151
|
Martinez-Fernandez De La Camara C, Nanda A, Salvetti AP, Fischer MD, MacLaren RE. Gene therapy for the treatment of X-linked retinitis pigmentosa. Expert Opin Orphan Drugs 2018; 6:167-177. [PMID: 30057863 PMCID: PMC6059358 DOI: 10.1080/21678707.2018.1444476] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION X-linked retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene is the most common form of recessive RP. The phenotype is characterised by its severity and rapid disease progression. Gene therapy using adeno-associated viral vectors is currently the most promising therapeutic approach. However, the construction of a stable vector encoding the full-length RPGR transcript has previously proven to be a limiting step towards gene therapy clinical trials. Recently however, a codon optimised version of RPGR has been shown to increase the stability and fidelity of the sequence, conferring a therapeutic effect in murine and canine animal models. AREAS COVERED This manuscript reviews the natural history of X-linked retinitis pigmentosa and the research performed from the discovery of the causative gene, RPGR, to the preclinical testing of potential therapies that have led to the initiation of three clinical trials. EXPERT OPINION X-linked retinitis pigmentosa is an amenable disease to be treated by gene therapy. Codon optimisation has overcome the challenge of designing an RPGR vector without mutations, and with a therapeutic effect in different animal models. With the RPGR gene therapy clinical trials still in the early stages, the confirmation of the safety, tolerability and potency of the therapy is still ongoing.
Collapse
Affiliation(s)
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Anna Paola Salvetti
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Sacco Hospital, University of Milan, Milano, Italy
| | - M. Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Centre for Ophthalmology Tübingen, University Eye Hospital, Tübingen, Germany
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
152
|
Ren W, Zheng K, Liao C, Yang J, Zhao J. Charge evolution during the unfolding of a single DNA i-motif. Phys Chem Chem Phys 2018; 20:916-924. [PMID: 29230450 DOI: 10.1039/c7cp06235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effective charge and evolution of single chains of a DNA i-motif during its unfolding process are investigated at the single molecule level. Using fluorescence correlation spectroscopy and photon counting histograms, the single chain dimensions and electrical potential of cytosine-rich human telomeric oligonucleotides are monitored, during their unfolding from the i-motif to the random coil state. It is discovered that the effective charge density of the DNA chain is very sensitive to conformation changes and the results remarkably expose the existence of an intermediate state of the unfolding process. A huge difference in pH value exists in the vicinity of the DNA chain and the bulk solution, depending on the salt concentration, as reflected by a down-shift in the pH value of unfolding. The presence of an external salt in the solution helps to stabilize the i-motif structure at low pH values due to the reduction of the effective charge density. It can also destabilize the folded structure in the pH range of the conformation transition due to the elevation of the local pH value, encouraging the deprotonation of the cytosine groups. These results provide new information for understanding the structure and stability of i-motif DNA, and its biological function, as well as the building blocks for smart nanomaterials.
Collapse
Affiliation(s)
- Weibin Ren
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
153
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
154
|
Swadling JB, Ishii K, Tahara T, Kitao A. Origins of biological function in DNA and RNA hairpin loop motifs from replica exchange molecular dynamics simulation. Phys Chem Chem Phys 2018; 20:2990-3001. [DOI: 10.1039/c7cp06355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature REMD reveals how local chemical changes can result in markedly differing conformational landscapes for DNA and RNA hairpin loops.
Collapse
Affiliation(s)
- Jacob B. Swadling
- School of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | | | | | - Akio Kitao
- School of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| |
Collapse
|
155
|
James AE, Rogovskyy AS, Crowley MA, Bankhead T. Cis-acting DNA elements flanking the variable major protein expression site of Borrelia hermsii are required for murine persistence. Microbiologyopen 2017; 7:e00569. [PMID: 29250931 PMCID: PMC6011951 DOI: 10.1002/mbo3.569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
In Borrelia hermsii, antigenic variation occurs as a result of a nonreciprocal gene conversion event that places one of ~60 silent variable major protein genes downstream of a single, transcriptionally active promoter. The upstream homology sequence (UHS) and downstream homology sequence (DHS) are two putative cis‐acting DNA elements that have been predicted to serve as crossover points for homologous recombination. In this report, a targeted deletion/in cis complementation technique was used to directly evaluate the role for these elements in antigenic switching. The results demonstrate that deletion of the expression site results in an inability of the pathogen to relapse in immunocompetent mice, and that the utilized technique was successful in producing complemented mutants that are capable of antigenic switching. Additional complemented clones with mutations in the UHS and DHS of the expressed locus were then generated and evaluated for their ability to relapse in immunocompetent mice. Mutation of the UHS and inverted repeat sequence within the DHS rendered these mutants incapable of relapsing. Overall, the results establish the requirement of the inverted repeat of the DHS for antigenic switching, and support the importance of the UHS for B. hermsii persistence in the mammalian host.
Collapse
Affiliation(s)
- Allison E James
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Artem S Rogovskyy
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Michael A Crowley
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Troy Bankhead
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
156
|
Fidaleo M, De Paola E, Paronetto MP. The RNA helicase A in malignant transformation. Oncotarget 2017; 7:28711-23. [PMID: 26885691 PMCID: PMC5053757 DOI: 10.18632/oncotarget.7377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
The RNA helicase A (RHA) is involved in several steps of RNA metabolism, such as RNA processing, cellular transit of viral molecules, ribosome assembly, regulation of transcription and translation of specific mRNAs. RHA is a multifunctional protein whose roles depend on the specific interaction with different molecular partners, which have been extensively characterized in physiological situations. More recently, the functional implication of RHA in human cancer has emerged. Interestingly, RHA was shown to cooperate with both tumor suppressors and oncoproteins in different tumours, indicating that its specific role in cancer is strongly influenced by the cellular context. For instance, silencing of RHA and/or disruption of its interaction with the oncoprotein EWS-FLI1 rendered Ewing sarcoma cells more sensitive to genotoxic stresses and affected tumor growth and maintenance, suggesting possible therapeutic implications. Herein, we review the recent advances in the cellular functions of RHA and discuss its implication in oncogenesis, providing a perspective for future studies and potential translational opportunities in human cancer.
Collapse
Affiliation(s)
- Marco Fidaleo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| | - Elisa De Paola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
157
|
Transformation of a Thermostable G-Quadruplex Structure into DNA Duplex Driven by Reverse Gyrase. Molecules 2017; 22:molecules22112021. [PMID: 29165328 PMCID: PMC6150213 DOI: 10.3390/molecules22112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/27/2022] Open
Abstract
Reverse gyrase is a topoisomerase that can introduce positive supercoils to its substrate DNA. It is demonstrated in our studies that a highly thermal stable G-quadruplex structure in a mini-plasmid DNA was transformed into its duplex conformation after a treatment with reverse gyrase. The structural difference of the topoisomers were verified and analyzed by gel electrophoresis, atomic force microscopy examination, and endonuclease digestion assays. All evidence suggested that the overwinding structure of positive supercoil could provide a driven force to disintegrate G-quadruplex and reform duplex. The results of our studies could suggest that hyperthermophiles might use reverse gyrase to manipulate the disintegration of non-B DNA structures and safekeep their genomic information.
Collapse
|
158
|
Tsai ZTY, Lloyd JP, Shiu SH. Defining Functional Genic Regions in the Human Genome through Integration of Biochemical, Evolutionary, and Genetic Evidence. Mol Biol Evol 2017; 34:1788-1798. [PMID: 28398576 DOI: 10.1093/molbev/msx101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human genome is dominated by large tracts of DNA with extensive biochemical activity but no known function. In particular, it is well established that transcriptional activities are not restricted to known genes. However, whether this intergenic transcription represents activity with functional significance or noise is under debate, highlighting the need for an effective method of defining functional genomic regions. Moreover, these discoveries raise the question whether genomic regions can be defined as functional based solely on the presence of biochemical activities, without considering evolutionary (conservation) and genetic (effects of mutations) evidence. Here, computational models integrating genetic, evolutionary, and biochemical evidence are established that provide reliable predictions of human protein-coding and RNA genes. Importantly, in addition to sequence conservation, biochemical features allow accurate predictions of genic sequences with phenotypic evidence under strong purifying selection, suggesting that they can be used as an alternative measure of selection. Moreover, 18.5% of annotated noncoding RNAs exhibit higher degrees of similarity to phenotype genes and, thus, are likely functional. However, 64.5% of noncoding RNAs appear to belong to a sequence class of their own, and the remaining 17% are more similar to pseudogenes and random intergenic sequences that may represent noisy transcription.
Collapse
Affiliation(s)
- Zing Tsung-Yeh Tsai
- Department of Plant Biology, Michigan State University, East Lansing, MI.,Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - John P Lloyd
- Department of Plant Biology, Michigan State University, East Lansing, MI
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI
| |
Collapse
|
159
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
160
|
Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res 2017; 808:62-73. [PMID: 28843435 DOI: 10.1016/j.mrfmmm.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/31/2023]
Abstract
Replication stress is a strong and early driving force for genomic instability and tumor development. Beside replicative DNA polymerases, an emerging group of specialized DNA polymerases is involved in the technical assistance of the replication machinery in order to prevent replicative stress and its deleterious consequences. During S-phase, altered progression of the replication fork by endogenous or exogenous impediments induces replicative stress, causing cells to reach mitosis with genomic regions not fully duplicated. Recently, specific mechanisms to resolve replication intermediates during mitosis with the aim of limiting DNA damage transmission to daughter cells have been identified. In this review, we detail the two major actions of specialized DNA polymerases that limit DNA damage transmission: the prevention of replicative stress by non-B DNA replication and the recovery of stalled replication forks.
Collapse
Affiliation(s)
- Elodie Bournique
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Marina Dall'Osto
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France.
| |
Collapse
|
161
|
Stevens AJ, Kennedy MA. Methylated Cytosine Maintains G-Quadruplex Structures during Polymerase Chain Reaction and Contributes to Allelic Dropout. Biochemistry 2017; 56:3691-3698. [DOI: 10.1021/acs.biochem.7b00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aaron J. Stevens
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Martin A. Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
162
|
Fresco JR, Amosova O. Site-Specific Self-Catalyzed DNA Depurination: A Biological Mechanism That Leads to Mutations and Creates Sequence Diversity. Annu Rev Biochem 2017; 86:461-484. [PMID: 28654322 DOI: 10.1146/annurev-biochem-070611-095951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000-4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.
Collapse
Affiliation(s)
- Jacques R Fresco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; ,
| | - Olga Amosova
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; ,
| |
Collapse
|
163
|
Qin T, Liu K, Song D, Yang C, Su H. Porphyrin Bound to i-Motifs: Intercalation versus External Groove Binding. Chem Asian J 2017; 12:1578-1586. [DOI: 10.1002/asia.201700398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Tingxiao Qin
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Kunhui Liu
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chunfan Yang
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Hongmei Su
- College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| |
Collapse
|
164
|
Smida J, Xu H, Zhang Y, Baumhoer D, Ribi S, Kovac M, von Luettichau I, Bielack S, O'Leary VB, Leib-Mösch C, Frishman D, Nathrath M. Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma. Int J Cancer 2017; 141:816-828. [DOI: 10.1002/ijc.30778] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Smida
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- Pediatric Oncology Center; Department of Pediatrics, Technical University of Munich and Comprehensive Cancer Center; Munich Germany
| | - Hongen Xu
- Department of Bioinformatics; Wissenschaftszentrum Weihenstephan, Technical University of Munich; Freising Germany
| | - Yanping Zhang
- Department of Bioinformatics; Wissenschaftszentrum Weihenstephan, Technical University of Munich; Freising Germany
| | - Daniel Baumhoer
- Bone Tumour Reference Center; Institute of Pathology, University Hospital Basel; Switzerland
| | - Sebastian Ribi
- Bone Tumour Reference Center; Institute of Pathology, University Hospital Basel; Switzerland
| | - Michal Kovac
- Bone Tumour Reference Center; Institute of Pathology, University Hospital Basel; Switzerland
| | - Irene von Luettichau
- Pediatric Oncology Center; Department of Pediatrics, Technical University of Munich and Comprehensive Cancer Center; Munich Germany
| | - Stefan Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart Olgahospital; Stuttgart Germany
| | - Valerie B. O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
| | - Christine Leib-Mösch
- Institute of Virology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
| | - Dmitrij Frishman
- Department of Bioinformatics; Wissenschaftszentrum Weihenstephan, Technical University of Munich; Freising Germany
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- St Petersburg State Polytechnic University; St Petersburg Russia
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich - German Research Center for Environmental Health; Neuherberg Germany
- Pediatric Oncology Center; Department of Pediatrics, Technical University of Munich and Comprehensive Cancer Center; Munich Germany
- Department of Pediatric Hematology and Oncology; Klinikum Kassel; Germany
| |
Collapse
|
165
|
del Mundo I, Zewail-Foote M, Kerwin SM, Vasquez KM. Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res 2017; 45:4929-4943. [PMID: 28334873 PMCID: PMC5416782 DOI: 10.1093/nar/gkx100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene.
Collapse
Affiliation(s)
- Imee Marie A. del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| | - Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, USA
| | - Sean M. Kerwin
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| |
Collapse
|
166
|
Hall AC, Ostrowski LA, Pietrobon V, Mekhail K. Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus 2017; 8:162-181. [PMID: 28406751 DOI: 10.1080/19491034.2017.1292193] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci.
Collapse
Affiliation(s)
- Amanda C Hall
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Lauren A Ostrowski
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Violena Pietrobon
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Karim Mekhail
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada.,b Canada Research Chairs Program ; Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
167
|
Simard O, Niavarani SR, Gaudreault V, Boissonneault G. Torsional stress promotes trinucleotidic expansion in spermatids. Mutat Res 2017; 800-802:1-7. [PMID: 28412438 DOI: 10.1016/j.mrfmmm.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Trinucleotide repeats are involved in various neurodegenerative diseases and are highly unstable both in dividing or non-dividing cells. In Huntington disease (HD), the age of onset of symptoms is inversely correlated to the number of CAG repeats within exon 1 of the HTT gene. HD shows paternal anticipation as CAG repeats are increased during spermatogenesis. CAG expansion were indeed found to be generated during the chromatin remodeling in spermatids where most histones are evicted and replaced by protamines. This process involves striking change in DNA topology since free supercoils must be eliminated. Using an in vitro CAG repeat reporter assay and a highly active nuclear extracts from spermatids, we demonstrate that free negative supercoils result in CAG TNR expansion at a stabilized hairpin. We also suggest a possible role for protamines in promoting localized torsional stress and consequently TNR expansion. The transient increase in torsional stress during spermiogenesis may therefore provide an ideal context for the generation of such secondary DNA structures leading to the paternal anticipation of trinucleotidic diseases.
Collapse
Affiliation(s)
- Olivier Simard
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Seyedeh Raheleh Niavarani
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Virginie Gaudreault
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| |
Collapse
|
168
|
Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Syst 2017; 4:344-356.e7. [PMID: 28237796 DOI: 10.1016/j.cels.2017.01.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/06/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
DNA in cells is predominantly B-form double helix. Though certain DNA sequences in vitro may fold into other structures, such as triplex, left-handed Z form, or quadruplex DNA, the stability and prevalence of these structures in vivo are not known. Here, using computational analysis of sequence motifs, RNA polymerase II binding data, and genome-wide potassium permanganate-dependent nuclease footprinting data, we map thousands of putative non-B DNA sites at high resolution in mouse B cells. Computational analysis associates these non-B DNAs with particular structures and indicates that they form at locations compatible with an involvement in gene regulation. Further analyses support the notion that non-B DNA structure formation influences the occupancy and positioning of nucleosomes in chromatin. These results suggest that non-B DNAs contribute to the control of a variety of critical cellular and organismal processes.
Collapse
|
169
|
Effects of Replication and Transcription on DNA Structure-Related Genetic Instability. Genes (Basel) 2017; 8:genes8010017. [PMID: 28067787 PMCID: PMC5295012 DOI: 10.3390/genes8010017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.
Collapse
|
170
|
p53 Specifically Binds Triplex DNA In Vitro and in Cells. PLoS One 2016; 11:e0167439. [PMID: 27907175 PMCID: PMC5131957 DOI: 10.1371/journal.pone.0167439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.
Collapse
|
171
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
172
|
Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št'astný J. Palindrome analyser - A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun 2016; 478:1739-45. [PMID: 27603574 DOI: 10.1016/j.bbrc.2016.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
DNA cruciform structures play an important role in the regulation of natural processes including gene replication and expression, as well as nucleosome structure and recombination. They have also been implicated in the evolution and development of diseases such as cancer and neurodegenerative disorders. Cruciform structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling and protein binding. They have received broad attention because of their important roles in biology. Computational approaches to study inverted repeats have allowed detailed analysis of genomes. However, currently there are no easily accessible and user-friendly tools that can analyse inverted repeats, especially among long nucleotide sequences. We have developed a web-based server, Palindrome analyser, which is a user-friendly application for analysing inverted repeats in various DNA (or RNA) sequences including genome sequences and oligonucleotides. It allows users to search and retrieve desired gene/nucleotide sequence entries from the NCBI databases, and provides data on length, sequence, locations and energy required for cruciform formation. Palindrome analyser also features an interactive graphical data representation of the distribution of the inverted repeats, with options for sorting according to the length of inverted repeat, length of loop, and number of mismatches. Palindrome analyser can be accessed at http://bioinformatics.ibp.cz.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jan Kolomazník
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Lýsek
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Lucia Hároníková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jiří Št'astný
- Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| |
Collapse
|
173
|
Mandrioli M, Rivi V, Nardelli A, Manicardi GC. Genomic and Cytogenetic Localization of the Carotenoid Genes in the Aphid Genome. Cytogenet Genome Res 2016; 149:207-217. [PMID: 27585067 DOI: 10.1159/000448669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Data published in the scientific literature suggests a possible link between chromosomal rearrangements involving autosomes 1 and 3 and the presence of red morphs in the peach-potato aphid Myzus persicae (Sulzer). In order to begin a study of this relationship, we analysed the genomic and chromosomal location of genes involved in carotenoid biosynthesis in M. persicae and the pea aphid, Acyrthosiphon pisum (Harris), since carotenoids are the basis of the colour in many aphid species. Genomic analysis identified a DNA sequence containing carotenoid genes in synteny between the 2 species. According to the results obtained using in situ PCR, carotenoid genes were located in a subterminal portion of autosome 1 in both species. The same localization has also been observed in the onion aphid Neotoxoptera formosana Takahashi that, as M. persicae and A. pisum, belongs to the tribe Macrosiphini, thereby suggesting a synteny of this chromosomal region in aphids. In situ PCR experiments performed on 2 M. persicae asexual lineages bearing heterozygous translocations involving autosomes 1 and 3 revealed that carotenoid genes were located within chromosomal portions involved in recurrent rearrangements. We also verified by bioinformatics analyses the presence of fragile sites that could explain these recurrent rearrangements in M. persicae.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | | |
Collapse
|
174
|
Wang G, Zhao J, Vasquez KM. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches. Front Genet 2016; 7:135. [PMID: 27532010 PMCID: PMC4969553 DOI: 10.3389/fgene.2016.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sequences that can adopt alternative DNA structures (i.e., non-B DNA) are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| |
Collapse
|
175
|
García-Muse T, Aguilera A. Transcription–replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 2016; 17:553-63. [DOI: 10.1038/nrm.2016.88] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
176
|
Das K, Srivastava M, Raghavan SC. GNG Motifs Can Replace a GGG Stretch during G-Quadruplex Formation in a Context Dependent Manner. PLoS One 2016; 11:e0158794. [PMID: 27414642 PMCID: PMC4945072 DOI: 10.1371/journal.pone.0158794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes are one of the most commonly studied non-B DNA structures. Generally, these structures are formed using a minimum of 4, three guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In this study, guanines along with bulges, also referred to as GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the contribution from continuous G-tracts may be dispensible during G-quadruplex formation when such motifs are flanked by GNGs. Importantly, the positioning and number of GNG/GNGNG can also influence the formation of G-quadruplexes. Further, we assessed three genomic regions from HIF1 alpha, VEGF and SHOX gene for G-quadruplex formation using GNG motifs. We show that HIF1 alpha sequence harbouring GNG motifs can fold into intramolecular G-quadruplex. In contrast, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two continuous stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX), it can fold into an intramolecular G-quadruplex. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody, BG4 to SHOX G-quadruplex. Overall, our study provides novel insights into the role of GNG motifs in G-quadruplex structure formation which may have both physiological and pathological implications.
Collapse
Affiliation(s)
- Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinal Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
- * E-mail:
| |
Collapse
|
177
|
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput Biol 2016; 12:e1004956. [PMID: 27309962 PMCID: PMC4911145 DOI: 10.1371/journal.pcbi.1004956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Alessia Pini
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
178
|
Charnavets T, Nunvar J, Nečasová I, Völker J, Breslauer KJ, Schneider B. Conformational diversity of single-stranded DNA from bacterial repetitive extragenic palindromes: Implications for the DNA recognition elements of transposases. Biopolymers 2016; 103:585-96. [PMID: 25951997 PMCID: PMC4690160 DOI: 10.1002/bip.22666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/19/2023]
Abstract
Repetitive extragenic palindrome (REP)—associated tyrosine transposase enzymes (RAYTs) bind REP DNA domains and catalyze their cleavage. Genomic sequence analyses identify potential noncoding REP sequences associated with RAYT-encoding genes. To probe the conformational space of potential RAYT DNA binding domains, we report here spectroscopic and calorimetric measurements that detect and partially characterize the solution conformational heterogeneity of REP oligonucleotides from six bacterial species. Our data reveal most of these REP oligonucleotides adopt multiple conformations, suggesting that RAYTs confront a landscape of potential DNA substrates in dynamic equilibrium that could be selected, enriched, and/or induced via differential binding. Thus, the transposase-bound DNA motif may not be the predominant conformation of the isolated REP domain. Intriguingly, for several REPs, the circular dichroism spectra suggest guanine tetraplexes as potential alternative or additional RAYT recognition elements, an observation consistent with these REP domains being highly nonrandom, with tetraplex-favoring 5′-G and 3′-C-rich segments. In fact, the conformational heterogeneity of REP domains detected and reported here, including the formation of noncanonical DNA secondary structures, may reflect a general feature required for recognition by RAYT transposases. Based on our biophysical data, we propose guanine tetraplexes as an additional DNA recognition element for binding by RAYT transposase enzymes. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 585–596, 2015.
Collapse
Affiliation(s)
- Tatsiana Charnavets
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Nunvar
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Iva Nečasová
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903
| | - Bohdan Schneider
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
179
|
Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol 2016; 18:684-91. [PMID: 27111843 PMCID: PMC4939857 DOI: 10.1038/ncb3344] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.
Collapse
|
180
|
Wang QY, Hu B, Liu H, Tang L, Zeng W, Wu YY, Cheng ZP, Hu Y. A genetic analysis of 23 Chinese patients with hemophilia B. Sci Rep 2016; 6:25024. [PMID: 27109384 PMCID: PMC4842959 DOI: 10.1038/srep25024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/08/2016] [Indexed: 11/17/2022] Open
Abstract
Hemophilia B (HB) is an X-linked recessive bleeding disorder caused by mutations in the coagulation factor IX (FIX) gene. Genotyping patients with HB is essential for genetic counseling and provides useful information for patient management. In this study, the F9 gene from 23 patients with HB was analyzed by direct sequencing. Nineteen point mutations were identified, including a novel missense variant (c.520G > C, p.Val174Leu) in a patient with severe HB and a previously unreported homozygous missense mutation (c.571C > T, p.Arg191Cys) in a female patient with mild HB. Two large F9 gene deletions with defined breakpoints (g.10413_11363del, g.12163_23369del) were identified in two patients with severe HB using a primer walking strategy followed by sequencing. The flanking regions of the two breakpoints revealed recombination-associated elements (repetitive elements, non-B conformation forming motifs) with a 5-bp microhomology in the breakpoint junction of g.12163_23369del. These findings imply that non-homologous end joining and microhomology-mediated break-induced replication are the putative mechanisms for the deletions of the F9 gene. Because the g.12163_23369del deletion caused exons to be absent without a frameshift mutation occurring, a smaller FIX protein was observed in western blot analyses.
Collapse
Affiliation(s)
- Qing-Yun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bei Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zeng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying-Ying Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhi-Peng Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
181
|
Bacolla A, Tainer JA, Vasquez KM, Cooper DN. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res 2016; 44:5673-88. [PMID: 27084947 PMCID: PMC4937311 DOI: 10.1093/nar/gkw261] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes.
Collapse
Affiliation(s)
- Albino Bacolla
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
182
|
Gattuso H, Spinello A, Terenzi A, Assfeld X, Barone G, Monari A. Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures. J Phys Chem B 2016; 120:3113-21. [DOI: 10.1021/acs.jpcb.6b00634] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hugo Gattuso
- Theory-Modeling-Simulation,
SRSMC, Université de Lorraine Nancy, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Angelo Spinello
- Dipartimento
di Scienze Biologiche, Chimiche e Farmaceutiche, Universitá di Palermo, Viale delle Scienze, Palermo, Italy
| | - Alessio Terenzi
- Dipartimento
di Scienze Biologiche, Chimiche e Farmaceutiche, Universitá di Palermo, Viale delle Scienze, Palermo, Italy
- Institute
of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, Vienna, Austria
| | - Xavier Assfeld
- Theory-Modeling-Simulation,
SRSMC, Université de Lorraine Nancy, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Giampaolo Barone
- Dipartimento
di Scienze Biologiche, Chimiche e Farmaceutiche, Universitá di Palermo, Viale delle Scienze, Palermo, Italy
| | - Antonio Monari
- Theory-Modeling-Simulation,
SRSMC, Université de Lorraine Nancy, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
183
|
Islam B, Stadlbauer P, Neidle S, Haider S, Sponer J. Can We Execute Reliable MM-PBSA Free Energy Computations of Relative Stabilities of Different Guanine Quadruplex Folds? J Phys Chem B 2016; 120:2899-912. [DOI: 10.1021/acs.jpcb.6b01059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barira Islam
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39
Brunswick Square, London WC1N 1AX, U.K
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39
Brunswick Square, London WC1N 1AX, U.K
| | - Jiri Sponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
184
|
Ghenu AH, Bolker BM, Melnick DJ, Evans BJ. Multicopy gene family evolution on primate Y chromosomes. BMC Genomics 2016; 17:157. [PMID: 26925773 PMCID: PMC4772468 DOI: 10.1186/s12864-015-2187-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Background The primate Y chromosome is distinguished by a lack of inter-chromosomal recombination along most of its length, extensive gene loss, and a prevalence of repetitive elements. A group of genes on the male-specific portion of the Y chromosome known as the “ampliconic genes” are present in multiple copies that are sometimes part of palindromes, and that undergo a form of intra-chromosomal recombination called gene conversion, wherein the nucleotides of one copy are homogenized by those of another. With the aim of further understanding gene family evolution of these genes, we collected nucleotide sequence and gene copy number information for several species of papionin monkey. We then tested for evidence of gene conversion, and developed a novel statistical framework to evaluate alternative models of gene family evolution using our data combined with other information from a human, a chimpanzee, and a rhesus macaque. Results Our results (i) recovered evidence for several novel examples of gene conversion in papionin monkeys and indicate that (ii) ampliconic gene families evolve faster than autosomal gene families and than single-copy genes on the Y chromosome and that (iii) Y-linked singleton and autosomal gene families evolved faster in humans and chimps than they do in the other Old World Monkey lineages we studied. Conclusions Rapid evolution of ampliconic genes cannot be attributed solely to residence on the Y chromosome, nor to variation between primate lineages in the rate of gene family evolution. Instead other factors, such as natural selection and gene conversion, appear to play a role in driving temporal and genomic evolutionary heterogeneity in primate gene families. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2187-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana-Hermina Ghenu
- Biology Department, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada.
| | - Benjamin M Bolker
- Biology Department, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada.,Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Don J Melnick
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, New York, 10027, USA
| | - Ben J Evans
- Biology Department, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada.
| |
Collapse
|
185
|
Kaushik M, Kaushik S, Roy K, Singh A, Mahendru S, Kumar M, Chaudhary S, Ahmed S, Kukreti S. A bouquet of DNA structures: Emerging diversity. Biochem Biophys Rep 2016; 5:388-395. [PMID: 28955846 PMCID: PMC5600441 DOI: 10.1016/j.bbrep.2016.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/28/2015] [Accepted: 01/22/2016] [Indexed: 11/29/2022] Open
Abstract
Structural polymorphism of DNA has constantly been evolving from the time of illustration of the double helical model of DNA by Watson and Crick. A variety of non-canonical DNA structures have constantly been documented across the globe. DNA attracted worldwide attention as a carrier of genetic information. In addition to the classical Watson–Crick duplex, DNA can actually adopt diverse structures during its active participation in cellular processes like replication, transcription, recombination and repair. Structures like hairpin, cruciform, triplex, G-triplex, quadruplex, i-motif and other alternative non-canonical DNA structures have been studied at length and have also shown their in vivo occurrence. This review mainly focuses on non-canonical structures adopted by DNA oligonucleotides which have certain prerequisites for their formation in terms of sequence, its length, number and orientation of strands along with varied solution conditions. This conformational polymorphism of DNA might be the basis of different functional properties of a specific set of DNA sequences, further giving some insights for various extremely complicated biological phenomena. Many of these structures have already shown their linkages with diseases like cancer and genetic disorders, hence making them an extremely striking target for structure-specific drug designing and therapeutic applications. DNA can adopt diverse range of structures other than classical Watson–Crick duplex. Discussion of alternate structures like hairpin, cruciform, triplex, quadruplex etc. This review gives some insights for the biological relevance of DNA structures.
Collapse
Affiliation(s)
- Mahima Kaushik
- Cluster Innovation Centre, University of Delhi, Delhi, India.,Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kapil Roy
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Anju Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Mahendru
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mohan Kumar
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Chaudhary
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Saami Ahmed
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
186
|
Tripathi S, Paukstelis PJ. Structural Implications of Homopyrimidine Base Pairs in the Parallel-Stranded d(YGA) Motif. Chembiochem 2016; 17:1177-83. [PMID: 26629965 DOI: 10.1002/cbic.201500491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/28/2022]
Abstract
DNA can adopt many other structures beyond the canonical B-form double helix. These alternative DNA structures have become increasingly significant as new biological roles are found for them. Additionally, there has been a growing interest in using non-canonical base pairs to provide structural diversity for designing DNA architectures for nanotechnology applications. We recently described the crystal structure of d(ACTCGGATGAT), which forms a tetraplex through parallel-stranded homo-base pairs and nucleobase intercalation. The homoduplex region contains a d(YGA⋅YGA) motif observed in crystal and solution structures. Here, we examine the structural implications of the homopyrimidine base pair within this motif. We determined crystal structures of two variants that differ from the original structure in the homopyrimidine base pairs and number of d(YGA) motifs. Our results show that the intercalation-locked tetraplex motif is predictable in these different sequence contexts and that substituting C⋅C base pairs for T⋅T base pairs introduces asymmetry to the homoduplex. These results have important implications for utilizing d(YGA) motifs in DNA crystal design and could provide a basis for understanding how local structures could be associated with repeat expansions.
Collapse
Affiliation(s)
- Shailesh Tripathi
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Reagents Drive, College Park, MD, 20742, USA.,National Institute of Mental Health and Neurosciences, Hosur Road 560029, Bengaluru, India
| | - Paul J Paukstelis
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Reagents Drive, College Park, MD, 20742, USA. .,Center for Biomolecular Structure and Organization, Maryland NanoCenter, College Park, MD, 20742, USA.
| |
Collapse
|
187
|
Zhang Y, Xu H, Frishman D. Genomic determinants of somatic copy number alterations across human cancers. Hum Mol Genet 2016; 25:1019-30. [DOI: 10.1093/hmg/ddv623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/21/2015] [Indexed: 01/03/2023] Open
|
188
|
Matsuzaki K, Borel V, Adelman CA, Schindler D, Boulton SJ. FANCJ suppresses microsatellite instability and lymphomagenesis independent of the Fanconi anemia pathway. Genes Dev 2015; 29:2532-46. [PMID: 26637282 PMCID: PMC4699383 DOI: 10.1101/gad.272740.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022]
Abstract
Microsatellites are short tandem repeat sequences that are highly prone to expansion/contraction due to their propensity to form non-B-form DNA structures, which hinder DNA polymerases and provoke template slippage. Although error correction by mismatch repair plays a key role in preventing microsatellite instability (MSI), which is a hallmark of Lynch syndrome, activities must also exist that unwind secondary structures to facilitate replication fidelity. Here, we report that Fancj helicase-deficient mice, while phenotypically resembling Fanconi anemia (FA), are also hypersensitive to replication inhibitors and predisposed to lymphoma. Whereas metabolism of G4-DNA structures is largely unaffected in Fancj(-/-) mice, high levels of spontaneous MSI occur, which is exacerbated by replication inhibition. In contrast, MSI is not observed in Fancd2(-/-) mice but is prevalent in human FA-J patients. Together, these data implicate FANCJ as a key factor required to counteract MSI, which is functionally distinct from its role in the FA pathway.
Collapse
Affiliation(s)
- Kenichiro Matsuzaki
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| | - Valerie Borel
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| | - Carrie A Adelman
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Wurzburg, 97074 Wurzburg, Germany
| | - Simon J Boulton
- DNA Damage Response Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN6 3LD, United Kingdom
| |
Collapse
|
189
|
Abstract
ATRX was identified over 20 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability. Similarities to the sucrose nonfermentable SNF2 type chromatin remodelers initially suggested a role in transcriptional regulation. However, over the last years, our knowledge of the epigenetic activities of ATRX has expanded steadily. Recent exciting discoveries have propelled ATRX into the limelight of chromatin and telomere biology, development and cancer research. This review summarizes recent breakthroughs in understanding ATRX function in heterochromatin structure, genome stability and its frequent dysregulation in a variety of cancers.
Collapse
Affiliation(s)
- L Ashley Watson
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Hannah Goldberg
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Nathalie G Bérubé
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|
190
|
Saoji M, Paukstelis PJ. Sequence-dependent structural changes in a self-assembling DNA oligonucleotide. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2471-8. [PMID: 26627654 PMCID: PMC4667286 DOI: 10.1107/s1399004715019598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Abstract
DNA has proved to be a remarkable molecule for the construction of sophisticated two-dimensional and three-dimensional architectures because of its programmability and structural predictability provided by complementary Watson-Crick base pairing. DNA oligonucleotides can, however, exhibit a great deal of local structural diversity. DNA conformation is strongly linked to both environmental conditions and the nucleobase identities inherent in the oligonucleotide sequence, but the exact relationship between sequence and local structure is not completely understood. This study examines how a single-nucleotide addition to a class of self-assembling DNA 13-mers leads to a significantly different overall structure under identical crystallization conditions. The DNA 13-mers self-assemble in the presence of Mg(2+) through a combination of Watson-Crick and noncanonical base-pairing interactions. The crystal structures described here show that all of the predicted Watson-Crick base pairs are present, with the major difference being a significant rearrangement of noncanonical base pairs. This includes the formation of a sheared A-G base pair, a junction of strands formed from base-triple interactions, and tertiary interactions that generate structural features similar to tandem sheared G-A base pairs. The adoption of this alternate noncanonical structure is dependent in part on the sequence in the Watson-Crick duplex region. These results provide important new insights into the sequence-structure relationship of short DNA oligonucleotides and demonstrate a unique interplay between Watson-Crick and noncanonical base pairs that is responsible for crystallization fate.
Collapse
Affiliation(s)
- Maithili Saoji
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Paul J. Paukstelis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Center for Biomolecular Structure and Organisation, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
191
|
Nakano M, Tateishi-Karimata H, Tanaka S, Tama F, Miyashita O, Nakano SI, Sugimoto N. Thermodynamic properties of water molecules in the presence of cosolute depend on DNA structure: a study using grid inhomogeneous solvation theory. Nucleic Acids Res 2015; 43:10114-25. [PMID: 26538600 PMCID: PMC4666364 DOI: 10.1093/nar/gkv1133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/14/2015] [Indexed: 01/11/2023] Open
Abstract
In conditions that mimic those of the living cell, where various biomolecules and other components are present, DNA strands can adopt many structures in addition to the canonical B-form duplex. Previous studies in the presence of cosolutes that induce molecular crowding showed that thermal stabilities of DNA structures are associated with the properties of the water molecules around the DNAs. To understand how cosolutes, such as ethylene glycol, affect the thermal stability of DNA structures, we investigated the thermodynamic properties of water molecules around a hairpin duplex and a G-quadruplex using grid inhomogeneous solvation theory (GIST) with or without cosolutes. Our analysis indicated that (i) cosolutes increased the free energy of water molecules around DNA by disrupting water–water interactions, (ii) ethylene glycol more effectively disrupted water–water interactions around Watson–Crick base pairs than those around G-quartets or non-paired bases, (iii) due to the negative electrostatic potential there was a thicker hydration shell around G-quartets than around Watson–Crick-paired bases. Our findings suggest that the thermal stability of the hydration shell around DNAs is one factor that affects the thermal stabilities of DNA structures under the crowding conditions.
Collapse
Affiliation(s)
- Miki Nakano
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Advanced Institute for Computational Sciences, RIKEN, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Florence Tama
- Advanced Institute for Computational Sciences, RIKEN, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Osamu Miyashita
- Advanced Institute for Computational Sciences, RIKEN, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shu-Ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
192
|
Holder IT, Wagner S, Xiong P, Sinn M, Frickey T, Meyer A, Hartig JS. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability. Nucleic Acids Res 2015; 43:10126-42. [PMID: 26450966 PMCID: PMC4666352 DOI: 10.1093/nar/gkv1017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023] Open
Abstract
Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon.
Collapse
Affiliation(s)
- Isabelle T Holder
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefanie Wagner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Peiwen Xiong
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Malte Sinn
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
193
|
Martin-Guerrero I, de Prado E, Ardanaz M, Martin-Arruti M, Garcia-Orad C, Guerra I, Ruiz I, Zabalza I, Garcia-Orad A. Methylation of CpG sites in BCL2 major breakpoint region and the increase of BCL2/JH translocation with aging. AGE (DORDRECHT, NETHERLANDS) 2015; 37:94. [PMID: 26335622 PMCID: PMC5005837 DOI: 10.1007/s11357-015-9834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The BCL2 breakage mechanism has been shown to be highly dependent on DNA methylation at the major breakpoint region (MBR) CpG sites. We recently described an increased frequency of BCL2/ JH translocation with aging. It is known that methylation levels change with aging. The present study aimed to determine whether methylation alterations at CpG sites of BCL2 MBR were the cause of increased breakages with aging. We analyzed the methylation levels of three CpG sites on the region by pyrosequencing and studied if methylation levels and/or polymorphisms affecting CpG sites were associated with an increase of translocations. We observed that although the methylation levels of MBR CpG sites were higher in individuals with BCL2/JH translocation, in contrast to our expectations, these levels decreased with the age. Moreover, we show that polymorphisms at those CpG sites leading to absence of methylation seem to be a protective factor for the apparition of translocations.
Collapse
Affiliation(s)
- Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
| | - Elena de Prado
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
| | | | | | - Cristina Garcia-Orad
- Assistance to Primary Health Care Center—Torrent 1, Hospital General Valencia, Valencia, Spain
| | | | - Irune Ruiz
- Donostia University Hospital, Donostia, Spain
| | | | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
- BioCruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
194
|
Zhang H, Ba S, Co Co S, Lee JY, Guo J, Ye R, Liang Z, Huang D, Li T. An Alternative Method for Evaluating Stabilities of DNA Hairpin Structures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Sarajane Co Co
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Juanjuan Guo
- Department of Chemistry, National University of Singapore
| | - Ruijuan Ye
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University
| | - Zhaoxun Liang
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University
| | - Dejian Huang
- Department of Chemistry, National University of Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| |
Collapse
|
195
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
196
|
The Influence of DNA Configuration on the Direct Strand Break Yield. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:417501. [PMID: 26124855 PMCID: PMC4466367 DOI: 10.1155/2015/417501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/11/2015] [Accepted: 01/28/2015] [Indexed: 11/24/2022]
Abstract
Purpose. To study the influence of DNA configuration on the direct damage yield. No indirect effect has been accounted for. Methods. The GEANT4-DNA code was used to simulate the interactions of protons and alpha particles with geometrical models of the A-, B-, and Z-DNA configurations. The direct total, single, and double strand break yields and site-hit probabilities were determined. Certain features of the energy deposition process were also studied. Results. A slight increase of the site-hit probability as a function of the incident particle linear energy transfer was found for each DNA configuration. Each DNA form presents a well-defined site-hit probability, independently of the particle linear energy transfer. Approximately 70% of the inelastic collisions and ~60% of the absorbed dose are due to secondary electrons. These fractions are slightly higher for protons than for alpha particles at the same incident energy. Conclusions. The total direct strand break yield for a given DNA form depends weakly on DNA conformation topology. This yield is practically determined by the target volume of the DNA configuration. However, the double strand break yield increases with the packing ratio of the DNA double helix; thus, it depends on the DNA conformation.
Collapse
|
197
|
Singh HN, Rajeswari MR. Identification of genes containing expanded purine repeats in the human genome and their apparent protective role against cancer. J Biomol Struct Dyn 2015; 34:689-704. [PMID: 25990537 DOI: 10.1080/07391102.2015.1049553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purine repeat sequences present in a gene are unique as they have high propensity to form unusual DNA-triple helix structures. Friedreich's ataxia is the only human disease that is well known to be associated with DNA-triplexes formed by purine repeats. The purpose of this study was to recognize the expanded purine repeats (EPRs) in human genome and find their correlation with cancer pathogenesis. We developed "PuRepeatFinder.pl" algorithm to identify non-overlapping EPRs without pyrimidine interruptions in the human genome and customized for searching repeat lengths, n ≥ 200. A total of 1158 EPRs were identified in the genome which followed Wakeby distribution. Two hundred and ninety-six EPRs were found in geneic regions of 282 genes (EPR-genes). Gene clustering of EPR-genes was done based on their cellular function and a large number of EPR-genes were found to be enzymes/enzyme modulators. Meta-analysis of 282 EPR-genes identified only 63 EPR-genes in association with cancer, mostly in breast, lung, and blood cancers. Protein-protein interaction network analysis of all 282 EPR-genes identified proteins including those in cadherins and VEGF. The two observations, that EPRs can induce mutations under malignant conditions and that identification of some EPR-gene products in vital cell signaling-mediated pathways, together suggest the crucial role of EPRs in carcinogenesis. The new link between EPR-genes and their functionally interacting proteins throws a new dimension in the present understanding of cancer pathogenesis and can help in planning therapeutic strategies. Validation of present results using techniques like NGS is required to establish the role of the EPR genes in cancer pathology.
Collapse
Affiliation(s)
- Himanshu Narayan Singh
- a Department of Biochemistry , All India Institute of Medical Sciences , Room No: 3005A, New Delhi 110029 , India
| | - Moganty R Rajeswari
- a Department of Biochemistry , All India Institute of Medical Sciences , Room No: 3005A, New Delhi 110029 , India
| |
Collapse
|
198
|
Williams JD, Fleetwood S, Berroyer A, Kim N, Larson ED. Sites of instability in the human TCF3 (E2A) gene adopt G-quadruplex DNA structures in vitro. Front Genet 2015; 6:177. [PMID: 26029241 PMCID: PMC4426816 DOI: 10.3389/fgene.2015.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/25/2015] [Indexed: 01/23/2023] Open
Abstract
The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination.
Collapse
Affiliation(s)
| | - Sara Fleetwood
- School of Biological Sciences, Illinois State University Normal, IL, USA
| | - Alexandra Berroyer
- School of Biological Sciences, Illinois State University Normal, IL, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University Normal, IL, USA
| |
Collapse
|
199
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
200
|
Shen YJ, Le Bert N, Chitre AA, Koo CX, Nga XH, Ho SSW, Khatoo M, Tan NY, Ishii KJ, Gasser S. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 2015; 11:460-73. [PMID: 25865892 DOI: 10.1016/j.celrep.2015.03.041] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) induces the expression of type I interferons (IFNs), but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.
Collapse
Affiliation(s)
- Yu J Shen
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Nina Le Bert
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Anuja A Chitre
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Christine Xing'Er Koo
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore; Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Xing H Nga
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Samantha S W Ho
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Muznah Khatoo
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Nikki Y Tan
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFREC), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Stephan Gasser
- Immunology Programme and Department of Microbiology, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|