.1038/ejcn.2014.200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 01/25/2023]
|
165
|
Aldini R, Micucci M, Cevenini M, Fato R, Bergamini C, Nanni C, Cont M, Camborata C, Spinozzi S, Montagnani M, Roda G, D'Errico-Grigioni A, Rosini F, Roda A, Mazzella G, Chiarini A, Budriesi R. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study. PLoS One 2014; 9:e108112. [PMID: 25268769 PMCID: PMC4182327 DOI: 10.1371/journal.pone.0108112] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/18/2014] [Indexed: 01/04/2023] Open
Abstract
Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects.
Collapse
Affiliation(s)
- Rita Aldini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Matteo Micucci
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Monica Cevenini
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Massimiliano Cont
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Cecilia Camborata
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Silvia Spinozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Marco Montagnani
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Giulia Roda
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | | | - Francesca Rosini
- DIMES Department, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Giuseppe Mazzella
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Alberto Chiarini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| |
Collapse
|
166
|
Laos S, Caimari A, Crescenti A, Lakkis J, Puiggròs F, Arola L, del Bas JM. Long-term intake of soyabean phytosterols lowers serum TAG and NEFA concentrations, increases bile acid synthesis and protects against fatty liver development in dyslipidaemic hamsters. Br J Nutr 2014; 112:663-73. [PMID: 24932972 DOI: 10.1017/s0007114514001342] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various human trials and pre-clinical studies have suggested that dietary plant sterols possess hypotriacylglycerolaemic properties apart from their cholesterol-lowering properties. We hypothesised that phytosterols (PS) might attenuate triacylglycerolaemia by interfering with the deleterious effects of cholesterol overload in the liver. In the present study, twenty hamsters (Mesocricetus auratus) with diet-induced combined hyperlipidaemia were fed a high-fat diet (HFD, n 10) or a HFD supplemented with soyabean PS (n 10) for 40 d. In parallel, a healthy group was fed a standard diet (n 10). PS normalised fasting plasma cholesterol concentrations completely after 20 d and were also able to normalise serum TAG and NEFA concentrations after 40 d. HFD feeding caused microvesicular steatosis and impaired the expression of key genes related to fatty acid oxidation such as PPARA, carnitine palmitoyltransferase-Iα (CPT1A) and phosphoenolpyruvate carboxykinase 1 (PCK1) in the liver. PS treatment completely protected against HFD-induced steatosis and resulted in a normalised hepatic gene expression profile. The protection of the hepatic function by PS was paralleled by increased faecal cholesterol excretion along with a 2-fold increase in the biliary bile acid (BA):cholesterol ratio. The present study supports the conclusion that long-term consumption of PS can reduce serum TAG and NEFA concentrations and can protect against the development of fatty liver via different mechanisms, including the enhancement of BA synthesis. The results of the present study place these compounds as promising hepatoprotective agents against fatty liver and its derived pathologies.
Collapse
Affiliation(s)
- Sirle Laos
- Centre Tecnològic de Nutrició i Salut (CTNS),TECNIO, CEICS, Avinguda Universitat 1,43204Reus, Tarragona,Spain
| | - Antoni Caimari
- Centre Tecnològic de Nutrició i Salut (CTNS),TECNIO, CEICS, Avinguda Universitat 1,43204Reus, Tarragona,Spain
| | - Anna Crescenti
- Centre Tecnològic de Nutrició i Salut (CTNS),TECNIO, CEICS, Avinguda Universitat 1,43204Reus, Tarragona,Spain
| | | | - Francesc Puiggròs
- Centre Tecnològic de Nutrició i Salut (CTNS),TECNIO, CEICS, Avinguda Universitat 1,43204Reus, Tarragona,Spain
| | - Lluís Arola
- Centre Tecnològic de Nutrició i Salut (CTNS),TECNIO, CEICS, Avinguda Universitat 1,43204Reus, Tarragona,Spain
| | - Josep Maria del Bas
- Centre Tecnològic de Nutrició i Salut (CTNS),TECNIO, CEICS, Avinguda Universitat 1,43204Reus, Tarragona,Spain
| |
Collapse
|
167
|
Vásquez-Trespalacios EM, Romero-Palacio J. Efficacy of yogurt drink with added plant stanol esters (Benecol®, Colanta) in reducing total and LDL cholesterol in subjects with moderate hypercholesterolemia: a randomized placebo-controlled crossover trial NCT01461798. Lipids Health Dis 2014; 13:125. [PMID: 25099071 PMCID: PMC4283152 DOI: 10.1186/1476-511x-13-125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiovascular diseases have become the leading cause of death from chronic diseases in the world. Main risk factors include hypercholesterolemia, which is caused in most cases by a high saturated fat diet. Plant stanol esters partly block cholesterol absorption in the digestive tract and thereby reduce total cholesterol and low-density lipoprotein (LDL) cholesterol serum levels. Based on epidemiological data, a 10 percent reduction of LDL cholesterol leads to a 20 percent decrease in the coronary heart disease risk throughout life. The aim of this study was to evaluate the efficacy of yogurt drink with added plant stanol esters (Benecol® yogurt drink) in higher doses than the typically used (2g/d stanols), in lowering blood lipids in moderately hypercholesterolemic subjects. METHODS A randomized double-blind crossover, placebo-controlled study in moderately hypercholesterolemic subjects (n = 40) aged between 20 and 50 years old. RESULTS Yogurt drink with added plant stanols (4 g) as esters (Benecol®, Colanta) consumption compared to regular yogurt drink caused a statistically significant decrease in total cholesterol and low density lipoprotein cholesterol by 7.2% and 10.3%. During the two periods and compared to controls, high-density lipoprotein cholesterol and triglycerides were not significantly different. CONCLUSIONS Yogurt drink with an active ingredient in Benecol®, plant stanol esters, reduced total cholesterol and LDL cholesterol in moderately hypercholesterolemic subjects. TRIAL REGISTRATION NCT01461798.
Collapse
|
168
|
Rebello CJ, Greenway FL, Finley JW. Whole grains and pulses: a comparison of the nutritional and health benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7029-7049. [PMID: 24992700 DOI: 10.1021/jf500932z] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nutrition plays an important role in the prevention and management of disease. Whole grain cereals contain a host of nutrients and bioactive substances that have health-promoting effects. Epidemiological evidence shows a consistent inverse association between whole grain intake and the risk of chronic disease. Despite a concerted effort by scientists, educators, and policy makers to promote the consumption of whole grains, it remains dismally short of the recommended intakes. Pulses (dried beans and peas) differ from whole grains in their structural and physicochemical properties and have varying amounts of fiber, resistant starch, vitamins, minerals, and other bioactive components; nevertheless, these food groups complement each other. Observational as well as intervention trials show that pulse consumption has beneficial effects on the prevention and management of chronic disease. The nutritional and phytochemical components of pulses coupled with those of whole grains suggest a potential synergistic effect that could provide significant health benefits.
Collapse
Affiliation(s)
- Candida J Rebello
- School of Nutrition and Food Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
169
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
170
|
Andersson AA, Dimberg L, Åman P, Landberg R. Recent findings on certain bioactive components in whole grain wheat and rye. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
171
|
Alemany L, Barbera R, Alegría A, Laparra JM. Plant sterols from foods in inflammation and risk of cardiovascular disease: a real threat? Food Chem Toxicol 2014; 69:140-9. [PMID: 24747512 DOI: 10.1016/j.fct.2014.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/11/2022]
Abstract
High dietary intakes of cholesterol together with sedentary habits have been identified as major contributors to atherosclerosis. The latter has long been considered a cholesterol storage disease; however, today atherosclerosis is considered a more complex disease in which both innate and adaptive immune-inflammatory mechanisms as well as bacteria play a major role, in addition to interactions between the arterial wall and blood components. This scenario has promoted nutritional recommendations to enrich different type of foods with plant sterols (PS) because of their cholesterol-lowering effects. In addition to cholesterol, PS can also be oxidized during food processing or storage, and the oxidized derivatives, known as phytosterol oxidation products (POPs), can make an important contribution to the negative effects of both cholesterol and cholesterol oxidation oxides (COPs) in relation to inflammatory disease onset and the development of atherosclerosis. Most current research efforts have focused on COPs, and evaluations of the particular role and physiopathological implications of specific POPs have been only inferential. Appreciation of the inflammatory role described for both COPs and POPs derived from foods also provides additional reasons for safety studies after long-term consumption of PS. The balance and relevance for health of all these effects deserves further studies in humans. This review summarizes current knowledge about the presence of sterol oxidation products (SOPs) in foods and their potential role in inflammatory process and cardiovascular disease.
Collapse
Affiliation(s)
- L Alemany
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - R Barbera
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - A Alegría
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - J M Laparra
- Microbial Ecology and Nutrition Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
172
|
O’Callaghan Y, McCarthy FO, O’Brien NM. Recent advances in Phytosterol Oxidation Products. Biochem Biophys Res Commun 2014; 446:786-91. [DOI: 10.1016/j.bbrc.2014.01.148] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 02/02/2023]
|
173
|
Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, Jones PJ, Lütjohann D, Maerz W, Masana L, Silbernagel G, Staels B, Borén J, Catapano AL, De Backer G, Deanfield J, Descamps OS, Kovanen PT, Riccardi G, Tokgözoglu L, Chapman MJ. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014; 232:346-60. [DOI: 10.1016/j.atherosclerosis.2013.11.043] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 01/02/2023]
|
174
|
Scicchitano P, Cameli M, Maiello M, Modesti PA, Muiesan ML, Novo S, Palmiero P, Saba PS, Pedrinelli R, Ciccone MM. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J Funct Foods 2014; 6:11-32. [DOI: 10.1016/j.jff.2013.12.006] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
175
|
Chávez-Santoscoy RA, Tovar AR, Serna-Saldivar SO, Torres N, Gutiérrez-Uribe JA. Conjugated and free sterols from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors and their effect on lipid metabolism and cholesterol transport in rat primary hepatocytes. GENES AND NUTRITION 2013; 9:367. [PMID: 24292989 DOI: 10.1007/s12263-013-0367-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/08/2013] [Indexed: 11/21/2022]
Abstract
Phytosterols have been widely studied for their cholesterol-lowering effect. Conjugated phytosterol forms have been found more active than free moieties. There are no reports about the sterol profile of black bean seed coats neither its effects on cholesterol metabolism. The aim of this research was to identify and quantify phytosterols from black bean seed coats and to determine their effects on cholesterol micellar solubility and on mRNA and key protein levels involved in lipid/cholesterol metabolism and cholesterol transport in primary rat hepatocytes. Free phytosterols, acylated steryl glycosides, and steryl glycosides were extracted from black bean seed coats. They were identified through HPLC-MS-TOF and quantified through HPLC equipped with UV-visible and evaporative light-scattering detectors. Free and conjugated phytosterols from the coats significantly increased the inhibitory effect of cholesterol micelle formation compared with stigmasterol, which was used as control (P < 0.05). In addition, phytosterols of black bean seed coat decreased lipogenesis by the downregulation of lipogenic proteins such as sterol regulatory element-binding protein 1 and fatty acid synthesis (FAS) in primary rat hepatocytes. Regarding β-oxidation, phytosterols upregulated the expression of carnitine palmitoyltransferase I and promoted the β-oxidation of long-chain fatty acids. Phytosterols inhibited cholesterol micellar solubility and reduced the activation of the liver X receptor, decreasing hepatic FAS and promoting hepatic β-oxidation of long-chain fatty acids.
Collapse
Affiliation(s)
- Rocio A Chávez-Santoscoy
- Departamento de Biotecnología e Ingeniería de Alimentos, Centro de Biotecnología FEMSA, Tecnológico de Monterrey-Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | | | | | | | | |
Collapse
|
176
|
del Castillo MD, Martinez-Saez N, Amigo-Benavent M, Silvan JM. Phytochemomics and other omics for permitting health claims made on foods. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
177
|
Zhang H, Bartley GE, Zhang H, Jing W, Fagerquist CK, Zhong F, Yokoyama W. Peptides identified in soybean protein increase plasma cholesterol in mice on hypercholesterolemic diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8389-8395. [PMID: 23937379 DOI: 10.1021/jf4022288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The in vitro micellar cholesterol displacement assay has been used to identify peptides that may potentially reduce cholesterol in vivo. Two of these peptides, LPYPR and WGAPSL, derived from soybean protein (SP) that have been reported to displace cholesterol from micelles were tested by feeding them as a part of a hypercholesterolemic diet to mice for 3 weeks. Except reduction of very low-density lipoprotein cholesterol (VLDL-C) and triglyceride contents, the peptide-containing diets increased plasma cholesterol content with the increasing dose of the peptides. Mice fed diets supplemented with the peptides also had lower fecal bile acid excretion. Negative correlations between fecal bile acid excretion and plasma total cholesterol content (r = -0.876, P = 0.062) and non-HDL-C content (r = -0.831, P = 0.084) were observed. The mRNA levels of the genes for cholesterol and bile acid metabolism, CYP51, LDLR, CYP7A1, and LPL, were up-regulated in mice fed diets supplemented with peptides except the group fed the low dose of WGAPSL. The results suggested that higher plasma total cholesterol content possibly due to lower fecal steroid excretion as well as lower VLDL-C and triglyceride contents might due to the up-regulated expression levels of the genes CYP51, LDLR, and LPL.
Collapse
Affiliation(s)
- Huijuan Zhang
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University , Beijing 100048, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
178
|
He WS, Wang MG, Pan XX, Li JJ, Jia CS, Zhang XM, Feng B. Role of plant stanol derivatives in the modulation of cholesterol metabolism and liver gene expression in mice. Food Chem 2013; 140:9-16. [DOI: 10.1016/j.foodchem.2013.02.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 12/27/2022]
|
179
|
Rondanelli M, Monteferrario F, Faliva MA, Perna S, Antoniello N. Key points for maximum effectiveness and safety for cholesterol-lowering properties of plant sterols and use in the treatment of metabolic syndrome. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2605-2610. [PMID: 23584958 DOI: 10.1002/jsfa.6174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/02/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
According to the American Diabetes Association and the Adult Treatment Panel III, the starting point for treating metabolic syndrome (MS) is a change of lifestyle. In addition, action on the main symptoms of MS by means of dietary supplements, can be helpful in view of the chronic course of the disease. The term 'phytosterols' refers to sterols and stanols composed of lipophilic triterpenes, a family that is widely distributed in the plant kingdom and whose cholesterol-lowering properties have been amply demonstrated. In the light of the recent literature, the key points for maximum effectiveness and safety of sterols are the following. (A) Plant sterols should be taken with meals: clinical trials have shown that when plant sterols are consumed close to mealtimes, low-density lipoprotein cholesterol may decrease by 9.4%, while when they are taken between meals, the reduction is about 6%. (B) The optimal dosage is 2-2.5 g day(-1) in a single dose. More than 3 g day(-1) has not been found to have any additional beneficial effect and increases the risk of side effects. (C) The food matrix used to dissolve the phytosterols should contain a certain amount of fat. A milk-based matrix appears optimal from this point of view.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Human Nutrition Section, Health Sciences Department, University of Pavia, Azienda di Servizi alla Persona, Pavia, Italy
| | | | | | | | | |
Collapse
|
180
|
Mo S, Dong L, Hurst WJ, van Breemen RB. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids 2013; 48:949-56. [PMID: 23884629 DOI: 10.1007/s11745-013-3813-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 06/11/2013] [Indexed: 01/11/2023]
Abstract
Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays.
Collapse
Affiliation(s)
- Shunyan Mo
- Department of Medicinal Chemistry and Pharmacognosy, UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, M/C 781, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
181
|
|
182
|
Alemany L, Laparra JM, Barberá R, Alegría A. Relative expression of cholesterol transport-related proteins and inflammation markers through the induction of 7-ketosterol-mediated stress in Caco-2 cells. Food Chem Toxicol 2013; 56:247-53. [PMID: 23454145 DOI: 10.1016/j.fct.2013.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 01/30/2023]
Abstract
Human diets contain sterol oxidation products that can induce cytotoxic effects, mainly caused by cholesterol oxides. However, phytosterol oxides effects have been less extensively investigated. This study evaluates the production of inflammatory biomarkers (IL-1β, IL-8, IL-10, TNFα) and the influence of gene expression transporters and enzymes related to cholesterol absorption and metabolism (NPC1L1, ABCG5/8, HMGCoA, ACAT) produced by 7-ketosterols (stigmasterol/cholesterol) in Caco-2 cells. These effects were linked to intracellular signaling pathways by using several inhibitors. Results showed 7-ketostigmasterol to have a greater proinflammatory potential than 7-ketocholesterol. In non-pre-treated cells, only efflux transporters were down-regulated by 7-ketosterols, showing a greater influence upon ABCG5 expression. Cell-pre-incubation with bradykinin induced changes in ABCG expression levels after 7-ketostigmasterol-incubation; however, the energetic metabolism inhibition reduced NPC1L1 expression only in 7-ketocholesterol-incubated cells. In non-pre-treated cells, HMG-CoA was up-regulated by both 7-ketosterols. However, exposure to inhibitors down-regulated the expression levels, mainly in 7-ketocholesterol-incubated cells. While ACAT expression values in non-pre-treated cells were unchanged, exposure to inhibitors caused down-regulation of mRNA levels. These results suggest that internalization and excretion of 7-ketostigmasterol is probably influenced by [Ca]i, which also could mediate HMGCoA activity in POPs metabolism. However, energetic metabolism and reducing equivalents exert different influences upon the 7-ketosterol internalization.
Collapse
Affiliation(s)
- L Alemany
- Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
183
|
Hyötyläinen T, Bondia-Pons I, Orešič M. Lipidomics in nutrition and food research. Mol Nutr Food Res 2013; 57:1306-18. [DOI: 10.1002/mnfr.201200759] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/07/2012] [Accepted: 12/29/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Matej Orešič
- VTT Technical Research Centre of Finland; Espoo; Finland
| |
Collapse
|
184
|
Cagliero P, Calosso G, Brunatti P, Guardamagna O. Nutraceuticals in Hypercholesterolemic children. Health (London) 2013. [DOI: 10.4236/health.2013.57151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
185
|
Progress and prospective of plant sterol and plant stanol research: Report of the Maastricht meeting. Atherosclerosis 2012; 225:521-33. [DOI: 10.1016/j.atherosclerosis.2012.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/16/2012] [Indexed: 12/29/2022]
|
186
|
He WS, Ma Y, Pan XX, Li JJ, Wang MG, Yang YB, Jia CS, Zhang XM, Feng B. Efficient solvent-free synthesis of phytostanyl esters in the presence of acid-surfactant-combined catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9763-9769. [PMID: 22920263 DOI: 10.1021/jf302958g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An efficient approach based on the synthesis of phytostanyl esters with an acid-surfactant-combined catalyst in a solvent-free system was developed. The effect of catalyst dose, substrate molar ratio, reaction temperature, and acyl donor was considered. The reaction conditions were further optimized by response surface methodology, and a high yield of phytostanyl laurate (>92%) was obtained under optimum conditions: 3.17:1 molar ratio of lauric acid to plant stanols, 4.01% catalyst dose (w/w), 119 °C, and 4.1 h. FT-IR, MS, and NMR were adopted to confirm the chemical structure of phytostanyl laurate. Meanwhile, the physiochemical properties of different phytostanyl esters were investigated. Compared with phytostanols, the prepared phytostanyl esters had much lower melting temperature and higher oil solubility. There was no obvious difference in melting and solidification properties between sunflower oil with phytostanyl laurate (<5%) or oleate (<10%) and the original sunflower oil, suggesting that the esterification of phytostanols greatly facilitated their corporation into oil-based foods.
Collapse
Affiliation(s)
- Wen-Sen He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Vanmierlo T, Husche C, Schött HF, Pettersson H, Lütjohann D. Plant sterol oxidation products--analogs to cholesterol oxidation products from plant origin? Biochimie 2012; 95:464-72. [PMID: 23009926 DOI: 10.1016/j.biochi.2012.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/15/2012] [Indexed: 12/27/2022]
Abstract
Cholesterol and plant sterols are lipids which are abundantly present in a western type diet of animal and plant origin, respectively. The daily intake averages 300 mg/day each. Over the past decades, a steadily increasing consumption of plant sterol enriched dairy products (2-3 g/day) took place to lower circulating LDL cholesterol concentrations. Like all unsaturated components, plant sterols can be attacked by reactive oxygen species resulting in plant sterol oxidation products (POPs). The most widespread methods for POP determination are high-performance liquid chromatography and gas-liquid chromatography. Yet, based on the low plasma POP concentrations in normophytosterolemic subjects (POPs: ∼0.3-4.5 ng/mL), a reliable quantification yielding an appropriate limit of detection remains a challenge. While the more abundantly present cholesterol oxidation products (COPs) have elaborately been studied, research on the metabolism and biological effects of POPs is only emerging. In relation to atherogenity, biological effects including modulation of cholesterol homeostasis, membrane functioning, and inflammation are attributed to POPs. Although mostly supra-physiological concentrations are applied in in vitro assays, anti-tumor activity, cytotoxicity and estrogen-competition have been attributed to specific POPs. However, it is not obvious, if and how POPs may exert in vivo adverse or beneficial health effects similar to those attributed to COPs. In the field of nutritional science, standardized methods for the determination of POPs are required to perform relevant biological studies and to assess their presence in complex foods or biological tissues and fluids. The aim of this review is to provide an overview and evaluation of the published methods and an update on the biological effects attributed to POPs.
Collapse
Affiliation(s)
- T Vanmierlo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | |
Collapse
|