151
|
Afzali M, Nilsson M, Palombo M, Jones DK. SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI. Neuroimage 2021; 237:118183. [PMID: 34020013 PMCID: PMC8285594 DOI: 10.1016/j.neuroimage.2021.118183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called 'b-tensor' encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of 7μm, while the second, pure Monte Carlo simulations, yielded a lower limit of 3μm and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden.
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
152
|
Thapaliya K, Marshall-Gradisnik S, Staines D, Barnden L. Diffusion tensor imaging reveals neuronal microstructural changes in myalgic encephalomyelitis/chronic fatigue syndrome. Eur J Neurosci 2021; 54:6214-6228. [PMID: 34355438 PMCID: PMC9291819 DOI: 10.1111/ejn.15413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients suffer from a variety of physical and neurological complaints indicating the central nervous system plays a role in ME/CFS pathophysiology. Diffusion tensor imaging (DTI) has been used to study microstructural changes in neurodegenerative diseases. In this study, we evaluated DTI parameters to investigate microstructural abnormalities in ME/CFS patients. We estimated DTI parameters in 25 ME/CFS patients who met Fukuda criteria (ME/CFSFukuda ), 18 ME/CFS patients who met International Consensus Criteria (ICC) (ME/CFSICC ) only and 26 healthy control (HC) subjects. In addition to voxel-based DTI-parameter group comparisons, we performed voxel-based DTI-parameter interaction-with-group regressions with clinical and autonomic measures to test for abnormal regressions. Group comparisons between ME/CFSICC and HC detected significant clusters (a) with decreased axial diffusivity (p = .001) and mean diffusivity (p = .01) in the descending cortico-cerebellar tract in the midbrain and pons and (b) with increased transverse diffusivity in the medulla. The mode of anisotropy was significantly decreased (p = .001) in a cluster in the superior longitudinal fasciculus region. Voxel-based group comparisons between ME/CFSFukuda and HC did not detect significant clusters. For ME/CFSICC and HC, DTI parameter interaction-with-group regressions were abnormal for the clinical measures of information processing score, SF36 physical, sleep disturbance score and respiration rate in both grey and white matter regions. Our study demonstrated that DTI parameters are sensitive to microstructural changes in ME/CFSICC and could potentially act as an imaging biomarker of abnormal pathophysiology in ME/CFS. The study also shows that strict case definitions are essential in investigation of the pathophysiology of ME/CFS.
Collapse
Affiliation(s)
- Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
153
|
Huber E, Mezer A, Yeatman JD. Neurobiological underpinnings of rapid white matter plasticity during intensive reading instruction. Neuroimage 2021; 243:118453. [PMID: 34358657 DOI: 10.1016/j.neuroimage.2021.118453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
Diffusion MRI is a powerful tool for imaging brain structure, but it is challenging to discern the biological underpinnings of plasticity inferred from these and other non-invasive MR measurements. Biophysical modeling of the diffusion signal aims to render a more biologically rich image of tissue microstructure, but the application of these models comes with important caveats. A separate approach for gaining biological specificity has been to seek converging evidence from multi-modal datasets. Here we use metrics derived from diffusion kurtosis imaging (DKI) and the white matter tract integrity (WMTI) model along with quantitative MRI measurements of T1 relaxation to characterize changes throughout the white matter during an 8-week, intensive reading intervention (160 total hours of instruction). Behavioral measures, multi-shell diffusion MRI data, and quantitative T1 data were collected at regular intervals during the intervention in a group of 33 children with reading difficulties (7-12 years old), and over the same period in an age-matched non-intervention control group. Throughout the white matter, mean 'extra-axonal' diffusivity was inversely related to intervention time. In contrast, model estimated axonal water fraction (AWF), overall diffusion kurtosis, and T1 relaxation time showed no significant change over the intervention period. Both diffusion and quantitative T1 based metrics were correlated with pre-intervention reading performance, albeit with distinct anatomical distributions. These results are consistent with the view that rapid changes in diffusion properties reflect phenomena other than widespread changes in myelin density. We discuss this result in light of recent work highlighting non-axonal factors in experience-dependent plasticity and learning.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Aviv Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA; Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA 95305, USA
| |
Collapse
|
154
|
Ianus A, Alexander DC, Zhang H, Palombo M. Mapping complex cell morphology in the grey matter with double diffusion encoding MR: A simulation study. Neuroimage 2021; 241:118424. [PMID: 34311067 PMCID: PMC8961003 DOI: 10.1016/j.neuroimage.2021.118424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
This paper investigates the impact of cell body (namely soma) size and branching of cellular projections on diffusion MR imaging (dMRI) and spectroscopy (dMRS) signals for both standard single diffusion encoding (SDE) and more advanced double diffusion encoding (DDE) measurements using numerical simulations. The aim is to investigate the ability of dMRI/dMRS to characterize the complex morphology of brain cells focusing on these two distinctive features of brain grey matter. To this end, we employ a recently developed computational framework to create three dimensional meshes of neuron-like structures for Monte Carlo simulations, using diffusion coefficients typical of water and brain metabolites. Modelling the cellular structure as realistically connected spherical soma and cylindrical cellular projections, we cover a wide range of combinations of sphere radii and branching order of cellular projections, characteristic of various grey matter cells. We assess the impact of spherical soma size and branching order on the b-value dependence of the SDE signal as well as the time dependence of the mean diffusivity (MD) and mean kurtosis (MK). Moreover, we also assess the impact of spherical soma size and branching order on the angular modulation of DDE signal at different mixing times, together with the mixing time dependence of the apparent microscopic anisotropy (μA), a promising contrast derived from DDE measurements. The SDE results show that spherical soma size has a measurable impact on both the b-value dependence of the SDE signal and the MD and MK diffusion time dependence for both water and metabolites. On the other hand, we show that branching order has little impact on either, especially for water. In contrast, the DDE results show that spherical soma size has a measurable impact on the DDE signal's angular modulation at short mixing times and the branching order of cellular projections significantly impacts the mixing time dependence of the DDE signal's angular modulation as well as of the derived μA, for both water and metabolites. Our results confirm that SDE based techniques may be sensitive to spherical soma size, and most importantly, show for the first time that DDE measurements may be more sensitive to the dendritic tree complexity (as parametrized by the branching order of cellular projections), paving the way for new ways of characterizing grey matter morphology, non-invasively using dMRS and potentially dMRI.
Collapse
Affiliation(s)
- A Ianus
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - D C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - H Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - M Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom.
| |
Collapse
|
155
|
Mushtaha FN, Kuehn TK, El-Deeb O, Rohani SA, Helpard LW, Moore J, Ladak H, Moehring A, Baron CA, Khan AR. Design and characterization of a 3D-printed axon-mimetic phantom for diffusion MRI. Magn Reson Med 2021; 86:2482-2496. [PMID: 34196049 PMCID: PMC8596689 DOI: 10.1002/mrm.28886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE To introduce and characterize inexpensive and easily produced 3D-printed axon-mimetic diffusion MRI phantoms in terms of pore geometry and diffusion kurtosis imaging metrics. METHODS Phantoms were 3D-printed with a composite printing material that, after the dissolution of the polyvinyl alcohol, exhibits microscopic fibrous pores. Confocal microscopy and synchrotron phase-contrast micro-CT imaging were performed to visualize and assess the pore sizes. Diffusion MRI scans of four identical phantoms and phantoms with varying print parameters in water were performed at 9.4 T. Diffusion kurtosis imaging was fit to both data sets and used to assess the reproducibility between phantoms and effects of print parameters on diffusion kurtosis imaging metrics. Identical scans were performed 25 and 76 days later, to test their stability. RESULTS Segmentation of pores in three microscopy images yielded a mean, median, and SD of equivalent pore diameters of 7.57 μm, 3.51 μm, and 12.13 μm, respectively. Phantoms had T1 /T2 = 2 seconds/180 ms, and those with identical parameters showed a low coefficient of variation (~10%) in mean diffusivity (1.38 × 10-3 mm2 /s) and kurtosis (0.52) metrics and radial diffusivity (1.01 × 10-3 mm2 /s) and kurtosis (1.13) metrics. Printing temperature and speed had a small effect on diffusion kurtosis imaging metrics (< 16%), whereas infill density had a larger and more variable effect (> 16%). The stability analysis showed small changes over 2.5 months (< 7%). CONCLUSION Three-dimension-printed axon-mimetic phantoms can mimic the fibrous structure of axon bundles on a microscopic scale, serving as complex, anisotropic diffusion MRI phantoms.
Collapse
Affiliation(s)
- Farah N Mushtaha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Canada
| | - Tristan K Kuehn
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Canada.,School of Biomedical Engineering, Western University, London, Canada
| | - Omar El-Deeb
- Department of Biology, Western University, London, Canada
| | - Seyed A Rohani
- School of Biomedical Engineering, Western University, London, Canada
| | - Luke W Helpard
- School of Biomedical Engineering, Western University, London, Canada
| | - John Moore
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Canada
| | - Hanif Ladak
- School of Biomedical Engineering, Western University, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Electrical and Computer Engineering, Western University, London, Canada
| | | | - Corey A Baron
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Canada.,School of Biomedical Engineering, Western University, London, Canada.,Imaging Research Laboratories, Robarts Research Institute, Western University, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,The Brain and Mind Institute, Western University, London, Canada
| | - Ali R Khan
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Canada.,Department of Biology, Western University, London, Canada.,Imaging Research Laboratories, Robarts Research Institute, Western University, London, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,The Brain and Mind Institute, Western University, London, Canada
| |
Collapse
|
156
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
157
|
Zhou FL, McHugh DJ, Li Z, Gough JE, Williams GR, Parker GJM. Coaxial electrospun biomimetic copolymer fibres for application in diffusion magnetic resonance imaging. BIOINSPIRATION & BIOMIMETICS 2021; 16:046016. [PMID: 33706299 DOI: 10.1088/1748-3190/abedcf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Objective. The use of diffusion magnetic resonance imaging (dMRI) opens the door to characterizing brain microstructure because water diffusion is anisotropic in axonal fibres in brain white matter and is sensitive to tissue microstructural changes. As dMRI becomes more sophisticated and microstructurally informative, it has become increasingly important to use a reference object (usually called an imaging phantom) for validation of dMRI. This study aims to develop axon-mimicking physical phantoms from biocopolymers and assess their feasibility for validating dMRI measurements.Approach. We employed a simple and one-step method-coaxial electrospinning-to prepare axon-mimicking hollow microfibres from polycaprolactone-b-polyethylene glycol (PCL-b-PEG) and poly(D, L-lactide-co-glycolic) acid (PLGA), and used them as building elements to create axon-mimicking phantoms. Electrospinning was firstly conducted using two types of PCL-b-PEG and two types of PLGA with different molecular weights in various solvents, with different polymer concentrations, for determining their spinnability. Polymer/solvent concentration combinations with good fibre spinnability were used as the shell material in the following co-electrospinning process in which the polyethylene oxide polymer was used as the core material. Following the microstructural characterization of both electrospun and co-electrospun fibres using optical and electron microscopy, two prototype phantoms were constructed from co-electrospun anisotropic hollow microfibres after inserting them into water-filled test tubes.Main results. Hollow microfibres that mimic the axon microstructure were successfully prepared from the appropriate core and shell material combinations. dMRI measurements of two phantoms on a 7 tesla (T) pre-clinical scanner revealed that diffusivity and anisotropy measurements are in the range of brain white matter.Significance. This feasibility study showed that co-electrospun PCL-b-PEG and PLGA microfibre-based axon-mimicking phantoms could be used in the validation of dMRI methods which seek to characterize white matter microstructure.
Collapse
Affiliation(s)
- Feng-Lei Zhou
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, United Kingdom
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Damien J McHugh
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Zhanxiong Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, United Kingdom
- Bioxydyn Limited, Manchester, United Kingdom
| |
Collapse
|
158
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and cognitive decline: MRI and cellular evidence. Ann N Y Acad Sci 2021; 1500:17-33. [PMID: 34114212 DOI: 10.1111/nyas.14617] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Extensive evidence supports the association between age-related hearing loss (ARHL) and cognitive decline. It is, however, unknown whether a causal relationship exists between these two, or whether they both result from shared mechanisms. This paper intends to study this relationship through a comprehensive review of MRI findings as well as evidence of cellular alterations. Our review of structural MRI studies demonstrates that ARHL is independently linked to accelerated atrophy of total and regional brain volumes and reduced white matter integrity. Resting-state and task-based fMRI studies on ARHL also show changes in spontaneous neural activity and brain functional connectivity; and alterations in brain areas supporting auditory, language, cognitive, and affective processing independent of age, respectively. Although MRI findings support a causal relationship between ARHL and cognitive decline, the contribution of potential shared mechanisms should also be considered. In this regard, the review of cellular evidence indicates their role as possible common mechanisms underlying both age-related changes in hearing and cognition. Considering existing evidence, no single hypothesis can explain the link between ARHL and cognitive decline, and the contribution of both causal (i.e., the sensory hypothesis) and shared (i.e., the common cause hypothesis) mechanisms is expected.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
159
|
Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage 2021; 230:117744. [PMID: 33524576 PMCID: PMC8063174 DOI: 10.1016/j.neuroimage.2021.117744] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increased understanding of the importance of myelination in healthy brain function and neuropsychiatric diseases. Non-invasive microstructural magnetic resonance imaging (MRI) holds the potential to expand and translate these insights to basic and clinical human research, but the sensitivity and specificity of different MR markers to myelination is a subject of debate. To consolidate current knowledge on the topic, we perform a systematic review and meta-analysis of studies that validate microstructural imaging by combining it with myelin histology. We find meta-analytic evidence for correlations between various myelin histology metrics and markers from different MRI modalities, including fractional anisotropy, radial diffusivity, macromolecular pool, magnetization transfer ratio, susceptibility and longitudinal relaxation rate, but not mean diffusivity. Meta-analytic correlation effect sizes range widely, between R2 = 0.26 and R2 = 0.82. However, formal comparisons between MRI-based myelin markers are limited by methodological variability, inconsistent reporting and potential for publication bias, thus preventing the establishment of a single most sensitive strategy to measure myelin with MRI. To facilitate further progress, we provide a detailed characterisation of the evaluated studies as an online resource. We also share a set of 12 recommendations for future studies validating putative MR-based myelin markers and deploying them in vivo in humans.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
160
|
In vivo tensor-valued diffusion MRI of focal demyelination in white and deep grey matter of rodents. NEUROIMAGE-CLINICAL 2021; 30:102675. [PMID: 34215146 PMCID: PMC8100629 DOI: 10.1016/j.nicl.2021.102675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
We performed in-vivo tensor-valued diffusion MRI in demyelinating rodents. Lysolecithin was injected in white and deep grey matter to cause focal demyelination. Focal demyelination reduced microscopic fractional anisotropy (µFA). Isotropic kurtosis may be particularly sensitive to deep grey matter lesions.
Background Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease leading to damage of white matter (WM) and grey matter (GM). Magnetic resonance imaging (MRI) is the modality of choice to assess brain damage in MS, but there is an unmet need in MRI for achieving higher sensitivity and specificity to MS-related microstructural alterations in WM and GM. Objective To explore whether tensor-valued diffusion MRI (dMRI) can yield sensitive microstructural read-outs for focal demyelination in cerebral WM and deep GM (DGM). Methods Eight rats underwent L-α-Lysophosphatidylcholine (LPC) injections in the WM and striatum to introduce focal demyelination. Multimodal MRI was performed at 7 Tesla after 7 days. Tensor-valued dMRI was complemented by diffusion tensor imaging, quantitative MRI and proton magnetic resonance spectroscopy (MRS). Results Quantitative MRI and MRS confirmed that LPC injections caused inflammatory demyelinating lesions in WM and DGM. Tensor-valued dMRI illustrated a significant decline of microscopic fractional anisotropy (µFA) in both LPC-treated WM and DGM (P < 0.005) along with a marked increase of isotropic kurtosis (MKI) in DGM (P < 0.0001). Conclusion Tensor-valued dMRI bears considerable potential for microstructural imaging in MS, suggesting a regional µFA decrease may be a sensitive indicator of MS lesions, while a regional MKI increase may be particularly sensitive in detecting DGM lesions of MS.
Collapse
|
161
|
Cabeen RP, Toga AW, Allman JM. Frontoinsular cortical microstructure is linked to life satisfaction in young adulthood. Brain Imaging Behav 2021; 15:2775-2789. [PMID: 33825124 DOI: 10.1007/s11682-021-00467-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Life satisfaction is a component of subjective well-being that reflects a global judgement of the quality of life according to an individual's own needs and expectations. As a psychological construct, it has attracted attention due to its relationship to mental health, resilience to stress, and other factors. Neuroimaging studies have identified neurobiological correlates of life satisfaction; however, they are limited to functional connectivity and gray matter morphometry. We explored features of gray matter microstructure obtained through compartmental modeling of multi-shell diffusion MRI data, and we examined cortical microstructure in frontoinsular cortex in a cohort of 807 typical young adults scanned as part of the Human Connectome Project. Our experiments identified the orientation dispersion index (ODI), and analogously fractional anisotropy (FA), of frontoinsular cortex as a robust set of anatomically-specific lateralized diffusion MRI microstructure features that are linked to life satisfaction, independent of other demographic, socioeconomic, and behavioral factors. We further validated our findings in a secondary test-retest dataset and found high reliability of our imaging metrics and reproducibility of outcomes. In our analysis of twin and non-twin siblings, we found basic microstructure in frontoinsular cortex to be strongly genetically determined. We also found a more moderate but still very significant genetic role in determining microstructure as it relates to life satisfaction in frontoinsular cortex. Our findings suggest a potential linkage between well-being and microscopic features of frontoinsular cortex, which may reflect cellular morphology and architecture and may more broadly implicate the integrity of the homeostatic processing performed by frontoinsular cortex as an important component of an individual's judgements of life satisfaction.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - John M Allman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
162
|
Vincent M, Gaudin M, Lucas‐Torres C, Wong A, Escartin C, Valette J. Characterizing extracellular diffusion properties using diffusion-weighted MRS of sucrose injected in mouse brain. NMR IN BIOMEDICINE 2021; 34:e4478. [PMID: 33506506 PMCID: PMC7988537 DOI: 10.1002/nbm.4478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 06/01/2023]
Abstract
Brain water and some critically important energy metabolites, such as lactate or glucose, are present in both intracellular and extracellular spaces (ICS/ECS) at significant levels. This ubiquitous nature makes diffusion MRI/MRS data sometimes difficult to interpret and model. While it is possible to glean information on the diffusion properties in ICS by measuring the diffusion of purely intracellular endogenous metabolites (such as NAA), the absence of endogenous markers specific to ECS hampers similar analyses in this compartment. In past experiments, exogenous probes have therefore been injected into the brain to assess their apparent diffusion coefficient (ADC) and thus estimate tortuosity in ECS. Here, we use a similar approach in mice by injecting sucrose, a well-known ECS marker, in either the lateral ventricles or directly in the prefrontal cortex. For the first time, we propose a thorough characterization of ECS diffusion properties encompassing (1) short-range restriction by looking at signal attenuation at high b values, (2) tortuosity and long-range restriction by measuring ADC time-dependence at long diffusion times and (3) microscopic anisotropy by performing double diffusion encoding (DDE) measurements. Overall, sucrose diffusion behavior is strikingly different from that of intracellular metabolites. Acquisitions at high b values not only reveal faster sucrose diffusion but also some sensitivity to restriction, suggesting that the diffusion in ECS is not fully Gaussian at high b. The time evolution of the ADC at long diffusion times shows that the tortuosity regime is not reached yet in the case of sucrose, while DDE experiments suggest that it is not trapped in elongated structures. No major difference in sucrose diffusion properties is reported between the two investigated routes of injection and brain regions. These original experimental insights should be useful to better interpret and model the diffusion signal of molecules that are distributed between ICS and ECS compartments.
Collapse
Affiliation(s)
- Mélissa Vincent
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Mylène Gaudin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Covadonga Lucas‐Torres
- Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris‐SaclayNanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE)Gif‐sur‐YvetteFrance
| | - Alan Wong
- Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris‐SaclayNanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (NIMBE)Gif‐sur‐YvetteFrance
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Molecular Imaging Research Center (MIRCen)Fontenay‐aux‐RosesFrance
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris‐SaclayUMR 9199 (Neurodegenerative Diseases Laboratory)Fontenay‐aux‐RosesFrance
| |
Collapse
|
163
|
Genovese G, Palombo M, Santin MD, Valette J, Ligneul C, Aigrot MS, Abdoulkader N, Langui D, Millecamps A, Baron-Van Evercooren A, Stankoff B, Lehericy S, Petiet A, Branzoli F. Inflammation-driven glial alterations in the cuprizone mouse model probed with diffusion-weighted magnetic resonance spectroscopy at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4480. [PMID: 33480101 DOI: 10.1002/nbm.4480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Inflammation of brain tissue is a complex response of the immune system to the presence of toxic compounds or to cell injury, leading to a cascade of pathological processes that include glial cell activation. Noninvasive MRI markers of glial reactivity would be very useful for in vivo detection and monitoring of inflammation processes in the brain, as well as for evaluating the efficacy of personalized treatments. Due to their specific location in glial cells, myo-inositol (mIns) and choline compounds (tCho) seem to be the best candidates for probing glial-specific intra-cellular compartments. However, their concentrations quantified using conventional proton MRS are not specific for inflammation. In contrast, it has been recently suggested that mIns intra-cellular diffusion, measured using diffusion-weighted MRS (DW-MRS) in a mouse model of reactive astrocytes, could be a specific marker of astrocytic hypertrophy. In order to evaluate the specificity of both mIns and tCho diffusion to inflammation-driven glial alterations, we performed DW-MRS in a volume of interest containing the corpus callosum and surrounding tissue of cuprizone-fed mice after 6 weeks of intoxication, and evaluated the extent of astrocytic and microglial alterations using immunohistochemistry. Both mIns and tCho apparent diffusion coefficients were significantly elevated in cuprizone-fed mice compared with control mice, and histologic evaluation confirmed the presence of severe inflammation. Additionally, mIns and tCho diffusion showed, respectively, strong and moderate correlations with histological measures of astrocytic and microglial area fractions, confirming DW-MRS as a promising tool for specific detection of glial changes under pathological conditions.
Collapse
Affiliation(s)
- Guglielmo Genovese
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Marco Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| | - Mathieu D Santin
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Clémence Ligneul
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Marie-Stéphane Aigrot
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
- Core Facility ICM Quant, Institut du Cerveau-ICM, Paris, France
| | - Nasteho Abdoulkader
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
| | - Dominique Langui
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
- Core Facility ICM Quant, Institut du Cerveau-ICM, Paris, France
| | | | | | - Bruno Stankoff
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Stéphane Lehericy
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Alexandra Petiet
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Francesca Branzoli
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
164
|
Microstructural Modulations in the Hippocampus Allow to Characterizing Relapsing-Remitting Versus Primary Progressive Multiple Sclerosis. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/978-3-030-72084-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
165
|
Lee MB, Kim HJ, Kwon OI. Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI. Biomed Eng Online 2021; 20:29. [PMID: 33766044 PMCID: PMC7993544 DOI: 10.1186/s12938-021-00869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/16/2021] [Indexed: 01/21/2023] Open
Abstract
Background As an object’s electrical passive property, the electrical conductivity is proportional to the mobility and concentration of charged carriers that reflect the brain micro-structures. The measured multi-b diffusion-weighted imaging (Mb-DWI) data by controlling the degree of applied diffusion weights can quantify the apparent mobility of water molecules within biological tissues. Without any external electrical stimulation, magnetic resonance electrical properties tomography (MREPT) techniques have successfully recovered the conductivity distribution at a Larmor-frequency. Methods This work provides a non-invasive method to decompose the high-frequency conductivity into the extracellular medium conductivity based on a two-compartment model using Mb-DWI. To separate the intra- and extracellular micro-structures from the recovered high-frequency conductivity, we include higher b-values DWI and apply the random decision forests to stably determine the micro-structural diffusion parameters. Results To demonstrate the proposed method, we conducted phantom and human experiments by comparing the results of reconstructed conductivity of extracellular medium and the conductivity in the intra-neurite and intra-cell body. The phantom and human experiments verify that the proposed method can recover the extracellular electrical properties from the high-frequency conductivity using a routine protocol sequence of MRI scan. Conclusion We have proposed a method to decompose the electrical properties in the extracellular, intra-neurite, and soma compartments from the high-frequency conductivity map, reconstructed by solving the electro-magnetic equation with measured B1 phase signals.
Collapse
Affiliation(s)
- Mun Bae Lee
- Department of Mathematics, Konkuk University, 05029, Seoul, South Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, 02447, Seoul, South Korea
| | - Oh In Kwon
- Department of Mathematics, Konkuk University, 05029, Seoul, South Korea.
| |
Collapse
|
166
|
Hermann ER, Chambers E, Davis DN, Montgomery MR, Lin D, Chowanadisai W. Brain Magnetic Resonance Imaging Phenome-Wide Association Study With Metal Transporter Gene SLC39A8. Front Genet 2021; 12:647946. [PMID: 33790950 PMCID: PMC8005600 DOI: 10.3389/fgene.2021.647946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
The SLC39A8 gene encodes a divalent metal transporter, ZIP8. SLC39A8 is associated with pleiotropic effects across multiple tissues, including the brain. We determine the different brain magnetic resonance imaging (MRI) phenotypes associated with SLC39A8. We used a phenome-wide association study approach followed by joint and conditional association analysis. Using the summary statistics datasets from a brain MRI genome-wide association study on adult United Kingdom (UK) Biobank participants, we systematically selected all brain MRI phenotypes associated with single-nucleotide polymorphisms (SNPs) within 500 kb of the SLC39A8 genetic locus. For all significant brain MRI phenotypes, we used GCTA-COJO to determine the number of independent association signals and identify index SNPs for each brain MRI phenotype. Linkage equilibrium for brain phenotypes with multiple independent signals was confirmed by LDpair. We identified 24 brain MRI phenotypes that vary due to MRI type and brain region and contain a SNP associated with the SLC39A8 locus. Missense ZIP8 polymorphism rs13107325 was associated with 22 brain MRI phenotypes. Rare ZIP8 variants present in a published UK Biobank dataset are associated with 6 brain MRI phenotypes also linked to rs13107325. Among the 24 datasets, an additional 4 association signals were identified by GCTA-COJO and confirmed to be in linkage equilibrium with rs13107325 using LDpair. These additional association signals represent new probable causative SNPs in addition to rs13107325. This study provides leads into how genetic variation in SLC39A8, a trace mineral transport gene, is linked to brain structure differences and may affect brain development and nervous system function.
Collapse
Affiliation(s)
- Evan R Hermann
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Emily Chambers
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Danielle N Davis
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - McKale R Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
167
|
Ganepola T, Lee Y, Alexander DC, Sereno MI, Nagy Z. Multiple b-values improve discrimination of cortical gray matter regions using diffusion MRI: an experimental validation with a data-driven approach. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:677-687. [PMID: 33709225 PMCID: PMC8421285 DOI: 10.1007/s10334-021-00914-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/14/2020] [Accepted: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Objective To investigate whether varied or repeated b-values provide better diffusion MRI data for discriminating cortical areas with a data-driven approach. Methods Data were acquired from three volunteers at 1.5T with b-values of 800, 1400, 2000 s/mm2 along 64 diffusion-encoding directions. The diffusion signal was sampled from gray matter in seven regions of interest (ROIs). Rotational invariants of the local diffusion profile were extracted as features that characterize local tissue properties. Random forest classification experiments assessed whether classification accuracy improved when data with multiple b-values were used over repeated acquisition of the same (1400 s/mm2) b-value to compare all possible pairs of the seven ROIs. Three data sets from the Human Connectome Project were subjected to similar processing and analysis pipelines in eight ROIs. Results Three different b-values showed an average improvement in correct classification rates of 5.6% and 4.6%, respectively, in the local and HCP data over repeated measurements of the same b-value. The improvement in correct classification rate reached as high as 16% for individual binary classification experiments between two ROIs. Often using only two of the available three b-values were adequate to make such an improvement in classification rates. Conclusion Acquisitions with varying b-values are more suitable for discriminating cortical areas.
Collapse
Affiliation(s)
- Tara Ganepola
- Department of Cognitive, Perceptual and Brain Sciences, University College London, London, UK.,Center for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Yoojin Lee
- Laboratory for Social and Neural Systems Research, University of Zurich, Rämistrasse 100, P.O. Box 149, Zurich, Switzerland.,Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel C Alexander
- Center for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Martin I Sereno
- Department of Cognitive, Perceptual and Brain Sciences, University College London, London, UK.,Department of Psychology and Neuroimaging Centre, SDSU, San Diego, USA
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research, University of Zurich, Rämistrasse 100, P.O. Box 149, Zurich, Switzerland. .,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.
| |
Collapse
|
168
|
Bienkowski MS, Sepehrband F, Kurniawan ND, Stanis J, Korobkova L, Khanjani N, Clark K, Hintiryan H, Miller CA, Dong HW. Homologous laminar organization of the mouse and human subiculum. Sci Rep 2021; 11:3729. [PMID: 33580088 PMCID: PMC7881248 DOI: 10.1038/s41598-021-81362-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
The subiculum is the major output component of the hippocampal formation and one of the major brain structures most affected by Alzheimer's disease. Our previous work revealed a hidden laminar architecture within the mouse subiculum. However, the rotation of the hippocampal longitudinal axis across species makes it unclear how the laminar organization is represented in human subiculum. Using in situ hybridization data from the Allen Human Brain Atlas, we demonstrate that the human subiculum also contains complementary laminar gene expression patterns similar to the mouse. In addition, we provide evidence that the molecular domain boundaries in human subiculum correspond to microstructural differences observed in high resolution MRI and fiber density imaging. Finally, we show both similarities and differences in the gene expression profile of subiculum pyramidal cells within homologous lamina. Overall, we present a new 3D model of the anatomical organization of human subiculum and its evolution from the mouse.
Collapse
Affiliation(s)
- Michael S Bienkowski
- USC Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging (LONI), Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA. .,Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging (LONI), Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.,Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Nyoman D Kurniawan
- Center for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Jim Stanis
- USC Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging (LONI), Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Laura Korobkova
- USC Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging (LONI), Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Neda Khanjani
- USC Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging (LONI), Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Kristi Clark
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Houri Hintiryan
- USC Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging (LONI), Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Hong-Wei Dong
- USC Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging (LONI), Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA. .,Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
169
|
Shahid SS, Kerskens CM, Burrows M, Witney AG. Elucidating the complex organization of neural micro-domains in the locust Schistocerca gregaria using dMRI. Sci Rep 2021; 11:3418. [PMID: 33564031 PMCID: PMC7873062 DOI: 10.1038/s41598-021-82187-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
To understand brain function it is necessary to characterize both the underlying structural connectivity between neurons and the physiological integrity of these connections. Previous research exploring insect brain connectivity has typically used electron microscopy techniques, but this methodology cannot be applied to living animals and so cannot be used to understand dynamic physiological processes. The relatively large brain of the desert locust, Schistercera gregaria (Forksȧl) is ideal for exploring a novel methodology; micro diffusion magnetic resonance imaging (micro-dMRI) for the characterization of neuronal connectivity in an insect brain. The diffusion-weighted imaging (DWI) data were acquired on a preclinical system using a customised multi-shell diffusion MRI scheme optimized to image the locust brain. Endogenous imaging contrasts from the averaged DWIs and Diffusion Kurtosis Imaging (DKI) scheme were applied to classify various anatomical features and diffusion patterns in neuropils, respectively. The application of micro-dMRI modelling to the locust brain provides a novel means of identifying anatomical regions and inferring connectivity of large tracts in an insect brain. Furthermore, quantitative imaging indices derived from the kurtosis model that include fractional anisotropy (FA), mean diffusivity (MD) and kurtosis anisotropy (KA) can be extracted. These metrics could, in future, be used to quantify longitudinal structural changes in the nervous system of the locust brain that occur due to environmental stressors or ageing.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christian M Kerskens
- Trinity College Institute of Neuroscience, Trinity Centre for Biomedical Engineering, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Malcolm Burrows
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alice G Witney
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity Centre for Biomedical Engineering, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
170
|
Ocampo-Pineda M, Schiavi S, Rheault F, Girard G, Petit L, Descoteaux M, Daducci A. Hierarchical Microstructure Informed Tractography. Brain Connect 2021; 11:75-88. [PMID: 33512262 DOI: 10.1089/brain.2020.0907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Tractography uses diffusion magnetic resonance imaging to noninvasively infer the macroscopic pathways of white matter fibers and it is the only available technique to probe in vivo the structural connectivity of the brain. However, despite this unique and compelling ability and its wide range of possible neurological applications, tractography is still limited, lacks anatomical precision, and suffers from a serious sensitivity/specificity trade-off. For this reason, in the past few years, tractography postprocessing techniques have emerged and proved effective for improving the quality of the reconstructions. Among them, the Convex Optimization Modeling for Microstructure Informed Tractography formulation allows incorporating the anatomical prior that fibers are naturally organized in fascicles, and has obtained exceptional results in increasing the accuracy of the estimated tractograms. Methods: We propose an extension to this idea and introduce a multilevel grouping of the streamlines to capture the white matter arrangement in fascicles and subfascicles. We tested our proposed formulation in synthetic and in vivo data. Results: Our experiments show that using multiple levels allows considering information about the white matter organization more adequately and helps to improve further the accuracy of the resulting tractograms. Conclusion: This new formulation represents a further important step toward a more accurate structural connectivity estimation.
Collapse
Affiliation(s)
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Gabriel Girard
- Center for BioMedical Imaging (CIBM), Lausanne, Switzerland.,University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Université de Bordeaux, CNRS, CEA, IMN, UMR 5293, Bordeaux, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | | |
Collapse
|
171
|
Li Z, Gao H, Zeng P, Jia Y, Kong X, Xu K, Bai R. Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Front Neurosci 2021; 14:611696. [PMID: 33536869 PMCID: PMC7848148 DOI: 10.3389/fnins.2020.611696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic lesions could lead to secondary degeneration in remote regions of the brain. However, the spatial distribution of secondary degeneration along with its role in functional deficits is not well understood. In this study, we explored the spatial and connectivity properties of white matter (WM) secondary degeneration in a focal unilateral sensorimotor cortical ischemia rat model, using advanced microstructure imaging on a 14 T MRI system. Significant axonal degeneration was observed in the ipsilateral external capsule and even remote regions including the contralesional external capsule and corpus callosum. Further fiber tractography analysis revealed that only fibers having direct axonal connections with the primary lesion exhibited a significant degeneration. These results suggest that focal ischemic lesions may induce remote WM degeneration, but limited to fibers tied to the primary lesion. These “direct” fibers mainly represent perilesional, interhemispheric, and subcortical axonal connections. At last, we found that primary lesion volume might be the determining factor of motor function deficits.
Collapse
Affiliation(s)
- Zhaoqing Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Pingmei Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
172
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Longitudinal Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) Derived Metrics in the White Matter. Neuroscience 2021; 457:165-185. [PMID: 33465411 DOI: 10.1016/j.neuroscience.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing ["VBM-style"], ROI-based analysis). We observed high test-retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany.
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Leibniz-Institute for Neurobiology (LIN), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Emrah Düzel
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AZ, UK
| | - Gabriel Ziegler
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
173
|
Mohammadi S, Callaghan MF. Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. J Neurosci Methods 2021; 348:108990. [PMID: 33129894 PMCID: PMC7840525 DOI: 10.1016/j.jneumeth.2020.108990] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD This is the second review on the topic of g-ratio mapping using MRI. RESULTS This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
174
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
175
|
Andersson M, Kjer HM, Rafael-Patino J, Pacureanu A, Pakkenberg B, Thiran JP, Ptito M, Bech M, Bjorholm Dahl A, Andersen Dahl V, Dyrby TB. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure-function relationship. Proc Natl Acad Sci U S A 2020; 117:33649-33659. [PMID: 33376224 PMCID: PMC7777205 DOI: 10.1073/pnas.2012533117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.
Collapse
Affiliation(s)
- Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark;
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen, Denmark
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada
- Department of Neuroscience, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Bech
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark;
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
176
|
Pieri V, Sanvito F, Riva M, Petrini A, Rancoita PMV, Cirillo S, Iadanza A, Bello L, Castellano A, Falini A. Along-tract statistics of neurite orientation dispersion and density imaging diffusion metrics to enhance MR tractography quantitative analysis in healthy controls and in patients with brain tumors. Hum Brain Mapp 2020; 42:1268-1286. [PMID: 33274823 PMCID: PMC7927309 DOI: 10.1002/hbm.25291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Along‐tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities, new parameters reflecting the relative contribution of different diffusion compartments in the tissue can be estimated through advanced diffusion MRI methods as neurite orientation dispersion and density imaging (NODDI), leading to a more specific microstructural characterization. In this study, we extracted both DTI‐ and NODDI‐derived quantitative microstructural diffusion metrics along the most eloquent fiber tracts in 15 healthy subjects and in 22 patients with brain tumors. We obtained a robust intraprotocol reference database of normative along‐tract microstructural metrics, and their corresponding plots, from healthy fiber tracts. Each diffusion metric of individual patient's fiber tract was then plotted and statistically compared to the normative profile of the corresponding metric from the healthy fiber tracts. NODDI‐derived metrics appeared to account for the pathological microstructural changes of the peritumoral tissue more accurately than DTI‐derived ones. This approach may be useful for future studies that may compare healthy subjects to patients diagnosed with other pathological conditions.
Collapse
Affiliation(s)
- Valentina Pieri
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Sanvito
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Alessandro Petrini
- Department of Computer Science, Università degli Studi di Milano, Milan, Italy
| | - Paola M V Rancoita
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Cirillo
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Iadanza
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
177
|
Lee HH, Fieremans E, Novikov DS. Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images. J Neurosci Methods 2020; 350:109018. [PMID: 33279478 DOI: 10.1016/j.jneumeth.2020.109018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Monte Carlo simulations of diffusion are commonly used as a model validation tool as they are especially suitable for generating the diffusion MRI signal in complicated tissue microgeometries. NEW METHOD Here we describe the details of implementing Monte Carlo simulations in three-dimensional (3d) voxelized segmentations of cells in microscopy images. Using the concept of the corner reflector, we largely reduce the computational load of simulating diffusion within and exchange between multiple cells. Precision is further achieved by GPU-based parallel computations. RESULTS Our simulation of diffusion in white matter axons segmented from a mouse brain demonstrates its value in validating biophysical models. Furthermore, we provide the theoretical background for implementing a discretized diffusion process, and consider the finite-step effects of the particle-membrane reflection and permeation events, needed for efficient simulation of interactions with irregular boundaries, spatially variable diffusion coefficient, and exchange. COMPARISON WITH EXISTING METHODS To our knowledge, this is the first Monte Carlo pipeline for MR signal simulations in a substrate composed of numerous realistic cells, accounting for their permeable and irregularly-shaped membranes. CONCLUSIONS The proposed RMS pipeline makes it possible to achieve fast and accurate simulations of diffusion in realistic tissue microgeometry, as well as the interplay with other MR contrasts. Presently, RMS focuses on simulations of diffusion, exchange, and T1 and T2 NMR relaxation in static tissues, with a possibility to straightforwardly account for susceptibility-induced T2* effects and flow.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA.
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| |
Collapse
|
178
|
Carlisle N, Glazewska-Hallin A, Story L, Carter J, Seed PT, Suff N, Giblin L, Hutter J, Napolitano R, Rutherford M, Alexander DC, Simpson N, Banerjee A, David AL, Shennan AH. CRAFT (Cerclage after full dilatation caesarean section): protocol of a mixed methods study investigating the role of previous in-labour caesarean section in preterm birth risk. BMC Pregnancy Childbirth 2020; 20:698. [PMID: 33198663 PMCID: PMC7667480 DOI: 10.1186/s12884-020-03375-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Full dilatation caesarean sections are associated with recurrent early spontaneous preterm birth and late miscarriage. The risk following first stage caesarean sections, are less well defined, but appears to be increased in late-first stage of labour. The mechanism for this increased risk of late miscarriage and early spontaneous preterm birth in these women is unknown and there are uncertainties with regards to clinical management. Current predictive models of preterm birth (based on transvaginal ultrasound and quantitative fetal fibronectin) have not been validated in these women and it is unknown whether the threshold to define a short cervix (≤25 mm) is reliable in predicting the risk of preterm birth. In addition the efficacy of standard treatments or whether benefit may be derived from prophylactic interventions such as a cervical cerclage is unknown. METHODS There are three distinct components to the CRAFT project (CRAFT-OBS, CRAFT-RCT and CRAFT-IMG). CRAFT-OBS Observational Study; To evaluate subsequent pregnancy risk of preterm birth in women with a prior caesarean section in established labour. This prospective study of cervical length and quantitative fetal fibronectin data will establish a predictive model of preterm birth. CRAFT-RCT Randomised controlled trial arm; To assess treatment for short cervix in women at high risk of preterm birth following a fully dilated caesarean section. CRAFT-IMG Imaging sub-study; To evaluate the use of MRI and transvaginal ultrasound imaging of micro and macrostructural cervical features which may predispose to preterm birth in women with a previous fully dilated caesarean section, such as scar position and niche. DISCUSSION The CRAFT project will quantify the risk of preterm birth or late miscarriage in women with previous in-labour caesarean section, define the best management and shed light on pathological mechanisms so as to improve the care we offer to women and their babies. TRIAL REGISTRATION CRAFT was prospectively registered on 25th November 2019 with the ISRCTN registry ( https://doi.org/10.1186/ISRCTN15068651 ).
Collapse
Affiliation(s)
- Naomi Carlisle
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Agnieszka Glazewska-Hallin
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Lisa Story
- Centre for the Developing Brain, King's College London, 1st Floor South Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Jenny Carter
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Paul T Seed
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Natalie Suff
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Lucie Giblin
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, King's College London, 1st Floor South Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Raffaele Napolitano
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, Room 244, Medical School Building, Huntley Street, London, WC1E 6AU, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, 1st Floor South Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Daniel C Alexander
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nigel Simpson
- Delivery Suite, C Floor, Clarendon Wing, The General Infirmary at Leeds, Belmont Grove, Leeds, LS2 9NS, UK
| | - Amrita Banerjee
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, Room 244, Medical School Building, Huntley Street, London, WC1E 6AU, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, Room 244, Medical School Building, Huntley Street, London, WC1E 6AU, UK.,NIHR University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, UK
| | - Andrew H Shennan
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, 10th Floor, North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
179
|
Fang C, Nguyen VD, Wassermann D, Li JR. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module. Neuroimage 2020; 222:117198. [PMID: 32730957 DOI: 10.1016/j.neuroimage.2020.117198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023] Open
Abstract
The diffusion MRI signal arising from neurons can be numerically simulated by solving the Bloch-Torrey partial differential equation. In this paper we present the Neuron Module that we implemented within the Matlab-based diffusion MRI simulation toolbox SpinDoctor. SpinDoctor uses finite element discretization and adaptive time integration to solve the Bloch-Torrey partial differential equation for general diffusion-encoding sequences, at multiple b-values and in multiple diffusion directions. In order to facilitate the diffusion MRI simulation of realistic neurons by the research community, we constructed finite element meshes for a group of 36 pyramidal neurons and a group of 29 spindle neurons whose morphological descriptions were found in the publicly available neuron repository NeuroMorpho.Org. These finite elements meshes range from having 15,163 nodes to 622,553 nodes. We also broke the neurons into the soma and dendrite branches and created finite elements meshes for these cell components. Through the Neuron Module, these neuron and cell components finite element meshes can be seamlessly coupled with the functionalities of SpinDoctor to provide the diffusion MRI signal attributable to spins inside neurons. We make these meshes and the source code of the Neuron Module available to the public as an open-source package. To illustrate some potential uses of the Neuron Module, we show numerical examples of the simulated diffusion MRI signals in multiple diffusion directions from whole neurons as well as from the soma and dendrite branches, and include a comparison of the high b-value behavior between dendrite branches and whole neurons. In addition, we demonstrate that the neuron meshes can be used to perform Monte-Carlo diffusion MRI simulations as well. We show that at equivalent accuracy, if only one gradient direction needs to be simulated, SpinDoctor is faster than a GPU implementation of Monte-Carlo, but if many gradient directions need to be simulated, there is a break-even point when the GPU implementation of Monte-Carlo becomes faster than SpinDoctor. Furthermore, we numerically compute the eigenfunctions and the eigenvalues of the Bloch-Torrey and the Laplace operators on the neuron geometries using a finite elements discretization, in order to give guidance in the choice of the space and time discretization parameters for both finite elements and Monte-Carlo approaches. Finally, we perform a statistical study on the set of 65 neurons to test some candidate biomakers that can potentially indicate the soma size. This preliminary study exemplifies the possible research that can be conducted using the Neuron Module.
Collapse
Affiliation(s)
- Chengran Fang
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France; INRIA Saclay, Equipe Parietal, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Van-Dang Nguyen
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| | - Demian Wassermann
- INRIA Saclay, Equipe Parietal, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Jing-Rebecca Li
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
| |
Collapse
|
180
|
NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage 2020; 226:117539. [PMID: 33186723 PMCID: PMC7881933 DOI: 10.1016/j.neuroimage.2020.117539] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) has found great utility for a wide range of neuroscientific and clinical applications. However, high-resolution dMRI, which is required for improved delineation of fine brain structures and connectomics, is hampered by its low signal-to-noise ratio (SNR). Since dMRI relies on the acquisition of multiple different diffusion weighted images of the same anatomy, it is well-suited for denoising methods that utilize correlations across the image series to improve the apparent SNR and the subsequent data analysis. In this work, we introduce and quantitatively evaluate a comprehensive framework, NOise Reduction with DIstribution Corrected (NORDIC) PCA method for processing dMRI. NORDIC uses low-rank modeling of g-factor-corrected complex dMRI reconstruction and non-asymptotic random matrix distributions to remove signal components which cannot be distinguished from thermal noise. The utility of the proposed framework for denoising dMRI is demonstrated on both simulations and experimental data obtained at 3 Tesla with different resolutions using human connectome project style acquisitions. The proposed framework leads to substantially enhanced quantitative performance for estimating diffusion tractography related measures and for resolving crossing fibers as compared to a conventional/state-of-the-art dMRI denoising method.
Collapse
|
181
|
The connections of the insular VEN area in great apes: A histologically-guided ex vivo diffusion tractography study. Prog Neurobiol 2020; 195:101941. [PMID: 33159998 DOI: 10.1016/j.pneurobio.2020.101941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
We mapped the connections of the insular von Economo neuron (VEN) area in ex vivo brains of a bonobo, an orangutan and two gorillas with high angular resolution diffusion MRI imaging acquired in 36 h imaging sessions for each brain. The apes died of natural causes without neurological disorders. The localization of the insular VEN area was based on cresyl violet-stained histological sections from each brain that were coregistered with structural and diffusion images from the same individuals. Diffusion MRI tractography showed that the insular VEN area is connected with olfactory, gustatory, visual and other sensory systems, as well as systems for the mediation of appetite, reward, aversion and motivation. The insular VEN area in apes is most strongly connected with frontopolar cortex, which could support their capacity to choose voluntarily among alternative courses of action particularly in exploring for food resources. The frontopolar cortex may also support their capacity to take note of potential resources for harvesting in the future (prospective memory). All of these faculties may support insight and volitional choice when contemplating courses of action as opposed to rule-based decision-making.
Collapse
|
182
|
Yi SY, Stowe NA, Barnett BR, Dodd K, Yu JPJ. Microglial Density Alters Measures of Axonal Integrity and Structural Connectivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1061-1068. [PMID: 32507509 PMCID: PMC7709542 DOI: 10.1016/j.bpsc.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022]
Abstract
Diffusion tensor imaging (DTI) has fundamentally transformed how we interrogate diseases and disorders of the brain in neuropsychiatric illness. DTI and recently developed multicompartment diffusion-weighted imaging (MC-DWI) techniques, such as NODDI (neurite orientation dispersion and density imaging), measure diffusion anisotropy presuming a static neuroglial environment; however, microglial morphology and density are highly dynamic in psychiatric illness, and how alterations in microglial density might influence intracellular measures of diffusion anisotropy in DTI and MC-DWI brain microstructure is unknown. To address this question, DTI and MC-DWI studies of murine brains depleted of microglia were performed, revealing significant alterations in axonal integrity and fiber tractography in DTI and in commonly used MC-DWI models. With accumulating evidence of the role of microglia in neuropsychiatric illness, our findings uncover the unexpected contribution of microglia to measures of axonal integrity and structural connectivity and provide unanticipated insights into the potential influence of microglia in diffusion imaging studies of neuropsychiatric disease.
Collapse
Affiliation(s)
- Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas A Stowe
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Keith Dodd
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
183
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
184
|
Magnetic resonance diffusion tensor tractography of a midbrain auditory circuit in Alligator. Neurosci Lett 2020; 738:135251. [PMID: 32679057 DOI: 10.1016/j.neulet.2020.135251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022]
Abstract
Knowledge of brain circuitry is critical for understanding the organization, function, and evolution of central nervous systems. Most commonly, brain connections have been elucidated using histological and experimental methods that require animal sacrifice. On the other hand, magnetic resonance diffusion tensor imaging and associated tractography have emerged as a preferred method to noninvasively visualize brain white matter tracts. However, existing studies have primarily examined large, heavily myelinated fiber tracts. Whether tractography can visualize fiber bundles that contain thin and poorly myelinated axons is uncertain. To address this question, the midbrain auditory pathway to the thalamus was investigated in Alligator. This species was chosen because of its evolutionary importance as it is the reptilian group most closely related to birds and because its brain contains many thin and poorly myelinated tracts. Furthermore, this auditory pathway is well documented in other reptiles, including a related crocodilian. Histological observations and experimental determination of anterograde connections confirmed this path in Alligator. Tractography identified these tracts in Alligator and provided a 3-dimensional picture that accurately identified the neural elements of this circuit. In addition, tractography identified one possible unrecognized pathway. These results demonstrate that tractography can visualize circuits containing thin, poorly myelinated fibers. These findings open the door for future studies to examine these types of pathways in other vertebrates.
Collapse
|
185
|
Mito R, Dhollander T, Xia Y, Raffelt D, Salvado O, Churilov L, Rowe CC, Brodtmann A, Villemagne VL, Connelly A. In vivo microstructural heterogeneity of white matter lesions in healthy elderly and Alzheimer's disease participants using tissue compositional analysis of diffusion MRI data. Neuroimage Clin 2020; 28:102479. [PMID: 33395971 PMCID: PMC7652769 DOI: 10.1016/j.nicl.2020.102479] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
White matter hyperintensities (WMH) are regions of high signal intensity typically identified on fluid attenuated inversion recovery (FLAIR). Although commonly observed in elderly individuals, they are more prevalent in Alzheimer's disease (AD) patients. Given that WMH appear relatively homogeneous on FLAIR, they are commonly partitioned into location- or distance-based classes when investigating their relevance to disease. Since pathology indicates that such lesions are often heterogeneous, probing their microstructure in vivo may provide greater insight than relying on such arbitrary classification schemes. In this study, we investigated WMH in vivo using an advanced diffusion MRI method known as single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD), which models white matter microstructure while accounting for grey matter and CSF compartments. Diffusion MRI data and FLAIR images were obtained from AD (n = 48) and healthy elderly control (n = 94) subjects. WMH were automatically segmented, and classified: (1) as either periventricular or deep; or (2) into three distance-based contours from the ventricles. The 3-tissue profile of WMH enabled their characterisation in terms of white matter-, grey matter-, and fluid-like characteristics of the diffusion signal. Our SS3T-CSD findings revealed substantial heterogeneity in the 3-tissue profile of WMH, both within lesions and across the various classes. Moreover, this heterogeneity information indicated that the use of different commonly used WMH classification schemes can result in different disease-based conclusions. We conclude that future studies of WMH in AD would benefit from inclusion of microstructural information when characterising lesions, which we demonstrate can be performed in vivo using SS3T-CSD.
Collapse
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
| | - Thijs Dhollander
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ying Xia
- CSIRO, Health & Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - David Raffelt
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Olivier Salvado
- CSIRO, Health & Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, Australia; CSIRO Data61, Sydney, New South Wales, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| | - Christopher C Rowe
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia; Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Eastern Clinical Research Unit, Monash University, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Victor L Villemagne
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia; Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
186
|
Qin Y, Liu Z, Liu C, Li Y, Zeng X, Ye C. Super-Resolved q-Space deep learning with uncertainty quantification. Med Image Anal 2020; 67:101885. [PMID: 33227600 DOI: 10.1016/j.media.2020.101885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
Diffusion magnetic resonance imaging (dMRI) provides a noninvasive method for measuring brain tissue microstructure. q-Space deep learning(q-DL) methods have been developed to accurately estimate tissue microstructure from dMRI scans acquired with a reduced number of diffusion gradients. In these methods, deep networks are trained to learn the mapping directly from diffusion signals to tissue microstructure. However, the quality of tissue microstructure estimation can be limited not only by the reduced number of diffusion gradients but also by the low spatial resolution of typical dMRI acquisitions. Therefore, in this work we extend q-DL to super-resolved tissue microstructure estimation and propose super-resolvedq-DL (SR-q-DL), where deep networks are designed to map low-resolution diffusion signals undersampled in the q-space to high-resolution tissue microstructure. Specifically, we use a patch-based strategy, where a deep network takes low-resolution patches of diffusion signals as input and outputs high-resolution tissue microstructure patches. The high-resolution patches are then combined to obtain the final high-resolution tissue microstructure map. Motivated by existing q-DL methods, we integrate the sparsity of diffusion signals in the network design, which comprises two functional components. The first component computes sparse representation of diffusion signals for the low-resolution input patch, and the second component maps the low-resolution sparse representation to high-resolution tissue microstructure. The weights in the two components are learned jointly and the trained network performs end-to-end tissue microstructure estimation. In addition to SR-q-DL, we further propose probabilistic SR-q-DL, which can quantify the uncertainty of the network output as well as achieve improved estimation accuracy. In probabilistic SR-q-DL, a deep ensemble strategy is used. Specifically, the deep network for SR-q-DL is revised to produce not only tissue microstructure estimates but also the uncertainty of the estimates. Then, multiple deep networks are trained and their results are fused for the final prediction of high-resolution tissue microstructure and uncertainty quantification. The proposed method was evaluated on two independent datasets of brain dMRI scans. Results indicate that our approach outperforms competing methods in terms of estimation accuracy. In addition, uncertainty measures provided by our method correlate with estimation errors, which indicates potential application of the proposed uncertainty quantification method in brain studies.
Collapse
Affiliation(s)
- Yu Qin
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Zhiwen Liu
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Chenghao Liu
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Yuxing Li
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China
| | - Xiangzhu Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Chuyang Ye
- School of Information and Electronics, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing, China.
| |
Collapse
|
187
|
Novikov DS. The present and the future of microstructure MRI: From a paradigm shift to normal science. J Neurosci Methods 2020; 351:108947. [PMID: 33096152 DOI: 10.1016/j.jneumeth.2020.108947] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
The aspiration of imaging tissue microstructure with MRI is to uncover micrometer-scale tissue features within millimeter-scale imaging voxels, in vivo. This kind of super-resolution has fueled a paradigm shift within the biomedical imaging community. However, what feels like an ongoing revolution in MRI, has been conceptually experienced in physics decades ago; from this point of view, our current developments can be seen as Thomas Kuhn's "normal science" stage of progress. While the concept of model-based quantification below the nominal imaging resolution is not new, its possibilities in neuroscience and neuroradiology are only beginning to be widely appreciated. This disconnect calls for communicating the progress of tissue microstructure MR imaging to its potential users. Here, a number of recent research developments are outlined in terms of the overarching concept of coarse-graining the tissue structure over an increasing diffusion length. A variety of diffusion models and phenomena are summarized on the phase diagram of diffusion MRI, with the unresolved problems and future directions corresponding to its unexplored domains.
Collapse
Affiliation(s)
- Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
188
|
Jahng GH, Lee MB, Kim HJ, Je Woo E, Kwon OI. Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current. Neuroimage 2020; 225:117466. [PMID: 33075557 DOI: 10.1016/j.neuroimage.2020.117466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022] Open
Abstract
Diffusion weighted imaging based on random Brownian motion of water molecules within a voxel provides information on the micro-structure of biological tissues through water molecule diffusivity. As the electrical conductivity is primarily determined by the concentration and mobility of ionic charge carriers, the macroscopic electrical conductivity of biological tissues is also related to the diffusion of electrical ions. This paper aims to investigate the low-frequency electrical conductivity by relying on a pre-defined biological model that separates the brain into the intracellular (restricted) and extracellular (hindered) compartments. The proposed method uses B1 mapping technique, which provides a high-frequency conductivity distribution at Larmor frequency, and the spherical mean technique, which directly estimates the microscopic tissue structure based on the water molecule diffusivity and neurite orientation distribution. The total extracellular ion concentration, which is separated from the high-frequency conductivity, is recovered using the estimated diffusivity parameters and volume fraction in each compartment. We propose a method to reconstruct the low-frequency dominant conductivity tensor by taking into consideration the extracted extracellular diffusion tensor map and the reconstructed electrical parameters. To demonstrate the reliability of the proposed method, we conducted two phantom experiments. The first one used a cylindrical acrylic cage filled with an agar in the background region and four anomalies for the effect of ion concentration on the electrical conductivity. The other experiment, in which the effect of ion mobility on the conductivity was verified, used cell-like materials with thin insulating membranes suspended in an electrolyte. Animal and human brain experiments were conducted to visualize the low-frequency dominant conductivity tensor images. The proposed method using a conventional MRI scanner can predict the internal current density map in the brain without directly injected external currents.
Collapse
Affiliation(s)
- Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Mun Bae Lee
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Oh-In Kwon
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
189
|
Zhu T, Peng Q, Ouyang A, Huang H. Neuroanatomical underpinning of diffusion kurtosis measurements in the cerebral cortex of healthy macaque brains. Magn Reson Med 2020; 85:1895-1908. [PMID: 33058286 DOI: 10.1002/mrm.28548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the neuroanatomical underpinning of healthy macaque brain cortical microstructure measured by diffusion kurtosis imaging (DKI), which characterizes non-Gaussian water diffusion. METHODS High-resolution DKI was acquired from 6 postmortem macaque brains. Neurofilament density (ND) was quantified based on structure tensor from neurofilament histological images of a different macaque brain sample. After alignment of DKI-derived mean kurtosis (MK) maps to the histological images, MK and histology-based ND were measured at corresponding regions of interests characterized by distinguished cortical MK values in the prefrontal/precentral-postcentral and temporal cortices. Pearson correlation was performed to test significant correlation between these cortical MK and ND measurements. RESULTS Heterogeneity of cortical MK across different cortical regions was revealed, with significantly and consistently higher MK measurements in the prefrontal/precentral-postcentral cortex compared to those in the temporal cortex across all six scanned macaque brains. Corresponding higher ND measurements in the prefrontal/precentral-postcentral cortex than in the temporal cortex were also found. The heterogeneity of cortical MK is associated with heterogeneity of histology-based ND measurements, with significant correlation between cortical MK and corresponding ND measurements (P < .005). CONCLUSION These findings suggested that DKI-derived MK can potentially be an effective noninvasive biomarker quantifying underlying neuroanatomical complexity inside the cerebral cortical mantle for clinical and neuroscientific research.
Collapse
Affiliation(s)
- Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Austin Ouyang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
190
|
Beck D, de Lange AMG, Maximov II, Richard G, Andreassen OA, Nordvik JE, Westlye LT. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. Neuroimage 2020; 224:117441. [PMID: 33039618 DOI: 10.1016/j.neuroimage.2020.117441] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
The macro- and microstructural architecture of human brain white matter undergoes substantial alterations throughout development and ageing. Most of our understanding of the spatial and temporal characteristics of these lifespan adaptations come from magnetic resonance imaging (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of brain white matter with unprecedented sensitivity and detail. However, with some notable exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI datasets, we combined complementary dMRI models to investigate age trajectories in healthy individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and machine learning based brain age prediction, we assessed the age-dependence of diffusion metrics, and compared the age prediction accuracy of six different diffusion models, including diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, and that the highest performing advanced dMRI models showed comparable age prediction accuracy to conventional DTI. Linear mixed effects models and Wilk's theorem analysis showed that the 'FA fine' metric of the RSI model and 'orientation dispersion' (OD) metric of the NODDI model showed the highest sensitivity to age. The results indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-related microstructural changes of white matter in the brain that complement and extend the contribution of conventional DTI.
Collapse
Affiliation(s)
- Dani Beck
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Oslo, Norway.
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Lars T Westlye
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| |
Collapse
|
191
|
Naughton NM, Tennyson CG, Georgiadis JG. Lattice Boltzmann method for simulation of diffusion magnetic resonance imaging physics in multiphase tissue models. Phys Rev E 2020; 102:043305. [PMID: 33212689 DOI: 10.1103/physreve.102.043305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
We report an implementation of the lattice Boltzmann method (LBM) to integrate the Bloch-Torrey equation, which describes the evolution of the transverse magnetization vector and the fate of the signal of diffusion magnetic resonance imaging (dMRI). Motivated by the need to interpret dMRI experiments in biological tissues, and to offset the small time-step limitation of classical LBM, a hybrid LBM scheme is introduced and implemented to solve the Bloch-Torrey equation. A membrane boundary condition is presented which is able to accurately represent the effects of thin curvilinear membranes typically found in biological tissues. As implemented, the hybrid LBM scheme accommodates piece-wise uniform transport, dMRI parameters, periodic and mirroring outer boundary conditions, and finite membrane permeabilities on non-boundary-conforming inner boundaries. By comparing with analytical solutions of limiting cases, we demonstrate that the hybrid LBM scheme is more accurate than the classical LBM scheme. The proposed explicit LBM scheme maintains second-order spatial accuracy, stability, and first-order temporal accuracy for a wide range of parameters. The parallel implementation of the hybrid LBM code in a multi-CPU computer system, as well as on GPUs, is straightforward and efficient. Along with offering certain advantages over finite element or Monte Carlo schemes, the proposed hybrid LBM constitutes a flexible scheme that can by easily adapted to model more complex interfacial conditions and physics in heterogeneous multiphase tissue models and to accommodate sophisticated dMRI sequences.
Collapse
Affiliation(s)
- Noel M Naughton
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - John G Georgiadis
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
192
|
Huynh KM, Wu Y, Thung KH, Ahmad S, Taylor HP, Shen D, Yap PT. Characterizing Intra-soma Diffusion with Spherical Mean Spectrum Imaging. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2020; 12267:354-363. [PMID: 34223563 PMCID: PMC8248904 DOI: 10.1007/978-3-030-59728-3_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Most brain microstructure models are dedicated to the quantification of white matter microstructure, using for example sticks, cylinders, and zeppelins to model intra- and extra-axonal environments. Gray matter presents unique micro-architecture with cell bodies (somas) exhibiting diffusion characteristics that differ from axons in white matter. In this paper, we introduce a method to quantify soma microstructure, giving measures such as volume fraction, diffusivity, and kurtosis. Our method captures a spectrum of diffusion patterns and scales and does not rely on restrictive model assumptions. We show that our method yields unique and meaningful contrasts that are in agreement with histological data. We demonstrate its application in the mapping of the distinct spatial patterns of soma density in the cortex.
Collapse
Affiliation(s)
- Khoi Minh Huynh
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Kim-Han Thung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Sahar Ahmad
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Hoyt Patrick Taylor
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Dinggang Shen
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| | - Pew-Thian Yap
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, USA
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
193
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
194
|
Piredda GF, Hilbert T, Thiran JP, Kober T. Probing myelin content of the human brain with MRI: A review. Magn Reson Med 2020; 85:627-652. [PMID: 32936494 DOI: 10.1002/mrm.28509] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Rapid and efficient transmission of electric signals among neurons of vertebrates is ensured by myelin-insulating sheaths surrounding axons. Human cognition, sensation, and motor functions rely on the integrity of these layers, and demyelinating diseases often entail serious cognitive and physical impairments. Magnetic resonance imaging radically transformed the way these disorders are monitored, offering an irreplaceable tool to noninvasively examine the brain structure. Several advanced techniques based on MRI have been developed to provide myelin-specific contrasts and a quantitative estimation of myelin density in vivo. Here, the vast offer of acquisition strategies developed to date for this task is reviewed. Advantages and pitfalls of the different approaches are compared and discussed.
Collapse
Affiliation(s)
- Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
195
|
Eed A, Cerdán Cerdá A, Lerma J, De Santis S. Diffusion-weighted MRI in neurodegenerative and psychiatric animal models: Experimental strategies and main outcomes. J Neurosci Methods 2020; 343:108814. [PMID: 32569785 DOI: 10.1016/j.jneumeth.2020.108814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Preclinical MRI approaches constitute a key tool to study a wide variety of neurological and psychiatric illnesses, allowing a more direct investigation of the disorder substrate and, at the same time, the possibility of back-translating such findings to human subjects. However, the lack of consensus on the optimal experimental scheme used to acquire the data has led to relatively high heterogeneity in the choice of protocols, which can potentially impact the comparison between results obtained by different groups, even using the same animal model. This is especially true for diffusion-weighted MRI data, where certain experimental choices can impact not only on the accuracy and precision of the extracted biomarkers, but also on their biological meaning. With this in mind, we extensively examined preclinical imaging studies that used diffusion-weighted MRI to investigate neurodegenerative, neurodevelopmental and psychiatric disorders in rodent models. In this review, we discuss the main findings for each preclinical model, with a special focus on the analysis and comparison of the different acquisition strategies used across studies and their impact on the heterogeneity of the findings.
Collapse
Affiliation(s)
- Amr Eed
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain
| | | | - Juan Lerma
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias, CSIC, UMH, San Juan de Alicante, Alicante, Spain; CUBRIC, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
196
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
197
|
ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation. Neuroimage 2020; 220:117107. [PMID: 32622984 PMCID: PMC7903162 DOI: 10.1016/j.neuroimage.2020.117107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 11/27/2022] Open
Abstract
This paper presents Contextual Fibre Growth (ConFiG), an approach to generate white matter numerical phantoms by mimicking natural fibre genesis. ConFiG grows fibres one-by-one, following simple rules motivated by real axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms with tuneable microstructural features by growing fibres while attempting to meet morphological targets such as user-specified density and orientation distribution. We compare ConFiG to the state-of-the-art approach based on packing fibres together by generating phantoms in a range of fibre configurations including crossing fibre bundles and orientation dispersion. Results demonstrate that ConFiG produces phantoms with up to 20% higher densities than the state-of-the-art, particularly in complex configurations with crossing fibres. We additionally show that the microstructural morphology of ConFiG phantoms is comparable to real tissue, producing diameter and orientation distributions close to electron microscopy estimates from real tissue as well as capturing complex fibre cross sections. Signals simulated from ConFiG phantoms match real diffusion MRI data well, showing that ConFiG phantoms can be used to generate realistic diffusion MRI data. This demonstrates the feasibility of ConFiG to generate realistic synthetic diffusion MRI data for developing and validating microstructure modelling approaches. We present ConFiG, a biologically motivated numerical phantom generator for white matter. ConFiG produces phantoms with state-of-the-art density and realistic microstructure. Diffusion MRI simulations in ConFiG phantoms are comparable to real dMRI signals.
Collapse
|
198
|
Schiavi S, Ocampo-Pineda M, Barakovic M, Petit L, Descoteaux M, Thiran JP, Daducci A. A new method for accurate in vivo mapping of human brain connections using microstructural and anatomical information. SCIENCE ADVANCES 2020; 6:eaba8245. [PMID: 32789176 PMCID: PMC7399649 DOI: 10.1126/sciadv.aba8245] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Diffusion magnetic resonance imaging is a noninvasive imaging modality that has been extensively used in the literature to study the neuronal architecture of the brain in a wide range of neurological conditions using tractography. However, recent studies highlighted that the anatomical accuracy of the reconstructions is inherently limited and challenged its appropriateness. Several solutions have been proposed to tackle this issue, but none of them proved effective to overcome this fundamental limitation. In this work, we present a novel processing framework to inject into the reconstruction problem basic prior knowledge about brain anatomy and its organization and evaluate its effectiveness using both simulated and real human brain data. Our results indicate that our proposed method dramatically increases the accuracy of the estimated brain networks and, thus, represents a major step forward for the study of connectivity.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Muhamed Barakovic
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Petit
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | |
Collapse
|
199
|
Moeller S, Pisharady Kumar P, Andersson J, Akcakaya M, Harel N, Ma RE, Wu X, Yacoub E, Lenglet C, Ugurbil K. Diffusion Imaging in the Post HCP Era. J Magn Reson Imaging 2020; 54:36-57. [PMID: 32562456 DOI: 10.1002/jmri.27247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diffusion imaging is a critical component in the pursuit of developing a better understanding of the human brain. Recent technical advances promise enabling the advancement in the quality of data that can be obtained. In this review the context for different approaches relative to the Human Connectome Project are compared. Significant new gains are anticipated from the use of high-performance head gradients. These gains can be particularly large when the high-performance gradients are employed together with ultrahigh magnetic fields. Transmit array designs are critical in realizing high accelerations in diffusion-weighted (d)MRI acquisitions, while maintaining large field of view (FOV) coverage, and several techniques for optimal signal-encoding are now available. Reconstruction and processing pipelines that precisely disentangle the acquired neuroanatomical information are established and provide the foundation for the application of deep learning in the advancement of dMRI for complex tissues. Level of Evidence: 3 Technical Efficacy Stage: Stage 3.
Collapse
Affiliation(s)
- Steen Moeller
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pramod Pisharady Kumar
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mehmet Akcakaya
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.,Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Noam Harel
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruoyun Emily Ma
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
200
|
Andersen KW, Lasič S, Lundell H, Nilsson M, Topgaard D, Sellebjerg F, Szczepankiewicz F, Siebner HR, Blinkenberg M, Dyrby TB. Disentangling white-matter damage from physiological fibre orientation dispersion in multiple sclerosis. Brain Commun 2020; 2:fcaa077. [PMID: 32954329 PMCID: PMC7472898 DOI: 10.1093/braincomms/fcaa077] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
Multiple sclerosis leads to diffuse damage of the central nervous system, affecting also the normal-appearing white matter. Demyelination and axonal degeneration reduce regional fractional anisotropy in normal-appearing white matter, which can be routinely mapped with diffusion tensor imaging. However, the standard fractional anisotropy metric is also sensitive to physiological variations in orientation dispersion of white matter fibres. This complicates the detection of disease-related damage in large parts of cerebral white matter where microstructure physiologically displays a high degree of fibre dispersion. To resolve this ambiguity, we employed a novel tensor-valued encoding method for diffusion MRI, which yields a microscopic fractional anisotropy metric that is unaffected by regional variations in orientation dispersion. In 26 patients with relapsing-remitting multiple sclerosis, 14 patients with primary-progressive multiple sclerosis and 27 age-matched healthy controls, we compared standard fractional anisotropy mapping with the novel microscopic fractional anisotropy mapping method, focusing on normal-appearing white matter. Mean microscopic fractional anisotropy and standard fractional anisotropy of normal-appearing white matter were significantly reduced in both patient groups relative to healthy controls, but microscopic fractional anisotropy yielded a better reflection of disease-related white-matter alterations. The reduction in mean microscopic fractional anisotropy showed a significant positive linear relationship with physical disability, as reflected by the expanded disability status scale. Mean reduction of microscopic fractional anisotropy in normal-appearing white matter also scaled positively with individual cognitive dysfunction, as measured with the symbol digit modality test. Mean microscopic fractional anisotropy reduction in normal-appearing white matter also showed a positive relationship with total white-matter lesion load as well as lesion load in specific tract systems. None of these relationships between normal-appearing white-matter microstructure and clinical, cognitive or structural measures emerged when using mean fractional anisotropy. Together, the results provide converging evidence that microscopic fractional anisotropy mapping substantially advances the assessment of cerebral white matter in multiple sclerosis by disentangling microstructure damage from variations in physiological fibre orientation dispersion at the stage of data acquisition. Since tensor-valued encoding can be implemented in routine diffusion MRI, microscopic fractional anisotropy mapping bears considerable potential for the future assessment of disease progression in normal-appearing white matter in both relapsing-remitting and progressive forms of multiple sclerosis as well as other white-matter-related brain diseases.
Collapse
Affiliation(s)
- Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Random Walk Imaging, AB, 222 24 Lund, Sweden
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Markus Nilsson
- Department of Radiology, Clinical Sciences, Lund, Lund University, 221 00 Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Filip Szczepankiewicz
- Department of Medical Radiation Physics, Clinical Sciences, Lund, Lund University, 221 00 Lund, Sweden
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen NV, Denmark
| | - Morten Blinkenberg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2700 Kongens Lyngby, Denmark
| |
Collapse
|